1
|
Ge Y, Wang J, Gu D, Cao W, Feng Y, Wu Y, Liu H, Xu Z, Zhang Z, Xie J, Geng S, Cong J, Liu Y. Low-temperature plasma jet suppresses bacterial colonisation and affects wound healing through reactive species. Wound Repair Regen 2024; 32:407-418. [PMID: 38602090 DOI: 10.1111/wrr.13178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 03/01/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
An argon-based low-temperature plasma jet (LTPJ) was used to treat chronically infected wounds in Staphylococcus aureus-laden mice. Based on physicochemical property analysis and in vitro antibacterial experiments, the effects of plasma parameters on the reactive nitrogen and oxygen species (RNOS) content and antibacterial capacity were determined, and the optimal treatment parameters were determined to be 4 standard litre per minute and 35 W. Additionally, the plasma-treated activation solution had a bactericidal effect. Although RNOS are related to the antimicrobial effect of plasma, excess RNOS may be detrimental to wound remodelling. In vivo studies demonstrated that medium-dose LTPJ promoted MMP-9 expression and inhibited bacterial growth during the early stages of healing. Moreover, LTPJ increased collagen deposition, reduced inflammation, and restored blood vessel density and TGF-β levels to normal in the later stages of wound healing. Therefore, when treating chronically infected wounds with LTPJ, selecting the medium dose of plasma is more advantageous for wound recovery. Overall, our study demonstrated that low-temperature plasma jets may be a potential tool for the treatment of chronically infected wounds.
Collapse
Affiliation(s)
- Yang Ge
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Jun Wang
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
- Nanjing Guoke Medical Enginneering Technology Development co., LTD, Nanjing, Jiangsu, China
| | - DongHua Gu
- Department of Pathology, Suzhou Science & Technology Town Hospital, Suzhou, Jiangsu, China
| | - Wei Cao
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Yongtong Feng
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Yanfan Wu
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, Jiangsu, China
| | - Han Liu
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Zhengping Xu
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Zhe Zhang
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Jinsong Xie
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Shuang Geng
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Junrui Cong
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yi Liu
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, Jiangsu, China
| |
Collapse
|
2
|
Dejonckheere CS, Layer JP, Nour Y, Layer K, Glasmacher A, Wiegreffe S, Fuhrmann A, Caglayan L, Grau F, Sarria GR, Scafa D, Koch D, Heimann M, Leitzen C, Köksal MA, Röhner F, Müdder T, Dejonckheere E, Schmeel FC, Anzböck T, Lindner K, Bachmann A, Abramian A, Kaiser C, Faridi A, Mustea A, Giordano FA, Stope MB, Schmeel LC. Non-invasive physical plasma for preventing radiation dermatitis in breast cancer: Results from an intrapatient-randomised double-blind placebo-controlled trial. Clin Transl Radiat Oncol 2024; 44:100699. [PMID: 38021092 PMCID: PMC10654149 DOI: 10.1016/j.ctro.2023.100699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Background and Purpose To investigate the effect of topical non-invasive physical plasma (NIPP), a volatile mix generated out of ambient air, on prevention of acute radiation dermatitis (RD) during and after whole-breast irradiation (WBI). Materials and Methods Lateral and medial breast halves were randomised within each patient to receive either 120 s of NIPP or sham treatment daily during WBI. Standard skin care with urea lotion was applied to the whole breast. Blinded acute skin toxicity was assessed weekly for each breast half separately and included clinician- (CTCAE) and patient-reported (modified RISRAS), and objective (spectrophotometry) assessments. As an additional external control, a comparable standard of care (SoC) patient collective from a previous prospective trial was used. Results Sixty-four patients were included. There were no significant differences between breast halves. Post-hoc comparison with a similar SoC control collective revealed OR = 0.28 (95% CI 0.11-0.76; p = 0.014) for grade ≥ 2 RD upon WBI completion, along with less hyperpigmentation (p < 0.001), oedema (p = 0.020), dry (p < 0.001) and moist desquamation (p = 0.017), pain, itching, and burning (p < 0.001 for each). Tolerability of NIPP was excellent and side effects were not observed. Conclusion Even though there were no differences between intrapatient-randomised breast halves, the overall incidence and severity of acute radiation-induced skin toxicity were considerably lower when compared to a prospectively collected SoC cohort. Our data suggest the potential benefit of NIPP in RD prevention. A randomised trial with a physical control group is warranted to confirm these promising results (DRKS00026225).
Collapse
Affiliation(s)
| | - Julian Philipp Layer
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
- Institute of Experimental Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Younèss Nour
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Katharina Layer
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Andrea Glasmacher
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Shari Wiegreffe
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Arne Fuhrmann
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Lara Caglayan
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Franziska Grau
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | | | - Davide Scafa
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - David Koch
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Martina Heimann
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Christina Leitzen
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Mümtaz Ali Köksal
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Fred Röhner
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Thomas Müdder
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Egon Dejonckheere
- Faculty of Psychology and Educational Sciences, KU Leuven, 3000 Leuven, Belgium
- Department of Medical and Clinical Psychology, Tilburg School of Social and Behavioural Sciences, 5037 Tilburg, the Netherlands
| | | | - Teresa Anzböck
- Department of Gynaecology, Division of Gynaecological Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Kira Lindner
- Department of Gynaecology, Division of Senology, University Hospital Bonn, 53127 Bonn, Germany
| | - Anne Bachmann
- Department of Gynaecology, Division of Senology, University Hospital Bonn, 53127 Bonn, Germany
| | - Alina Abramian
- Department of Gynaecology, Division of Senology, University Hospital Bonn, 53127 Bonn, Germany
| | - Christina Kaiser
- Department of Gynaecology, Division of Senology, University Hospital Bonn, 53127 Bonn, Germany
| | - Andree Faridi
- Department of Gynaecology, Division of Senology, University Hospital Bonn, 53127 Bonn, Germany
| | - Alexander Mustea
- Department of Gynaecology, Division of Gynaecological Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Frank Anton Giordano
- Department of Radiation Oncology, University Medical Center Mannheim, 68167 Mannheim, Germany
| | - Matthias Bernhard Stope
- Department of Gynaecology, Division of Gynaecological Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | | |
Collapse
|
3
|
Ma Y, Sun T, Ren K, Min T, Xie X, Wang H, Xu G, Dang C, Zhang H. Applications of cold atmospheric plasma in immune-mediated inflammatory diseases via redox homeostasis: evidence and prospects. Heliyon 2023; 9:e22568. [PMID: 38107323 PMCID: PMC10724573 DOI: 10.1016/j.heliyon.2023.e22568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/28/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023] Open
Abstract
As a representative technology in plasma medicine, cold atmospheric plasma (CAP) has beneficial outcomes in surface disinfection, wound repair, tissue regeneration, solid tumor therapy. Impact on immune response and inflammatory conditions was also observed in the process of CAP treatment. Relevant literatures were collected to assess efficacy and summarize possible mechanisms of the innovation. CAP mediates alteration in local immune microenvironment mainly through two ways. One is to down-regulate the expression level of several cytokines, impeding further conduction of immune or inflammatory signals. Intervening the functional phenotype of cells through different degree of oxidative stress is the other approach to manage the immune-mediated inflammatory disorders. A series of preclinical and clinical studies confirmed the therapeutic effect and side effects free of CAP. Moreover, several suggestions proposed in this manuscript might help to find directions for future investigation.
Collapse
Affiliation(s)
- Yuyi Ma
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Tuanhe Sun
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Kaijie Ren
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Tianhao Min
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xin Xie
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Haonan Wang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Guimin Xu
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Chengxue Dang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Hao Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
4
|
Hofmeyer S, Weber F, Gerds S, Emmert S, Thiem A. A Prospective Randomized Controlled Pilot Study to Assess the Response and Tolerability of Cold Atmospheric Plasma for Rosacea. Skin Pharmacol Physiol 2023; 36:205-213. [PMID: 37490882 PMCID: PMC10652650 DOI: 10.1159/000533190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023]
Abstract
INTRODUCTION Rosacea is a common, facial, chronic inflammatory skin disease. Due to its complex pathogenesis, adequate therapy of rosacea can be challenging. An innovative recent therapeutic tool is cold atmospheric plasma (CAP), which is already established in the treatment of chronic wounds and promising in different other skin diseases. METHODS In a split-face pilot study we investigated dielectric-barrier-discharged CAP in erythemato-telangiectatic (ETR) and/or papulopustular rosacea (PPR). CAP treatment was applied on lesional skin of a randomized side once daily (90 s/area) for 6 weeks. The other untreated side served as control. Co-primary endpoints were ≥1 improvement of the Investigator Global Assessment (IGA) score on the treated side compared to control and a decline of the Dermatology Life Quality Index (DLQI) after 6 weeks. Secondary endpoints included inflammatory lesion count (papules and pustules), skin redness intensity and erythema size. Adverse events (AEs) were recorded constantly. Additionally, participants were weekly assessed for symptoms, skin condition, trigger factors, skin care, treatment success, and local tolerance parameters. All p values were calculated using the Wilcoxon signed-rank test. RESULTS Twelve subjects (ETR, n = 3; ETR and PPR, n = 9) completed the study. DLQI was significantly improved after 6 weeks (p = 0.007). On the CAP-treated side, lesions (p = 0.007) and erythema size (p = 0.041) were significantly reduced compared to the control. IGA (p = 0.2) and skin redness intensity (p = 0.5) did not differ significantly between control and CAP-treated side. No serious AEs occurred and treatment was well tolerated. CONCLUSION CAP is a promising new treatment of rosacea, especially for PPR.
Collapse
Affiliation(s)
- Stella Hofmeyer
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany
| | - Frank Weber
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, University Medical Center Rostock, Rostock, Germany
| | - Sandra Gerds
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany
| | - Steffen Emmert
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany
| | - Alexander Thiem
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany
| |
Collapse
|
5
|
Cho SB, Lee S, Yoo DS, Kim SE, Kim T, Zouboulis CC, Lee SE. Cold Atmospheric Plasma Inhibits Lipogenesis and Proliferation of Human Sebocytes and Decreases Sebum Production in Human Facial Skin. Dermatol Ther 2023. [DOI: 10.1155/2023/2922191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Background. Although several energy devices targeting sebaceous glands have been developed, an effective and safe therapeutic tool for hyperseborrhea is still needed. Nonthermal atmospheric-pressure plasma (NTAPP) induces microscopic tissue reactions in sebaceous glands of rat skin. Objective. The aim of the study is to investigate the effects of NTAPP on sebum production in human skin in vivo followed by an experimental study of human sebocytes. Methods. Fourteen healthy volunteers with oily facial skin underwent three sessions of argon- and nitrogen-NTAPP treatment at a 1-week interval and were followed up for 8 weeks. The casual sebum level, sebum excretion rate, and porphyrin index were evaluated. Histological analysis was performed using skin biopsy specimens taken from two subjects at the baseline and week 2. SZ95 sebocytes were stimulated with testosterone and linoleic acid (T/LA) with or without treatment with NTAPP. BODIPY and Nile red staining were used for qualitative lipids analysis. Proliferation and differentiation markers were also assessed. Results. Casual sebum levels and sebum excretion rates in facial skin decreased by 26 and 24%, respectively, at week 4 compared to those of the baseline. Porphyrin index also decreased by 38% at week 2. Histologically, NTAPP-treated human skin showed no obvious thermal injury, but the number of Ki67+ cells in the sebaceous glands decreased at week 2. Argon- and nitrogen-NTAPP attenuated T/LA-induced increases in neutral lipid accumulation, Ki67+ cells, and peroxisome proliferator-activated receptor-ɣ transcription in human sebocytes at energy settings that did not induce apoptosis. Conclusion. Argon- and nitrogen-NTAPP can be a safe and effective therapeutic tool for hyperseborrhea-associated diseases such as acne. This trial is registered with NCT04917835.
Collapse
Affiliation(s)
- Sung Bin Cho
- Yonsei Seran Dermatology and Laser Clinic, Seoul, Republic of Korea
| | - Seungju Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dae San Yoo
- Department of Dermatology and Cutaneous Biology Research Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Song-Ee Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Taehee Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Christos C. Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Staedtisches Klinikum Dessau, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany
| | - Sang Eun Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
6
|
Dejonckheere CS, Torres-Crigna A, Layer JP, Layer K, Wiegreffe S, Sarria GR, Scafa D, Koch D, Leitzen C, Köksal MA, Müdder T, Abramian A, Kaiser C, Faridi A, Stope MB, Mustea A, Giordano FA, Schmeel LC. Non-Invasive Physical Plasma for Preventing Radiation Dermatitis in Breast Cancer: A First-In-Human Feasibility Study. Pharmaceutics 2022; 14:1767. [PMID: 36145515 PMCID: PMC9506560 DOI: 10.3390/pharmaceutics14091767] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/20/2022] Open
Abstract
Radiation dermatitis (RD) is the most common acute side effect of breast irradiation. More than a century following the therapeutic utilisation of X-rays, potent preventative and therapeutic options are still lacking. Non-invasive physical plasma (NIPP) is an emerging approach towards treatment of various dermatological disorders. In this study, we sought to determine the safety and feasibility of a NIPP device on RD. Thirty patients undergoing hypofractionated whole-breast irradiation were included. Parallel to radiation treatment, the irradiated breast was treated with NIPP with different application regimens. RD was assessed during and after NIPP/radiation, using clinician- and patient-reported outcomes. Additionally, safety and feasibility features were recorded. None of the patients was prescribed topical corticosteroids and none considered the treatment to be unpleasant. RD was less frequent and milder in comparison with standard skin care. Neither NIPP-related adverse events nor side effects were reported. This proven safety and feasibility profile of a topical NIPP device in the prevention and treatment of RD will be used as the framework for a larger intrapatient-randomised double-blind placebo-controlled trial, using objective and patient-reported outcome measures as an endpoint.
Collapse
Affiliation(s)
| | | | - Julian Philipp Layer
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
- Institute of Experimental Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Katharina Layer
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Shari Wiegreffe
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | | | - Davide Scafa
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - David Koch
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Christina Leitzen
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Mümtaz Ali Köksal
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Thomas Müdder
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Alina Abramian
- Department of Gynaecology, Division of Senology, University Hospital Bonn, 53127 Bonn, Germany
| | - Christina Kaiser
- Department of Gynaecology, Division of Senology, University Hospital Bonn, 53127 Bonn, Germany
| | - Andree Faridi
- Department of Gynaecology, Division of Senology, University Hospital Bonn, 53127 Bonn, Germany
| | - Matthias Bernhard Stope
- Department of Gynaecology and Gynaecological Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Alexander Mustea
- Department of Gynaecology and Gynaecological Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | | | | |
Collapse
|
7
|
Tan F, Wang Y, Zhang S, Shui R, Chen J. Plasma Dermatology: Skin Therapy Using Cold Atmospheric Plasma. Front Oncol 2022; 12:918484. [PMID: 35903680 PMCID: PMC9314643 DOI: 10.3389/fonc.2022.918484] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/21/2022] [Indexed: 11/25/2022] Open
Abstract
Cold atmospheric plasma-based plasma medicine has been expanding the diversity of its specialties. As an emerging branch, plasma dermatology takes advantage of the beneficial complexity of plasma constituents (e.g., reactive oxygen and nitrogen species, UV photons, and electromagnetic emission), technical versatility (e.g., direct irradiation and indirect aqueous treatment), and practical feasibility (e.g., hand-held compact device and clinician-friendly operation). The objective of this comprehensive review is to summarize recent advances in the CAP-dominated skin therapy by broadly covering three aspects. We start with plasma optimisation of intact skin, detailing the effect of CAP on skin lipids, cells, histology, and blood circulation. We then conduct a clinically oriented and thorough dissection of CAP treatment of various skin diseases, focusing on the wound healing, inflammatory disorders, infectious conditions, parasitic infestations, cutaneous malignancies, and alopecia. Finally, we conclude with a brief analysis on the safety aspect of CAP treatment and a proposal on how to mitigate the potential risks. This comprehensive review endeavors to serve as a mini textbook for clinical dermatologists and a practical manual for plasma biotechnologists. Our collective goal is to consolidate plasma dermatology’s lead in modern personalized medicine.
Collapse
Affiliation(s)
- Fei Tan
- Department of Otorhinolaryngology and Head & Neck Surgery (ORL-HNS), Shanghai Fourth People’s Hospital, and School of Medicine, Tongji University, Shanghai, China
- The Royal College of Surgeons in Ireland, Dublin, Ireland
- The Royal College of Surgeons of England, London, United Kingdom
- *Correspondence: Fei Tan,
| | - Yang Wang
- Department of Pathology, Shanghai Fourth People’s Hospital, and School of Medicine, Tongji University, Shanghai, China
| | - Shiqun Zhang
- Department of Pharmacology, Shanghai Tenth People’s Hospital, and School of Medicine, Tongji University, Shanghai, China
| | - Runying Shui
- Department of Surgery, Department of Dermatology, Huadong Hospital, Fudan University, Shanghai, China
| | - Jianghan Chen
- Department of Surgery, Department of Dermatology, Shanghai Fourth People’s Hospital, and School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
8
|
Eggers B, Stope MB, Marciniak J, Götz W, Mustea A, Deschner J, Nokhbehsaim M, Kramer FJ. Non-Invasive Physical Plasma Generated by a Medical Argon Plasma Device Induces the Expression of Regenerative Factors in Human Gingival Keratinocytes, Fibroblasts, and Tissue Biopsies. Biomedicines 2022; 10:biomedicines10040889. [PMID: 35453639 PMCID: PMC9028866 DOI: 10.3390/biomedicines10040889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 02/06/2023] Open
Abstract
After oral surgery, intraoral wound healing and tissue regeneration is an important factor for the success of the entire therapy. In recent years, non-invasive medical plasma (NIPP) has been shown to accelerate wound healing, which would be particularly beneficial for patients with wound healing disorders. Since the application of NIPP in dentistry has not been sufficiently understood, the aim of the present study was to investigate the effect of a medical argon plasma device on gingival cells. Human gingival fibroblasts, keratinocytes, and tissue biopsies were treated with NIPP for different durations. Crucial markers associated with wound healing were examined at the mRNA and protein levels by real-time PCR, ELISA and immunohistochemistry. NIPP treatment led to an increase in Ki67 and MMP1 at mRNA and protein levels. NIPP application lasting longer than 60 s resulted in an increase in apoptotic genes at mRNA level and superficial damage to the epithelium in the tissue biopsies. Overall, our experimental setup demonstrated that NIPP application times of 30 s were most suitable for the treatment of gingival cells and tissue biopsies. Our study provides evidence for potential use of NIPP in dentistry, which would be a promising treatment option for oral surgery.
Collapse
Affiliation(s)
- Benedikt Eggers
- Department of Oral, Maxillofacial and Plastic Surgery, University Hospital Bonn, 53111 Bonn, Germany;
- Correspondence: ; Tel.: +49-0228-287-22407
| | - Matthias Bernhard Stope
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, 53127 Bonn, Germany; (M.B.S.); (A.M.)
| | - Jana Marciniak
- Department of Orthodontics, University Hospital Bonn, 53111 Bonn, Germany; (J.M.); (W.G.)
| | - Werner Götz
- Department of Orthodontics, University Hospital Bonn, 53111 Bonn, Germany; (J.M.); (W.G.)
| | - Alexander Mustea
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, 53127 Bonn, Germany; (M.B.S.); (A.M.)
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany;
| | - Marjan Nokhbehsaim
- Section of Experimental Dento-Maxillo-Facial Medicine, University Hospital Bonn, 53111 Bonn, Germany;
| | - Franz-Josef Kramer
- Department of Oral, Maxillofacial and Plastic Surgery, University Hospital Bonn, 53111 Bonn, Germany;
| |
Collapse
|
9
|
Non-Invasive Physical Plasma Treatment after Tooth Extraction in a Patient on Antiresorptive Medication Promotes Tissue Regeneration. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Postoperative tissue regeneration can be negatively affected by bisphosphonate administration, especially in patients with oncologic diseases. A serious complication of bisphosphonate therapy is the medication-related osteonecrosis of the jaw (MRONJ), which can be observed mainly after dental surgery. MRONJ is a progressive destruction of the bone that requires patients to stay in hospital for extended periods of time. For this reason, primary wound closure is particularly important in surgical procedures. In the case of wound dehiscence, there is a very high risk for MRONJ. In recent years, non-invasive physical plasma (NIPP) has become known for improving wound healing on the one hand, but also for its promising efficacy in cancer therapy on the other hand. We report on a 63-year-old patient with a history of multiple myeloma and receiving zoledronate, who developed wound dehiscence after tooth extraction. NIPP treatment resulted in complete epithelialization of the entire wound dehiscence. In conclusion, the use of NIPP in patients receiving antiresorptive drugs seems to support tissue regeneration and thus could be an important tool for the prevention of MRONJ.
Collapse
|
10
|
Kim CK, Kim H, Kim HJ, Cho SB. Antibacterial and anticandidal effects of atmospheric-pressure, non-thermal, nitrogen- and argon-plasma pulses. Dermatol Ther 2021; 35:e15222. [PMID: 34820982 DOI: 10.1111/dth.15222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/12/2021] [Accepted: 11/22/2021] [Indexed: 11/28/2022]
Abstract
Atmospheric-pressure, non-thermal plasma destroys microorganisms by directly reacting with hydrocarbon molecules in the cell wall and/or by damaging the cytoplasmic membrane, proteins, and DNA with charged particles and reactive species. The aim of our study was to evaluate the antibacterial and anticandidal effects of atmospheric-pressure, non-thermal, nitrogen- and argon-plasma pulses on various pathogen preparations. The resultant antibacterial and anticandidal effects were assessed by evaluating percent and log reduction values for pathogen colonies. Nitrogen-plasma pulses emitted at an energy of 1.5 J and argon-plasma pulses generated at 0.5 J elicited remarkable antibacterial effects on Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus (MRSA) and anticandidal effects on Candida albicans. Nitrogen-plasma pulses at a pulse count of five elicited remarkable antibacterial effects on Cutibacterium acnes at the energy settings of 1.75, 2.5, and 3 J, but not at 1 J. Meanwhile, argon-plasma pulses showed antibacterial effects on C. acnes at an energy of 0.5 and 0.65 J. Nitrogen- or argon-plasma pulses exert antibacterial and anticandidal effects on bacterial and fungal pathogens.
Collapse
Affiliation(s)
- Chang Ki Kim
- Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea.,Seoul Clinical Laboratories, Yongin, South Korea
| | - Heesu Kim
- Yonsei New Dermatology and Laser Clinic, Incheon, South Korea
| | | | - Sung Bin Cho
- Yonsei Seran Dermatology and Laser Clinic, Seoul, South Korea
| |
Collapse
|
11
|
Kim S, Kim CH. Applications of Plasma-Activated Liquid in the Medical Field. Biomedicines 2021; 9:biomedicines9111700. [PMID: 34829929 PMCID: PMC8615748 DOI: 10.3390/biomedicines9111700] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/01/2021] [Accepted: 11/12/2021] [Indexed: 12/18/2022] Open
Abstract
Much progress has been made since plasma was discovered in the early 1900s. The first form of plasma was thermal type, which was limited for medical use due to potential thermal damage on living cells. In the late 1900s, with the development of a nonthermal atmospheric plasma called cold plasma, profound clinical research began and ‘plasma medicine’ became a new area in the academic field. Plasma began to be used mainly for environmental problems, such as water purification and wastewater treatment, and subsequent research on plasma and liquid interaction led to the birth of ‘plasma-activated liquid’ (PAL). PAL is currently used in the fields of environment, food, agriculture, nanoparticle synthesis, analytical chemistry, and sterilization. In the medical field, PAL usage can be expanded for accessing places where direct application of plasma is difficult. In this review, recent studies with PAL will be introduced to inform researchers of the application plan and possibility of PAL in the medical field.
Collapse
Affiliation(s)
- Sungryeal Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Korea;
| | - Chul-Ho Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Korea;
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
- Correspondence:
| |
Collapse
|
12
|
Cold Atmospheric Plasma Changes the Amino Acid Composition of Solutions and Influences the Anti-Tumor Effect on Melanoma Cells. Int J Mol Sci 2021; 22:ijms22157886. [PMID: 34360651 PMCID: PMC8346059 DOI: 10.3390/ijms22157886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
Cold Atmospheric Plasma (CAP) is an ionized gas near room temperature. Its anti-tumor effect can be transmitted either by direct treatment or mediated by a plasma-treated solution (PTS), such as treated standard cell culture medium, which contains different amino acids, inorganic salts, vitamins and other substances. Despite extensive research, the active components in PTS and its molecular or cellular mechanisms are not yet fully understood. The purpose of this study was the measurement of the reactive species in PTS and their effect on tumor cells using different plasma modes and treatment durations. The PTS analysis yielded mode- and dose-dependent differences in the production of reactive oxygen and nitrogen species (RONS), and in the decomposition and modification of the amino acids Tyrosine (Tyr) and Tryptophan (Trp). The Trp metabolites Formylkynurenine (FKyn) and Kynurenine (Kyn) were produced in PTS with the 4 kHz (oxygen) mode, inducing apoptosis in Mel Im melanoma cells. Nitrated derivatives of Trp and Tyr were formed in the 8 kHz (nitrogen) mode, elevating the p16 mRNA expression and senescence-associated ß-Galactosidase staining. In conclusion, the plasma mode has a strong impact on the composition of the active components in PTS and affects its anti-tumor mechanism. These findings are of decisive importance for the development of plasma devices and the effectiveness of tumor treatment.
Collapse
|
13
|
Esmaeili Z, Hosseinzadeh Samani B, Nemati A, Nazari F, Rostami S. Development of novel green pesticide system by using cold plasma to control
Plodia
interpunctella
in pistachio. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Zahra Esmaeili
- Department of Mechanical Engineering of Biosystem Shahrekord University Shahrekord Iran
| | | | - Alireza Nemati
- Department of Plant Protection, Faculty of Agriculture Shahrekord University Shahrekord Iran
| | - Firouzeh Nazari
- Food and Drug Affairs Iran University of Medical Sciences Tehran Iran
| | - Sajad Rostami
- Department of Mechanical Engineering of Biosystem Shahrekord University Shahrekord Iran
| |
Collapse
|
14
|
Cold Atmospheric Plasma Promotes Regeneration-Associated Cell Functions of Murine Cementoblasts In Vitro. Int J Mol Sci 2021; 22:ijms22105280. [PMID: 34067898 PMCID: PMC8156616 DOI: 10.3390/ijms22105280] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/05/2021] [Accepted: 05/14/2021] [Indexed: 12/15/2022] Open
Abstract
The aim of the study was to examine the efficacy of cold atmospheric plasma (CAP) on the mineralization and cell proliferation of murine dental cementoblasts. Cells were treated with CAP and enamel matrix derivates (EMD). Gene expression of alkaline phosphatase (ALP), bone gamma-carboxyglutamate protein (BGLAP), periostin (POSTN), osteopontin (OPN), osterix (OSX), collagen type I alpha 1 chain (COL1A1), dentin matrix acidic phosphoprotein (DMP)1, RUNX family transcription factor (RUNX)2, and marker of proliferation Ki-67 (KI67) was quantified by real-time PCR. Protein expression was analyzed by immunocytochemistry and ELISA. ALP activity was determined by ALP assay. Von Kossa and alizarin red staining were used to display mineralization. Cell viability was analyzed by XTT assay, and morphological characterization was performed by DAPI/phalloidin staining. Cell migration was quantified with an established scratch assay. CAP and EMD upregulated both mRNA and protein synthesis of ALP, POSTN, and OPN. Additionally, DMP1 and COL1A1 were upregulated at both gene and protein levels. In addition to upregulated RUNX2 mRNA levels, treated cells mineralized more intensively. Moreover, CAP treatment resulted in an upregulation of KI67, higher cell viability, and improved cell migration. Our study shows that CAP appears to have stimulatory effects on regeneration-associated cell functions in cementoblasts.
Collapse
|
15
|
Abstract
Nonthermal atmospheric pressure biocompatible plasma (NBP), alternatively called bio-cold plasma, is a partially ionized gas that consists of charged particles, neutral atoms and molecules, photons, an electric field, and heat. Recently, nonthermal plasma-based technology has been applied to bioscience, medicine, agriculture, food processing, and safety. Various plasma device configurations and electrode layouts has fast-tracked plasma applications in the treatment of biological and material surfaces. The NBP action mechanism may be related to the synergy of plasma constituents, such as ultraviolet radiation or a reactive species. Recently, plasma has been used in the inactivation of viruses and resistant microbes, such as fungal cells, bacteria, spores, and biofilms made by microbes. It has also been used to heal wounds, coagulate blood, degrade pollutants, functionalize material surfaces, kill cancers, and for dental applications. This review provides an outline of NBP devices and their applications in bioscience and medicine. We also discuss the role of plasma-activated liquids in biological applications, such as cancer treatments and agriculture. The individual adaptation of plasma to meet specific medical requirements necessitates real-time monitoring of both the plasma performance and the target that is treated and will provide a new paradigm of plasma-based therapeutic clinical systems.
Collapse
Affiliation(s)
- Eun H. Choi
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897 Republic of Korea
| | - Han S. Uhm
- Canode # 702, 136-11 Tojeong-ro, Mapo-gu, Seoul, 04081 Republic of Korea
| | - Nagendra K. Kaushik
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897 Republic of Korea
| |
Collapse
|
16
|
Tabares FL, Junkar I. Cold Plasma Systems and their Application in Surface Treatments for Medicine. Molecules 2021; 26:1903. [PMID: 33800623 PMCID: PMC8036572 DOI: 10.3390/molecules26071903] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
In this paper, a review of cold plasma setups and the physical and chemical processes leading to the generation of active species is presented. The emphasis is given to the interaction of cold plasmas with materials used in medical applications, especially medical implants as well as live cells. An overview of the different kinds of plasmas and techniques used for generation of active species, which significantly alter the surface properties of biomaterials is presented. The elemental processes responsible for the observed changes in the physio-chemical properties of surfaces when exposed to plasma are described. Examples of ongoing research in the field are given to illustrate the state-of-the-art at the more conceptual level.
Collapse
Affiliation(s)
| | - Ita Junkar
- Department for Surface Engineering, Jožef Stefan Institute Jamova cesta 39, 1000 Ljubljana, Slovenia;
| |
Collapse
|
17
|
Zubor P, Wang Y, Liskova A, Samec M, Koklesova L, Dankova Z, Dørum A, Kajo K, Dvorska D, Lucansky V, Malicherova B, Kasubova I, Bujnak J, Mlyncek M, Dussan CA, Kubatka P, Büsselberg D, Golubnitschaja O. Cold Atmospheric Pressure Plasma (CAP) as a New Tool for the Management of Vulva Cancer and Vulvar Premalignant Lesions in Gynaecological Oncology. Int J Mol Sci 2020; 21:ijms21217988. [PMID: 33121141 PMCID: PMC7663780 DOI: 10.3390/ijms21217988] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022] Open
Abstract
Vulvar cancer (VC) is a specific form of malignancy accounting for 5–6% of all gynaecologic malignancies. Although VC occurs most commonly in women after 60 years of age, disease incidence has risen progressively in premenopausal women in recent decades. VC demonstrates particular features requiring well-adapted therapeutic approaches to avoid potential treatment-related complications. Significant improvements in disease-free survival and overall survival rates for patients diagnosed with post-stage I disease have been achieved by implementing a combination therapy consisting of radical surgical resection, systemic chemotherapy and/or radiotherapy. Achieving local control remains challenging. However, mostly due to specific anatomical conditions, the need for comprehensive surgical reconstruction and frequent post-operative healing complications. Novel therapeutic tools better adapted to VC particularities are essential for improving individual outcomes. To this end, cold atmospheric plasma (CAP) treatment is a promising option for VC, and is particularly appropriate for the local treatment of dysplastic lesions, early intraepithelial cancer, and invasive tumours. In addition, CAP also helps reduce inflammatory complications and improve wound healing. The application of CAP may realise either directly or indirectly utilising nanoparticle technologies. CAP has demonstrated remarkable treatment benefits for several malignant conditions, and has created new medical fields, such as “plasma medicine” and “plasma oncology”. This article highlights the benefits of CAP for the treatment of VC, VC pre-stages, and postsurgical wound complications. There has not yet been a published report of CAP on vulvar cancer cells, and so this review summarises the progress made in gynaecological oncology and in other cancers, and promotes an important, understudied area for future research. The paradigm shift from reactive to predictive, preventive and personalised medical approaches in overall VC management is also considered.
Collapse
Affiliation(s)
- Pavol Zubor
- Department of Gynaecological Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (Y.W.); (A.D.)
- OBGY Health & Care, Ltd., 010 01 Zilina, Slovakia
- Correspondence: or
| | - Yun Wang
- Department of Gynaecological Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (Y.W.); (A.D.)
| | - Alena Liskova
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Marek Samec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Lenka Koklesova
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Zuzana Dankova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Anne Dørum
- Department of Gynaecological Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (Y.W.); (A.D.)
| | - Karol Kajo
- Department of Pathology, St. Elizabeth Cancer Institute Hospital, 81250 Bratislava, Slovakia;
| | - Dana Dvorska
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Vincent Lucansky
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Bibiana Malicherova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Ivana Kasubova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Jan Bujnak
- Department of Obstetrics and Gynaecology, Kukuras Michalovce Hospital, 07101 Michalovce, Slovakia;
| | - Milos Mlyncek
- Department of Obstetrics and Gynaecology, Faculty Hospital Nitra, Constantine the Philosopher University, 949 01 Nitra, Slovakia;
| | - Carlos Alberto Dussan
- Department of Surgery, Orthopaedics and Oncology, University Hospital Linköping, 581 85 Linköping, Sweden;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144 Doha, Qatar;
| | - Olga Golubnitschaja
- Predictive, Preventive Personalised (3P) Medicine, Department of Radiation Oncology, Rheinische Friedrich-Wilhelms-Universität Bonn, 53105 Bonn, Germany;
| |
Collapse
|
18
|
Frescaline N, Duchesne C, Favier M, Onifarasoaniaina R, Guilbert T, Uzan G, Banzet S, Rousseau A, Lataillade JJ. Physical plasma therapy accelerates wound re-epithelialisation and enhances extracellular matrix formation in cutaneous skin grafts. J Pathol 2020; 252:451-464. [PMID: 32918753 DOI: 10.1002/path.5546] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/09/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022]
Abstract
Skin grafting is a surgical method of cutaneous reconstruction, which provides volumetric replacement in wounds unable to heal by primary intention. Clinically, full-thickness skin grafts (FTSGs) are placed in aesthetically sensitive and mechanically demanding areas such as the hands, face, and neck. Complete or partial graft failure is the primary complication associated with this surgical procedure. Strategies aimed at improving the rate of skin graft integration will reduce the incidence of graft failure. Cold atmospheric plasma (CAP) is an emerging technology offering innovative clinical applications. The aim of this study was to test the therapeutic potential of CAP to improve wound healing and skin graft integration into the recipient site. In vitro models that mimic wound healing were used to investigate the ability of CAP to enhance cellular migration, a key factor in cutaneous tissue repair. We demonstrated that CAP enhanced the migration of epidermal keratinocytes and dermal fibroblasts. This increased cellular migration was possibly induced by the low dose of reactive oxygen and nitrogen species produced by CAP. Using a mouse model of burn wound reconstructed with a full-thickness skin graft, we showed that wounds treated with CAP healed faster than did control wounds. Immunohistochemical wound analysis showed that CAP treatment enhanced the expression of the dermal-epidermal junction components, which are vital for successful skin graft integration. CAP treatment was characterised by increased levels of Tgfbr1 mRNA and collagen I protein in vivo, suggesting enhanced wound maturity and extracellular matrix deposition. Mechanistically, we show that CAP induced the activation of the canonical SMAD-dependent TGF-β1 pathway in primary human dermal fibroblasts, which may explain the increased collagen I synthesis in vitro. These studies revealed that CAP improved wound repair and skin graft integration via mechanisms involving extracellular matrix formation. CAP offers a novel approach for treating cutaneous wounds and skin grafts. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Nadira Frescaline
- INSERM UMRS-MD 1197, Institut de Recherche Biomédicale des Armées, Centre de Transfusion Sanguine des Armées, Clamart, France.,Laboratoire de Physique des Plasmas, École Polytechnique, Sorbonne Université, Université Paris Saclay, CNRS, Palaiseau, France
| | - Constance Duchesne
- INSERM UMRS-MD 1197, Institut de Recherche Biomédicale des Armées, Centre de Transfusion Sanguine des Armées, Clamart, France.,Laboratoire de Physique des Plasmas, École Polytechnique, Sorbonne Université, Université Paris Saclay, CNRS, Palaiseau, France
| | - Maryline Favier
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, Paris, France
| | | | - Thomas Guilbert
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, Paris, France
| | - Georges Uzan
- INSERM UMRS-MD 1197, Hôpital Paul Brousse, Villejuif, France
| | - Sébastien Banzet
- INSERM UMRS-MD 1197, Institut de Recherche Biomédicale des Armées, Centre de Transfusion Sanguine des Armées, Clamart, France
| | - Antoine Rousseau
- Laboratoire de Physique des Plasmas, École Polytechnique, Sorbonne Université, Université Paris Saclay, CNRS, Palaiseau, France
| | - Jean-Jacques Lataillade
- INSERM UMRS-MD 1197, Institut de Recherche Biomédicale des Armées, Centre de Transfusion Sanguine des Armées, Clamart, France
| |
Collapse
|
19
|
Argon Atmospheric Plasma Treatment Promotes Burn Healing by Stimulating Inflammation and Controlling the Redox State. Inflammation 2020; 43:2357-2371. [PMID: 32860165 DOI: 10.1007/s10753-020-01305-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Burns are a public health problem, with second-degree burns as one of the most common types. Although intense inflammation worsens burn healing, effective therapies are scarce. Thus, infections and hypertrophic scars may occur, which compromise patient quality of life and may delay healing. Argon atmospheric plasma (AP) has been shown to positively influence wound healing. In the context of identifying effective and alternative therapies for the treatment of second-degree burns, the present study evaluated AP in the treatment of second-degree burns in rats compared to that for sham treatment on the 2nd, 7th, 14th, and 21st days post-injury. Our results revealed proinflammatory effect for AP by recruiting predominantly neutrophils on the 7th day and macrophages on the 21st day compared to sham treatment, allowing a greater production of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and IL-17, and also controlled the inflammation by IL-10 and transforming growth factor (TGF)-β1. AP also showed antioxidant activity important for controlling oxidative damage on the 2nd day. This favored the induction of angiogenesis from the 2nd day and induction fibroplasia and fibrillogenesis after the 14th day, which enhanced burn healing with the formation of a thinner burn eschar before the 21st day post-burn. Thus, AP effectively modulated the inflammatory phase of second-degree burn healing through the control of oxidative damage that favored the following phases. Therefore, AP is a relevant alternative in the treatment of second-degree burns.
Collapse
|
20
|
Antibacterial efficacy of cold atmospheric plasma against Enterococcus faecalis planktonic cultures and biofilms in vitro. PLoS One 2019; 14:e0223925. [PMID: 31770390 PMCID: PMC6879142 DOI: 10.1371/journal.pone.0223925] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022] Open
Abstract
Nosocomial infections have become a serious threat in our times and are getting more difficult to handle due to increasing development of resistances in bacteria. In this light, cold atmospheric plasma (CAP), which is known to effectively inactivate microorganisms, may be a promising alternative for application in the fields of dentistry and dermatology. CAPs are partly ionised gases, which operate at low temperature and are composed of electrons, ions, excited atoms and molecules, reactive oxygen and nitrogen species. In this study, the effect of CAP generated from ambient air was investigated against Enterococcus faecalis, grown on agar plates or as biofilms cultured for up to 72 h. CAP reduced the colony forming units (CFU) on agar plates by > 7 log10 steps. Treatment of 24 h old biofilms of E. faecalis resulted in CFU-reductions by ≥ 3 log10 steps after CAP treatment for 5 min and by ≥ 5 log10 steps after CAP treatment for 10 min. In biofilm experiments, chlorhexidine (CHX) and UVC radiation served as positive controls and were only slightly more effective than CAP. There was no damage of cytoplasmic membranes upon CAP treatment as shown by spectrometric measurements for release of nucleic acids. Thus, membrane damage seems not to be the primary mechanism of action for CAP towards E. faecalis. Overall, CAP showed pronounced antimicrobial efficacy against E. faecalis on agar plates as well as in biofilms similar to positive controls CHX or UVC.
Collapse
|
21
|
Analysis of Metabolite Profiling in Human Endothelial Cells after Plasma Jet Treatment. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3015150. [PMID: 31781609 PMCID: PMC6875299 DOI: 10.1155/2019/3015150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/07/2019] [Accepted: 09/16/2019] [Indexed: 12/26/2022]
Abstract
Cold atmospheric plasma (CAP) is a novel technology, which has been widely applied in biomedicine, especially in wound healing, dermatological treatment, hemostasis, and cancer treatment. In most cases, CAP treatment will interact with innumerable blood capillaries. Therefore, it is important and necessary to understand the effects of CAP treatment on endothelial cell metabolism. In this study, the metabolite profiling of plasma treatment on endothelial cells was measured by gas chromatography tandem time-of-flight mass spectrometry (GC-TOF-MS). We found that 695 signals (metabolites) were detected by GC-TOF-MS and then evaluated using orthogonal projections to latent structures discriminant analysis (OPLS-DA). All the differential metabolites were listed, and proline and xanthosine were the two of the most downregulated metabolites by plasma treatment. By comprehensive metabolic pathway analysis with the KEGG pathway, we showed that alanine, aspartate, glutamate, and purine metabolism pathways were the most significantly suppressed after gas plasma treatment in human endothelial cells. Our finding gives an overall picture of the metabolic pathways affected by plasma treatment in endothelial cells.
Collapse
|
22
|
Sakudo A, Yagyu Y, Onodera T. Disinfection and Sterilization Using Plasma Technology: Fundamentals and Future Perspectives for Biological Applications. Int J Mol Sci 2019; 20:ijms20205216. [PMID: 31640211 PMCID: PMC6834201 DOI: 10.3390/ijms20205216] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/19/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023] Open
Abstract
Recent studies have shown that plasma can efficiently inactivate microbial pathogens such as bacteria, fungi, and viruses in addition to degrading toxins. Moreover, this technology is effective at inactivating pathogens on the surface of medical and dental devices, as well as agricultural products. The current practical applications of plasma technology range from sterilizing therapeutic medical devices to improving crop yields, as well as the area of food preservation. This review introduces recent advances and future perspectives in plasma technology, especially in applications related to disinfection and sterilization. We also introduce the latest studies, mainly focusing on the potential applications of plasma technology for the inactivation of microorganisms and the degradation of toxins.
Collapse
Affiliation(s)
- Akikazu Sakudo
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime 794-8555, Japan.
| | - Yoshihito Yagyu
- Department of Electrical and Electric Engineering, National Institute of Technology Sasebo College, Nagasaki 857-1193, Japan.
| | - Takashi Onodera
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
23
|
Duchesne C, Banzet S, Lataillade JJ, Rousseau A, Frescaline N. Cold atmospheric plasma modulates endothelial nitric oxide synthase signalling and enhances burn wound neovascularisation. J Pathol 2019; 249:368-380. [PMID: 31265742 DOI: 10.1002/path.5323] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/12/2019] [Accepted: 06/27/2019] [Indexed: 12/17/2022]
Abstract
Treatment with cold atmospheric plasma (CAP) has been reported to promote wound healing in animals. However, how this process is mediated remains unclear. In this study we examined the mechanisms which underlie the improved wound healing effects of CAP and the roles of associated reactive oxygen and nitrogen species (RONS), which are generated by plasma. By using in vitro models which mimicked various steps of angiogenesis, we demonstrated that CAP triggered the production of nitric oxide (NO), and enhanced cell migration and the assembly of endothelial cells into vessel-like structures. These are both hallmarks of the proliferative phase of wound healing. Using a mouse model of a third-degree burn wound, we went on to show that CAP treatment was associated with enhanced angiogenesis, characterised by accelerated in vivo wound healing and increased cellular proliferation. Here, CAP significantly increased the in vivo production of endothelial NO synthase (eNOS), an enzyme that catalyses NO synthesis in endothelial cells, and significantly increased the expression of pro-angiogenic PDGFRβ and CD31 markers in mouse wounds. Mechanistically, we showed that CAP induced eNOS phosphorylation and activation, thereby increasing the levels of endogenous NO in endothelial cells. Increased NO generation facilitated by CAP further stimulated important pro-angiogenic VEGFA/VEGFR2 signalling in vitro. This proof-of-concept study may guide future efforts aimed at addressing the use of physical plasma and its therapeutic applications in a variety of pathological scenarios. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Constance Duchesne
- Institut de Recherche Biomédicale des Armées, Centre de Transfusion Sanguine des Armées, Clamart, France.,Laboratoire de Physique des Plasmas, École Polytechnique, UPMC, Université Paris Sud 11, Palaiseau, France
| | - Sébastien Banzet
- Institut de Recherche Biomédicale des Armées, Centre de Transfusion Sanguine des Armées, Clamart, France
| | - Jean-Jacques Lataillade
- Institut de Recherche Biomédicale des Armées, Centre de Transfusion Sanguine des Armées, Clamart, France
| | - Antoine Rousseau
- Laboratoire de Physique des Plasmas, École Polytechnique, UPMC, Université Paris Sud 11, Palaiseau, France
| | - Nadira Frescaline
- Institut de Recherche Biomédicale des Armées, Centre de Transfusion Sanguine des Armées, Clamart, France.,Laboratoire de Physique des Plasmas, École Polytechnique, UPMC, Université Paris Sud 11, Palaiseau, France
| |
Collapse
|
24
|
Huang A, Nguyen JK, Austin E, Mamalis A, Jagdeo J. Updates on Treatment Approaches for Cutaneous Field Cancerization. CURRENT DERMATOLOGY REPORTS 2019; 8:122-132. [PMID: 31475077 DOI: 10.1007/s13671-019-00265-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Purpose of Review Field cancerization describes the phenomenon that multiple heterogenous mutations may arise in an area exposed to chronic carcinogenic stimuli. Advances in the understanding of cutaneous field cancerization have led to novel therapeutic approaches to the management of actinic keratoses (AKs). Herein, we review the literature on the pathophysiology and emerging research of field cancerization in dermatology. Recent Findings The classification systems for grading AK lesions are being refined with investigations focusing on their clinical utility. There is a growing shift towards field-directed treatment for AKs as the importance of field cancerization becomes clearer. Current field-directed therapies are being optimized and novel therapeutic modalities are being studied. Summary Field cancerization underlies the transformation of photodamaged skin into AKs and potentially cutaneous SCC (cSCC). Clinically meaningful classification systems for AKs are needed to better inform decisions regarding treatment. As we learn more about the role of field characterization in photodamage, AKs and cSCCs, therapeutic strategies are becoming more field-directed rather than lesion-directed.
Collapse
Affiliation(s)
- Alisen Huang
- Department of Dermatology, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Julie K Nguyen
- Department of Dermatology, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Evan Austin
- Department of Dermatology, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Andrew Mamalis
- Department of Dermatology, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Jared Jagdeo
- Department of Dermatology, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| |
Collapse
|
25
|
Kirsten N, Herberger K, Augustin M, Tigges W, Behrendt C, Heidemann F, Debus ES, Diener H. [Modern wound treatment-from best practice to innovation]. Chirurg 2018; 89:931-942. [PMID: 30242438 DOI: 10.1007/s00104-018-0731-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
According to the Research Group for Primary Medical Care (PMV), approximately 890,000 people in Germany were suffering from a chronic wound in 2012. This corresponds to a prevalence of 1.1%. Ulcus cruris, diabetic ulcers and decubital ulcers are among the most frequent causes of chronic wounds (57-80%). The guarantee for successful wound care is based on a good understanding of the physiology of the wound healing process. A disorder of the phase-like course can lead to complications, delays or suspension of wound healing. There are many reasons for pathological wound healing including infections, oxygen deficiency and non-phase-adapted wound care. In addition to established wound products, innovative products such as dermal matrixes, cold plasma therapy and platelet-rich plasma represent promising therapeutic alternatives for non-healing chronic wounds.
Collapse
Affiliation(s)
- N Kirsten
- Comprehensive Wound Center, Universitäres Herzzentrum Hamburg, Universitätsklinik Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Deutschland
| | - K Herberger
- Comprehensive Wound Center, Universitäres Herzzentrum Hamburg, Universitätsklinik Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Deutschland.,Institut für Versorgungsforschung Dermatologie, Universität Hamburg Eppendorf, Hamburg, Deutschland
| | - M Augustin
- Comprehensive Wound Center, Universitäres Herzzentrum Hamburg, Universitätsklinik Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Deutschland.,Institut für Versorgungsforschung Dermatologie, Universität Hamburg Eppendorf, Hamburg, Deutschland
| | - W Tigges
- Klinik für Gefäßmedizin, AGAPLESION DIAKONIEKLINIKUM HAMBURG gGmbH, Hamburg, Deutschland
| | - C Behrendt
- Klinik und Poliklinik für Gefäßmedizin, Universitäres Herzzentrum Hamburg, UniversitätsklinikumHamburg-Eppendorf, Hamburg, Deutschland
| | - F Heidemann
- Klinik und Poliklinik für Gefäßmedizin, Universitäres Herzzentrum Hamburg, UniversitätsklinikumHamburg-Eppendorf, Hamburg, Deutschland
| | - E S Debus
- Klinik und Poliklinik für Gefäßmedizin, Universitäres Herzzentrum Hamburg, UniversitätsklinikumHamburg-Eppendorf, Hamburg, Deutschland.,Comprehensive Wound Center, Universitäres Herzzentrum Hamburg, Universitätsklinik Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Deutschland
| | - H Diener
- Klinik und Poliklinik für Gefäßmedizin, Universitäres Herzzentrum Hamburg, UniversitätsklinikumHamburg-Eppendorf, Hamburg, Deutschland. .,Comprehensive Wound Center, Universitäres Herzzentrum Hamburg, Universitätsklinik Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Deutschland.
| |
Collapse
|