1
|
Nakagawa N, Iwasato T. Activity-dependent dendrite patterning in the postnatal barrel cortex. Front Neural Circuits 2024; 18:1409993. [PMID: 38827189 PMCID: PMC11140076 DOI: 10.3389/fncir.2024.1409993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024] Open
Abstract
For neural circuit construction in the brain, coarse neuronal connections are assembled prenatally following genetic programs, being reorganized postnatally by activity-dependent mechanisms to implement area-specific computational functions. Activity-dependent dendrite patterning is a critical component of neural circuit reorganization, whereby individual neurons rearrange and optimize their presynaptic partners. In the rodent primary somatosensory cortex (barrel cortex), driven by thalamocortical inputs, layer 4 (L4) excitatory neurons extensively remodel their basal dendrites at neonatal stages to ensure specific responses of barrels to the corresponding individual whiskers. This feature of barrel cortex L4 neurons makes them an excellent model, significantly contributing to unveiling the activity-dependent nature of dendrite patterning and circuit reorganization. In this review, we summarize recent advances in our understanding of the activity-dependent mechanisms underlying dendrite patterning. Our focus lays on the mechanisms revealed by in vivo time-lapse imaging, and the role of activity-dependent Golgi apparatus polarity regulation in dendrite patterning. We also discuss the type of neuronal activity that could contribute to dendrite patterning and hence connectivity.
Collapse
Affiliation(s)
- Naoki Nakagawa
- Laboratory of Mammalian Neural Circuits, National Institute of Genetics, Mishima, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Japan
| | - Takuji Iwasato
- Laboratory of Mammalian Neural Circuits, National Institute of Genetics, Mishima, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Japan
| |
Collapse
|
2
|
Xue J, Brawner AT, Thompson JR, Yelhekar TD, Newmaster KT, Qiu Q, Cooper YA, Yu CR, Ahmed-Braima YH, Kim Y, Lin Y. Spatiotemporal Mapping and Molecular Basis of Whole-brain Circuit Maturation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.572456. [PMID: 38260331 PMCID: PMC10802351 DOI: 10.1101/2024.01.03.572456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Brain development is highly dynamic and asynchronous, marked by the sequential maturation of functional circuits across the brain. The timing and mechanisms driving circuit maturation remain elusive due to an inability to identify and map maturing neuronal populations. Here we create DevATLAS (Developmental Activation Timing-based Longitudinal Acquisition System) to overcome this obstacle. We develop whole-brain mapping methods to construct the first longitudinal, spatiotemporal map of circuit maturation in early postnatal mouse brains. Moreover, we uncover dramatic impairments within the deep cortical layers in a neurodevelopmental disorders (NDDs) model, demonstrating the utility of this resource to pinpoint when and where circuit maturation is disrupted. Using DevATLAS, we reveal that early experiences accelerate the development of hippocampus-dependent learning by increasing the synaptically mature granule cell population in the dentate gyrus. Finally, DevATLAS enables the discovery of molecular mechanisms driving activity-dependent circuit maturation.
Collapse
Affiliation(s)
- Jian Xue
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Andrew T. Brawner
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Neuroscience Graduate Program, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Equal contribution
| | - Jacqueline R. Thompson
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Neuroscience Graduate Program, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Equal contribution
| | - Tushar D. Yelhekar
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kyra T. Newmaster
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Qiang Qiu
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, MO 66160, USA
| | - Yonatan A. Cooper
- Current address: Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - C. Ron Yu
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, MO 66160, USA
| | | | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Yingxi Lin
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Lead contact
| |
Collapse
|
3
|
Wang L, Nakazawa S, Luo W, Sato T, Mizuno H, Iwasato T. Short-Term Dendritic Dynamics of Neonatal Cortical Neurons Revealed by In Vivo Imaging with Improved Spatiotemporal Resolution. eNeuro 2023; 10:ENEURO.0142-23.2023. [PMID: 37890991 PMCID: PMC10630926 DOI: 10.1523/eneuro.0142-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Individual neurons in sensory cortices exhibit specific receptive fields based on their dendritic patterns. These dendritic morphologies are established and refined during the neonatal period through activity-dependent plasticity. This process can be visualized using two-photon in vivo time-lapse imaging, but sufficient spatiotemporal resolution is essential. We previously examined dendritic patterning from spiny stellate (SS) neurons, the major type of layer 4 (L4) neurons, in the mouse primary somatosensory cortex (barrel cortex), where mature dendrites display a strong orientation bias toward the barrel center. Longitudinal imaging at 8 h intervals revealed the long-term dynamics by which SS neurons acquire this unique dendritic pattern. However, the spatiotemporal resolution was insufficient to detect the more rapid changes in SS neuron dendrite morphology during the critical neonatal period. In the current study, we imaged neonatal L4 neurons hourly for 8 h and improved the spatial resolution by uniform cell surface labeling. The improved spatiotemporal resolution allowed detection of precise changes in dendrite morphology and revealed aspects of short-term dendritic dynamics unique to the neonatal period. Basal dendrites of barrel cortex L4 neurons were highly dynamic. In particular, both barrel-inner and barrel-outer dendrites (trees and branches) emerged/elongated and disappeared/retracted at similarly high frequencies, suggesting that SS neurons acquire biased dendrite patterns through rapid trial-and-error emergence, elongation, elimination, and retraction of dendritic trees and branches. We also found correlations between morphology and behavior (elongation/retraction) of dendritic tips. Thus, the current study revealed short-term dynamics and related features of cortical neuron dendrites during refinement.
Collapse
Affiliation(s)
- Luwei Wang
- Laboratory of Mammalian Neural Circuits, National Institute of Genetics, Mishima 411-8540, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima 411-8540, Japan
| | - Shingo Nakazawa
- Laboratory of Mammalian Neural Circuits, National Institute of Genetics, Mishima 411-8540, Japan
| | - Wenshu Luo
- Laboratory of Mammalian Neural Circuits, National Institute of Genetics, Mishima 411-8540, Japan
| | - Takuya Sato
- Laboratory of Mammalian Neural Circuits, National Institute of Genetics, Mishima 411-8540, Japan
| | - Hidenobu Mizuno
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Takuji Iwasato
- Laboratory of Mammalian Neural Circuits, National Institute of Genetics, Mishima 411-8540, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima 411-8540, Japan
| |
Collapse
|
4
|
Niiyama T, Fujimoto S, Imai T. Microglia Are Dispensable for Developmental Dendrite Pruning of Mitral Cells in Mice. eNeuro 2023; 10:ENEURO.0323-23.2023. [PMID: 37890992 PMCID: PMC10644373 DOI: 10.1523/eneuro.0323-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023] Open
Abstract
During early development, neurons in the brain often form excess synaptic connections. Later, they strengthen some connections while eliminating others to build functional neuronal circuits. In the olfactory bulb, a mitral cell initially extends multiple dendrites to multiple glomeruli but eventually forms a single primary dendrite through the activity-dependent dendrite pruning process. Recent studies have reported that microglia facilitate synapse pruning during the circuit remodeling in some systems. It has remained unclear whether microglia are involved in the activity-dependent dendrite pruning in the developing brains. Here, we examined whether microglia are required for the developmental dendrite pruning of mitral cells in mice. To deplete microglia in the fetal brain, we treated mice with a colony-stimulating factor 1 receptor (CSF1R) inhibitor, PLX5622, from pregnancy. Microglia were reduced by >90% in mice treated with PLX5622. However, dendrite pruning of mitral cells was not significantly affected. Moreover, we found no significant differences in the number, density, and size of excitatory synapses formed in mitral cell dendrites. We also found no evidence for the role of microglia in the activity-dependent dendrite remodeling of layer 4 (L4) neurons in the barrel cortex. In contrast, the density of excitatory synapses (dendritic spines) in granule cells in the olfactory bulb was significantly increased in mice treated with PLX5622 at postnatal day (P) 6, suggesting a role for the regulation of dendritic spines. Our results indicate that microglia do not play a critical role in activity-dependent dendrite pruning at the neurite level during early postnatal development in mice.
Collapse
Affiliation(s)
- Tetsushi Niiyama
- Graduate School of Medical Sciences, Kyushu University, 812-8582, Fukuoka, Japan
| | - Satoshi Fujimoto
- Graduate School of Medical Sciences, Kyushu University, 812-8582, Fukuoka, Japan
| | - Takeshi Imai
- Graduate School of Medical Sciences, Kyushu University, 812-8582, Fukuoka, Japan
| |
Collapse
|
5
|
Guillamón-Vivancos T, Vandael D, Torres D, López-Bendito G, Martini FJ. Mesoscale calcium imaging in vivo: evolution and contribution to developmental neuroscience. Front Neurosci 2023; 17:1210199. [PMID: 37592948 PMCID: PMC10427507 DOI: 10.3389/fnins.2023.1210199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/14/2023] [Indexed: 08/19/2023] Open
Abstract
Calcium imaging is commonly used to visualize neural activity in vivo. In particular, mesoscale calcium imaging provides large fields of view, allowing for the simultaneous interrogation of neuron ensembles across the neuraxis. In the field of Developmental Neuroscience, mesoscopic imaging has recently yielded intriguing results that have shed new light on the ontogenesis of neural circuits from the first stages of life. We summarize here the technical approaches, basic notions for data analysis and the main findings provided by this technique in the last few years, with a focus on brain development in mouse models. As new tools develop to optimize calcium imaging in vivo, basic principles of neural development should be revised from a mesoscale perspective, that is, taking into account widespread activation of neuronal ensembles across the brain. In the future, combining mesoscale imaging of the dorsal surface of the brain with imaging of deep structures would ensure a more complete understanding of the construction of circuits. Moreover, the combination of mesoscale calcium imaging with other tools, like electrophysiology or high-resolution microscopy, will make up for the spatial and temporal limitations of this technique.
Collapse
Affiliation(s)
- Teresa Guillamón-Vivancos
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d’Alacant, Spain
| | | | | | | | - Francisco J. Martini
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d’Alacant, Spain
| |
Collapse
|
6
|
Banerjee P, Kubo F, Nakaoka H, Ajima R, Sato T, Hirata T, Iwasato T. Spontaneous activity in whisker-innervating region of neonatal mouse trigeminal ganglion. Sci Rep 2022; 12:16311. [PMID: 36175429 PMCID: PMC9522796 DOI: 10.1038/s41598-022-20068-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Spontaneous activity during the early postnatal period is thought to be crucial for the establishment of mature neural circuits. It remains unclear if the peripheral structure of the developing somatosensory system exhibits spontaneous activity, similar to that observed in the retina and cochlea of developing mammals. By establishing an ex vivo calcium imaging system, here we found that neurons in the whisker-innervating region of the trigeminal ganglion (TG) of neonatal mice generate spontaneous activity. A small percentage of neurons showed some obvious correlated activity, and these neurons were mostly located close to one another. TG spontaneous activity was majorly exhibited by medium-to-large diameter neurons, a characteristic of mechanosensory neurons, and was blocked by chelation of extracellular calcium. Moreover, this activity was diminished by the adult stage. Spontaneous activity in the TG during the first postnatal week could be a source of spontaneous activity observed in the neonatal mouse barrel cortex.
Collapse
Affiliation(s)
- Piu Banerjee
- Laboratory of Mammalian Neural Circuits, National Institute of Genetics (NIG), Mishima, Japan.,Department of Genetics, SOKENDAI, Mishima, Japan
| | - Fumi Kubo
- Department of Genetics, SOKENDAI, Mishima, Japan.,Laboratory of Systems Neuroscience, NIG, Mishima, Japan
| | - Hirofumi Nakaoka
- Department of Cancer Genome Research, Sasaki Institute, Tokyo, Japan
| | - Rieko Ajima
- Department of Genetics, SOKENDAI, Mishima, Japan.,Laboratory of Mammalian Development, NIG, Mishima, Japan
| | - Takuya Sato
- Laboratory of Mammalian Neural Circuits, National Institute of Genetics (NIG), Mishima, Japan
| | - Tatsumi Hirata
- Department of Genetics, SOKENDAI, Mishima, Japan.,Laboratory of Brain Function, NIG, Mishima, Japan
| | - Takuji Iwasato
- Laboratory of Mammalian Neural Circuits, National Institute of Genetics (NIG), Mishima, Japan. .,Department of Genetics, SOKENDAI, Mishima, Japan.
| |
Collapse
|
7
|
Pumo GM, Kitazawa T, Rijli FM. Epigenetic and Transcriptional Regulation of Spontaneous and Sensory Activity Dependent Programs During Neuronal Circuit Development. Front Neural Circuits 2022; 16:911023. [PMID: 35664458 PMCID: PMC9158562 DOI: 10.3389/fncir.2022.911023] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Spontaneous activity generated before the onset of sensory transduction has a key role in wiring developing sensory circuits. From axonal targeting, to synapse formation and elimination, to the balanced integration of neurons into developing circuits, this type of activity is implicated in a variety of cellular processes. However, little is known about its molecular mechanisms of action, especially at the level of genome regulation. Conversely, sensory experience-dependent activity implements well-characterized transcriptional and epigenetic chromatin programs that underlie heterogeneous but specific genomic responses that shape both postnatal circuit development and neuroplasticity in the adult. In this review, we focus on our knowledge of the developmental processes regulated by spontaneous activity and the underlying transcriptional mechanisms. We also review novel findings on how chromatin regulates the specificity and developmental induction of the experience-dependent program, and speculate their relevance for our understanding of how spontaneous activity may act at the genomic level to instruct circuit assembly and prepare developing neurons for sensory-dependent connectivity refinement and processing.
Collapse
Affiliation(s)
- Gabriele M. Pumo
- Laboratory of Neurodevelopmental Epigenetics, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Department Biozentrum, University of Basel, Basel, Switzerland
| | - Taro Kitazawa
- Laboratory of Neurodevelopmental Epigenetics, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Filippo M. Rijli
- Laboratory of Neurodevelopmental Epigenetics, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Department Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
8
|
Kirmse K, Zhang C. Principles of GABAergic signaling in developing cortical network dynamics. Cell Rep 2022; 38:110568. [PMID: 35354036 DOI: 10.1016/j.celrep.2022.110568] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 11/29/2022] Open
Abstract
GABAergic signaling provides inhibitory stabilization and spatiotemporally coordinates the firing of recurrently connected excitatory neurons in mature cortical circuits. Inhibition thus enables self-generated neuronal activity patterns that underlie various aspects of sensation and cognition. In this review, we aim to provide a conceptual framework describing how and when GABA-releasing interneurons acquire their network functions during development. Focusing on the developing visual neocortex and hippocampus in mice and rats in vivo, we hypothesize that at the onset of patterned activity, glutamatergic neurons are stable by themselves and inhibitory stabilization is not yet functional. We review important milestones in the development of GABAergic signaling and illustrate how the cell-type-specific strengthening of synaptic inhibition toward eye opening shapes cortical network dynamics and allows the developing cortex to progressively disengage from extra-cortical synaptic drive. We translate this framework to human cortical development and discuss clinical implications for the treatment of neonatal seizures.
Collapse
Affiliation(s)
- Knut Kirmse
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany.
| | - Chuanqiang Zhang
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany
| |
Collapse
|