1
|
Al-Bassam L, Shearman GC, Brocchini S, Alany RG, Williams GR. The Potential of Selenium-Based Therapies for Ocular Oxidative Stress. Pharmaceutics 2024; 16:631. [PMID: 38794293 PMCID: PMC11125443 DOI: 10.3390/pharmaceutics16050631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Oxidative stress plays a critical role in the development of chronic ocular conditions including cataracts, age-related macular degeneration, and diabetic retinopathy. There is a need to explore the potential of topical antioxidants to slow the progression of those conditions by mediating oxidative stress and maintaining ocular health. Selenium has attracted considerable attention because it is a component of selenoproteins and antioxidant enzymes. The application of selenium to a patient can increase selenoprotein expression, counteracting the effect of reactive oxygen species by increasing the presence of antioxidant enzymes, and thus slowing the progression of chronic ocular disorders. Oxidative stress effects at the biomolecular level for prevalent ocular conditions are described in this review along with some of the known defensive mechanisms, with a focus on selenoproteins. The importance of selenium in the eye is described, along with a discussion of selenium studies and uses. Selenium's antioxidant and anti-inflammatory qualities may prevent or delay eye diseases. Recent breakthroughs in drug delivery methods and nanotechnology for selenium-based ocular medication delivery are enumerated. Different types of selenium may be employed in formulations aimed at managing ocular oxidative stress conditions.
Collapse
Affiliation(s)
- Lulwah Al-Bassam
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (L.A.-B.); (S.B.)
| | - Gemma C. Shearman
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Penrhyn Rd, Kingston upon Thames KT1 2EE, UK; (G.C.S.); (R.G.A.)
| | - Steve Brocchini
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (L.A.-B.); (S.B.)
| | - Raid G. Alany
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Penrhyn Rd, Kingston upon Thames KT1 2EE, UK; (G.C.S.); (R.G.A.)
- School of Pharmacy, The University of Auckland, Auckland 1142, New Zealand
| | - Gareth R. Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (L.A.-B.); (S.B.)
| |
Collapse
|
2
|
Chen J, Liu Z, Wang Z, Zhang X, Zhang Y, Zhan Z, Gong X, Xu T. One-step biofabrication of liquid core-GelMa shell microbeads for in situ hollow cell ball self-assembly. Regen Biomater 2024; 11:rbae021. [PMID: 38525324 PMCID: PMC10960924 DOI: 10.1093/rb/rbae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/14/2024] [Accepted: 02/09/2024] [Indexed: 03/26/2024] Open
Abstract
There are many instances of hollow-structure morphogenesis in the development of tissues. Thus, the fabrication of hollow structures in a simple, high-throughput and homogeneous manner with proper natural biomaterial combination is valuable for developmental studies and tissue engineering, while it is a significant challenge in biofabrication field. We present a novel method for the fabrication of a hollow cell module using a coaxial co-flow capillary microfluidic device. Sacrificial gelatin laden with cells in the inner layer and GelMa in the outer layer are used via a coaxial co-flow capillary microfluidic device to produce homogenous micro-beads. The overall and core sizes of core-shell microbeads were well controlled. When using human vein vascular endothelial cells to demonstrate how cells line the inner surface of core-shell beads, as the core liquifies, a hollow cell ball with asymmetric features is fabricated. After release from the GelMa shell, individual cell balls are obtained and deformed cell balls can self-recover. This platform paves way for complex hollow tissue modeling in vitro, and further modulation of matrix stiffness, curvature and biochemical composition to mimic in vivo microenvironments.
Collapse
Affiliation(s)
- Jianwei Chen
- Bio-intelligent Manufacturing and Living Matter Bioprinting Center, Research Institute of Tsinghua University in Shenzhen, Tsinghua University, Shenzhen 518057, People’s Republic of China
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, People’s Republic of China
| | - Zeyang Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Nanshan District, People’s Republic of China
| | - Zixian Wang
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, People’s Republic of China
| | - Xiuxiu Zhang
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, People’s Republic of China
| | - Yi Zhang
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, People’s Republic of China
| | - Zhen Zhan
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Nanshan District, People’s Republic of China
| | - Xiaohua Gong
- School of Optometry and Vision Science Program, University of California, Berkeley, CA 94720, USA
| | - Tao Xu
- Bio-intelligent Manufacturing and Living Matter Bioprinting Center, Research Institute of Tsinghua University in Shenzhen, Tsinghua University, Shenzhen 518057, People’s Republic of China
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, People’s Republic of China
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People’s Republic of China
| |
Collapse
|
3
|
Perez RC, Yang X, Familari M, Martinez G, Lovicu FJ, Hime GR, de Iongh RU. TOB1 and TOB2 mark distinct RNA processing granules in differentiating lens fiber cells. J Mol Histol 2024; 55:121-138. [PMID: 38165569 DOI: 10.1007/s10735-023-10177-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/12/2023] [Indexed: 01/04/2024]
Abstract
Differentiation of lens fiber cells involves a complex interplay of signals from growth factors together with tightly regulated gene expression via transcriptional and post-transcriptional regulators. Various studies have demonstrated that RNA-binding proteins, functioning in ribonucleoprotein granules, have important roles in regulating post-transcriptional expression during lens development. In this study, we examined the expression and localization of two members of the BTG/TOB family of RNA-binding proteins, TOB1 and TOB2, in the developing lens and examined the phenotype of mice that lack Tob1. By RT-PCR, both Tob1 and Tob2 mRNA were detected in epithelial and fiber cells of embryonic and postnatal murine lenses. In situ hybridization showed Tob1 and Tob2 mRNA were most intensely expressed in the early differentiating fibers, with weaker expression in anterior epithelial cells, and both appeared to be downregulated in the germinative zone of E15.5 lenses. TOB1 protein was detected from E11.5 to E16.5 and was predominantly detected in large cytoplasmic puncta in early differentiating fiber cells, often co-localizing with the P-body marker, DCP2. Occasional nuclear puncta were also observed. By contrast, TOB2 was detected in a series of interconnected peri-nuclear granules, in later differentiating fiber cells of the inner cortex. TOB2 did not appear to co-localize with DCP2 but did partially co-localize with an early stress granule marker (EIF3B). These data suggest that TOB1 and TOB2 are involved with different aspects of the mRNA processing cycle in lens fiber cells. In vitro experiments using rat lens epithelial explants treated with or without a fiber differentiating dose of FGF2 showed that both TOB1 and TOB2 were up-regulated during FGF-induced differentiation. In differentiating explants, TOB1 also co-localized with DCP2 in large cytoplasmic granules. Analyses of Tob1-/- mice revealed relatively normal lens morphology but a subtle defect in cell cycle arrest of some cells at the equator and in the lens fiber mass of E13.5 embryos. Overall, these findings suggest that TOB proteins play distinct regulatory roles in RNA processing during lens fiber differentiation.
Collapse
Affiliation(s)
- Rafaela C Perez
- Ocular Development Laboratory, Anatomy & Physiology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Xenia Yang
- Ocular Development Laboratory, Anatomy & Physiology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Mary Familari
- School of Biosciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Gemma Martinez
- Ocular Development Laboratory, Anatomy & Physiology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Frank J Lovicu
- Molecular and Cellular Biomedicine, School of Medical Sciences and Save Sight Institute, University of Sydney, Sydney, NSW, 2006, Australia
| | - Gary R Hime
- Stem Cell Genetics Laboratory, Anatomy & Physiology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Robb U de Iongh
- Ocular Development Laboratory, Anatomy & Physiology, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
4
|
Duot M, Viel R, Viet J, Le Goff-Gaillard C, Paillard L, Lachke SA, Gautier-Courteille C, Reboutier D. Eye Lens Organoids Made Simple: Characterization of a New Three-Dimensional Organoid Model for Lens Development and Pathology. Cells 2023; 12:2478. [PMID: 37887322 PMCID: PMC10605248 DOI: 10.3390/cells12202478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Cataract, the opacification of the lens, is the leading cause of blindness worldwide. Although effective, cataract surgery is costly and can lead to complications. Toward identifying alternate treatments, it is imperative to develop organoid models relevant for lens studies and drug screening. Here, we demonstrate that by culturing mouse lens epithelial cells under defined three-dimensional (3D) culture conditions, it is possible to generate organoids that display optical properties and recapitulate many aspects of lens organization and biology. These organoids can be rapidly produced in large amounts. High-throughput RNA sequencing (RNA-seq) on specific organoid regions isolated via laser capture microdissection (LCM) and immunofluorescence assays demonstrate that these lens organoids display a spatiotemporal expression of key lens genes, e.g., Jag1, Pax6, Prox1, Hsf4 and Cryab. Further, these lens organoids are amenable to the induction of opacities. Finally, the knockdown of a cataract-linked RNA-binding protein encoding gene, Celf1, induces opacities in these organoids, indicating their use in rapidly screening for genes that are functionally relevant to lens biology and cataract. In sum, this lens organoid model represents a compelling new tool to advance the understanding of lens biology and pathology and can find future use in the rapid screening of compounds aimed at preventing and/or treating cataracts.
Collapse
Affiliation(s)
- Matthieu Duot
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, 35000 Rennes, France
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Roselyne Viel
- CNRS, Inserm UMS Biosit, H2P2 Core Facility, Université de Rennes, 35000 Rennes, France
| | - Justine Viet
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, 35000 Rennes, France
| | - Catherine Le Goff-Gaillard
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, 35000 Rennes, France
| | - Luc Paillard
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, 35000 Rennes, France
| | - Salil A. Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, USA
| | - Carole Gautier-Courteille
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, 35000 Rennes, France
| | - David Reboutier
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, 35000 Rennes, France
| |
Collapse
|
5
|
Duot M, Viel R, Viet J, Le Goff-Gaillard C, Paillard L, Lachke SA, Gautier-Courteille C, Reboutier D. Eye lens organoids going simple: characterization of a new 3-dimensional organoid model for lens development and pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548679. [PMID: 37503005 PMCID: PMC10370037 DOI: 10.1101/2023.07.12.548679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The ocular lens, along with the cornea, focuses light on the retina to generate sharp images. Opacification of the lens, or cataract, is the leading cause of blindness worldwide. Presently, the best approach for cataract treatment is to surgically remove the diseased lens and replace it with an artificial implant. Although effective, this is costly and can have post-surgical complications. Toward identifying alternate treatments, it is imperative to develop organoid models relevant for lens studies and anti-cataract drug screening. Here, we demonstrate that by culturing mouse lens epithelial cells under defined 3-dimensional (3D) culture conditions, it is possible to generate organoids that display optical properties and recapitulate many aspects of lens organization at the tissue, cellular and transcriptomic levels. These 3D cultured lens organoids can be rapidly produced in large amounts. High-throughput RNA-sequencing (RNA-seq) on specific organoid regions isolated by laser capture microdissection (LCM) and immunofluorescence assays demonstrate that these lens organoids display spatiotemporal expression of key lens genes, e.g. , Jag1 , Pax6 , Prox1 , Hsf4 and Cryab . Further, these lens organoids are amenable to induction of opacities. Finally, knockdown of a cataract-linked RNA-binding protein encoding gene, Celf1 , induces opacities in these organoids, indicating their use in rapidly screening for genes functionally relevant to lens biology and cataract. In sum, this lens organoid model represents a compelling new tool to advance the understanding of lens biology and pathology, and can find future use in the rapid screening of compounds aimed at preventing and/or treating cataract.
Collapse
|
6
|
Brennan L, Costello MJ, Hejtmancik JF, Menko AS, Riazuddin SA, Shiels A, Kantorow M. Autophagy Requirements for Eye Lens Differentiation and Transparency. Cells 2023; 12:475. [PMID: 36766820 PMCID: PMC9914699 DOI: 10.3390/cells12030475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Recent evidence points to autophagy as an essential cellular requirement for achieving the mature structure, homeostasis, and transparency of the lens. Collective evidence from multiple laboratories using chick, mouse, primate, and human model systems provides evidence that classic autophagy structures, ranging from double-membrane autophagosomes to single-membrane autolysosomes, are found throughout the lens in both undifferentiated lens epithelial cells and maturing lens fiber cells. Recently, key autophagy signaling pathways have been identified to initiate critical steps in the lens differentiation program, including the elimination of organelles to form the core lens organelle-free zone. Other recent studies using ex vivo lens culture demonstrate that the low oxygen environment of the lens drives HIF1a-induced autophagy via upregulation of essential mitophagy components to direct the specific elimination of the mitochondria, endoplasmic reticulum, and Golgi apparatus during lens fiber cell differentiation. Pioneering studies on the structural requirements for the elimination of nuclei during lens differentiation reveal the presence of an entirely novel structure associated with degrading lens nuclei termed the nuclear excisosome. Considerable evidence also indicates that autophagy is a requirement for lens homeostasis, differentiation, and transparency, since the mutation of key autophagy proteins results in human cataract formation.
Collapse
Affiliation(s)
- Lisa Brennan
- Department of Biomedical Science, Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33460, USA
| | - M. Joseph Costello
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - J. Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - A. Sue Menko
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - S. Amer Riazuddin
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Alan Shiels
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marc Kantorow
- Department of Biomedical Science, Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33460, USA
| |
Collapse
|
7
|
van Zyl T, Yan W, McAdams AM, Monavarfeshani A, Hageman GS, Sanes JR. Cell atlas of the human ocular anterior segment: Tissue-specific and shared cell types. Proc Natl Acad Sci U S A 2022; 119:e2200914119. [PMID: 35858321 PMCID: PMC9303934 DOI: 10.1073/pnas.2200914119] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/26/2022] [Indexed: 01/17/2023] Open
Abstract
The anterior segment of the eye consists of the cornea, iris, ciliary body, crystalline lens, and aqueous humor outflow pathways. Together, these tissues are essential for the proper functioning of the eye. Disorders of vision have been ascribed to defects in all of them; some disorders, including glaucoma and cataract, are among the most prevalent causes of blindness in the world. To characterize the cell types that compose these tissues, we generated an anterior segment cell atlas of the human eye using high-throughput single-nucleus RNA sequencing (snRNAseq). We profiled 195,248 nuclei from nondiseased anterior segment tissues of six human donors, identifying >60 cell types. Many of these cell types were discrete, whereas others, especially in the lens and cornea, formed continua corresponding to known developmental transitions that persist in adulthood. Having profiled each tissue separately, we performed an integrated analysis of the entire anterior segment, revealing that some cell types are unique to a single structure, whereas others are shared across tissues. The integrated cell atlas was then used to investigate cell type-specific expression patterns of more than 900 human ocular disease genes identified through either Mendelian inheritance patterns or genome-wide association studies.
Collapse
Affiliation(s)
- Tavé van Zyl
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115
- Center for Brain Science, Harvard University, Cambridge, MA 02138
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Wenjun Yan
- Center for Brain Science, Harvard University, Cambridge, MA 02138
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Alexi M. McAdams
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115
- Center for Brain Science, Harvard University, Cambridge, MA 02138
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Aboozar Monavarfeshani
- Center for Brain Science, Harvard University, Cambridge, MA 02138
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
- Boston Children’s Hospital, F.M. Kirby Neurobiology Center, Boston, MA 02115
| | - Gregory S. Hageman
- Sharon Eccles Steele Center for Translational Medicine, John A. Moran Eye Center, University of Utah, Salt Lake City, UT 84132
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132
| | - Joshua R. Sanes
- Center for Brain Science, Harvard University, Cambridge, MA 02138
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| |
Collapse
|
8
|
Lichtenegger A, Mukherjee P, Zhu L, Morishita R, Tomita K, Oida D, Leskovar K, Abd El-Sadek I, Makita S, Kirchberger S, Distel M, Baumann B, Yasuno Y. Non-destructive characterization of adult zebrafish models using Jones matrix optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2022; 13:2202-2223. [PMID: 35519284 PMCID: PMC9045912 DOI: 10.1364/boe.455876] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
The zebrafish is a valuable vertebrate animal model in pre-clinical cancer research. A Jones matrix optical coherence tomography (JM-OCT) prototype operating at 1310 nm and an intensity-based spectral-domain OCT setup at 840 nm were utilized to investigate adult wildtype and a tumor-developing zebrafish model. Various anatomical features were characterized based on their inherent scattering and polarization signature. A motorized translation stage in combination with the JM-OCT prototype enabled large field-of-view imaging to investigate adult zebrafish in a non-destructive way. The diseased animals exhibited tumor-related abnormalities in the brain and near the eye region. The scatter intensity, the attenuation coefficients and local polarization parameters such as the birefringence and the degree of polarization uniformity were analyzed to quantify differences in tumor versus control regions. The proof-of-concept study in a limited number of animals revealed a significant decrease in birefringence in tumors found in the brain and near the eye compared to control regions. The presented work showed the potential of OCT and JM-OCT as non-destructive, high-resolution, and real-time imaging modalities for pre-clinical research based on zebrafish.
Collapse
Affiliation(s)
- Antonia Lichtenegger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
- Computational Optics Group, Institute of Applied Physics, University of Tsukuba, Japan
| | - Pradipta Mukherjee
- Computational Optics Group, Institute of Applied Physics, University of Tsukuba, Japan
| | - Lida Zhu
- Computational Optics Group, Institute of Applied Physics, University of Tsukuba, Japan
| | - Rion Morishita
- Computational Optics Group, Institute of Applied Physics, University of Tsukuba, Japan
| | - Kiriko Tomita
- Computational Optics Group, Institute of Applied Physics, University of Tsukuba, Japan
| | - Daisuke Oida
- Computational Optics Group, Institute of Applied Physics, University of Tsukuba, Japan
| | - Konrad Leskovar
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | - Ibrahim Abd El-Sadek
- Computational Optics Group, Institute of Applied Physics, University of Tsukuba, Japan
- Department of Physics, Faculty of Science, Damietta University, Egypt
| | - Shuichi Makita
- Computational Optics Group, Institute of Applied Physics, University of Tsukuba, Japan
| | | | - Martin Distel
- St. Anna Children’s Cancer Research Institute (CCRI), Austria
| | - Bernhard Baumann
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | - Yoshiaki Yasuno
- Computational Optics Group, Institute of Applied Physics, University of Tsukuba, Japan
| |
Collapse
|
9
|
Wishart TFL, Lovicu FJ. An Atlas of Heparan Sulfate Proteoglycans in the Postnatal Rat Lens. Invest Ophthalmol Vis Sci 2021; 62:5. [PMID: 34730792 PMCID: PMC8572486 DOI: 10.1167/iovs.62.14.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Purpose The arrangement of lens cells is regulated by ocular growth factors. Although the effects of these inductive molecules on lens cell behavior (proliferation, survival, and fiber differentiation) are well-characterized, the precise mechanisms underlying the regulation of growth factor-mediated signaling in lens remains elusive. Increasing evidence highlights the importance of heparan sulfate proteoglycans (HSPGs) for the signaling regulation of growth factors; however, the identity of the different lens HSPGs and the specific roles they play in lens biology are still unknown. Methods Semiquantitative real-time (RT)‐PCR and immunolabeling were used to characterize the spatial distribution of all known HSPG core proteins and their associated glycosaminoglycans (heparan and chondroitin sulfate) in the postnatal rat lens. Fibroblast growth factor (FGF)-2-treated lens epithelial explants, cultured in the presence of Surfen (an inhibitor of heparan sulfate [HS]-growth factor binding interactions) were used to investigate the requirement for HS in FGF-2-induced proliferation, fiber differentiation, and ERK1/2-signaling. Results The lens expresses all HSPGs. These HSPGs are differentially localized to distinct functional regions of the lens. In vitro, inhibition of HS-sulfation with Surfen blocked FGF-2-mediated ERK1/2-signaling associated with lens epithelial cell proliferation and fiber differentiation, highlighting that these cellular processes are dependent on HS. Conclusions These findings support a requirement for HSPGs in FGF-2 driven lens cell proliferation and fiber differentiation. The identification of specific HSPG core proteins in key functional lens regions, and the divergent expression patterns of closely related HSPGs, suggests that different HSPGs may differentially regulate growth factor signaling networks leading to specific biological events involved in lens growth and maintenance.
Collapse
Affiliation(s)
- Tayler F L Wishart
- School of Medical Sciences, The University of Sydney, New South Wales, Australia
| | - Frank J Lovicu
- School of Medical Sciences, The University of Sydney, New South Wales, Australia.,Save Sight Institute, The University of Sydney, New South Wales, Australia
| |
Collapse
|
10
|
Covello G, Rossello FJ, Filosi M, Gajardo F, Duchemin A, Tremonti BF, Eichenlaub M, Polo JM, Powell D, Ngai J, Allende ML, Domenici E, Ramialison M, Poggi L. Transcriptome analysis of the zebrafish atoh7-/- Mutant, lakritz, highlights Atoh7-dependent genetic networks with potential implications for human eye diseases. FASEB Bioadv 2020; 2:434-448. [PMID: 32676583 PMCID: PMC7354691 DOI: 10.1096/fba.2020-00030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/02/2020] [Accepted: 04/28/2020] [Indexed: 12/21/2022] Open
Abstract
Expression of the bHLH transcription protein Atoh7 is a crucial factor conferring competence to retinal progenitor cells for the development of retinal ganglion cells. Several studies have emerged establishing ATOH7 as a retinal disease gene. Remarkably, such studies uncovered ATOH7 variants associated with global eye defects including optic nerve hypoplasia, microphthalmia, retinal vascular disorders, and glaucoma. The complex genetic networks and cellular decisions arising downstream of atoh7 expression, and how their dysregulation cause development of such disease traits remains unknown. To begin to understand such Atoh7-dependent events in vivo, we performed transcriptome analysis of wild-type and atoh7 mutant (lakritz) zebrafish embryos at the onset of retinal ganglion cell differentiation. We investigated in silico interplays of atoh7 and other disease-related genes and pathways. By network reconstruction analysis of differentially expressed genes, we identified gene clusters enriched in retinal development, cell cycle, chromatin remodeling, stress response, and Wnt pathways. By weighted gene coexpression network, we identified coexpression modules affected by the mutation and enriched in retina development genes tightly connected to atoh7. We established the groundwork whereby Atoh7-linked cellular and molecular processes can be investigated in the dynamic multi-tissue environment of the developing normal and diseased vertebrate eye.
Collapse
Affiliation(s)
- Giuseppina Covello
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
- Present address:
Department of BiologyUniversity of PadovaPadovaItaly
| | - Fernando J. Rossello
- Australian Regenerative Medicine InstituteMonash University Clayton VICClaytonAustralia
- Present address:
University of Melbourne Centre for Cancer ResearchUniversity of MelbourneMelbourneVictoriaAustralia
| | - Michele Filosi
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
| | - Felipe Gajardo
- Center for Genome RegulationFacultad de Ciencias, SantiagoUniversidad de ChileSantiagoChile
| | | | - Beatrice F. Tremonti
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
| | - Michael Eichenlaub
- Australian Regenerative Medicine InstituteMonash University Clayton VICClaytonAustralia
| | - Jose M. Polo
- Australian Regenerative Medicine InstituteMonash University Clayton VICClaytonAustralia
- BDIMonash University Clayton VICClaytonAustralia
| | - David Powell
- Monash Bioinformatics PlatformMonash University Clayton VICClaytonAustralia
| | - John Ngai
- Department of Molecular and Cell Biology & Helen Wills Neuroscience InstituteUniversity of CaliforniaBerkeleyCAUSA
| | - Miguel L. Allende
- Center for Genome RegulationFacultad de Ciencias, SantiagoUniversidad de ChileSantiagoChile
| | - Enrico Domenici
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
- Fondazione The Microsoft Research ‐ University of Trento Centre for Computational and Systems BiologyTrentoItaly
| | - Mirana Ramialison
- Australian Regenerative Medicine InstituteMonash University Clayton VICClaytonAustralia
| | - Lucia Poggi
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
- Centre for Organismal StudyHeidelberg UniversityHeidelbergGermany
- Department of PhysiologyDevelopment and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
11
|
Guest PC. Two-Dimensional Gel Electrophoresis Combined with Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Analysis of Eye Lens to Identify Biomarkers of Age-Related Cataract. Methods Mol Biol 2020; 2138:217-231. [PMID: 32219751 DOI: 10.1007/978-1-0716-0471-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This chapter describes the application of two-dimensional gel electrophoresis (2DGE) combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) in the analysis of rat eye lens proteins. The main purpose was to identify proteins that may serve as potential biomarkers in age-related cataract formation. This includes the family of proteins known as the crystallins. Structural proteins and enzymes involved antioxidant activities. In addition, we also analyzed lenses from other species to illustrate the potential of using this technique in clinical and preclinical biomarker studies.
Collapse
Affiliation(s)
- Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Age-related cataract occurs when crystallin proteins in the lens partially unfold and subsequently aggregate. Physicians and traditional healers alike have been exploring pharmacologic cataract treatment for hundreds of years. Currently, surgery is the only effective treatment. However, there are an abundance of homeopathic and alternative remedies that have been suggested as treatment for cataract. This article reviews the current understanding of cataract development and discusses several homeopathic remedies purported to treat age-related cataract. Additionally, we will present an overview of evidence regarding the development of pharmacologic cataract reversal therapies. RECENT FINDINGS Some homeopathic therapies have been shown to prevent cataract development in experimental models. More studies are required to elucidate the potential medicinal and toxic properties of the various alternative therapies. However, in recent years, scientists have begun to investigate substances that address cataract by reversing lens protein aggregation. One such compound, lanosterol, was reported to reverse cataract opacity in vitro and in animal models. Subsequently, 25-hydroxycholesterol and rosmarinic acid were identified as having similar properties. SUMMARY Although challenges and uncertainties remain, further research has the potential to lead to the development of a nonsurgical therapeutic option for age-related cataract.
Collapse
Affiliation(s)
- Rebecca R Lian
- Shiley Eye Institute, University of California San Diego, La Jolla, California, USA
| | | |
Collapse
|
13
|
Plüss CJ, Kustermann S. A Human Three-Dimensional In Vitro Model of Lens Epithelial Cells as a Model to Study Mechanisms of Drug-Induced Posterior Subcapsular Cataracts. J Ocul Pharmacol Ther 2019; 36:56-64. [PMID: 31259661 DOI: 10.1089/jop.2019.0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Purpose: Cataract is a pathological opacification of the lens, which is still one of the leading causes of blindness in the world. Several etiologies are described, among them drug-induced cataract, for example, posterior subcapsular cataract (PSC) after steroid treatment. To investigate different mechanisms of drug-induced cataract a human three-dimensional (3D) lens in vitro model was developed, consisting of immortalized human lens epithelial cells. Methods: These cells were cultivated on 96-well, ultralow attachment plates, where they rapidly form spheroids. By gene expression analysis different markers were observed, which are important to maintain lens transparency, such as ephrin type-A receptor 2 (EphA2) or α-smooth muscle actin (α-SMA). Results: The lens epithelial cells form a spheroid within a few days and show stable expression of important lens marker, and size and viability remain stable up to 26 days in culture. The gene expression of the glucocorticoid-treated spheroids revealed a clear shift in the expression of EphA2, α-SMA, αB-crystallin (CRYAB), and heat shock protein beta-1 (HSPB1). Furthermore, the glucocorticoid treatment did not improve cell survival. Conclusions: This study proposes a useful 3D in vitro model, which expresses important lens markers and is capable of demonstrating features found in drug-induced cataracts. As the viability remains stable over long time, this model can also be used for long-term treatment. The main characteristics are the increased expression of α-SMA, CRYAB, and HSPB1 and the decreased expression of EphA2. The present data provide some first evidence on novel mechanisms involved in glucocorticoid-induced cataracts.
Collapse
Affiliation(s)
- Carla Johanna Plüss
- Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Stefan Kustermann
- Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| |
Collapse
|
14
|
Cuitiño MC, Pécot T, Sun D, Kladney R, Okano-Uchida T, Shinde N, Saeed R, Perez-Castro AJ, Webb A, Liu T, Bae SI, Clijsters L, Selner N, Coppola V, Timmers C, Ostrowski MC, Pagano M, Leone G. Two Distinct E2F Transcriptional Modules Drive Cell Cycles and Differentiation. Cell Rep 2019; 27:3547-3560.e5. [PMID: 31130414 PMCID: PMC6673649 DOI: 10.1016/j.celrep.2019.05.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/14/2019] [Accepted: 04/30/2019] [Indexed: 02/05/2023] Open
Abstract
Orchestrating cell-cycle-dependent mRNA oscillations is critical to cell proliferation in multicellular organisms. Even though our understanding of cell-cycle-regulated transcription has improved significantly over the last three decades, the mechanisms remain untested in vivo. Unbiased transcriptomic profiling of G0, G1-S, and S-G2-M sorted cells from FUCCI mouse embryos suggested a central role for E2Fs in the control of cell-cycle-dependent gene expression. The analysis of gene expression and E2F-tagged knockin mice with tissue imaging and deep-learning tools suggested that post-transcriptional mechanisms universally coordinate the nuclear accumulation of E2F activators (E2F3A) and canonical (E2F4) and atypical (E2F8) repressors during the cell cycle in vivo. In summary, we mapped the spatiotemporal expression of sentinel E2F activators and canonical and atypical repressors at the single-cell level in vivo and propose that two distinct E2F modules relay the control of gene expression in cells actively cycling (E2F3A-8-4) and exiting the cycle (E2F3A-4) during mammalian development.
Collapse
Affiliation(s)
- Maria C Cuitiño
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Thierry Pécot
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Daokun Sun
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Molecular Genetics, Ohio State University, Columbus, OH 43210, USA
| | - Raleigh Kladney
- Department of Molecular Genetics, Ohio State University, Columbus, OH 43210, USA
| | - Takayuki Okano-Uchida
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Neelam Shinde
- Department of Cancer Biology and Genetics, Ohio State University, Columbus, OH 43210, USA
| | - Resham Saeed
- Department of Cancer Biology and Genetics, Ohio State University, Columbus, OH 43210, USA
| | - Antonio J Perez-Castro
- Department of Cancer Biology and Genetics, Ohio State University, Columbus, OH 43210, USA
| | - Amy Webb
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Tom Liu
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Soo In Bae
- Department of Molecular Genetics, Ohio State University, Columbus, OH 43210, USA
| | - Linda Clijsters
- Department of Biochemistry and Molecular Pharmacology, Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Nicholas Selner
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Vincenzo Coppola
- Department of Molecular Genetics, Ohio State University, Columbus, OH 43210, USA
| | - Cynthia Timmers
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Michael C Ostrowski
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Gustavo Leone
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
15
|
Abstract
Notch signaling regulates a multitude of cellular processes. During ocular lens development this pathway is required for lens progenitor growth, differentiation and maintenance of the transition zone. After ligand-receptor binding, the receptor proteins are processed, first by ADAM proteases, then by γ-secretase cleavage. This results in the release of a Notch intracellular domain (N-ICD), which is recruited into a nuclear transcription factor complex that activates Notch target genes. Previous in vitro studies showed that the Delta-like and Jagged ligand proteins can also be cleaved by the γ-secretase complex, but it remains unknown whether such processing occurs during in vivo vertebrate development. Here we show that mouse and human lens progenitor cells endogenously express multiple Jagged1 protein isoforms, including a Jagged1 intracellular domain. We also found that pharmacologic blockage of γ-secretase activity in vitro resulted in an accumulation of Jagged1 polypeptide intermediates. Finally, overexpression of an epitope-tagged Jagged1 intracellular domain displayed nuclear localization and induced the upregulation of endogenous JAG1 mRNA expression. These findings support the idea that along with its classical role as a Notch pathway ligand, Jagged1 is regulated post-translationally, to produce multiple active protein isoforms. Summary: The Notch pathway ligand protein Jagged1 undergoes multiple catalytic cleavages, regulated by Adam proteases and the gamma-secretase complex, during mammalian lens development, similar to Notch receptor proteins.
Collapse
Affiliation(s)
- Mina Azimi
- Department of Cell Biology & Human Anatomy, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - Nadean L Brown
- Department of Cell Biology & Human Anatomy, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
16
|
Mochizuki T, Kojima Y, Nishiwaki Y, Harakuni T, Masai I. Endocytic trafficking factor VPS45 is essential for spatial regulation of lens fiber differentiation in zebrafish. Development 2018; 145:145/20/dev170282. [PMID: 30322969 PMCID: PMC6215396 DOI: 10.1242/dev.170282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/10/2018] [Indexed: 01/20/2023]
Abstract
In vertebrate lens, lens epithelial cells cover the anterior half of the lens fiber core. Lens epithelial cells proliferate, move posteriorly and start to differentiate into lens fiber cells at the lens equator. Although FGF signaling promotes this equatorial commencement of lens fiber differentiation, the underlying mechanism is not fully understood. Here, we show that lens epithelial cells abnormally enter lens fiber differentiation without passing through the equator in zebrafish vps45 mutants. VPS45 belongs to the Sec1/Munc18-like protein family and promotes endosome trafficking, which differentially modulates signal transduction. Ectopic lens fiber differentiation in vps45 mutants does not depend on FGF, but is mediated through activation of TGFβ signaling and inhibition of canonical Wnt signaling. Thus, VPS45 normally suppresses lens fiber differentiation in the anterior region of lens epithelium by modulating TGFβ and canonical Wnt signaling pathways. These data indicate a novel role of endosome trafficking to ensure equator-dependent commencement of lens fiber differentiation. Summary: The endocytic regulator VPS45 suppresses FGF-independent lens fiber differentiation and ensures the spatial pattern of lens development.
Collapse
Affiliation(s)
- Toshiaki Mochizuki
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Tancha 1919-1, Onna, Okinawa 098-0945, Japan
| | - Yutaka Kojima
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Tancha 1919-1, Onna, Okinawa 098-0945, Japan
| | - Yuko Nishiwaki
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Tancha 1919-1, Onna, Okinawa 098-0945, Japan
| | - Tetsuya Harakuni
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Tancha 1919-1, Onna, Okinawa 098-0945, Japan
| | - Ichiro Masai
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Tancha 1919-1, Onna, Okinawa 098-0945, Japan
| |
Collapse
|
17
|
Dalke C, Neff F, Bains SK, Bright S, Lord D, Reitmeir P, Rößler U, Samaga D, Unger K, Braselmann H, Wagner F, Greiter M, Gomolka M, Hornhardt S, Kunze S, Kempf SJ, Garrett L, Hölter SM, Wurst W, Rosemann M, Azimzadeh O, Tapio S, Aubele M, Theis F, Hoeschen C, Slijepcevic P, Kadhim M, Atkinson M, Zitzelsberger H, Kulka U, Graw J. Lifetime study in mice after acute low-dose ionizing radiation: a multifactorial study with special focus on cataract risk. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2018; 57:99-113. [PMID: 29327260 PMCID: PMC5902533 DOI: 10.1007/s00411-017-0728-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/21/2017] [Indexed: 05/28/2023]
Abstract
Because of the increasing application of ionizing radiation in medicine, quantitative data on effects of low-dose radiation are needed to optimize radiation protection, particularly with respect to cataract development. Using mice as mammalian animal model, we applied a single dose of 0, 0.063, 0.125 and 0.5 Gy at 10 weeks of age, determined lens opacities for up to 2 years and compared it with overall survival, cytogenetic alterations and cancer development. The highest dose was significantly associated with increased body weight and reduced survival rate. Chromosomal aberrations in bone marrow cells showed a dose-dependent increase 12 months after irradiation. Pathological screening indicated a dose-dependent risk for several types of tumors. Scheimpflug imaging of the lens revealed a significant dose-dependent effect of 1% of lens opacity. Comparison of different biological end points demonstrated long-term effects of low-dose irradiation for several biological end points.
Collapse
Affiliation(s)
- Claudia Dalke
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Developmental Genetics, 85764 Neuherberg, Germany
| | - Frauke Neff
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Pathology, Neuherberg, Germany
- Present Address: Municipal Clinical Center Munich, Munich, Germany
| | - Savneet Kaur Bains
- Department of Life Sciences, Brunel University London, Uxbridge, UK
- Present Address: Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Scott Bright
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Present Address: University of Texas, MD Anderson, Houston, TX USA
| | - Deborah Lord
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Peter Reitmeir
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Health Economics and Health Care Management, Neuherberg, Germany
| | - Ute Rößler
- Department Radiation Protection and Health, Federal Office for Radiation Protection, Oberschleissheim, Germany
| | - Daniel Samaga
- Department Radiation Protection and Health, Federal Office for Radiation Protection, Oberschleissheim, Germany
- Present Address: Helmholtz Center Munich, German Research Center for Environmental Health, Research Unit of Radiation Cytogenetics, Neuherberg, Germany
| | - Kristian Unger
- Helmholtz Center Munich, German Research Center for Environmental Health, Research Unit of Radiation Cytogenetics, Neuherberg, Germany
| | - Herbert Braselmann
- Helmholtz Center Munich, German Research Center for Environmental Health, Research Unit of Radiation Cytogenetics, Neuherberg, Germany
| | - Florian Wagner
- Helmholtz Center Munich, German Research Center for Environmental Health, Research Unit Medical Radiation Physics and Diagnostics, Neuherberg, Germany
- Present Address: Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Radiation Protection, Neuherberg, Germany
| | - Matthias Greiter
- Helmholtz Center Munich, German Research Center for Environmental Health, Research Unit Medical Radiation Physics and Diagnostics, Neuherberg, Germany
- Present Address: Helmholtz Center Munich, German Research Center for Environmental Health, Individual Monitoring Service, Neuherberg, Germany
| | - Maria Gomolka
- Department Radiation Protection and Health, Federal Office for Radiation Protection, Oberschleissheim, Germany
| | - Sabine Hornhardt
- Department Radiation Protection and Health, Federal Office for Radiation Protection, Oberschleissheim, Germany
| | - Sarah Kunze
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Developmental Genetics, 85764 Neuherberg, Germany
| | - Stefan J. Kempf
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
- Present Address: Department of Bioanalytical Sciences, CSL Behring GmbH, Marburg, Germany
| | - Lillian Garrett
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Developmental Genetics, 85764 Neuherberg, Germany
| | - Sabine M. Hölter
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Developmental Genetics, 85764 Neuherberg, Germany
| | - Wolfgang Wurst
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Developmental Genetics, 85764 Neuherberg, Germany
| | - Michael Rosemann
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
| | - Omid Azimzadeh
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
| | - Soile Tapio
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
| | - Michaela Aubele
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Pathology, Neuherberg, Germany
| | - Fabian Theis
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Germany
| | - Christoph Hoeschen
- Helmholtz Center Munich, German Research Center for Environmental Health, Research Unit Medical Radiation Physics and Diagnostics, Neuherberg, Germany
- Present Address: Chair of Medical Systems Technology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | | | - Munira Kadhim
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Michael Atkinson
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
| | - Horst Zitzelsberger
- Helmholtz Center Munich, German Research Center for Environmental Health, Research Unit of Radiation Cytogenetics, Neuherberg, Germany
| | - Ulrike Kulka
- Department Radiation Protection and Health, Federal Office for Radiation Protection, Oberschleissheim, Germany
| | - Jochen Graw
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Developmental Genetics, 85764 Neuherberg, Germany
| |
Collapse
|
18
|
Wang E, Geng A, Maniar AM, Mui BWH, Gong X. Connexin 50 Regulates Surface Ball-and-Socket Structures and Fiber Cell Organization. Invest Ophthalmol Vis Sci 2017; 57:3039-46. [PMID: 27281269 PMCID: PMC4913802 DOI: 10.1167/iovs.16-19521] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Purpose The roles of gap junction protein connexin 50 (Cx50) encoded by Gja8, during lens development are not fully understood. Connexin 50 knockout (KO) lenses have decreased proliferation of epithelial cells and altered fiber cell denucleation. We further investigated the mechanism for cellular defects in Cx50 KO (Gja8−/−) lenses. Methods Fiber cell morphology and subcellular distribution of various lens membrane/cytoskeleton proteins from wild-type and Cx50 KO mice were visualized by immunofluorescent staining and confocal microscopy. Results We observed multiple morphological defects in the cortical fibers of Cx50 KO lenses, including abnormal fiber cell packing geometry, decreased F-actin enrichment at tricellular vertices, and disrupted ball-and-socket (BS) structures on the long sides of hexagonal fibers. Moreover, only small gap junction plaques consisting of Cx46 (α3 connexin) were detected in cortical fibers and the distributions of the BS-associated beta-dystroglycan and ZO-1 proteins were altered. Conclusions Connexin 50 gap junctions are important for BS structure maturation and cortical fiber cell organization. Connexin 50–based gap junction plaques likely form structural domains with an array of membrane/cytoskeletal proteins to stabilize BS. Loss of Cx50-mediated coupling, BS disruption, and altered F-actin in Cx50 KO fibers, thereby contribute to the small lens and mild cataract phenotypes.
Collapse
|
19
|
Li J, Xia CH, Wang E, Yao K, Gong X. Screening, genetics, risk factors, and treatment of neonatal cataracts. Birth Defects Res 2017; 109:734-743. [PMID: 28544770 DOI: 10.1002/bdr2.1050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 04/15/2017] [Indexed: 12/21/2022]
Abstract
Neonatal cataracts remain the most common cause of visual loss in children worldwide and have diverse, often unknown, etiologies. This review summarizes current knowledge about the detection, treatment, genetics, risk factors, and molecular mechanisms of congenital cataracts. We emphasize significant progress and topics requiring further study in both clinical cataract therapy and basic lens research. Advances in genetic screening and surgical technologies have improved the diagnosis, management, and visual outcomes of affected children. For example, mutations in lens crystallins and membrane/cytoskeletal components that commonly underlie genetically inherited cataracts are now known. However, many questions still remain regarding the causes, progression, and pathology of neonatal cataracts. Further investigations are also required to improve diagnostic criteria for determining the timing of appropriate interventions, such as the implantation of intraocular lenses and postoperative management strategies, to ensure safety and predictable visual outcomes for children. Birth Defects Research 109:734-743, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jinyu Li
- Eye Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Ophthalmology of Zhejiang Province, China
| | - Chun-Hong Xia
- School of Optometry and Vision Science Program, University of California, Berkeley, California, USA
| | - Eddie Wang
- School of Optometry and Vision Science Program, University of California, Berkeley, California, USA
| | - Ke Yao
- Eye Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Ophthalmology of Zhejiang Province, China
| | - Xiaohua Gong
- School of Optometry and Vision Science Program, University of California, Berkeley, California, USA
| |
Collapse
|
20
|
Identification and Ultrastructural Characterization of a Novel Nuclear Degradation Complex in Differentiating Lens Fiber Cells. PLoS One 2016; 11:e0160785. [PMID: 27536868 PMCID: PMC4990417 DOI: 10.1371/journal.pone.0160785] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 07/25/2016] [Indexed: 01/18/2023] Open
Abstract
An unresolved issue in structural biology is how the encapsulated lens removes membranous organelles to carry out its role as a transparent optical element. In this ultrastructural study, we establish a mechanism for nuclear elimination in the developing chick lens during the formation of the organelle-free zone. Day 12-15 chick embryo lenses were examined by high-resolution confocal light microscopy and thin section transmission electron microscopy (TEM) following fixation in 10% formalin and 4% paraformaldehyde, and then processing for confocal or TEM as described previously. Examination of developing fiber cells revealed normal nuclei with dispersed chromatin and clear nucleoli typical of cells in active ribosome production to support protein synthesis. Early signs of nuclear degradation were observed about 300 μm from the lens capsule in Day 15 lenses where the nuclei display irregular nuclear stain and prominent indentations that sometimes contained a previously undescribed macromolecular aggregate attached to the nuclear envelope. We have termed this novel structure the nuclear excisosome. This complex by confocal is closely adherent to the nuclear envelope and by TEM appears to degrade the outer leaflet of the nuclear envelope, then the inner leaflet up to 500 μm depth. The images suggest that the nuclear excisosome separates nuclear membrane proteins from lipids, which then form multilamellar assemblies that stain intensely in confocal and in TEM have 5 nm spacing consistent with pure lipid bilayers. The denuded nucleoplasm then degrades by condensation and loss of structure in the range 600 to 700 μm depth producing pyknotic nuclear remnants. None of these stages display any classic autophagic vesicles or lysosomes associated with nuclei. Uniquely, the origin of the nuclear excisosome is from filopodial-like projections of adjacent lens fiber cells that initially contact, and then appear to fuse with the outer nuclear membrane. These filopodial-like projections appear to be initiated with a clathrin-like coat and driven by an internal actin network. In summary, a specialized cellular organelle, the nuclear excisosome, generated in part by adjacent fiber cells degrades nuclei during fiber cell differentiation and maturation.
Collapse
|
21
|
Bassnett S, Costello MJ. The cause and consequence of fiber cell compaction in the vertebrate lens. Exp Eye Res 2016; 156:50-57. [PMID: 26992780 DOI: 10.1016/j.exer.2016.03.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 03/02/2016] [Accepted: 03/11/2016] [Indexed: 01/02/2023]
Abstract
Fiber cells of the ocular lens are arranged in a series of concentric shells. New growth shells are added continuously to the lens surface and, as a consequence, the preexisting shells are buried. To focus light, the refractive index of the lens cytoplasm must exceed that of the surrounding aqueous and vitreous humors, and to that end, lens cells synthesize high concentrations of soluble proteins, the crystallins. To correct for spherical aberration, it is necessary that the crystallin concentration varies from shell-to-shell, such that cellular protein content is greatest in the center of the lens. The radial variation in protein content underlies the critical gradient index (GRIN) structure of the lens. Only the outermost shells of lens fibers contain the cellular machinery necessary for protein synthesis. It is likely, therefore, that the GRIN (which spans the synthetically inactive, organelle-free zone of the lens) does not result from increased levels of protein synthesis in the core of the lens but is instead generated through loss of volume by inner fiber cells. Because volume is lost primarily in the form of cell water, the residual proteins in the central lens fibers can be concentrated to levels of >500 mg/ml. In this short review, we describe the process of fiber cell compaction, its relationship to lens growth and GRIN formation, and offer some thoughts on the likely nature of the underlying mechanism.
Collapse
Affiliation(s)
- Steven Bassnett
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, USA.
| | - M Joseph Costello
- Department of Cell Biology and Physiology, University of North Carolina School of Medicine, USA
| |
Collapse
|
22
|
Hamada N, Fujimichi Y. Role of carcinogenesis related mechanisms in cataractogenesis and its implications for ionizing radiation cataractogenesis. Cancer Lett 2015; 368:262-74. [DOI: 10.1016/j.canlet.2015.02.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 12/20/2022]
|
23
|
Biophysical chemistry of the ageing eye lens. Biophys Rev 2015; 7:353-368. [PMID: 28510099 DOI: 10.1007/s12551-015-0176-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 06/23/2015] [Indexed: 12/24/2022] Open
Abstract
This review examines both recent and historical literature related to the biophysical chemistry of the proteins in the ageing eye, with a particular focus on cataract development. The lens is a vital component of the eye, acting as an optical focusing device to form clear images on the retina. The lens maintains the necessary high transparency and refractive index by expressing crystallin proteins in high concentration and eliminating all large cellular structures that may cause light scattering. This has the consequence of eliminating lens fibre cell metabolism and results in mature lens fibre cells having no mechanism for protein expression and a complete absence of protein recycling or turnover. As a result, the crystallins are some of the oldest proteins in the human body. Lack of protein repair or recycling means the lens tends to accumulate damage with age in the form of protein post-translational modifications. The crystallins can be subject to a wide range of age-related changes, including isomerisation, deamidation and racemisation. Many of these modification are highly correlated with cataract formation and represent a biochemical mechanism for age-related blindness.
Collapse
|
24
|
Boswell BA, Musil LS. Synergistic interaction between the fibroblast growth factor and bone morphogenetic protein signaling pathways in lens cells. Mol Biol Cell 2015; 26:2561-72. [PMID: 25947138 PMCID: PMC4571308 DOI: 10.1091/mbc.e15-02-0117] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/01/2015] [Indexed: 12/12/2022] Open
Abstract
Relatively little is known about how receptor tyrosine kinase ligands can positively cooperate with BMP signaling. Primary cultures of lens cells were used to reveal an unprecedented type of cross-talk between the canonical FGF and BMP signaling pathways that regulates lens cell differentiation and intercellular coupling. Fibroblast growth factors (FGFs) play a central role in two processes essential for lens transparency—fiber cell differentiation and gap junction–mediated intercellular communication (GJIC). Using serum-free primary cultures of chick lens epithelial cells (DCDMLs), we investigated how the FGF and bone morphogenetic protein (BMP) signaling pathways positively cooperate to regulate lens development and function. We found that culturing DCDMLs for 6 d with the BMP blocker noggin inhibits the canonical FGF-to-ERK pathway upstream of FRS2 activation and also prevents FGF from stimulating FRS2- and ERK-independent gene expression, indicating that BMP signaling is required at the level of FGF receptors. Other experiments revealed a second type of BMP/FGF interaction by which FGF promotes expression of BMP target genes as well as of BMP4. Together these studies reveal a novel mode of cooperation between the FGF and BMP pathways in which BMP keeps lens cells in an optimally FGF-responsive state and, reciprocally, FGF enhances BMP-mediated gene expression. This interaction provides a mechanistic explanation for why disruption of either FGF or BMP signaling in the lens leads to defects in lens development and function.
Collapse
Affiliation(s)
- Bruce A Boswell
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97239
| | - Linda S Musil
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97239 )
| |
Collapse
|
25
|
Mochizuki T, Suzuki S, Masai I. Spatial pattern of cell geometry and cell-division orientation in zebrafish lens epithelium. Biol Open 2014; 3:982-94. [PMID: 25260917 PMCID: PMC4197447 DOI: 10.1242/bio.20149563] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell proliferation is a key regulator of tissue morphogenesis. We examined cell proliferation and cell division in zebrafish lens epithelium by visualizing cell-cycle phases and nuclear positions, using fluorescent-labeled geminin and histone proteins. Proliferation was low in the anterior region of lens epithelium and higher in the marginal zone anterior to the equator, suggesting that the proliferation zone, called the germinative zone, is formed in zebrafish lens. Interestingly, cell-division orientation was biased longitudinally in the anterior region, shifted from longitudinal to circumferential along the anterior-posterior axis of lens sphere, and was biased circumferentially in the peripheral region. These data suggest that cell-division orientation is spatially regulated in zebrafish lens epithelium. The Hertwig rule indicates that cells tend to divide along their long axes. Orientation of long axes and cell division were biased similarly in zebrafish lens epithelium, suggesting that cell geometry correlates with cell-division orientation. A cell adhesion molecule, E-cadherin, is expressed in lens epithelium. In a zebrafish e-cadherin mutant, the long axes and cell-division orientation were shifted more longitudinally. These data suggest that E-cadherin is required for the spatial pattern of cell geometry and cell-division orientation in zebrafish lens epithelium.
Collapse
Affiliation(s)
- Toshiaki Mochizuki
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Shohei Suzuki
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Ichiro Masai
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| |
Collapse
|