1
|
Meldrum JR, Larson DL, Hoelzle TB, Hinck JE. Considering pollinators' ecosystem services in the remediation and restoration of contaminated lands: Overview of research and its gaps. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:322-336. [PMID: 37431069 DOI: 10.1002/ieam.4808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 07/12/2023]
Abstract
The concept of ecosystem services provides a useful framework for understanding how people are affected by changes to the natural environment, such as when a contaminant is introduced (e.g., oil spills, hazardous substance releases) or, conversely, when contaminated lands are remediated and restored. Pollination is one example of an important ecosystem service; pollinators play a critical role in any functioning terrestrial ecosystem. Other studies have suggested that consideration of pollinators' ecosystem services could lead to better remediation and restoration outcomes. However, the associated relationships can be complex, and evaluation requires synthesis from numerous disciplines. In this article, we discuss the possibilities for considering pollinators and their ecosystem services when planning remediation and restoration of contaminated lands. To inform the discussion, we introduce a general conceptual model of how pollinators and the ecosystem services associated with them could be affected by contamination in the environment. We review the literature on the conceptual model components, including contaminant effects on pollinators and the direct and indirect ecosystem services provided by pollinators, and identify information gaps. Though increased public interest in pollinators likely reflects increasing recognition of their role in providing many important ecosystem services, our review indicates that many gaps in understanding-about relevant natural and social systems-currently impede the rigorous quantification and evaluation of pollinators' ecosystem services required for many applications, such as in the context of natural resource damage assessment. Notable gaps include information on non-honeybee pollinators and on ecosystem services beyond those benefitting the agricultural sector. We then discuss potential research priorities and implications for practitioners. Focused research attention on the areas highlighted in this review holds promise for increasing the possibilities for considering pollinators' ecosystem services in the remediation and restoration of contaminated lands. Integr Environ Assess Manag 2024;20:322-336. © 2023 SETAC.
Collapse
Affiliation(s)
- James R Meldrum
- US Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, USA
| | - Diane L Larson
- US Geological Survey, Northern Prairie Wildlife Research Center, St. Paul, Minnesota, USA
| | - Timothy B Hoelzle
- U.S. Department of the Interior, Office of Restoration and Damage Assessment-Restoration Support Unit, Denver, Colorado, USA
| | - Jo Ellen Hinck
- US Geological Survey, Columbia Environmental Research Center, Columbia, Missouri, USA
| |
Collapse
|
2
|
MacNeill BN, Ortiz-Brunel JP, Rodríguez A, Ruiz-Sánchez E, Navarro-Moreno J, Hofford NP, McKain MR. Floral Diversity and Pollination Syndromes in Agave subgenus Manfreda. Integr Comp Biol 2023; 63:1376-1390. [PMID: 37673672 DOI: 10.1093/icb/icad118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/09/2023] [Accepted: 08/19/2023] [Indexed: 09/08/2023] Open
Abstract
The genus Agave is an ecological keystone of American deserts and both culturally and economically important in Mexico. Agave is a large genus of about 250 species. The radiation of Agave is marked by an initial adaptation to desert environments and then a secondary diversification of species associated with pollinator groups, such as hummingbirds and nocturnal moths. Phylogenetic analyses place Agave subgenus Manfreda, or the "herbaceous agaves," in a monophyletic clade that likely evolved in part as an adaptation to novel pollination vectors. Here, we present a morphological and observational study assessing the evolution of floral form in response to pollinator specialization within this understudied group. We found significant visitation by hummingbirds and nocturnal moths to several species within the Agave subgenus Manfreda. These observations also align with our morphological analyses of floral organs and support the evolution of distinct pollination syndromes. We found that not all floral morphology is consistent within a pollination syndrome, suggesting hidden diversity in the evolution of floral phenotypes in Agave. We also characterize the morphological variation between herbarium and live specimens, demonstrating that special consideration needs to be made when combining these types of data. This work identifies the potential for studying the functional evolution of diverse floral forms within Agave and demonstrates the need to further explore ecological and evolutionary relationships to understand pollinator influence on diversification in the genus.
Collapse
Affiliation(s)
- Bryan N MacNeill
- Department of Biological Sciences, The University of Alabama, 300 Hackberry Lane, Tuscaloosa, AL 35487, USA
| | | | - Aarón Rodríguez
- Department of Botany and Zoology, University of Guadalajara, Zapopan, Jal. 45200 , Mexico
| | - Eduardo Ruiz-Sánchez
- Department of Botany and Zoology, University of Guadalajara, Zapopan, Jal. 45200 , Mexico
| | - Jesús Navarro-Moreno
- Department of Botany and Zoology, University of Guadalajara, Zapopan, Jal. 45200 , Mexico
| | - Nathaniel P Hofford
- Department of Biological Sciences, The University of Alabama, 300 Hackberry Lane, Tuscaloosa, AL 35487, USA
| | - Michael R McKain
- Department of Biological Sciences, The University of Alabama, 300 Hackberry Lane, Tuscaloosa, AL 35487, USA
| |
Collapse
|
3
|
Trejo-Salazar RE, Gámez N, Escalona-Prado E, Scheinvar E, Medellín RA, Moreno-Letelier A, Aguirre-Planter E, Eguiarte LE. Historical, temporal, and geographic dynamism of the interaction between Agave and Leptonycteris nectar-feeding bats. AMERICAN JOURNAL OF BOTANY 2023; 110:e16222. [PMID: 37561648 DOI: 10.1002/ajb2.16222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 07/01/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023]
Abstract
PREMISE The interaction between ecological and evolutionary processes has been recognized as an important factor shaping the evolutionary history of species. Some authors have proposed different ecological and evolutionary hypotheses concerning the relationships between plants and their pollinators; a special case is the interaction and suspected coevolution among Agave spp. and their main pollinators, the Leptonycteris bats. Agave spp. have, in general, a pollination syndrome compatible with chiropterophily including floral shape and size, nocturnal nectar production, and nectar quality and sugar concentration. Our goal was to analyze the interaction Agave-Leptonycteris and its dynamics during three different climate scenarios. METHODS We modeled the Agave-Leptonycteris interaction in its spatial and temporal components during the Pleistocene using Ecological Niche Models (ENMs) and three climate scenarios: Current, Last Glacial Maximum (LGM), and Last InterGlacial (LIG). Furthermore, we analyzed the geographic correlation between 96 Agave spp. and two of the Mexican Tequila bats, genus Leptonycteris. RESULTS We found that Leptonycteris spp. interact with different Agave spp. over their migratory routes. We propose an interaction refuge in Metztitlán and Tehuacán-Cuicatlán areas, where Agave- Leptonycteris interaction has probably remained active. During the nonmigratory season, both bat species consume nectar of almost the same Agave spp., suggesting the possibility of a diffuse coevolution among Agave and Leptonycteris bats. CONCLUSIONS We propose that in the areas related to migratory bat movements, each bat species interacts with different Agave spp., whereas in the areas occupied by nonmigrant individuals, both bat species consume nectar of almost the same Agave taxa.
Collapse
Affiliation(s)
- Roberto-Emiliano Trejo-Salazar
- Programa Doctorado en Ciencias Biomédicas, Instituto de Ecología, Universidad Nacional Autónoma de México. Circuito Exterior s/n Anexo al Jardín Botánico, 04510, Ciudad de México
- Laboratorio de Evolución Molecular y Experimental, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Niza Gámez
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Emiliano Escalona-Prado
- Jardín Botánico Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Enrique Scheinvar
- Laboratorio de Evolución Molecular y Experimental, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Rodrigo A Medellín
- Laboratorio de Ecología y Conservación de Vertebrados Terrestres, Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Alejandra Moreno-Letelier
- Jardín Botánico Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Erika Aguirre-Planter
- Laboratorio de Evolución Molecular y Experimental, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Luis E Eguiarte
- Laboratorio de Evolución Molecular y Experimental, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
4
|
Rivera-Ruiz DA, Flores-Martínez JJ, Rosales C, Herrera Montalvo LG. Constitutive Innate Immunity of Migrant and Resident Long-Nosed Bats (Leptonycteris yerbabuenae) in the Drylands of Mexico. DIVERSITY 2023. [DOI: 10.3390/d15040530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
In contrast to birds, the relationship between migration and immunity has been scarcely studied in bats. We examined how the expression of the humoral portion of the constitutive immunity varied in a bat with partial, sex-biased migration: the lesser long-nosed bat (Leptonycteris yerbabuenae (Phyllostomidae)). The lesser long-nosed bat is a nectarivorous species distributed in the arid and semi-arid regions of North and Central America. We evaluated the bacteria-killing abilities (BKAs) of the plasma of male and female lesser long-nosed bats on the Pacific coast in different periods of the year. Because adult males are resident, they were used to explore the effect of reproductive activity on BKA, and we predicted higher values in mating males (i.e., individuals presenting scrotal testicles and a fresh dorsal patch). In contrast to males, most females migrate to cactus deserts in northern Mexico during pregnancy and lactation, and then return to the dry forests of west-central Mexico to mate. We predicted that the combined effect of breeding and migration would have an adverse effect on BKA; therefore, migratory pregnant and lactating females were expected to exhibit a lower BKA than mating females in west-central Mexico. We compared the BKAs of females captured in October and December in central Mexico, and we predicted that migratory females that had recently arrived in October should exhibit a lower BKA than females captured two months later. In addition, we compared the BKAs between lactating females and young in northern Mexico and predicted lower values in recently born individuals. We found that the BKAs of males were higher in reproductive individuals than in non-reproductive individuals. We found a significant difference in the BKAs between females at the two extremes of their migratory range: the values of pregnant females in Sonora and females in December were higher than those of females captured in October. Finally, we found no difference in BKAs between lactating females and young individuals. Our findings indicate that the basal levels of the innate humoral component are heightened in mating males, that this response is reduced in females that recently returned to their mating grounds, and that the constitutive immunity of young individuals matures early, probably in anticipation of the potential to encounter pathogens during their migration to west-central Mexico.
Collapse
Affiliation(s)
- David A. Rivera-Ruiz
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán 04510, Ciudad de México, Mexico
- Estación de Biología Chamela, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado Postal 21, San Patricio 48989, Jalisco, Mexico
| | - José Juan Flores-Martínez
- Laboratorio de Sistemas de Información Geográfica, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán 04510, Ciudad de México, Mexico
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyacán 04510, Ciudad de México, Mexico
| | - Luis Gerardo Herrera Montalvo
- Estación de Biología Chamela, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado Postal 21, San Patricio 48989, Jalisco, Mexico
| |
Collapse
|
5
|
Sánchez‐Collazo XM, Figueroa‐Castro DM, Cruz JA, Castañeda‐Posadas C. Relative importance of two bat species as pollinators of
Neobuxbaumia tetetzo
(Cactaceae): Evidences from morphometric and pollen load analyses. Ecol Res 2023. [DOI: 10.1111/1440-1703.12384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
| | | | - José Alberto Cruz
- Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla Puebla Mexico
- Instituto Nacional de Antropología e Historia Moneda 16, Col. Centro, Del. Cuauhtémoc Mexico
| | | |
Collapse
|
6
|
Franco-Estrada D, Ortiz E, Villaseñor JL, Arias S. Species distribution modelling and predictor variables for species distribution and niche preferences of Pilosocereus leucocephalus group s.s. (Cactaceae). SYST BIODIVERS 2022. [DOI: 10.1080/14772000.2022.2128928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Daniel Franco-Estrada
- Posgrado en Ciencias Biológicas, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Mexico City, 04510, Mexico
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito Exterior, Ciudad Universitaria, Coyoacán, Mexico City, 04510, Mexico
| | - Enrique Ortiz
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito Exterior, Ciudad Universitaria, Coyoacán, Mexico City, 04510, Mexico
| | - José Luis Villaseñor
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito Exterior, Ciudad Universitaria, Coyoacán, Mexico City, 04510, Mexico
| | - Salvador Arias
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito Exterior, Ciudad Universitaria, Coyoacán, Mexico City, 04510, Mexico
| |
Collapse
|
7
|
Alducin-Martínez C, Ruiz Mondragón KY, Jiménez-Barrón O, Aguirre-Planter E, Gasca-Pineda J, Eguiarte LE, Medellin RA. Uses, Knowledge and Extinction Risk Faced by Agave Species in Mexico. PLANTS (BASEL, SWITZERLAND) 2022; 12:124. [PMID: 36616253 PMCID: PMC9824392 DOI: 10.3390/plants12010124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
We compiled an updated database of all Agave species found in Mexico and analyzed it with specific criteria according to their biological parameters to evaluate the conservation and knowledge status of each species. Analyzing the present status of all Agave species not only provides crucial information for each species, but also helps determine which ones require special protection, especially those which are heavily used or cultivated for the production of distilled beverages. We conducted an extensive literature review search and compiled the conservation status of each species using mainstream criteria by IUCN. The information gaps in the database indicate a lack of knowledge and research regarding specific Agave species and it validates the need to conduct more studies on this genus. In total, 168 Agave species were included in our study, from which 89 are in the subgenus Agave and 79 in the subgenus Littaea. Agave lurida and A. nizandensis, in the subgenus Agave and Littaea, respectively, are severely endangered, due to their endemism, lack of knowledge about pollinators and floral visitors, and their endangered status according to the IUCN Red List. Some species are at risk due to the loss of genetic diversity resulting from production practices (i.e., Agave tequilana), and others because of excessive and unchecked overharvesting of wild plants, such as A. guadalajarana, A. victoriae-reginae, A. kristenii, and others. Given the huge economic and ecological importance of plants in the genus Agave, our review will be a milestone to ensure their future and continued provision of ecosystem services for humans, as well as encouraging further research in Agave species in an effort to enhance awareness of their conservation needs and sustainable use, and the implementation of eco-friendly practices in the species management.
Collapse
Affiliation(s)
- Cecilia Alducin-Martínez
- Escuela de Ciencias, Universidad de las Américas Puebla, Puebla 72810, Mexico
- Instituto de Ecología, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico
| | | | - Ofelia Jiménez-Barrón
- Instituto de Ecología, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico
| | - Erika Aguirre-Planter
- Instituto de Ecología, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico
| | - Jaime Gasca-Pineda
- Instituto de Ecología, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico
| | - Luis E. Eguiarte
- Instituto de Ecología, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico
| | - Rodrigo A. Medellin
- Instituto de Ecología, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico
| |
Collapse
|
8
|
Cú-Vizcarra JD, Villalobos F, MacSwiney G. MC, Sosa VJ, Bolívar-Cimé B. The agony of choice: Species richness and range size in the determination of hotspots for the conservation of phyllostomid bats. Perspect Ecol Conserv 2022. [DOI: 10.1016/j.pecon.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
9
|
Booth TH. Checking bioclimatic variables that combine temperature and precipitation data before their use in species distribution models. AUSTRAL ECOL 2022. [DOI: 10.1111/aec.13234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Trevor H. Booth
- CSIRO Land and Water GPO Box 1700 Canberra Australian Capital Territory 2601 Australia
| |
Collapse
|
10
|
Pollinator Species at Risk from the Expansion of Avocado Monoculture in Central Mexico. CONSERVATION 2022. [DOI: 10.3390/conservation2030031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The monoculture of avocado (Persea americana) has triggered the loss of large forested areas in central Mexico, including the habitat of threatened species. This study assessed the potential habitat loss of ten threatened pollinator species due to the expansion of avocado monoculture in Mexico. First, we modeled the distribution of avocado and pollinators. Then, we overlapped their suitable areas at a national level and within the Trans-Mexican Volcanic Belt (TMVB). We also identified the areas with more affected pollinators and coinciding with protected areas. As a result, 78% of the suitable areas for avocado coincided with the distribution of at least one pollinator. Although only two pollinators lost more than one-fifth of their distribution at a national level, the habitat loss increased to 41.6% on average, considering their distribution within the TMVB. The most affected pollinators were Bombus brachycephalus, B diligens, Danaus plexippus, and Tilmatura dupontii, losing more than 48% of their distribution within this ecoregion. The areas with a greater number of affected species pollinators were found in the states of Michoacán, Mexico, and Morelos, where most of the area is currently unprotected. Our results suggest that the expansion of the avocado monoculture will negatively affect the habitat of threatened pollinators in Mexico.
Collapse
|
11
|
Zamora-Mejías D, Trejo-Salazar RE, Eguiarte LE, Ojeda M, Rodríguez-Herrera B, Morales-Malacara JB, Medellín RA. Traveler Mites: Population Genetic Structure of the Wing Mites Periglischrus paracaligus (Acari: Mesostigmata: Spinturnicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1198-1210. [PMID: 35639803 DOI: 10.1093/jme/tjac059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Indexed: 06/15/2023]
Abstract
Wing mites of the genus Periglischrus are ectoparasites exclusively associated with phyllostomid bats. These mites show high host specificity and have been studied to understand the evolutionary history of their bat hosts mainly by using a morphological variation. Through a phylogeographic approach, we analyzed the genetic diversity and population genetic structure of the ectoparasite Periglischrus paracaligus Herrin and Tipton which parasitizes Leptonycteris yerbabuenae Martínez and Villa (lesser long-nosed bat) in Mexico. By the implementation of a multilocus approach, we found that P. paracaligus populations were diverse for haplotype diversity, and had values ranging from 0.5 to 1. No genetic structuring in the P. paracaligus parasites was observed along with the distribution of the host, L. yerbabuenae, in Mexico, nor when populations or regions were compared, but our results revealed a process of historical demographic expansion in all the analyzed markers. We discuss possible scenarios that could explain the lack of population structure in the light of the data analyzed for the parasites and the biology of L. yerbabuenae, such as the interplay between parasite and host traits being responsible for the genetic make-up of parasite populations. We also inferred its phylogenetic position among wing mites parasitizing the two other species of Leptonycteris bats. Long-nosed bats' monophyly helps to explain the observed presence of distinctive clades in the wing mite's phylogeny in specific association with each long-nosed bat host species.
Collapse
Affiliation(s)
- Daniel Zamora-Mejías
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Tercer Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México, CP 04510, México
- Instituto de Ecología, Universidad Nacional Autónoma de México, Apartado Postal 70-275 04510, Circuito Exterior s/n Anexo al Jardín Botánico, Ciudad Universitaria, Ciudad de México, CP 04510, México
- Universidad de Costa Rica, A.P. 2060, San Pedro de Montes de Oca, San José, Costa Rica
| | - Roberto-Emiliano Trejo-Salazar
- Programa de Doctorado en Ciencias Biomédicas, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior s/n Anexo al Jardín Botánico, Ciudad Universitaria, Ciudad de México, CP 04510, México
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Tercer Circuito Exterior s/n Anexo al Jardín Botánico, Ciudad Universitaria, Ciudad de México, CP 04510, México
| | - Luis E Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Tercer Circuito Exterior s/n Anexo al Jardín Botánico, Ciudad Universitaria, Ciudad de México, CP 04510, México
| | - Margarita Ojeda
- Laboratorio de Ecología y Sistemática de Microartrópodos, Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Coyoacán, Ciudad Universitaria, 04510, Ciudad de México, México
| | | | - Juan B Morales-Malacara
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, 76230, México
| | - Rodrigo A Medellín
- Instituto de Ecología, Universidad Nacional Autónoma de México, Apartado Postal 70-275 04510, Circuito Exterior s/n Anexo al Jardín Botánico, Ciudad Universitaria, Ciudad de México, CP 04510, México
| |
Collapse
|
12
|
Hurme E, Fahr J, Eric BF, Hash CT, O’Mara MT, Richter H, Tanshi I, Webala PW, Weber N, Wikelski M, Dechmann DKN. Fruit bat migration matches green wave in seasonal landscapes. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Edward Hurme
- Department of Migration Max Planck Institute of Animal Behavior Germany
- Centre for the Advanced Study of Collective Behaviour University of Konstanz Konstanz
- Department of Biology University of Konstanz Konstanz
| | - Jakob Fahr
- Department of Migration Max Planck Institute of Animal Behavior Germany
- Department of Biology University of Konstanz Konstanz
| | - Bakwo Fils Eric
- Department of Biological Sciences, Faculty of Sciences University of Maroua Cameroon
| | | | - M. Teague O’Mara
- Department of Migration Max Planck Institute of Animal Behavior Germany
- Southeastern Louisiana University Hammond LA USA
| | | | - Iroro Tanshi
- Department of Biological Sciences Texas Tech University Lubbock USA
- Department of Animal and Environmental Biology University of Benin Benin City Nigeria
| | - Paul W. Webala
- Department of Forestry and Wildlife Management Maasai Mara University Narok Kenya
| | - Natalie Weber
- Department of Migration Max Planck Institute of Animal Behavior Germany
- Centre for the Advanced Study of Collective Behaviour University of Konstanz Konstanz
| | - Martin Wikelski
- Department of Migration Max Planck Institute of Animal Behavior Germany
- Centre for the Advanced Study of Collective Behaviour University of Konstanz Konstanz
- Department of Biology University of Konstanz Konstanz
| | - Dina K. N. Dechmann
- Department of Migration Max Planck Institute of Animal Behavior Germany
- Centre for the Advanced Study of Collective Behaviour University of Konstanz Konstanz
- Department of Biology University of Konstanz Konstanz
| | | |
Collapse
|
13
|
Gill AS, Oliver JC, Fitting H, Kubby BK, Gornish ES. Restoring Palmer's agave in a Lehmann lovegrass dominated grassland in Southeastern Arizona. Restor Ecol 2022. [DOI: 10.1111/rec.13668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Amy S. Gill
- School of Natural Resources and the Environment University of Arizona, PO Box 210137 Tucson Arizona 85721 USA
| | - Jeffrey C. Oliver
- Research Engagement University Libraries, University of Arizona Tucson AZ 85719 USA
| | - Helen Fitting
- Chiricahua National Monument National Park Service USA
| | | | - Elise S. Gornish
- School of Natural Resources and the Environment University of Arizona, PO Box 210137 Tucson Arizona 85721 USA
| |
Collapse
|
14
|
da Silva FP, Montes MA, Lauer Garcia AC, Fischer EA, da Silva LG. Distribution Modelling and Habitat Requirements of Micronycteris sanborni (Phyllostomidae) across the South America Dry Diagonal. ACTA CHIROPTEROLOGICA 2022. [DOI: 10.3161/15081109acc2021.23.2.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Felipe P. da Silva
- Departamento de Biologia, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros s/n, Dois Irmãos, 52171-900, Recife, PE, Brazil
| | - Martín A. Montes
- Departamento de Biologia, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros s/n, Dois Irmãos, 52171-900, Recife, PE, Brazil
| | - Ana C. Lauer Garcia
- Centro Acadêmico de Vitória, Universidade Federal de Pernambuco, Rua do Alto do Reservatório s/n, 55608-680, Vitória de Santo Antão, PE, Brazil
| | - Erich A. Fischer
- Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, 79070-900, Campo Grande, MS, Brazil
| | - Lucas G. da Silva
- Centro UnB Cerrado, Universidade de Brasília, 70910-900, Brasília, DF, Brazil
| |
Collapse
|
15
|
Gómez-Ruiz EP, Lacher TE, Moreno-Talamantes A, Flores Maldonado JJ. Impacts of land cover change on the plant resources of an endangered pollinator. PeerJ 2021; 9:e11990. [PMID: 34707921 PMCID: PMC8500086 DOI: 10.7717/peerj.11990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 07/26/2021] [Indexed: 11/20/2022] Open
Abstract
One of the key drivers of pollinator declines is land cover change. We documented for the first time the impacts of over three decades of land cover change in Mexico on the plant resources of an endangered migratory pollinator, the Mexican long-nosed bat, Leptonycteris nivalis. This species is considered endangered under national and international criteria due to population declines over 50% in the past 10 years. Pregnant females of this bat species migrate every year following the blooms of Agave spp. from central Mexico to the southern United States; moving pollen over its 1,200 km long migratory corridor and pollinating distant populations of Agave spp. Increases in human populations density and agricultural expansion may be reducing agave habitat over time. The objective of our study is to understand the land cover change trends in the northern range of the bat and identify potential fragmentation patterns in the region. We analyzed changes that occurred in three vegetation types where agaves are found in five time periods 1985, 1993, 2002, 2007 and 2011. The area of the three vegetation types selected was reduced by using only the overlap with potential agave habitat created with ecological niche modeling algorithms to obtain the available agave habitat. We then calculated fragmentation metrics for each period. We found a significant portion of habitat lost mainly due to expansion in agriculture. The total number of patches increased after 1985. Only 9% of the available agave habitat in 2011 is inside the limits of protected areas. We recommend restoring agave populations in depleted areas to help prevent soil erosion and provide multiple socio-economic benefits for the region in the short term, and, in the long-term maintaining foraging resources for nectar-feeding bats.
Collapse
Affiliation(s)
| | - Thomas E Lacher
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, United States of America
| | | | | |
Collapse
|
16
|
Zamora-Gutierrez V, Rivera-Villanueva AN, Martínez Balvanera S, Castro-Castro A, Aguirre-Gutiérrez J. Vulnerability of bat-plant pollination interactions due to environmental change. GLOBAL CHANGE BIOLOGY 2021; 27:3367-3382. [PMID: 33749983 DOI: 10.1111/gcb.15611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 05/21/2023]
Abstract
Plant-pollinator interactions are highly relevant to society as many crops important for humans are animal pollinated. However, changes in climate and land use may put such interacting patterns at risk by disrupting the occurrences between pollinators and the plants they pollinate. Here, we analyse how the co-occurrence patterns between bat pollinators and 126 plant species they pollinate may be disrupted given changes in climate and land use, and we forecast relevant changes of the current bat-plant co-occurrence distribution patterns for the near future. We predict under RCP8.5 21% of the territory will experience a loss of bat species richness, plants with C3 metabolism are predicted to reduce their area of distribution by 6.5%, CAM species are predicted to increase their potential area of distribution up to 1% and phanerophytes are predicted to have a 14% reduction in their distribution. The potential bat-plant interactions are predicted to decrease from an average of 47.1 co-occurring bat-plant pairs in the present to 34.1 in the pessimistic scenario. The overall changes in suitable environmental conditions for bats and the plant species they pollinate may disrupt the current bat-plant co-occurrence network and will likely put at risk the pollination services bat species provide.
Collapse
Affiliation(s)
- Veronica Zamora-Gutierrez
- Cátedras CONACYT - Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Durango (CIIDIR), Instituto Politécnico Nacional, Durango, México
| | - A Nayelli Rivera-Villanueva
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Durango (CIIDIR), Instituto Politécnico Nacional, Durango, México
| | | | - Arturo Castro-Castro
- Cátedras CONACYT - Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Durango (CIIDIR), Instituto Politécnico Nacional, Durango, México
| | - Jesús Aguirre-Gutiérrez
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
- Biodiversity Dynamics, Naturalis Biodiversity Center, Leiden, The Netherlands
| |
Collapse
|
17
|
Wieringa JG, Carstens BC, Gibbs HL. Predicting migration routes for three species of migratory bats using species distribution models. PeerJ 2021; 9:e11177. [PMID: 33959415 PMCID: PMC8054759 DOI: 10.7717/peerj.11177] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
Understanding seasonal variation in the distribution and movement patterns of migratory species is essential to monitoring and conservation efforts. While there are many species of migratory bats in North America, little is known about their seasonal movements. In terms of conservation, this is important because the bat fatalities from wind energy turbines are significant and may fluctuate seasonally. Here we describe seasonally resolved distributions for the three species that are most impacted by wind farms (Lasiurus borealis (eastern red bat), L. cinereus (hoary bat) and Lasionycteris noctivagans (silver-haired bat)) and use these distributions to infer their most likely migratory pathways. To accomplish this, we collected 2,880 occurrence points from the Global Biodiversity Information Facility over five decades in North America to model species distributions on a seasonal basis and used an ensemble approach for modeling distributions. This dataset included 1,129 data points for L. borealis, 917 for L. cinereus and 834 for L. noctivagans. The results suggest that all three species exhibit variation in distributions from north to south depending on season, with each species showing potential migratory pathways during the fall migration that follow linear features. Finally, we describe proposed migratory pathways for these three species that can be used to identify stop-over sites, assess small-scale migration and highlight areas that should be prioritized for actions to reduce the effects of wind farm mortality.
Collapse
Affiliation(s)
- Jamin G Wieringa
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA.,Ohio Biodiversity Conservation Partnership, The Ohio State University, Columbus, OH, USA
| | - Bryan C Carstens
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - H Lisle Gibbs
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA.,Ohio Biodiversity Conservation Partnership, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
18
|
Abstract
The conservation field is experiencing a rapid increase in the amount, variety, and quality of spatial data that can help us understand species movement and landscape connectivity patterns. As interest grows in more dynamic representations of movement potential, modelers are often limited by the capacity of their analytic tools to handle these datasets. Technology developments in software and high-performance computing are rapidly emerging in many fields, but uptake within conservation may lag, as our tools or our choice of computing language can constrain our ability to keep pace. We recently updated Circuitscape, a widely used connectivity analysis tool developed by Brad McRae and Viral Shah, by implementing it in Julia, a high-performance computing language. In this initial re-code (Circuitscape 5.0) and later updates, we improved computational efficiency and parallelism, achieving major speed improvements, and enabling assessments across larger extents or with higher resolution data. Here, we reflect on the benefits to conservation of strengthening collaborations with computer scientists, and extract examples from a collection of 572 Circuitscape applications to illustrate how through a decade of repeated investment in the software, applications have been many, varied, and increasingly dynamic. Beyond empowering continued innovations in dynamic connectivity, we expect that faster run times will play an important role in facilitating co-production of connectivity assessments with stakeholders, increasing the likelihood that connectivity science will be incorporated in land use decisions.
Collapse
|
19
|
Mora JM, Espinal MR, López LI. New records on distribution and habitat of the lesser long-nosed bat (Leptonycteris yerbabuenae) in Honduras. NEOTROPICAL BIOLOGY AND CONSERVATION 2020. [DOI: 10.3897/neotropical.15.e57376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The lesser long-nosed bat (Leptonycteris yerbabuenae Martínez & Villa-R, 1940) is a specialized nectar feeding species found from southern USA to Nicaragua in Central America, mostly in dry forest. We sampled bats using mist nets and Anabat detectors, and also looked for them at refuges and other sites in Honduras from 2011 to 2016. The lesser long-nosed bat is known in Honduras from only two localities in the southern dry forests below 100 m elevation, and there are no recent records of this species in the country. Our objective is to report new records on distribution and habitat of the lesser long-nosed bat in Honduras. We found eight lesser long-nosed bats at Cerro de Hula, Francisco Morazán department in 2012, and 10 at La Anonilla, Choluteca department, southern Honduras in 2015. Based on these 18 individuals of the lesser long-nosed bat, we report two new localities in Honduras, an altitude record, and the use of another habitat other than the dry forest. The highest point registered was at 1710 m a.s.l. in pastureland with forest remnants in an area heavily impacted by human activities. The new localities are found in the Subtropical Moist Forest. Populations of long-nosed bats in Honduras are probably resident and may include altitudinal movements. Although this species has been described widely in North America, its behavior in Honduras is practically unknown. It is a key species for the tequila and mezcal industry, but its range extends beyond the tequila production area, where it maintains a key role as a pollinator and link between habitats. As a result, research and conservation efforts should be an international goal.
Collapse
|
20
|
Gaona O, Cerqueda‐García D, Moya A, Neri‐Barrios X, Falcón LI. Geographical separation and physiology drive differentiation of microbial communities of two discrete populations of the bat Leptonycteris yerbabuenae. Microbiologyopen 2020; 9:1113-1127. [PMID: 32181589 PMCID: PMC7294308 DOI: 10.1002/mbo3.1022] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 01/01/2023] Open
Abstract
In this paper, we explore how two discrete and geographically separated populations of the lesser long-nosed bat (Leptonycteris yerbabuenae)-one in central and the other in the Pacific region of Mexico-differ in their fecal microbiota composition. Considering the microbiota-host as a unity, in which extrinsic (as food availability and geography) or intrinsic factors (as physiology) play an important role in the microbiota composition, we would expect differentiation in the microbiota of two geographically separated populations. The Amplicon Sequences Variants (ASVs) of the V4 region of the 16s rRNA gene from 68 individuals were analyzed using alpha and beta diversity metrics. We obtained a total of 11 566 (ASVs). The bacterial communities in the Central and Pacific populations had a diversity of 6,939 and 4,088 ASVs, respectively, sharing a core microbiota of 539 ASVs accounting for 75% of the relative abundance, suggesting stability over evolutionary time. The Weighted UniFrac metrics tested by a PERMANOVA showed that lactating and pregnant females had significant beta diversity differences in the two populations compared with other reproductive stages. This could be a consequence of the increased energy requirements of these physiological stages, more than the variation due to geographical separation. In contrast, a positive correlation of the observed ASVs of fecal microbiota with the observed ASVs of plastids related to the diet was observed in the juveniles and adults, suggesting that in these physiological stages an extrinsic factor as the diet shapes the microbiota composition. The results provide a baseline for future studies of the microbiome in these two wild populations of the lesser long-nosed bat, the main pollinator of the Agaves from which the beverages tequila and mezcal are made.
Collapse
Affiliation(s)
- Osiris Gaona
- Posgrado en Ciencias Biológicas de la Universidad Nacional Autonóma de MéxicoInstituto de EcologíaUNAMMexico CityMexico
- Laboratorio de Ecología BacterianaInstituto de EcologíaUniversidad Nacional Autonóma de MéxicoUNAM Parque Científico y Tecnológico de YucatánMéridaMexico
| | - Daniel Cerqueda‐García
- Consorcio de Investigación del Golfo de México (CIGOM)Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalUnidad Mérida, Departamento de Recursos del MarMéridaMexico
| | - Andrés Moya
- Instituto de Biología Integrativa de SistemasUniversidad de Valencia y Consejo Superior de Investigaciones Científicas (CSIC)ValenciaEspana
| | - Ximena Neri‐Barrios
- Laboratorio de Ecología BacterianaInstituto de EcologíaUniversidad Nacional Autonóma de MéxicoUNAM Parque Científico y Tecnológico de YucatánMéridaMexico
| | - Luisa I. Falcón
- Laboratorio de Ecología BacterianaInstituto de EcologíaUniversidad Nacional Autonóma de MéxicoUNAM Parque Científico y Tecnológico de YucatánMéridaMexico
| |
Collapse
|
21
|
Tremlett CJ, Moore M, Chapman MA, Zamora‐Gutierrez V, Peh KS. Pollination by bats enhances both quality and yield of a major cash crop in Mexico. J Appl Ecol 2019. [DOI: 10.1111/1365-2664.13545] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | - Mandy Moore
- National Institute for Applied Statistics Research Australia Centre for Bioinformatics and Biometrics University of Wollongong Wollongong Australia
| | - Mark A. Chapman
- School of Biological Sciences University of Southampton Southampton UK
- Centre for Underutilised Crops University of Southampton Southampton UK
| | - Veronica Zamora‐Gutierrez
- School of Biological Sciences University of Southampton Southampton UK
- CONACYT‐Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR) Unidad Durango Instituto Politécnico Nacional Durango México
| | - Kelvin S.‐H. Peh
- School of Biological Sciences University of Southampton Southampton UK
- Conservation Science Group Department of Zoology University of Cambridge Cambridge UK
| |
Collapse
|