1
|
Vossgaetter L, Dudeck T, Crouch J, Cope M, Ivanova T, Siyan I, Niyaz A, Riyaz M, Araujo G. Non-invasive methods characterise the world's largest tiger shark aggregation in Fuvahmulah, Maldives. Sci Rep 2024; 14:21998. [PMID: 39313535 PMCID: PMC11420367 DOI: 10.1038/s41598-024-73079-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024] Open
Abstract
Tiger sharks are apex predators with a circumglobal tropical and warm-temperate distribution, with a general lack of population data for the central Indian Ocean. In Fuvahmulah, Maldives, tiger sharks display frequent use of the harbour area, attracted by discarded fish waste. Here, we document the population structure, residency, and reproductive characteristics of the world's largest known tiger shark aggregation in a geographically-restricted area. Using non-invasive methods, photo identification and laser photogrammetry, we identified 239 individual tiger sharks over a 7-year study period. The aggregation was female-dominated (84.5%), with both large juveniles and adults present. Adult females were resighted over the entire study period displaying strong inter- and intra-annual site fidelity. Modelled residency using maximum likelihood methods suggests they spent 60.7 ± S.E. 7.5 days in Fuvahmulah, with a larger aggregation size, shorter residence periods and longer absence periods compared to juvenile females. Prolonged abdominal distensions of adult females indicate they likely stay near Fuvahmulah during gestation and reproduce biennially. Fuvahmulah seems to provide suitable conditions for gestation given the year-round provision of food and warm waters, exhibited by strong site fidelity and temporal residency. Our results show indications of a thriving population within the confines of protected waters.
Collapse
Affiliation(s)
- Lennart Vossgaetter
- Leibniz Centre for Tropical Marine Research, 28334, Bremen, Germany.
- University of Bremen, 28334, Bremen, Germany.
| | - Tim Dudeck
- Leibniz Centre for Tropical Marine Research, 28334, Bremen, Germany
- University of Bremen, 28334, Bremen, Germany
| | - Jamie Crouch
- Fuvahmulah Dive School, Fuvahmulah, 18011, Maldives
| | - Maiah Cope
- Fuvahmulah Dive School, Fuvahmulah, 18011, Maldives
| | | | | | | | | | - Gonzalo Araujo
- Marine Research and Conservation Foundation, Lydeard St Lawrence, Somerset, UK
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
2
|
Pollom RA, Cheok J, Pacoureau N, Gledhill KS, Kyne PM, Ebert DA, Jabado RW, Herman KB, Bennett RH, da Silva C, Fernando S, Kuguru B, Leslie RW, McCord ME, Samoilys M, Winker H, Fennessy ST, Pollock CM, Rigby CL, Dulvy NK. Overfishing and climate change elevate extinction risk of endemic sharks and rays in the southwest Indian Ocean hotspot. PLoS One 2024; 19:e0306813. [PMID: 39236015 PMCID: PMC11648177 DOI: 10.1371/journal.pone.0306813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/24/2024] [Indexed: 09/07/2024] Open
Abstract
Here, we summarise the extinction risk of the sharks and rays endemic to coastal, shelf, and slope waters of the southwest Indian Ocean and adjacent waters (SWIO+, Namibia to Kenya, including SWIO islands). This region is a hotspot of endemic and evolutionarily distinct sharks and rays. Nearly one-fifth (n = 13 of 70, 18.6%) of endemic sharks and rays are threatened, of these: one is Critically Endangered, five are Endangered, and seven are Vulnerable. A further seven (10.0%) are Near Threatened, 33 (47.1%) are Least Concern, and 17 (24.3%) are Data Deficient. While the primary threat is overfishing, there are the first signs that climate change is contributing to elevated extinction risk through habitat reduction and inshore distributional shifts. By backcasting their status, few endemic species were threatened in 1980, but this changed soon after the emergence of targeted shark and ray fisheries. South Africa has the highest national conservation responsibility, followed by Mozambique and Madagascar. Yet, while fisheries management and enforcement have improved in South Africa over recent decades, substantial improvements are urgently needed elsewhere. To avoid extinction and ensure robust populations of the region's endemic sharks and rays and maintain ecosystem functionality, there is an urgent need for the strict protection of Critically Endangered and Endangered species and sustainable management of Vulnerable, Near Threatened, and Least Concern species, underpinned by species-level data collection and reduction of incidental catch.
Collapse
Affiliation(s)
- Riley A. Pollom
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- Seattle Aquarium, Species Recovery Program, Seattle, Washington, United States of America
| | - Jessica Cheok
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Nathan Pacoureau
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Katie S. Gledhill
- Fish Ecology Lab, School of the Environment, University of Technology Sydney, Ultimo, New South Wales, Australia
- Molecular Breeding and Biodiversity Research Group, Stellenbosch University, Stellenbosch, Western Cape, South Africa
- South African Shark Conservancy, Hermanus, Western Cape, South Africa
| | - Peter M. Kyne
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia
| | - David A. Ebert
- Pacific Shark Research Center, Moss Landing Marine Laboratories, Moss Landing, California, United States of America
- South African Institute for Aquatic Biodiversity, Makhanda, Eastern Cape, South Africa
| | | | | | - Rhett H. Bennett
- South African Institute for Aquatic Biodiversity, Makhanda, Eastern Cape, South Africa
- Wildlife Conservation Society, Makhanda, Eastern Cape, South Africa
| | - Charlene da Silva
- Department of Forestry, Fisheries and the Environment, Fisheries Research and Development Branch, Cape Town, Western Cape, South Africa
| | - Stela Fernando
- Oceanographic Institution of Mozambique, Maputo, Mozambique
| | - Baraka Kuguru
- Tanzania Fisheries Research Institute, Dar es Salaam, Tanzania
- CORDIO East Africa, Mombasa, Kenya
| | - Robin W. Leslie
- Department of Forestry, Fisheries and the Environment, Fisheries Research and Development Branch, Cape Town, Western Cape, South Africa
| | - Meaghen E. McCord
- South African Shark Conservancy, Hermanus, Western Cape, South Africa
- British Columbia Chapter, Canadian Parks and Wilderness Society, Vancouver, British Columbia, Canada
| | | | - Henning Winker
- Department of Forestry, Fisheries and the Environment, Fisheries Research and Development Branch, Cape Town, Western Cape, South Africa
| | - Sean T. Fennessy
- Oceanographic Research Institute, Durban, KwaZulu-Natal, South Africa
| | | | - Cassandra L. Rigby
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Nicholas K. Dulvy
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
3
|
Marley SA, McConnell L, Allen C, Wettner S, Hunt T, Rocha D, Gullan A. Dolphins, sharks, and barnacles: Use of photographs to examine intra- and inter-specific interactions in bottlenose dolphins in Mozambique. Ecol Evol 2024; 14:e11691. [PMID: 39114178 PMCID: PMC11303981 DOI: 10.1002/ece3.11691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 08/10/2024] Open
Abstract
Understanding interactions within and between species is crucial to ecological research. However, for cetaceans such interactions can be difficult to observe in the field. Photographs offer an opportunity to study intra- and inter-specific interactions, by capturing 'snapshots' of their occurrence over space and time. At-surface and underwater photographs of bottlenose dolphins (Tursiops aduncus) inhabiting Ponta do Ouro Partial Marine Reserve (PPMR), Mozambique, were used to examine evidence of interactions with other dolphins, predators and ectoparasites. Intra-specific scarring levels significantly differed by sex and age class, with males displaying more scarring than females. Similarly, adults had more scarring than juveniles or calves. Shark bites significantly differed in their distribution across dolphin body areas, with the dorsal side being more frequently wounded than the ventral side. The presence of barnacles was exclusive to fluke, dorsal and pectoral fins, and showed strong seasonal trends. Overall, this study demonstrates the value of photographs for examining marine ecological interactions. It provides the first insights regarding dolphin social behaviour, predation risk and health for this population. These in turn will support future research into the population dynamics and conservation of the PPMR dolphins, which is urgently required in the face of locally increasing anthropogenic pressures.
Collapse
Affiliation(s)
- Sarah A. Marley
- Scotland's Rural College, Craibstone EstateAberdeenUK
- Institute of Marine SciencesUniversity of PortsmouthSouthseaUK
| | - Laura McConnell
- Institute of Marine SciencesUniversity of PortsmouthSouthseaUK
| | - Chloe Allen
- Institute of Marine SciencesUniversity of PortsmouthSouthseaUK
| | - Shaye Wettner
- Institute of Marine SciencesUniversity of PortsmouthSouthseaUK
| | - Thomas Hunt
- Institute of Marine SciencesUniversity of PortsmouthSouthseaUK
| | - Diana Rocha
- School of the Environment, Geography and GeosciencesUniversity of PortsmouthPortsmouthUK
- Dolphin Encountours Research CenterPonta Do OuroMozambique
| | - Angie Gullan
- Dolphin Encountours Research CenterPonta Do OuroMozambique
| |
Collapse
|
4
|
De Wysiecki AM, Barnett A, Cortés F, Wiff R, Merlo PJ, Jaureguizar AJ, Awruch CA, Trobbiani GA, Irigoyen AJ. The essential habitat role of a unique coastal inlet for a widely distributed apex predator. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230667. [PMID: 37830021 PMCID: PMC10565395 DOI: 10.1098/rsos.230667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023]
Abstract
Essential habitats support specific functions for species, such as reproduction, feeding or refuge. For highly mobile aquatic species, identifying essential habitats within the wider distribution range is central to understanding species ecology, and underpinning effective management plans. This study examined the movement and space use patterns of sevengill sharks (Notorynchus cepedianus) in Caleta Valdés (CV), a unique coastal habitat in northern Patagonia, Argentina. Seasonal residency patterns of sharks were evident, with higher detectability in late spring and early summer and lower during autumn and winter. The overlap between the residency patterns of sharks and their prey, elephant seals, suggests that CV functions as a seasonal feeding aggregation site for N. cepedianus. The study also found sexual differences in movement behaviour, with males performing abrupt departures from CV and showing increased roaming with the presence of more sharks, and maximum detection probability at high tide. These movements could be related to different feeding strategies between sexes or mate-searching behaviour, suggesting that CV may also be essential for reproduction. Overall, this study highlights the importance of coastal sites as essential habitats for N. cepedianus and deepens our understanding of the ecological role of this apex predator in marine ecosystems.
Collapse
Affiliation(s)
- Agustín M. De Wysiecki
- Centro para el Estudio de Sistemas Marinos, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Puerto Madryn, Chubut, Argentina
| | - Adam Barnett
- Marine Data Technology Hub, James Cook University, Townsville, Queensland, Australia
- Biopixel Oceans Foundation, Cairns, Queensland, Australia
| | - Federico Cortés
- Instituto Nacional de Investigación y Desarrollo Pesquero, Mar del Plata, Buenos Aires, Argentina
| | - Rodrigo Wiff
- Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Santiago, Chile
- Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago, Chile
| | - Pablo J. Merlo
- Centro para el Estudio de Sistemas Marinos, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Puerto Madryn, Chubut, Argentina
| | - Andrés J. Jaureguizar
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), La Plata, Buenos Aires, Argentina
- Instituto Argentino de Oceanografía (IADO), Bahía Blanca, Buenos Aires, Argentina
- Universidad Provincial del Sudoeste (UPSO), Coronel Pringles, Buenos Aires, Argentina
| | - Cynthia A. Awruch
- Centro para el Estudio de Sistemas Marinos, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Puerto Madryn, Chubut, Argentina
- Fisheries and Aquaculture, Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Hobart, Tasmania, Australia
| | - Gastón A. Trobbiani
- Centro para el Estudio de Sistemas Marinos, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Puerto Madryn, Chubut, Argentina
| | - Alejo J. Irigoyen
- Centro para el Estudio de Sistemas Marinos, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Puerto Madryn, Chubut, Argentina
| |
Collapse
|
5
|
Shea BD, Gallagher AJ, Bomgardner LK, Ferretti F. Quantifying longline bycatch mortality for pelagic sharks in western Pacific shark sanctuaries. SCIENCE ADVANCES 2023; 9:eadg3527. [PMID: 37585534 PMCID: PMC10431710 DOI: 10.1126/sciadv.adg3527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 07/17/2023] [Indexed: 08/18/2023]
Abstract
Marine protected areas are increasingly touted for their role in conserving large marine predators such as sharks, but their efficacy is debated. Seventeen "shark sanctuaries" have been established globally, but longline fishing continues within many such jurisdictions, leading to unknown levels of bycatch mortality levels. Using public data from Global Fishing Watch and Regional Fisheries Management Organizations, we quantified longline fishing within eight shark sanctuaries and estimated pelagic shark catch and mortality for seven pelagic shark species. Sanctuary mortality ranged from 600 individuals (Samoa) to 36,256 individuals (Federated States of Micronesia), equivalent to ~5% of hypothesized sustainable levels for blue sharks to ~40% for silky sharks, with high mortality levels in the Federated States of Micronesia, Palau, and the Marshall Islands. Unsustainable mortality rates were exceeded for silky sharks in two sanctuaries, highlighting a need for additional stock assessments and implementation of bycatch reduction measures. Big data integration workflows represent a transformative tool in fisheries management, particularly for data-poor species.
Collapse
Affiliation(s)
- Brendan D. Shea
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, USA
- Beneath the Waves, Herndon, VA, USA
| | - Austin J. Gallagher
- Beneath the Waves, Herndon, VA, USA
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter Cornwall Campus, Penryn, Cornwall, UK
| | | | - Francesco Ferretti
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
6
|
Green turtle movements in the Gulf of Mexico: Tracking reveals new migration corridor and habitat use suggestive of MPA expansion. Glob Ecol Conserv 2023. [DOI: 10.1016/j.gecco.2023.e02380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
7
|
Cortelezzi P, Paulet TG, Olbers JM, Harris JM, Bernard ATF. Conservation benefits of a marine protected area on South African chondrichthyans. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115691. [PMID: 35839646 DOI: 10.1016/j.jenvman.2022.115691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Chondrichthyans are threatened worldwide due to their life-history traits combined with a plethora of anthropogenic impacts that are causing populations to collapse. Marine Protected Areas (MPAs) are a conservation option, but their efficacy for chondrichthyans is still unclear. Conservation efforts might be challenging especially in developing countries, due to a lack of resources and monitoring and limited data and stakeholder support. Here Baited Remote Underwater Stereo-Video systems (stereo-BRUVs) were deployed inside and outside a small partially protected MPA (Robberg MPA, Western Cape, South Africa) to assess the status of cartilaginous fishes' assemblages and to investigate the potential benefits derived from the presence of a marine reserve. Overall, 19 chondrichthyan species in 11 different families were observed. Chondrichthyans were observed in 78.5% of the sites and, of these, 89.7% of the MPA sites showed at least one chondrichthyan, while only in the 67.5% of surrounding exploited sites a cartilaginous fish was sighted. The presence of the MPA had a significant effect on the relative abundance of batoids, threatened species and local endemics, with more observations inside the MPA than outside, indicating the potential benefit of marine reserves on species that are more vulnerable to fishing pressure. Relative abundance was generally higher inside the bay than in the exposed area, and both relative abundance and species richness decreased significantly with depth. The analysis of the body length showed that the 35.5% of species had an average body length below maturity length, indicating that the area might be used as nursery ground for different species. This study provides evidence that MPAs, even though small and partially protected, can provide benefits for chondrichthyans, specifically to threatened species, endemic species and lesser-known species. Importantly, different environmental parameters must be considered to maximize the benefits an MPA can provide.
Collapse
Affiliation(s)
- Paolo Cortelezzi
- Earth and Environmental Science Department, University of Milano Bicocca, Piazza Della Scienza 1, 20126, Milano, Italy; South African Shark Conservancy (SASC), Hermanus, 7200, Western Cape, South Africa.
| | - Timothy G Paulet
- South African Shark Conservancy (SASC), Hermanus, 7200, Western Cape, South Africa
| | - Jennifer M Olbers
- Wildlands Conservation Trust, 460 Townbush Road, Pietermaritzburg, 3201, South Africa
| | - Jean M Harris
- Wildlands Conservation Trust, 460 Townbush Road, Pietermaritzburg, 3201, South Africa; Institute for Coastal and Marine Research (CMR), Nelson Mandela University, Gomeroy Avenue, Summerstrand, Port Elizabeth 6031, South Africa
| | - Anthony T F Bernard
- South African Institute for Aquatic Biodiversity, Somerset Street, Makhanda, 6139, South Africa; Rhodes University, Department of Zoology and Entomology, Makhanda, 6139, South Africa
| |
Collapse
|
8
|
Lubitz N, Bradley M, Sheaves M, Hammerschlag N, Daly R, Barnett A. The role of context in elucidating drivers of animal movement. Ecol Evol 2022; 12:e9128. [PMID: 35898421 PMCID: PMC9309038 DOI: 10.1002/ece3.9128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/10/2022] [Accepted: 07/01/2022] [Indexed: 11/26/2022] Open
Abstract
Despite its consequences for ecological processes and population dynamics, intra-specific variability is frequently overlooked in animal movement studies. Consequently, the necessary resolution to reveal drivers of individual movement decisions is often lost as animal movement data are aggregated to infer average or population patterns. Thus, an empirical understanding of why a given movement pattern occurs remains patchy for many taxa, especially in marine systems. Nonetheless, movement is often rationalized as being driven by basic life history requirements, such as acquiring energy (feeding), reproduction, predator-avoidance, and remaining in suitable environmental conditions. However, these life history requirements are central to every individual within a species and thus do not sufficiently account for the high intra-specific variability in movement behavior and hence fail to fully explain the occurrence of multiple movement strategies within a species. Animal movement appears highly context dependent as, for example, within the same location, the behavior of both resident and migratory individuals is driven by life history requirements, such as feeding or reproduction, however different movement strategies are utilized to fulfill them. A systematic taxa-wide approach that, instead of averaging population patterns, incorporates and utilizes intra-specific variability to enable predictions as to which movement patterns can be expected under a certain context, is needed. Here, we use intra-specific variability in elasmobranchs as a case study to introduce a stepwise approach for studying animal movement drivers that is based on a context-dependence framework. We examine relevant literature to illustrate how this context-focused approach can aid in reliably identifying drivers of a specific movement pattern. Ultimately, incorporating behavioral variability in the study of movement drivers can assist in making predictions about behavioral responses to environmental change, overcoming tagging biases, and establishing more efficient conservation measures.
Collapse
Affiliation(s)
- Nicolas Lubitz
- College of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
| | - Michael Bradley
- Marine Data Technology HubCollege of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
| | - Marcus Sheaves
- Marine Data Technology HubCollege of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
| | - Neil Hammerschlag
- Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiFloridaUSA
| | - Ryan Daly
- Oceanographic Research InstituteDurbanSouth Africa
- South African Institute for Aquatic Biodiversity (SAIAB)MakhandaSouth Africa
| | - Adam Barnett
- Marine Data Technology HubCollege of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
| |
Collapse
|
9
|
Boakes Z, Hall AE, Elvan Ampou E, Jones GC, Gusti Ngurah Agung Suryaputra I, Putu Mahyuni L, Prasetyo R, Stafford R. Coral reef conservation in Bali in light of international best practice, a literature review. J Nat Conserv 2022. [DOI: 10.1016/j.jnc.2022.126190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Jorgensen SJ, Micheli F, White TD, Van Houtan KS, Alfaro-Shigueto J, Andrzejaczek S, Arnoldi NS, Baum JK, Block B, Britten GL, Butner C, Caballero S, Cardeñosa D, Chapple TK, Clarke S, Cortés E, Dulvy NK, Fowler S, Gallagher AJ, Gilman E, Godley BJ, Graham RT, Hammerschlag N, Harry AV, Heithaus M, Hutchinson M, Huveneers C, Lowe CG, Lucifora LO, MacKeracher T, Mangel JC, Barbosa Martins AP, McCauley DJ, McClenachan L, Mull C, Natanson LJ, Pauly D, Pazmiño DA, Pistevos JCA, Queiroz N, Roff G, Shea BD, Simpfendorfer CA, Sims DW, Ward-Paige C, Worm B, Ferretti F. Emergent research and priorities for shark and ray conservation. ENDANGER SPECIES RES 2021. [DOI: 10.3354/esr01169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
11
|
Giménez J, Cardador L, Mazor T, Kark S, Bellido JM, Coll M, Navarro J. Marine protected areas for demersal elasmobranchs in highly exploited Mediterranean ecosystems. MARINE ENVIRONMENTAL RESEARCH 2020; 160:105033. [PMID: 32907736 DOI: 10.1016/j.marenvres.2020.105033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
Marine ecosystems are complex socio-ecological systems where sustainable solutions can be best gained by satisfying both conservation and socioeconomic demands. Concretely, the Mediterranean Sea is facing a huge demand of resources and marine activities while hosting abundant and unique biodiversity. It is considered an important elasmobranch hotspot where seventy-two elasmobranch species are present in the basin. Despite the recognised importance of elasmobranchs as umbrella species, to date only a small number of marine protected areas have been designated towards their protection. The paucity of spatially-explicit abundance data on elasmobranchs often precludes the designation of these areas to protect these marine predators. Here, we aimed to identify marine areas to protect elasmobranch species by means of a systematic spatial planning approach. We first estimated the spatial distribution of five elasmobranch species (three sharks and two rays) in the western Mediterranean Sea and then applied Marxan decision support tools to find priority marine conservation areas. We found that the five elasmobranchs are distributed in coastal and slope areas of the southern waters of the study area while in the northern region they are abundant in the continental slope and towards offshore waters. Conservation priority areas were identified in the southern part of the western Mediterranean. Adding more complex cost layers and zoning to the analysis did not alter conservation priority areas, confirming such areas are highly consistent and highly important for elasmobranch protection. The marine conservation priority areas identified here can contribute to designate a proactive area-based protection strategy towards elasmobranch conservation, related species and the habitats that they depend in the western Mediterranean Sea.
Collapse
Affiliation(s)
- Joan Giménez
- Institut de Ciències del Mar - CSIC, Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain; MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland; School of Biological, Earth & Environmental Sciences (BEES), University College Cork, Distillery Fields, North Mall, Cork, Ireland.
| | - Laura Cardador
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Cerdanyola del Vallès, 08193, Spain
| | - Tessa Mazor
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Salit Kark
- The Biodiversity Research Group, The School of Biological Sciences, Centre for Biodiversity and Conservation Science, The University of Queensland, Brisbane, Queensland, Australia
| | - José Maria Bellido
- Instituto Español de Oceanografía (IEO), Centro Oceanográfico de Murcia, Calle Varadero 1, Apdo. 22, San Pedro del Pinatar, 30740, Murcia, Spain
| | - Marta Coll
- Institut de Ciències del Mar - CSIC, Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Joan Navarro
- Institut de Ciències del Mar - CSIC, Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| |
Collapse
|
12
|
Armstrong AJ, Armstrong AO, McGregor F, Richardson AJ, Bennett MB, Townsend KA, Hays GC, van Keulen M, Smith J, Dudgeon CL. Satellite Tagging and Photographic Identification Reveal Connectivity Between Two UNESCO World Heritage Areas for Reef Manta Rays. FRONTIERS IN MARINE SCIENCE 2020; 7. [PMID: 0 DOI: 10.3389/fmars.2020.00725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
13
|
Ajemian MJ, Drymon JM, Hammerschlag N, Wells RJD, Street G, Falterman B, McKinney JA, Driggers WB, Hoffmayer ER, Fischer C, Stunz GW. Movement patterns and habitat use of tiger sharks (Galeocerdo cuvier) across ontogeny in the Gulf of Mexico. PLoS One 2020; 15:e0234868. [PMID: 32667920 PMCID: PMC7363083 DOI: 10.1371/journal.pone.0234868] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/03/2020] [Indexed: 11/18/2022] Open
Abstract
The tiger shark (Galeocerdo cuvier) is globally distributed with established coastal and open-ocean movement patterns in many portions of its range. While all life stages of tiger sharks are known to occur in the Gulf of Mexico (GoM), variability in habitat use and movement patterns over ontogeny have never been quantified in this large marine ecosystem. To address this data gap we fitted 56 tiger sharks with Smart Position and Temperature transmitting tags between 2010 and 2018 and examined seasonal and spatial distribution patterns across the GoM. Additionally, we analyzed overlap of core habitats (i.e., 50% kernel density estimates) among individuals relative to large benthic features (oil and gas platforms, natural banks, bathymetric breaks). Our analyses revealed significant ontogenetic and seasonal differences in distribution patterns as well as across-shelf (i.e., regional) and sex-linked variability in movement rates. Presumably sub-adult and adult sharks achieved significantly higher movement rates and used off-shelf deeper habitats at greater proportions than juvenile sharks, particularly during the fall and winter seasons. Further, female maximum rate of movement was higher than males when accounting for size. Additionally, we found evidence of core regions encompassing the National Oceanographic and Atmospheric Administration designated Habitat Areas of Particular Concern (i.e., shelf-edge banks) during cooler months, particularly by females, as well as 2,504 oil and gas platforms. These data provide a baseline for future assessments of environmental impacts, such as climate variability or oil spills, on tiger shark movements and distribution in the region. Future research may benefit from combining alternative tracking tools, such as acoustic telemetry and genetic approaches, which can facilitate long-term assessment of the species’ movement dynamics and better elucidate the ecological significance of the core habitats identified here.
Collapse
Affiliation(s)
- Matthew J. Ajemian
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, United States of America
- * E-mail:
| | - J. Marcus Drymon
- Coastal Research and Extension Center, Mississippi State University, Biloxi, Mississippi, United States of America
- Mississippi-Alabama Sea Grant, Ocean Springs, Mississippi, United States of America
| | - Neil Hammerschlag
- Rosenstiel School of Marine & Atmospheric Science, University of Miami, Causeway, Miami, Florida, United States of America
- Abess Center for Ecosystem Science & Policy, University of Miami, Miami, Florida, United States of America
| | - R. J. David Wells
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
- Department of Wildlife & Fisheries Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Garrett Street
- Quantitative Ecology & Spatial Technologies Laboratory, Mississippi State University, Starkville, Mississippi State, United States of America
- Department of Wildlife, Fisheries, and Aquaculture, Mississippi State University, Starkville, Mississippi State, United States of America
| | - Brett Falterman
- Louisiana Department of Wildlife and Fisheries, New Orleans, Louisiana, United States of America
| | - Jennifer A. McKinney
- Louisiana Department of Wildlife and Fisheries, New Orleans, Louisiana, United States of America
| | - William B. Driggers
- NOAA Fisheries, Southeast Fisheries Science Center, Mississippi Laboratories, Pascagoula, Mississippi, United States of America
| | - Eric R. Hoffmayer
- NOAA Fisheries, Southeast Fisheries Science Center, Mississippi Laboratories, Pascagoula, Mississippi, United States of America
| | | | - Gregory W. Stunz
- Harte Research Institute for Gulf of Mexico Studies, Texas A&M University-Corpus Christi, Corpus Christi, Texas, United States of America
| |
Collapse
|
14
|
Carpenter-Kling T, Pistorius P, Reisinger R, Cherel Y, Connan M. A critical assessment of marine predator isoscapes within the southern Indian Ocean. MOVEMENT ECOLOGY 2020; 8:29. [PMID: 32612836 PMCID: PMC7322845 DOI: 10.1186/s40462-020-00208-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Precise and accurate retrospective geolocation of marine predators via their tissues' isotopic composition relies on quality reference maps of relevant isotopic gradients ("isoscapes"). Additionally, a good working knowledge of any discrimination factors that may offset a marine predator's isotopic composition from baseline isotopic values, as well as tissue specific retention rates, are imperative. We provide a critical assessment of inter-specific differences among marine predator-level isoscapes within the Indian Sector of the Southern Ocean. METHODS We combined fine-scale GPS tracking data and concurrent blood plasma δ13C and δ15N values of eight seabird species (three albatross, two giant petrel and three penguin species) breeding at Marion Island to produce species- and guild-specific isoscapes. RESULTS Overall, our study revealed latitudinal spatial gradients in both δ13C and δ15N for far-ranging seabirds (albatrosses and giant petrels) as well as inshore-offshore gradients for near-ranging seabirds (penguins). However, at the species level, latitudinal spatial gradients were not reflected in the δ13C and δ15N isoscapes of two and three, respectively, of the five far-ranging species studied. It is therefore important when possible to estimate and apply species-specific isoscapes or have a good understanding of any factors and pathways affecting marine predators' isotopic composition when estimating the foraging distribution of marine predators via their tissues' stable isotope compositions. CONCLUSIONS Using a multi-species approach, we provide evidence of large and regional scale systematic spatial variability of δ13C and δ15N at the base of the marine food web that propagates through trophic levels and is reflected in the isotopic composition of top predators' tissues.
Collapse
Affiliation(s)
- Tegan Carpenter-Kling
- Marine Apex Predator Research Unit (MAPRU), Department of Zoology, Institute for Coastal and Marine Research, Nelson Mandela University, Port Elizabeth, South Africa
- DST-NRF Centre of Excellence at the FitzPatrick Institute of African Ornithology, Nelson Mandela University, Port Elizabeth, South Africa
| | - Pierre Pistorius
- Marine Apex Predator Research Unit (MAPRU), Department of Zoology, Institute for Coastal and Marine Research, Nelson Mandela University, Port Elizabeth, South Africa
- DST-NRF Centre of Excellence at the FitzPatrick Institute of African Ornithology, Nelson Mandela University, Port Elizabeth, South Africa
| | - Ryan Reisinger
- Marine Apex Predator Research Unit (MAPRU), Department of Zoology, Institute for Coastal and Marine Research, Nelson Mandela University, Port Elizabeth, South Africa
- Centre d’Etudes Biologiques de Chizé, UMR 7372 du CNRS-La Rochelle Université, 79360 Villiers-en-Bois, France
| | - Yves Cherel
- Centre d’Etudes Biologiques de Chizé, UMR 7372 du CNRS-La Rochelle Université, 79360 Villiers-en-Bois, France
| | - Maëlle Connan
- Marine Apex Predator Research Unit (MAPRU), Department of Zoology, Institute for Coastal and Marine Research, Nelson Mandela University, Port Elizabeth, South Africa
| |
Collapse
|
15
|
Barkley AN, Gollock M, Samoilys M, Llewellyn F, Shivji M, Wetherbee B, Hussey NE. Complex transboundary movements of marine megafauna in the Western Indian Ocean. Anim Conserv 2019. [DOI: 10.1111/acv.12493] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- A. N. Barkley
- Biological Sciences University of Windsor Windsor ON Canada
| | - M. Gollock
- Zoological Society of London Regent's Park London England
| | - M. Samoilys
- Coastal Oceans Research and Development – Indian Ocean Mombasa Kenya
| | - F. Llewellyn
- Zoological Society of London Regent's Park London England
| | - M. Shivji
- Guy Harvey Research Institute Department of Biological Sciences Nova Southeastern University Fort Lauderdale FL USA
| | - B. Wetherbee
- Guy Harvey Research Institute Department of Biological Sciences Nova Southeastern University Fort Lauderdale FL USA
- Biological Sciences College of Environment and Life Sciences University of Rhode Island Kingston RI USA
| | - N. E. Hussey
- Biological Sciences University of Windsor Windsor ON Canada
| |
Collapse
|
16
|
Long-Distance Benefits of Marine Reserves: Myth or Reality? Trends Ecol Evol 2019; 34:342-354. [PMID: 30777295 DOI: 10.1016/j.tree.2019.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 01/05/2019] [Accepted: 01/07/2019] [Indexed: 02/08/2023]
Abstract
Long-distance (>40-km) dispersal from marine reserves is poorly documented; yet, it can provide essential benefits such as seeding fished areas or connecting marine reserves into networks. From a meta-analysis, we suggest that the spatial scale of marine connectivity is underestimated due to the limited geographic extent of sampling designs. We also found that the largest marine reserves (>1000km2) are the most isolated. These findings have important implications for the assessment of evolutionary, ecological, and socio-economic long-distance benefits of marine reserves. We conclude that existing methods to infer dispersal should consider the up-to-date genomic advances and also expand the spatial scale of sampling designs. Incorporating long-distance connectivity in conservation planning will contribute to increase the benefits of marine reserve networks.
Collapse
|