1
|
Voigt B, Frazier K, Yazdi D, Gontarz P, Zhang B, Sepich DS, Solnica-Krezel L, Gray RS. A conserved regulation of cell expansion underlies notochord mechanics, spine morphogenesis, and endochondral bone lengthening. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607640. [PMID: 39211248 PMCID: PMC11361061 DOI: 10.1101/2024.08.12.607640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Cell size is a key contributor to tissue morphogenesis 1 . As a notable example, growth plate hypertrophic chondrocytes use cellular biogenesis and disproportionate fluid uptake to expand 10-20 times in size to drive lengthening of endochondral bone 2,3 . Similarly, notochordal cells expand to one of the largest cell types in the developing embryo to drive axial extension 4-6 . In zebrafish, the notochord vacuolated cells undergo vacuole fusion to form a single large, fluid-filled vacuole that fills the cytoplasmic space and contributes to vacuolated cell expansion 7 . When this process goes awry, the notochord lacks sufficient hydrostatic pressure to support vertebral bone deposition resulting in adult spines with misshapen vertebral bones and scoliosis 8 . However, it remains unclear whether endochondral bone and the notochord share common genetic and cellular mechanisms for regulating cell and tissue expansion. Here, we demonstrate that the 5'-inositol phosphatase gene, inppl1a , regulates notochord expansion, spine morphogenesis, and endochondral bone lengthening in zebrafish. Furthermore, we show that inppl1a regulates notochord expansion independent of vacuole fusion, thereby genetically decoupling these processes. We demonstrate that inppl1a -dependent notochord expansion is essential to establish normal mechanical properties of the notochord to facilitate the development of a straight spine. Finally, we find that inppl1a is also important for endochondral bone lengthening in fish, as has been shown in the human INPPL1 -related endochondral bone disorder, Opsismodysplasia 9 . Overall, this work reveals a conserved mechanism of cell size regulation that influences disparate tissues critical for skeletal development and short-stature disorders.
Collapse
|
2
|
Curcio EJ, Lubkin SR. Flexural rigidity of pressurized model notochords in regular packing patterns. Cells Dev 2024; 177:203895. [PMID: 38040291 DOI: 10.1016/j.cdev.2023.203895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/26/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
The biomechanics of embryonic notochords are studied using an elastic membrane model. An initial study varying internal pressure and stiffness ratio determines tension and geometric ratios as a function of internal pressure, membrane stiffness ratio, and cell packing pattern. A subsequent three-point bending study determines flexural rigidity as a function of internal pressure, configuration, and orientation. Flexural rigidity is found to be independent of membrane stiffness ratio. Controlling for number and volume of cells and their internal pressure, the eccentric staircase pattern of cell packing has more than double the flexural rigidity of the radially symmetric bamboo pattern. Moreover, the eccentric staircase pattern is found to be more than twice as stiff in lateral bending than in dorsoventral bending. This suggests a mechanical advantage to the eccentric WT staircase pattern of the embryonic notochord, over patterns with round cross-section.
Collapse
|
3
|
Li Y, Zhang H, Zhu D, Yang F, Wang Z, Wei Z, Yang Z, Jia J, Kang X. Notochordal cells: A potential therapeutic option for intervertebral disc degeneration. Cell Prolif 2024; 57:e13541. [PMID: 37697480 PMCID: PMC10849793 DOI: 10.1111/cpr.13541] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 09/13/2023] Open
Abstract
Intervertebral disc degeneration (IDD) is a prevalent musculoskeletal degenerative disorder worldwide, and ~40% of chronic low back pain cases are associated with IDD. Although the pathogenesis of IDD remains unclear, the reduction in nucleus pulposus cells (NPCs) and degradation of the extracellular matrix (ECM) are critical factors contributing to IDD. Notochordal cells (NCs), derived from the notochord, which rapidly degrades after birth and is eventually replaced by NPCs, play a crucial role in maintaining ECM homeostasis and preventing NPCs apoptosis. Current treatments for IDD only provide symptomatic relief, while lacking the ability to inhibit or reverse its progression. However, NCs and their secretions possess anti-inflammatory properties and promote NPCs proliferation, leading to ECM formation. Therefore, in recent years, NCs therapy targeting the underlying cause of IDD has emerged as a novel treatment strategy. This article provides a comprehensive review of the latest research progress on NCs for IDD, covering their biological characteristics, specific markers, possible mechanisms involved in IDD and therapeutic effects. It also highlights significant future directions in this field to facilitate further exploration of the pathogenesis of IDD and the development of new therapies based on NCs strategies.
Collapse
Affiliation(s)
- Yanhu Li
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Haijun Zhang
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
- The Second People's Hospital of Gansu ProvinceLanzhouPeople's Republic of China
| | - Daxue Zhu
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Fengguang Yang
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Zhaoheng Wang
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Ziyan Wei
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Zhili Yang
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Jingwen Jia
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Xuewen Kang
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| |
Collapse
|
4
|
Abedsaeidi M, Hojjati F, Tavassoli A, Sahebkar A. Biology of Tenascin C and its Role in Physiology and Pathology. Curr Med Chem 2024; 31:2706-2731. [PMID: 37021423 DOI: 10.2174/0929867330666230404124229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/25/2023] [Accepted: 02/10/2023] [Indexed: 04/07/2023]
Abstract
Tenascin-C (TNC) is a multimodular extracellular matrix (ECM) protein hexameric with several molecular forms (180-250 kDa) produced by alternative splicing at the pre-mRNA level and protein modifications. The molecular phylogeny indicates that the amino acid sequence of TNC is a well-conserved protein among vertebrates. TNC has binding partners, including fibronectin, collagen, fibrillin-2, periostin, proteoglycans, and pathogens. Various transcription factors and intracellular regulators tightly regulate TNC expression. TNC plays an essential role in cell proliferation and migration. Unlike embryonic tissues, TNC protein is distributed over a few tissues in adults. However, higher TNC expression is observed in inflammation, wound healing, cancer, and other pathological conditions. It is widely expressed in a variety of human malignancies and is recognized as a pivotal factor in cancer progression and metastasis. Moreover, TNC increases both pro-and anti-inflammatory signaling pathways. It has been identified as an essential factor in tissue injuries such as damaged skeletal muscle, heart disease, and kidney fibrosis. This multimodular hexameric glycoprotein modulates both innate and adaptive immune responses regulating the expression of numerous cytokines. Moreover, TNC is an important regulatory molecule that affects the onset and progression of neuronal disorders through many signaling pathways. We provide a comprehensive overview of the structural and expression properties of TNC and its potential functions in physiological and pathological conditions.
Collapse
Affiliation(s)
- Malihehsadat Abedsaeidi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Farzaneh Hojjati
- Division of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Amin Tavassoli
- Division of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Peng H, Qiao J, Wang G, Shi W, Xia F, Qiao R, Dong B. A collagen-rich arch in the urochordate notochord coordinates cell shaping and multi-tissue elongation. Curr Biol 2023; 33:5390-5403.e3. [PMID: 37995694 DOI: 10.1016/j.cub.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023]
Abstract
Cell and tissue reshaping is crucial for coordinating three-dimensional pattern formation, in which the size and shape of the cells must be accurately regulated via signal transport and communication among tissues. However, the identity of signaling and transportation mechanisms in this process remains elusive. In our study, we identified an extracellular matrix (ECM) structure with a vertebra-like shape surrounding the central notochord tissue in the larval tail of the urochordate Ciona. Additionally, we verified that the ECM structure was formed de novo, mainly from collagens secreted by notochord cells. Fluorescence recovery after photobleaching and simulation results revealed that this structure was formed via diffusional collagen flow from a notochord that was restricted and molded in the spaces among tail tissues. We revealed that the collagen structure was essential for notochord cell arrangement and elongation. Furthermore, we observed that the central notochord connects with the epidermis through this ECM structure. The disruption of this structure by collagen knockdown and loss-of-collagen function caused the failure of notochord elongation. More importantly, the epidermis could not elongate proportionally with notochord, indicating that the collagen-rich structure serves as a scaffold to coordinate the concurrent elongation of the tail tissues. These findings provide insights into how the central tissue forms and molds its surrounding ECM structure, by not only regulating its own morphogenesis but also functioning as a scaffold for signal transmission to orchestrate the coordinated morphologic reshaping of the surrounding tissues.
Collapse
Affiliation(s)
- Hongzhe Peng
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jinghan Qiao
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Guilin Wang
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Wenjie Shi
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Fan Xia
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Runyu Qiao
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Bo Dong
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laoshan Laboratory, Qingdao 266237, China; MoE Key Laboratory of Evolution & Marine Biodiversity, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
6
|
Popsuj S, Di Gregorio A, Swalla BJ, Stolfi A. Loss of collagen gene expression in the notochord of the tailless tunicate Molgula occulta. Integr Comp Biol 2023; 63:990-998. [PMID: 37403333 PMCID: PMC10714901 DOI: 10.1093/icb/icad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/22/2023] [Accepted: 06/11/2023] [Indexed: 07/06/2023] Open
Abstract
In tunicates, several species in the Molgulidae family have convergently lost the tailed, swimming larval body plan, including the morphogenesis of the notochord, a major chordate-defining trait. Through the comparison of tailless M. occulta and a close relative, the tailed species M. oculata, we show that notochord-specific expression of the Collagen Type I/II Alpha (Col1/2a) gene appears to have been lost specifically in the tailless species. Using CRISPR/Cas9-mediated mutagenesis in the tailed laboratory model tunicate Ciona robusta, we demonstrate that Col1/2a plays a crucial role in the convergent extension of notochord cells during tail elongation. Our results suggest that the expression of Col1/2a in the notochord, although necessary for its morphogenesis in tailed species, is dispensable for tailless species. This loss is likely a result of the accumulation of cis-regulatory mutations in the absence of purifying selective pressure. More importantly, the gene itself is not lost, likely due to its roles in other developmental processes, including during the adult stage. Our study further confirms the Molgulidae as an interesting family in which to study the evolutionary loss of tissue-specific expression of indispensable genes.
Collapse
Affiliation(s)
- Sydney Popsuj
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Anna Di Gregorio
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Billie J Swalla
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
7
|
Dorrity MW, Saunders LM, Duran M, Srivatsan SR, Barkan E, Jackson DL, Sattler SM, Ewing B, Queitsch C, Shendure J, Raible DW, Kimelman D, Trapnell C. Proteostasis governs differential temperature sensitivity across embryonic cell types. Cell 2023; 186:5015-5027.e12. [PMID: 37949057 PMCID: PMC11178971 DOI: 10.1016/j.cell.2023.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 05/29/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
Embryonic development is remarkably robust, but temperature stress can degrade its ability to generate animals with invariant anatomy. Phenotypes associated with environmental stress suggest that some cell types are more sensitive to stress than others, but the basis of this sensitivity is unknown. Here, we characterize hundreds of individual zebrafish embryos under temperature stress using whole-animal single-cell RNA sequencing (RNA-seq) to identify cell types and molecular programs driving phenotypic variability. We find that temperature perturbs the normal proportions and gene expression programs of numerous cell types and also introduces asynchrony in developmental timing. The notochord is particularly sensitive to temperature, which we map to a specialized cell type: sheath cells. These cells accumulate misfolded protein at elevated temperature, leading to a cascading structural failure of the notochord and anatomic defects. Our study demonstrates that whole-animal single-cell RNA-seq can identify mechanisms for developmental robustness and pinpoint cell types that constitute key failure points.
Collapse
Affiliation(s)
- Michael W Dorrity
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Structural and Computational Biology, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| | - Lauren M Saunders
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Madeleine Duran
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Sanjay R Srivatsan
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Eliza Barkan
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Dana L Jackson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Sydney M Sattler
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Brent Ewing
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - David W Raible
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - David Kimelman
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
8
|
Yasuoka Y. Tissue-specific expression of carbohydrate sulfotransferases drives keratan sulfate biosynthesis in the notochord and otic vesicles of Xenopus embryos. Front Cell Dev Biol 2023; 11:957805. [PMID: 36998246 PMCID: PMC10043435 DOI: 10.3389/fcell.2023.957805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
Keratan sulfate (KS) is a glycosaminoglycan that is enriched in vertebrate cornea, cartilage, and brain. During embryonic development, highly sulfated KS (HSKS) is first detected in the developing notochord and then in otic vesicles; therefore, HSKS has been used as a molecular marker of the notochord. However, its biosynthetic pathways and functional roles in organogenesis are little known. Here, I surveyed developmental expression patterns of genes related to HSKS biosynthesis in Xenopus embryos. Of these genes, the KS chain-synthesizing glycosyltransferase genes, beta-1,3-N-acetylglucosaminyltransferase (b3gnt7) and beta-1,4-galactosyltransferase (b4galt4), are strongly expressed in the notochord and otic vesicles, but also in other tissues. In addition, their notochord expression is gradually restricted to the posterior end at the tailbud stage. In contrast, carbohydrate sulfotransferase (Chst) genes, chst2, chst3, and chst5.1, are expressed in both notochord and otic vesicles, whereas chst1, chst4/5-like, and chst7 are confined to otic vesicles. Because the substrate for Chst1 and Chst3 is galactose, while that for others is N-acetylglucosamine, combinatorial, tissue-specific expression patterns of Chst genes should be responsible for tissue-specific HSKS enrichment in embryos. As expected, loss of function of chst1 led to loss of HSKS in otic vesicles and reduction of their size. Loss of chst3 and chst5.1 resulted in HSKS loss in the notochord. These results reveal that Chst genes are critical for HSKS biosynthesis during organogenesis. Being hygroscopic, HSKS forms “water bags” in embryos to physically maintain organ structures. In terms of evolution, in ascidian embryos, b4galt and chst-like genes are also expressed in the notochord and regulate notochord morphogenesis. Furthermore, I found that a chst-like gene is also strongly expressed in the notochord of amphioxus embryos. These conserved expression patterns of Chst genes in the notochord of chordate embryos suggest that Chst is an ancestral component of the chordate notochord.
Collapse
Affiliation(s)
- Yuuri Yasuoka
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- *Correspondence: Yuuri Yasuoka, ,
| |
Collapse
|
9
|
Curcio EJ, Lubkin SR. Physical models of notochord cell packing reveal how tension ratios determine morphometry. Cells Dev 2023; 173:203825. [PMID: 36706628 DOI: 10.1016/j.cdev.2023.203825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/11/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023]
Abstract
The physical and geometric aspects of notochords are investigated using a model of finite-length notochords, with interior vacuolated cells arranged in two common packing configurations, and sheath modeled as homogeneous and thin. The key ratios governing packing patterns and eccentricity are number of cells per unit length λ and cell tension ratio Γ. By analyzing simulations that vary Γ and total number of cells N, we find that eccentricity, λ, and internal pressure approach consistent asymptotic values away from the tapering ends, as N increases. The length of the tapering ends is quantified as a function of Γ and pattern. Formulas are derived for geometric ratios, pressure, and energy as functions of Γ and pattern. These observations on the relationship between mechanics, geometry, and pattern provide a framework for further work which may provide insight into the roles of mechanosensing and pressure-volume regulation in the notochord.
Collapse
|
10
|
Rice KL, Chan CM, Kelu JJ, Miller AL, Webb SE. A Role for Two-Pore Channel Type 2 (TPC2)-Mediated Regulation of Membrane Contact Sites During Zebrafish Notochord Biogenesis? CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2023; 6:25152564231211409. [PMID: 38028019 PMCID: PMC10658360 DOI: 10.1177/25152564231211409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
We have previously shown that in the developing trunk of zebrafish embryos, two-pore channel type 2 (TPC2)-mediated Ca2+ release from endolysosomes plays a role in the formation of the skeletal slow muscle. In addition, TPC2-mediated Ca2+ signaling is required for axon extension and the establishment of synchronized activity in the primary motor neurons. Here, we report that TPC2 might also play a role in the development of the notochord of zebrafish embryos. For example, when tpcn2 was knocked down or out, increased numbers of small vacuoles were formed in the inner notochord cells, compared with the single large vacuole in the notochord of control embryos. This abnormal vacuolation was associated with embryos displaying attenuated body axis straightening. We also showed that TPC2 has a distinct pattern of localization in the notochord in embryos at ∼24 hpf. Finally, we conducted RNAseq to identify differentially expressed genes in tpcn2 mutants compared to wild-type controls, and found that those involved in actin filament severing, cellular component morphogenesis, Ca2+ binding, and structural constituent of cytoskeleton were downregulated in the mutants. Together, our data suggest that TPC2 activity plays a key role in notochord biogenesis in zebrafish embryos.
Collapse
Affiliation(s)
- Keira L. Rice
- The Division of Life Science and Key State Laboratory for Molecular Neuroscience, HKUST, Hong Kong, People’s Republic of China
| | - Ching Man Chan
- The Division of Life Science and Key State Laboratory for Molecular Neuroscience, HKUST, Hong Kong, People’s Republic of China
| | - Jeffrey J. Kelu
- The Division of Life Science and Key State Laboratory for Molecular Neuroscience, HKUST, Hong Kong, People’s Republic of China
| | - Andrew L. Miller
- The Division of Life Science and Key State Laboratory for Molecular Neuroscience, HKUST, Hong Kong, People’s Republic of China
| | - Sarah E. Webb
- The Division of Life Science and Key State Laboratory for Molecular Neuroscience, HKUST, Hong Kong, People’s Republic of China
| |
Collapse
|
11
|
Bagnat M, Daga B, Di Talia S. Morphogenetic Roles of Hydrostatic Pressure in Animal Development. Annu Rev Cell Dev Biol 2022; 38:375-394. [PMID: 35804476 PMCID: PMC9675319 DOI: 10.1146/annurev-cellbio-120320-033250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During organismal development, organs and systems are built following a genetic blueprint that produces structures capable of performing specific physiological functions. Interestingly, we have learned that the physiological activities of developing tissues also contribute to their own morphogenesis. Specifically, physiological activities such as fluid secretion and cell contractility generate hydrostatic pressure that can act as a morphogenetic force. Here, we first review the role of hydrostatic pressure in tube formation during animal development and discuss mathematical models of lumen formation. We then illustrate specific roles of the notochord as a hydrostatic scaffold in anterior-posterior axis development in chordates. Finally, we cover some examples of how fluid flows influence morphogenetic processes in other developmental contexts. Understanding how fluid forces act during development will be key for uncovering the self-organizing principles that control morphogenesis.
Collapse
Affiliation(s)
- Michel Bagnat
- Department of Cell Biology, Duke University, Durham, North Carolina, USA;
| | - Bijoy Daga
- Department of Cell Biology, Duke University, Durham, North Carolina, USA;
| | - Stefano Di Talia
- Department of Cell Biology, Duke University, Durham, North Carolina, USA;
- Department of Orthopaedic Surgery, Duke University, Durham, North Carolina, USA
| |
Collapse
|
12
|
Bach FC, Poramba-Liyanage DW, Riemers FM, Guicheux J, Camus A, Iatridis JC, Chan D, Ito K, Le Maitre CL, Tryfonidou MA. Notochordal Cell-Based Treatment Strategies and Their Potential in Intervertebral Disc Regeneration. Front Cell Dev Biol 2022; 9:780749. [PMID: 35359916 PMCID: PMC8963872 DOI: 10.3389/fcell.2021.780749] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/15/2021] [Indexed: 12/20/2022] Open
Abstract
Chronic low back pain is the number one cause of years lived with disability. In about 40% of patients, chronic lower back pain is related to intervertebral disc (IVD) degeneration. The standard-of-care focuses on symptomatic relief, while surgery is the last resort. Emerging therapeutic strategies target the underlying cause of IVD degeneration and increasingly focus on the relatively overlooked notochordal cells (NCs). NCs are derived from the notochord and once the notochord regresses they remain in the core of the developing IVD, the nucleus pulposus. The large vacuolated NCs rapidly decline after birth and are replaced by the smaller nucleus pulposus cells with maturation, ageing, and degeneration. Here, we provide an update on the journey of NCs and discuss the cell markers and tools that can be used to study their fate and regenerative capacity. We review the therapeutic potential of NCs for the treatment of IVD-related lower back pain and outline important future directions in this area. Promising studies indicate that NCs and their secretome exerts regenerative effects, via increased proliferation, extracellular matrix production, and anti-inflammatory effects. Reports on NC-like cells derived from embryonic- or induced pluripotent-stem cells claim to have successfully generated NC-like cells but did not compare them with native NCs for phenotypic markers or in terms of their regenerative capacity. Altogether, this is an emerging and active field of research with exciting possibilities. NC-based studies demonstrate that cues from developmental biology can pave the path for future clinical therapies focused on regenerating the diseased IVD.
Collapse
Affiliation(s)
- Frances C. Bach
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | | | - Frank M. Riemers
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Jerome Guicheux
- UMR 1229-RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
- UFR Odontologie, Université de Nantes, Nantes, France
- PHU4 OTONN, CHU Nantes, Nantes, France
| | - Anne Camus
- UMR 1229-RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
| | - James C. Iatridis
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Department of Orthopedics, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Christine L. Le Maitre
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- *Correspondence: Marianna A. Tryfonidou,
| |
Collapse
|
13
|
Della Gaspera B, Weill L, Chanoine C. Evolution of Somite Compartmentalization: A View From Xenopus. Front Cell Dev Biol 2022; 9:790847. [PMID: 35111756 PMCID: PMC8802780 DOI: 10.3389/fcell.2021.790847] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
Somites are transitory metameric structures at the basis of the axial organization of vertebrate musculoskeletal system. During evolution, somites appear in the chordate phylum and compartmentalize mainly into the dermomyotome, the myotome, and the sclerotome in vertebrates. In this review, we summarized the existing literature about somite compartmentalization in Xenopus and compared it with other anamniote and amniote vertebrates. We also present and discuss a model that describes the evolutionary history of somite compartmentalization from ancestral chordates to amniote vertebrates. We propose that the ancestral organization of chordate somite, subdivided into a lateral compartment of multipotent somitic cells (MSCs) and a medial primitive myotome, evolves through two major transitions. From ancestral chordates to vertebrates, the cell potency of MSCs may have evolved and gave rise to all new vertebrate compartments, i.e., the dermomyome, its hypaxial region, and the sclerotome. From anamniote to amniote vertebrates, the lateral MSC territory may expand to the whole somite at the expense of primitive myotome and may probably facilitate sclerotome formation. We propose that successive modifications of the cell potency of some type of embryonic progenitors could be one of major processes of the vertebrate evolution.
Collapse
|
14
|
Peng H, Qiao R, Dong B. Polarity Establishment and Maintenance in Ascidian Notochord. Front Cell Dev Biol 2020; 8:597446. [PMID: 33195278 PMCID: PMC7661463 DOI: 10.3389/fcell.2020.597446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/12/2020] [Indexed: 12/27/2022] Open
Abstract
Cell and tissue polarity due to the extracellular signaling and intracellular gene cascades, in turn, signals the directed cell behaviors and asymmetric tissue architectures that play a crucial role in organogenesis and embryogenesis. The notochord is a characteristic midline organ in chordate embryos that supports the body structure and produces positioning signaling. This review summarizes cellular and tissue-level polarities during notochord development in ascidians. At the early stage, planar cell polarity (PCP) is initialized, which drives cell convergence extension and migration to form a rod-like structure. Subsequently, the notochord undergoes a mesenchymal-epithelial transition, becoming an unusual epithelium in which cells have two opposing apical domains facing the extracellular lumen deposited between adjacent notochord cells controlled by apical-basal (AB) polarity. Cytoskeleton distribution is one of the main downstream events of cell polarity. Some cytoskeleton polarity patterns are a consequence of PCP: however, an additional polarized cytoskeleton, together with Rho signaling, might serve as a guide for correct AB polarity initiation in the notochord. In addition, the notochord's mechanical properties are associated with polarity establishment and transformation, which bridge signaling regulation and tissue mechanical properties that enable the coordinated organogenesis during embryo development.
Collapse
Affiliation(s)
- Hongzhe Peng
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Runyu Qiao
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Bo Dong
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| |
Collapse
|
15
|
Holland ND, Somorjai IML. Serial blockface SEM suggests that stem cells may participate in adult notochord growth in an invertebrate chordate, the Bahamas lancelet. EvoDevo 2020; 11:22. [PMID: 33088474 PMCID: PMC7568382 DOI: 10.1186/s13227-020-00167-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/07/2020] [Indexed: 01/07/2023] Open
Abstract
Background The cellular basis of adult growth in cephalochordates (lancelets or amphioxus) has received little attention. Lancelets and their constituent organs grow slowly but continuously during adult life. Here, we consider whether this slow organ growth involves tissue-specific stem cells. Specifically, we focus on the cell populations in the notochord of an adult lancelet and use serial blockface scanning electron microscopy (SBSEM) to reconstruct the three-dimensional fine structure of all the cells in a tissue volume considerably larger than normally imaged with this technique. Results In the notochordal region studied, we identified 10 cells with stem cell-like morphology at the posterior tip of the organ, 160 progenitor (Müller) cells arranged along its surface, and 385 highly differentiated lamellar cells constituting its core. Each cell type could clearly be distinguished on the basis of cytoplasmic density and overall cell shape. Moreover, because of the large sample size, transitions between cell types were obvious. Conclusions For the notochord of adult lancelets, a reasonable interpretation of our data indicates growth of the organ is based on stem cells that self-renew and also give rise to progenitor cells that, in turn, differentiate into lamellar cells. Our discussion compares the cellular basis of adult notochord growth among chordates in general. In the vertebrates, several studies implied that proliferating cells (chordoblasts) in the cortex of the organ might be stem cells. However, we think it is more likely that such cells actually constitute a progenitor population downstream from and maintained by inconspicuous stem cells. We venture to suggest that careful searches should find stem cells in the adult notochords of many vertebrates, although possibly not in the notochordal vestiges (nucleus pulposus regions) of mammals, where the presence of endogenous proliferating cells remains controversial.
Collapse
Affiliation(s)
- Nicholas D Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California At San Diego, La Jolla, CA 92093 USA
| | - Ildiko M L Somorjai
- School of Biology, University of Saint Andrews, St. Andrews, KY16 9ST Scotland
| |
Collapse
|