1
|
Mastrangelo M, Gasparri V, Bernardi K, Foglietta S, Ramantani G, Pisani F. Epilepsy Phenotypes of Vitamin B6-Dependent Diseases: An Updated Systematic Review. CHILDREN 2023; 10:children10030553. [PMID: 36980111 PMCID: PMC10047402 DOI: 10.3390/children10030553] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Background: Vitamin B6-dependent epilepsies include treatable diseases responding to pyridoxine or pyridoxal-5Iphosphate (ALDH7A1 deficiency, PNPO deficiency, PLP binding protein deficiency, hyperprolinemia type II and hypophosphatasia and glycosylphosphatidylinositol anchor synthesis defects). Patients and methods: We conducted a systematic review of published pediatric cases with a confirmed molecular genetic diagnosis of vitamin B6-dependent epilepsy according to PRISMA guidelines. Data on demographic features, seizure semiology, EEG patterns, neuroimaging, treatment, and developmental outcomes were collected. Results: 497 published patients fulfilled the inclusion criteria. Seizure onset manifested at 59.8 ± 291.6 days (67.8% of cases in the first month of life). Clonic, tonic-clonic, and myoclonic seizures accounted for two-thirds of the cases, while epileptic spasms were observed in 7.6%. Burst-suppression/suppression-burst represented the most frequently reported specific EEG pattern (14.4%), mainly in PLPB, ALDH7A1, and PNPO deficiency. Pyridoxine was administered to 312 patients (18.5% intravenously, 76.9% orally, 4.6% not specified), and 180 also received antiseizure medications. Pyridoxine dosage ranged between 1 and 55 mg/kg/die. Complete seizure freedom was achieved in 160 patients, while a significant seizure reduction occurred in 38. PLP, lysine-restricted diet, and arginine supplementation were used in a small proportion of patients with variable efficacy. Global developmental delay was established in 30.5% of a few patients in whom neurocognitive tests were performed. Conclusions: Despite the wide variability, the most frequent hallmarks of the epilepsy phenotype in patients with vitamin B6-dependent seizures include generalized or focal motor seizure semiology and a burst suppression/suppression burst pattern in EEG.
Collapse
Affiliation(s)
- Mario Mastrangelo
- Child Neurology and Psychiatry Unit, Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- Department of Neuroscience/Mental Health, Azienda Ospedaliero-Universitaria Policlinico Umberto I, 00161 Rome, Italy
- Correspondence:
| | - Valentina Gasparri
- Child Neurology and Psychiatry Unit, Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Katerina Bernardi
- Child Neurology and Psychiatry Unit, Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Silvia Foglietta
- Child Neurology and Psychiatry Unit, Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Georgia Ramantani
- Department of Neuropediatrics, University Children’s Hospital Zurich and University of Zurich, 8032 Zurich, Switzerland
| | - Francesco Pisani
- Child Neurology and Psychiatry Unit, Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- Department of Neuroscience/Mental Health, Azienda Ospedaliero-Universitaria Policlinico Umberto I, 00161 Rome, Italy
| |
Collapse
|
2
|
Clinical Features in Aromatic L-Amino Acid Decarboxylase (AADC) Deficiency: A Systematic Review. Behav Neurol 2022; 2022:2210555. [PMID: 36268467 PMCID: PMC9578880 DOI: 10.1155/2022/2210555] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/01/2022] [Accepted: 09/22/2022] [Indexed: 11/18/2022] Open
Abstract
Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare congenital autosomal recessive metabolic disorder caused by pathogenic homozygous or compound heterozygous variants in the dopa decarboxylase (DDC) gene. Adeno-associated viral vector-mediated gene transfer of the human AADC gene into the putamina has become available. This systematic review on PubMed, Scopus databases, and other sources is aimed at describing the AADC whole phenotypic spectrum in order to facilitate its early diagnosis. Literature reviews, original articles, retrospective and comparative studies, large case series, case reports, and short communications were considered. A database was set up using Microsoft Excel to collect clinical, molecular, biochemical, and therapeutic data. By analysing 261 patients from 41 papers with molecular and/or biochemical diagnosis of AADC deficiency for which individuality could be determined with certainty, we found symptom onset to occur in the first 6 months of life in 93% of cases. Hypotonia and developmental delay are cardinal signs, reported as present in 73.9% and 72% of cases, respectively. Oculogyric crises were seen in 67% of patients while hypokinesia in 42% and ptosis in 26%. Dysautonomic features have been revealed in 53% and gastrointestinal symptoms in 19% of cases. With 37% and 30% of patients reported being affected by sleep and behavioural disorders, it seems to be commoner than previously acknowledged. Although reporting bias cannot be excluded, there is still a need for comprehensive clinical descriptions of symptoms at onset and during follow-up. In fact, our review suggests that most of the neurological and extraneurological symptoms and signs reported, although quite frequent in this condition, are not pathognomonic, and therefore, ADCC deficiency can remain an underdiscovered disorder.
Collapse
|
3
|
Perry LD, Hogg SL, Bowdin S, Ambegaonkar G, Parker AP. Fifteen-minute consultation: The efficient investigation of infantile and childhood epileptic encephalopathies in the era of modern genomics. Arch Dis Child Educ Pract Ed 2022; 107:80-87. [PMID: 33414255 DOI: 10.1136/archdischild-2020-320606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/05/2020] [Accepted: 12/09/2020] [Indexed: 11/03/2022]
Abstract
The investigation of children presenting with infantile and childhood epileptic encephalopathies (ICEE) is challenging due to diverse aetiologies, overlapping phenotypes and the relatively low diagnostic yield of MRI, electroencephalography (EEG) and biochemical investigations. Careful history and thorough examination remain essential as these may identify an acquired cause or indicate more targeted investigation for a genetic disorder. Whole exome sequencing (WES) with analysis of a panel of candidate epilepsy genes has increased the diagnostic yield. Whole genome sequencing (WGS), particularly as a trio with both parents' DNA, is likely to supersede WES. Modern genomic investigation impacts on the timing and necessity of other testing. We propose a structured approach for children presenting with ICEE where there is diagnostic uncertainty, emphasising the importance of WGS or, if unavailable, WES early in the investigative process. We note the importance of expert review of all investigations, including radiology, neurophysiology and biochemistry, to confirm the technique used was appropriate as well as the results. It is essential to counsel families on the risks associated with the procedures, the yield of the procedures, findings that are difficult to interpret and implication of 'negative' results. Where children remain without a diagnosis despite comprehensive investigation, we note the importance of ongoing multidisciplinary care.
Collapse
Affiliation(s)
- Luke Daniel Perry
- Developmental Neurosciences, University College London, Great Ormond Street Institute of Child Health, London, UK
| | - Sarah Louise Hogg
- Biochemical Genetics Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Sarah Bowdin
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Gautam Ambegaonkar
- Paediatric Neurology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Alasdair Pj Parker
- Paediatric Neurology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
4
|
Jaxybayeva A, Nauryzbayeva A, Khamzina A, Takhanova M, Abilhadirova A, Rybalko A, Jamanbekova K. Genomic Investigation of Infantile and Childhood Epileptic Encephalopathies in Kazakhstan: An Urgent Priority. Front Neurol 2021; 12:639317. [PMID: 34177756 PMCID: PMC8222974 DOI: 10.3389/fneur.2021.639317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/20/2021] [Indexed: 11/28/2022] Open
Abstract
Objectives: Infantile and childhood epileptic encephalopathies are a group of severe epilepsies that begin within the first year of life and often portend increased morbidity. Many of them are genetically determined. The medical strategy for their management depends on the genetic cause. There are no facilities for genetic testing of children in Kazakhstan but we have a collection of data with already defined genes responsible for clinical presentations. Methods: We analyzed children with epileptic encephalopathies that began in the first 3 years of life and were accompanied by a delay/arrest of intellectual development, in the absence of structural changes in the brain. Such patients were recommended to undergo genetic testing using epileptic genetic panels in laboratories in different countries. Results: We observed 350 infants with clinical presentation of epileptic encephalopathies. 4.3% of them followed our recommendations and underwent genetic testing privately. In total 12/15 children became eligible for targeted treatment, 3/15 were likely to have non-epileptic stereotypies/movements, 2/15 were unlikely to respond to any therapy and all had a high chance of intellectual disability, behavioral and social communication disorders. Conclusion: The genetic results of 15/350 (4.3% of patients) have demonstrated the potential and enormous impact from gene panel analysis in management of epileptic encephalopathy. Availability of genetic testing within the country will improve management of children with genetic epilepsies and help to create a local database of pathogenic variants.
Collapse
Affiliation(s)
| | - Alissa Nauryzbayeva
- Department of Neurology of Early Age, National Research Center for Maternal and Child Health, Nur-Sultan, Kazakhstan
| | - Assem Khamzina
- Department of Neurology of Early Age, National Research Center for Maternal and Child Health, Nur-Sultan, Kazakhstan
| | - Meruert Takhanova
- Department of Neurology, Astana Medical University, Nur-Sultan, Kazakhstan
| | - Assel Abilhadirova
- Department of Early Age Neurology, University Medical Center, National Research Center for Maternal and Child Health, Nur-Sultan, Kazakhstan
| | - Anastasia Rybalko
- Corporate Fund University Medical Center, National Research Center for Maternal and Child Health, Nur-Sultan, Kazakhstan
| | | |
Collapse
|
5
|
Farmania R, Gupta A, Ankur K, Chetry S, Sharma S. Complexities of pyridoxine response in PNPO deficiency. Epilepsy Behav Rep 2021; 16:100443. [PMID: 33981986 PMCID: PMC8082192 DOI: 10.1016/j.ebr.2021.100443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/27/2021] [Accepted: 03/04/2021] [Indexed: 11/11/2022] Open
Abstract
Pyridox(am)ine- 5- phosphate Oxidase deficiency (PNPO) is a rare cause of neonatal metabolic encephalopathy associated with refractory status epilepticus. We report a case of a premature neonate presenting with drug-resistant seizures beginning at 2 hours of life. The baby showed initial transient response to pyridoxine followed by recurrence. Genetic report confirmed the diagnosis of PNPO deficiency. A literature review on phenotypic variants in terms of response to pyridoxine is also presented along with a proposed algorithm to manage a case of suspected vitamin responsive epilepsy. This case highlights our limited understanding of why variation in response to treatment exists in children with PNPO deficiency.
Collapse
Affiliation(s)
- Rajni Farmania
- Pediatric Neurology. Consultant, Division of Pediatric Neurology, BL Kapur Superspecialiy Hospital, Delhi, India
- Consultant and Incharge, Pediatric Neurology, Department of Pediatrics, BLK Superspeciality Hospital, Delhi, India
| | - Ankit Gupta
- Fellow Neonatology, Department of Neonatology, BLK Superspeciality Hospital, Delhi, India
- Fellow Neonatology, Department of Neonatology, BLK Superspeciality, Delhi, India
| | - Kumar Ankur
- Neonatology. Consultant and NICU in Charge, Division of Neonatology, BL Kapur Superspeciality Hospital, Delhi, India
- Consultant and NICU incharge, Department of Neonatology, BLK Superspeciality, Delhi, India
| | - Sanjeev Chetry
- Neonatology. Consultant NICU, Division of Neonatology, BL Kapur Superspeciality Hospital, Delhi, India
- Consultant NICU, Department of Neonatology, BLK Superspecilaity, Delhi, India
| | - Suvasini Sharma
- Pediatric Neurology, Department of Pediatrics, Kalawati Saran Children’s Hospital, Delhi, India
- Associate Professor, Division of Pediatric Neurology, Department of Pediatrics, BLK Superspeciality, Delhi, India
| |
Collapse
|
6
|
Alghamdi M, Bashiri FA, Abdelhakim M, Adly N, Jamjoom DZ, Sumaily KM, Alghanem B, Arold ST. Phenotypic and molecular spectrum of pyridoxamine-5'-phosphate oxidase deficiency: A scoping review of 87 cases of pyridoxamine-5'-phosphate oxidase deficiency. Clin Genet 2020; 99:99-110. [PMID: 32888189 PMCID: PMC7820968 DOI: 10.1111/cge.13843] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 12/29/2022]
Abstract
Pyridoxamine-5'-phosphate oxidase (PNPO) deficiency is an autosomal recessive pyridoxal 5'-phosphate (PLP)-vitamin-responsive epileptic encephalopathy. The emerging feature of PNPO deficiency is the occurrence of refractory seizures in the first year of life. Pre-maturity and fetal distress, combined with neonatal seizures, are other associated key characteristics. The phenotype results from a dependency of PLP which regulates several enzymes in the body. We present the phenotypic and genotypic spectrum of (PNPO) deficiency based on a literature review (2002-2020) of reports (n = 33) of patients with confirmed PNPO deficiency (n = 87). All patients who received PLP (n = 36) showed a clinical response, with a complete dramatic PLP response with seizure cessation observed in 61% of patients. In spite of effective seizure control with PLP, approximately 56% of patients affected with PLP-dependent epilepsy suffer developmental delay/intellectual disability. There is no diagnostic biomarker, and molecular testing required for diagnosis. However, we noted that cerebrospinal fluid (CSF) PLP was low in 81%, CSF glycine was high in 80% and urinary vanillactic acid was high in 91% of the cases. We observed only a weak correlation between the severity of PNPO protein disruption and disease outcomes, indicating the importance of other factors, including seizure onset and time of therapy initiation. We found that pre-maturity, the delay in initiation of PLP therapy and early onset of seizures correlate with a poor neurocognitive outcome. Given the amenability of PNPO to PLP therapy for seizure control, early diagnosis is essential.
Collapse
Affiliation(s)
- Malak Alghamdi
- Medical Genetics Division, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Department of Pediatrics, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Fahad A Bashiri
- Department of Pediatrics, King Saud University Medical City, Riyadh, Saudi Arabia.,Neurology division, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Marwa Abdelhakim
- Computer, Electrical and Mathematical Science and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Nouran Adly
- College of Medicine Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Dima Z Jamjoom
- Department of Radiology and Medical Imaging, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Khalid M Sumaily
- Clinical Biochemistry Unit, Department of Laboratory Medicine, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Bandar Alghanem
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical, Research Center/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King, Abdulaziz Medical City (KAMC), NGHA, Riyadh, Saudi Arabia
| | - Stefan T Arold
- Computational Bioscience, Research Center (CBRC); Division of Biological and Environmental Sciences and Engineering, (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, Montpellier, France
| |
Collapse
|
7
|
Barile A, Nogués I, di Salvo ML, Bunik V, Contestabile R, Tramonti A. Molecular characterization of pyridoxine 5'-phosphate oxidase and its pathogenic forms associated with neonatal epileptic encephalopathy. Sci Rep 2020; 10:13621. [PMID: 32788630 PMCID: PMC7424515 DOI: 10.1038/s41598-020-70598-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/31/2020] [Indexed: 01/18/2023] Open
Abstract
Defects of vitamin B6 metabolism are responsible for severe neurological disorders, such as pyridoxamine 5'-phosphate oxidase deficiency (PNPOD; OMIM: 610090), an autosomal recessive inborn error of metabolism that usually manifests with neonatal-onset severe seizures and subsequent encephalopathy. At present, 27 pathogenic mutations of the gene encoding human PNPO are known, 13 of which are homozygous missense mutations; however, only 3 of them have been characterised with respect to the molecular and functional properties of the variant enzyme forms. Moreover, studies on wild type and variant human PNPOs have so far largely ignored the regulation properties of this enzyme. Here, we present a detailed characterisation of the inhibition mechanism of PNPO by pyridoxal 5'-phosphate (PLP), the reaction product of the enzyme. Our study reveals that human PNPO has an allosteric PLP binding site that plays a crucial role in the enzyme regulation and therefore in the regulation of vitamin B6 metabolism in humans. Furthermore, we have produced, recombinantly expressed and characterised several PNPO pathogenic variants responsible for PNPOD (G118R, R141C, R225H, R116Q/R225H, and X262Q). Such replacements mainly affect the catalytic activity of PNPO and binding of the enzyme substrate and FMN cofactor, leaving the allosteric properties unaltered.
Collapse
Affiliation(s)
- Anna Barile
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Rome, Italy.,Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Rome, Italy
| | - Isabel Nogués
- Istituto di Ricerca sugli Ecosistemi Terrestri, Consiglio Nazionale delle Ricerche, 00015, Monterotondo, Rome, Italy
| | - Martino L di Salvo
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Rome, Italy
| | - Victoria Bunik
- Belozersky Institute of Physico-Chemical Biology, Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia.,Department of Biochemistry, Sechenov University, Trubetskaya, 8/2, Moscow, 119991, Russia
| | - Roberto Contestabile
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Rome, Italy.
| | - Angela Tramonti
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Rome, Italy. .,Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Rome, Italy.
| |
Collapse
|
8
|
Contestabile R, di Salvo ML, Bunik V, Tramonti A, Vernì F. The multifaceted role of vitamin B 6 in cancer: Drosophila as a model system to investigate DNA damage. Open Biol 2020; 10:200034. [PMID: 32208818 PMCID: PMC7125957 DOI: 10.1098/rsob.200034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A perturbed uptake of micronutrients, such as minerals and vitamins, impacts on different human diseases, including cancer and neurological disorders. Several data converge towards a crucial role played by many micronutrients in genome integrity maintenance and in the establishment of a correct DNA methylation pattern. Failure in the proper accomplishment of these processes accelerates senescence and increases the risk of developing cancer, by promoting the formation of chromosome aberrations and deregulating the expression of oncogenes. Here, the main recent evidence regarding the impact of some B vitamins on DNA damage and cancer is summarized, providing an integrated and updated analysis, mainly centred on vitamin B6. In many cases, it is difficult to finely predict the optimal vitamin rate that is able to protect against DNA damage, as this can be influenced by a given individual's genotype. For this purpose, a precious resort is represented by model organisms which allow limitations imposed by more complex systems to be overcome. In this review, we show that Drosophila can be a useful model to deeply understand mechanisms underlying the relationship between vitamin B6 and genome integrity.
Collapse
Affiliation(s)
- Roberto Contestabile
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, P.le A. Moro, 5, 00185, Roma, Italy
| | - Martino Luigi di Salvo
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, P.le A. Moro, 5, 00185, Roma, Italy
| | - Victoria Bunik
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119991, Russia.,Sechenov Medical University, Sechenov University, 119048 Moscow, Russia
| | - Angela Tramonti
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, P.le A. Moro, 5, 00185, Roma, Italy.,Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Pl.e A. Moro, 5, 00185 Roma, Italy
| | - Fiammetta Vernì
- Dipartimento di Biologia e Biotecnologie 'Charles Darwin', Sapienza Università di Roma, Pl.e A. Moro, 5, 00185 Roma, Italy
| |
Collapse
|
9
|
Chi W, Iyengar ASR, Albersen M, Bosma M, Verhoeven-Duif NM, Wu CF, Zhuang X. Pyridox (am) ine 5'-phosphate oxidase deficiency induces seizures in Drosophila melanogaster. Hum Mol Genet 2020; 28:3126-3136. [PMID: 31261385 DOI: 10.1093/hmg/ddz143] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 12/12/2022] Open
Abstract
Pyridox (am) ine 5'-phosphate oxidase (PNPO) is a rate-limiting enzyme in converting dietary vitamin B6 (VB6) to pyridoxal 5'-phosphate (PLP), the biologically active form of VB6 and involved in the synthesis of neurotransmitters including γ-aminobutyric acid (GABA), dopamine, and serotonin. In humans, PNPO mutations have been increasingly identified in neonatal epileptic encephalopathy and more recently also in early-onset epilepsy. Till now, little is known about the neurobiological mechanisms underlying PNPO-deficiency-induced seizures due to the lack of animal models. Previously, we identified a c.95 C>A missense mutation in sugarlethal (sgll)-the Drosophila homolog of human PNPO (hPNPO)-and found mutant (sgll95) flies exhibiting a lethal phenotype on a diet devoid of VB6. Here, we report the establishment of both sgll95 and ubiquitous sgll knockdown (KD) flies as valid animal models of PNPO-deficiency-induced epilepsy. Both sgll95 and sgll KD flies exhibit spontaneous seizures before they die. Electrophysiological recordings reveal that seizures caused by PNPO deficiency have characteristics similar to that in flies treated with the GABA antagonist picrotoxin. Both seizures and lethality are associated with low PLP levels and can be rescued by ubiquitous expression of wild-type sgll or hPNPO, suggesting the functional conservation of the PNPO enzyme between humans and flies. Results from cell type-specific sgll KD further demonstrate that PNPO in the brain is necessary for seizure prevention and survival. Our establishment of the first animal model of PNPO deficiency will lead to better understanding of VB6 biology, the PNPO gene and its mutations discovered in patients, and can be a cost-effective system to test therapeutic strategies.
Collapse
Affiliation(s)
- Wanhao Chi
- Committee on Genetics, Genomics and Systems Biology.,Department of Neurobiology, University of Chicago, Chicago, IL, USA
| | - Atulya S R Iyengar
- Department of Biology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA, USA
| | - Monique Albersen
- Section Metabolic Diagnostics, Department of Medical Genetics, University Medical Center Utrecht, Utrecht, EA, The Netherlands
| | - Marjolein Bosma
- Section Metabolic Diagnostics, Department of Medical Genetics, University Medical Center Utrecht, Utrecht, EA, The Netherlands
| | - Nanda M Verhoeven-Duif
- Section Metabolic Diagnostics, Department of Medical Genetics, University Medical Center Utrecht, Utrecht, EA, The Netherlands
| | - Chun-Fang Wu
- Department of Biology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA, USA
| | - Xiaoxi Zhuang
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
10
|
Lugli L, Bariola MC, Ori L, Lucaccioni L, Berardi A, Ferrari F. Further Delineation of Pyridoxine-Responsive Pyridoxine Phosphate Oxidase Deficiency Epilepsy: Report of a New Case and Review of the Literature With Genotype-Phenotype Correlation. J Child Neurol 2019; 34:937-943. [PMID: 31397616 DOI: 10.1177/0883073819863992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In recent years, the clinical spectrum of pyridoxine phosphate oxidase (PNPO) deficiency has broadened. There are a growing number of patients with a transient or lasting response to pyridoxine in addition to cases that respond more traditionally to pyridoxal-phosphate. However, among pyridoxine-responsive patients with PNPO gene mutation, there are only a few reports on electroencephalogram (EEG) ictal/interictal patterns, and data regarding the outcomes are inconsistent. We describe a case of neonatal onset epilepsy with missense mutation c(674G>A) p(R225 H) in PNPO gene and pyridoxine responsiveness. Comparing this patient with 24 cases of previously described pyridoxine-responsive pyridoxine phosphate oxidase deficiency epilepsy, we found that patients carrying the missense mutation c(674G>A) p(R225 H) of the PNPO gene might have a more severe epileptic phenotype, possibly because of their lower residual PNPO activity. Indeed, pyridoxine-responsive pyridoxine phosphate oxidase deficiency epilepsy remains a challenge, with neurodevelopmental disabilities occurring in about half of the cases.
Collapse
Affiliation(s)
- Licia Lugli
- Department of Pediatrics, University Hospital, Modena, Italy
| | | | - Luca Ori
- Department of Pediatrics, University Hospital, Modena, Italy
| | | | - Alberto Berardi
- Department of Pediatrics, University Hospital, Modena, Italy
| | | |
Collapse
|
11
|
Ciapaite J, Albersen M, Savelberg SMC, Bosma M, Tessadori F, Gerrits J, Lansu N, Zwakenberg S, Bakkers JPW, Zwartkruis FJT, van Haaften G, Jans JJ, Verhoeven-Duif NM. Pyridox(am)ine 5'-phosphate oxidase (PNPO) deficiency in zebrafish results in fatal seizures and metabolic aberrations. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165607. [PMID: 31759955 DOI: 10.1016/j.bbadis.2019.165607] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/21/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023]
Abstract
Pyridox(am)ine 5'-phosphate oxidase (PNPO) catalyzes oxidation of pyridoxine 5'-phosphate (PNP) and pyridoxamine 5'-phosphate (PMP) to pyridoxal 5'-phosphate (PLP), the active form of vitamin B6. PNPO deficiency results in neonatal/infantile seizures and neurodevelopmental delay. To gain insight into this disorder we generated Pnpo deficient (pnpo-/-) zebrafish (CRISPR/Cas9 gene editing). Locomotion analysis showed that pnpo-/- zebrafish develop seizures resulting in only 38% of pnpo-/- zebrafish surviving beyond 20 days post fertilization (dpf). The age of seizure onset varied and survival after the onset was brief. Biochemical profiling at 20 dpf revealed a reduction of PLP and pyridoxal (PL) and accumulation of PMP and pyridoxamine (PM). Amino acids involved in neurotransmission including glutamate, γ-aminobutyric acid (GABA) and glycine were decreased. Concentrations of several, mostly essential, amino acids were increased in pnpo-/- zebrafish suggesting impaired activity of PLP-dependent transaminases involved in their degradation. PLP treatment increased survival at 20 dpf and led to complete normalization of PLP, PL, glutamate, GABA and glycine. However, amino acid profiles only partially normalized and accumulation of PMP and PM persisted. Taken together, our data indicate that not only decreased PLP but also accumulation of PMP may play a role in the clinical phenotype of PNPO deficiency.
Collapse
Affiliation(s)
- Jolita Ciapaite
- Department of Genetics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; Center for Molecular Medicine, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands.
| | - Monique Albersen
- Department of Genetics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - Sanne M C Savelberg
- Department of Genetics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; Center for Molecular Medicine, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - Marjolein Bosma
- Department of Genetics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - Federico Tessadori
- Department of Genetics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; Center for Molecular Medicine, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Johan Gerrits
- Department of Genetics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - Nico Lansu
- Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Susan Zwakenberg
- Center for Molecular Medicine, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; Department of Molecular Cancer Research, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - Jeroen P W Bakkers
- Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands; Department of Medical Physiology, University Medical Center Utrecht, 3584 CM Utrecht, the Netherlands
| | - Fried J T Zwartkruis
- Center for Molecular Medicine, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; Department of Molecular Cancer Research, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - Gijs van Haaften
- Department of Genetics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; Center for Molecular Medicine, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - Judith J Jans
- Department of Genetics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; Center for Molecular Medicine, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - Nanda M Verhoeven-Duif
- Department of Genetics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; Center for Molecular Medicine, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| |
Collapse
|
12
|
Abstract
Introduction: Vitamin B6 dependent epilepsies are a group of treatable diseases (ALDH7A1 deficiency, PNPO deficiency, PLP binding protein deficiency, hyperprolinaemia type II and hypophosphatasia and glycosylphosphatidylinositol anchor synthesis defects) responding to pyridoxine or pyridoxal-5I-phosphate. Areas covered: A critical review was conducted on the therapeutic management of all the reported patients with genetically confirmed diagnoses of diseases affecting vitamin B6 metabolism and presenting with pyridoxine or pyridoxal-5I-phosphate dependent-seizures. Data about safety and efficacy were analyzed as well as the management of supplementation with pyridoxine or pyridoxal-5I-phosphate both in the acute phases and in the maintenance therapies. The authors also analyzed alternative therapeutic strategies for ALDH7A1 deficiency (lysine-restricted diet, arginine supplementation, oligonucleotide antisense therapy, upstream inhibition of aminoadipic semialdehyde synthase). Expert opinion: The administration of pyridoxine or pyridoxal-5I-phosphate should be considered in all intractable seizures also beyond the first year of life. Lysine restricted diet and arginine supplementation should be introduced in all the confirmed ALDH7A1 deficient patients. Pre or post-natal supplementation with pyridoxine should be given in familial cases until an eventual molecular genetic disconfirmation. Minor data about alternative therapies are available for other disorders of vitamin B6 metabolism.
Collapse
Affiliation(s)
- Mario Mastrangelo
- Division of Child Neurology and Infantile Psychiatry, Department of Human Neurosciences, Sapienza University of Rome , Roma , Italy
| | - Serena Cesario
- Division of Child Neurology and Infantile Psychiatry, Department of Human Neurosciences, Sapienza University of Rome , Roma , Italy
| |
Collapse
|
13
|
Wilson MP, Plecko B, Mills PB, Clayton PT. Disorders affecting vitamin B 6 metabolism. J Inherit Metab Dis 2019; 42:629-646. [PMID: 30671974 DOI: 10.1002/jimd.12060] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/12/2018] [Indexed: 12/21/2022]
Abstract
Vitamin B6 is present in our diet in many forms, however, only pyridoxal 5'-phosphate (PLP) can function as a cofactor for enzymes. The intestine absorbs nonphosphorylated B6 vitamers, which are converted by specific enzymes to the active PLP form. The role of PLP is enabled by its reactive aldehyde group. Pathways reliant on PLP include amino acid and neurotransmitter metabolism, folate and 1-carbon metabolism, protein and polyamine synthesis, carbohydrate and lipid metabolism, mitochondrial function and erythropoiesis. Besides the role of PLP as a cofactor B6 vitamers also play other cellular roles, for example, as antioxidants, modifying expression and action of steroid hormone receptors, affecting immune function, as chaperones and as an antagonist of Adenosine-5'-triphosphate (ATP) at P2 purinoceptors. Because of the vital role of PLP in neurotransmitter metabolism, particularly synthesis of the inhibitory transmitter γ-aminobutyric acid, it is not surprising that various inborn errors leading to PLP deficiency manifest as B6 -responsive epilepsy, usually of early onset. This includes pyridox(am)ine phosphate oxidase deficiency (a disorder affecting PLP synthesis and recycling), disorders affecting PLP import into the brain (hypophosphatasia and glycosylphosphatidylinositol anchor synthesis defects), a disorder of an intracellular PLP-binding protein (PLPBP, previously named PROSC) and disorders where metabolites accumulate that inactivate PLP, for example, ALDH7A1 deficiency and hyperprolinaemia type II. Patients with these disorders can show rapid control of seizures in response to either pyridoxine and/or PLP with a lifelong dependency on supraphysiological vitamin B6 supply. The clinical and biochemical features of disorders leading to B6 -responsive seizures and the treatment of these disorders are described in this review.
Collapse
Affiliation(s)
- Matthew P Wilson
- Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK
| | - Barbara Plecko
- Department of Pediatrics and Adolescent Medicine, Division of General Pediatrics, University Childrens' Hospital Graz, Medical University Graz, Graz, Austria
| | - Philippa B Mills
- Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK
| | - Peter T Clayton
- Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK
| |
Collapse
|
14
|
Pavone P, Corsello G, Ruggieri M, Marino S, Marino S, Falsaperla R. Benign and severe early-life seizures: a round in the first year of life. Ital J Pediatr 2018; 44:54. [PMID: 29764460 PMCID: PMC5952424 DOI: 10.1186/s13052-018-0491-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 04/18/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND At the onset, differentiation between abnormal non-epileptic movements, and epileptic seizures presenting in early life is difficult as is clinical diagnosis and prognostic evaluation of the various seizure disorders presenting at this age. Seizures starting in the first year of life including the neonatal period might have a favorable course, such as in infants presenting with benign familial neonatal epilepsy, febrile seizures simplex or acute symptomatic seizures. However, in some cases, the onset of seizures at birth or in the first months of life have a dramatic evolution with severe cerebral impairment. Seizure disorders starting in early life include the "epileptic encephalopathies", a group of conditions characterized by drug resistant seizures, delayed developmental skills, and intellective disability. This group of disorders includes early infantile epileptic encephalopathy also known as Ohtahara syndrome, early myoclonic encephalopathy, epilepsy of infancy with migrating focal seizures, infantile spasms syndrome (also known as West syndrome), severe myoclonic epilepsy in infancy (also known as Dravet syndrome) and, myoclonic encephalopathies in non-progressive disorder. Here we report on seizures manifesting in the first year of life including the neonatal period. Conditions with a benign course, and those with severe evolution are presented. At this early age, clinical identification of seizures, distinction of each of these disorders, type of treatment and prognosis is particularly challenging. The aim of this report is to present the clinical manifestations of each of these disorders and provide an updated review of the conditions associated with seizures in the first year of life.
Collapse
Affiliation(s)
- Piero Pavone
- Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, A.U.O. Vittorio Emanuele-Policlinico of Catania, Via Santa Sofia 78, 95100, Catania, Italy.
| | - Giovanni Corsello
- Department of Maternal and Child Health, University of Palermo, Palermo, Italy
| | - Martino Ruggieri
- Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, A.U.O. Vittorio Emanuele-Policlinico of Catania, Via Santa Sofia 78, 95100, Catania, Italy
| | - Silvia Marino
- University-Hospital 'Policlinico-Vittorio Emanuele, University of Catania, Catania, Italy
| | - Simona Marino
- University-Hospital 'Policlinico-Vittorio Emanuele, University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- University-Hospital 'Policlinico-Vittorio Emanuele, University of Catania, Catania, Italy
| |
Collapse
|
15
|
Guerriero RM, Patel AA, Walsh B, Baumer FM, Shah AS, Peters JM, Rodan LH, Agrawal PB, Pearl PL, Takeoka M. Systemic Manifestations in Pyridox(am)ine 5'-Phosphate Oxidase Deficiency. Pediatr Neurol 2017; 76:47-53. [PMID: 28985901 PMCID: PMC6008785 DOI: 10.1016/j.pediatrneurol.2017.05.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 05/24/2017] [Accepted: 05/28/2017] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Pyridoxine is converted to its biologically active form pyridoxal-5-phosphate (P5P) by the enzyme pyridox(am)ine 5'-phosphate oxidase and serves as a cofactor in nearly 200 reactions in the central nervous system. Pyridox(am)ine 5'-phosphate oxidase deficiency leads to P5P dependent epilepsy, typically a neonatal- or infantile-onset epileptic encephalopathy treatable with P5P or in some cases, pyridoxine. Following identification of retinopathy in a patient with pyridox(am)ine 5'-phosphate oxidase deficiency that was reversible with P5P therapy, we describe the systemic manifestations of pyridox(am)ine 5'-phosphate oxidase deficiency. METHODS A series of six patients with homozygous mutations of PNPO, the gene coding pyridox(am)ine 5'-phosphate oxidase, were evaluated in our center over the course of two years for phenotyping of neurological and systemic manifestations. RESULTS Five of six were born prematurely, three had anemia and failure to thrive, and two had elevated alkaline phosphatase. A movement disorder was observed in two children, and a reversible retinopathy was observed in the most severely affected infant. All patients had neonatal-onset epilepsy and were on a continuum of developmental delay to profound encephalopathy. Electroencephalographic features included background slowing and disorganization, absent sleep features, and multifocal and generalized epileptiform discharges. All the affected probands carried a homozygous PNPO mutation (c.674 G>T, c.686 G>A and c.352G>A). CONCLUSION In addition to the well-described epileptic encephalopathy, pyridox(am)ine 5'-phosphate oxidase deficiency causes a range of neurological and systemic manifestations. A movement disorder, developmental delay, and encephalopathy, as well as retinopathy, anemia, and failure to thrive add to the broadening clinical spectrum of P5P dependent epilepsy.
Collapse
Affiliation(s)
- Réjean M. Guerriero
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts,Division of Pediatric and Developmental Neurology, Department of Neurology, Washington University School of Medicine, St. Louis, Missouri,Communications should be addressed to: Dr. Guerriero; Division of Pediatric and Developmental Neurology; Department of Neurology; Washington University School of Medicine; Campus Box 8111; 660 South Euclid Ave; St. Louis, MO 63110.
| | - Archana A. Patel
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Brian Walsh
- Division of Newborn Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Fiona M. Baumer
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ankoor S. Shah
- Department of Ophthalmology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jurriaan M. Peters
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Lance H. Rodan
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Pankaj B. Agrawal
- Division of Newborn Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts,Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts,Manton Center for Orphan Disease Research, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Phillip L. Pearl
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Masanori Takeoka
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
16
|
Xue J, Chang X, Zhang Y, Yang Z. Novel phenotypes of pyridox(am)ine-5'-phosphate oxidase deficiency and high prevalence of c.445_448del mutation in Chinese patients. Metab Brain Dis 2017; 32:1081-1087. [PMID: 28349276 DOI: 10.1007/s11011-017-9995-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 03/13/2017] [Indexed: 01/11/2023]
Abstract
To analyze the clinical and genetic characteristics of Chinese patients with pyridox(am)ine-5'-phosphate oxidase (PNPO) deficiency. The clinical presentations and the responses to treatments were analyzed in 4 patients. Blood and urinary metabolic screenings, electroencephalogram (EEG), brain magnetic resonance imaging (MRI) and epilepsy-related genes detection were performed in all patients. Patient 1 and 2 were identical twin brothers, who were born at 35+5 w gestation with a sign of encephalopathy. Their seizures started within the first day and could not be controlled by pyridoxine or pyridoxal-5'-phosphate (PLP) completely. Patient 3 presented seizures at 5 months, responding well to pyridoxine. Seizures in patient 4 began at 40 days after birth and were controlled by valproic acid and topiramate. EEG showed atypical hypsarrhythmia or multifocal epileptiform discharges in 3 patients, and showed normality in patient 4. MRI showed nonspecific abnormality or normality. Blood metabolic screening showed multiple amino acids level abnormalities in all cases. Urinary metabolic screening showed vanillactic acid prominently elevated in 3 patients. Genetic analysis revealed 5 mutations of PNPO, three of which were novel. The mutation c.445_448del was carried by the twins and patient 3. Assessment of psychomotor development indicated severe delay in 3 patients and borderline to mild delay in patient 3. This is the first time to report patients with PNPO deficiency diagnosed by gene analysis in China. The novel clinical characteristics and novel mutations found here expanded the phenotypes and genotypes of this disease. Further, the frameshift mutation c.445_448del might be high prevalence in PNPO deficiency in Chinese patients.
Collapse
Affiliation(s)
- Jiao Xue
- Department of Pediatrics, Peking University First Hospital, No.1, Xi'anmen Street, Xicheng District, Beijing, 100034, China
| | - Xingzhi Chang
- Department of Pediatrics, Peking University First Hospital, No.1, Xi'anmen Street, Xicheng District, Beijing, 100034, China
| | - Yuehua Zhang
- Department of Pediatrics, Peking University First Hospital, No.1, Xi'anmen Street, Xicheng District, Beijing, 100034, China.
| | - Zhixian Yang
- Department of Pediatrics, Peking University First Hospital, No.1, Xi'anmen Street, Xicheng District, Beijing, 100034, China.
| |
Collapse
|
17
|
Abstract
Inborn errors of metabolism (IEM) are rare conditions that represent more than 1000 diseases, with a global prevalence of approximately 1:2000 individuals. Approximately, 40%-60% of IEM may present with epilepsy as one of the main neurologic signs. Epilepsy in IEM may appear at any age (fetal, newborn, infant, adolescent, or even adult). Different pathophysiological mechanisms may be responsible for the clinical phenotype, such as disturbances in energy metabolism (mitochondrial and fatty oxidation disorders, GLUT-1, and cerebral creatine deficiency), accumulation of complex molecules (lysosomal storage disorders), toxic mechanisms (organic acidurias and urea cycle disorders), or impairment of neurotransmission. Early diagnosis and, in some cases, an effective treatment may result in an excellent evolution of the IEM, in particularly seizure control. This review attempts to delineate a summary of IEM that may present with seizures or epilepsy and emphasizes the management in treatable conditions.
Collapse
Affiliation(s)
- Jaume Campistol
- From the *Neurology Department, Hospital Sant Joan de Déu, Barcelona University, Barcelona, Spain; Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; Institute of Pediatric Research, Sant Joan de Déu, Barcelona, Spain.
| |
Collapse
|
18
|
Mathis D, Abela L, Albersen M, Bürer C, Crowther L, Beese K, Hartmann H, Bok LA, Struys E, Papuc SM, Rauch A, Hersberger M, Verhoeven-Duif NM, Plecko B. The value of plasma vitamin B6 profiles in early onset epileptic encephalopathies. J Inherit Metab Dis 2016; 39:733-741. [PMID: 27342130 DOI: 10.1007/s10545-016-9955-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/01/2016] [Accepted: 06/06/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Recent decades have unravelled the molecular background of a number of inborn errors of metabolism (IEM) causing vitamin B6-dependent epilepsy. As these defects interfere with vitamin B6 metabolism by different mechanisms, the plasma vitamin B6 profile can give important clues for further molecular work-up. This has so far been investigated in only a small number of patients. METHODS We evaluated the vitamin B6 vitamers pyridoxal 5'-phosphate (PLP), pyridoxal (PL), pyridoxamine (PM), pyridoxine (PN) and the catabolite pyridoxic acid (PA) in the so far largest patient cohort: reference (n = 50); pyridox(am)ine 5'-phosphate oxidase (PNPO) deficiency (n = 6); antiquitin (ATQ) deficiency (n = 21); tissue non-specific alkaline phosphatase (TNSALP) deficiency (n = 2) and epileptic encephalopathy (EE) of unknown etiology tested negative for ATQ and PNPO deficiency (n = 64). RESULTS High plasma PM concentration was found in all patients with PNPO deficiency irrespective of vitamin B6 supplementation. Their PM concentration and the PM/PA ratio was significantly higher (p < 0.0001), compared to any other patients analysed. One patient with TNSALP deficiency and sampling prior to PN supplementation had markedly elevated plasma PLP concentration. On PN supplementation, patients with TNSALP deficiency, ATQ deficiency and patients of the EE cohort had similar plasma vitamin B6 profiles that merely reflect the intake of supra-physiological doses of vitamin B6. The interval of sampling to the last PN intake strongly affected the plasma concentrations of PN, PL and PA. CONCLUSIONS PM concentrations and the PM/PA ratio clearly separated PNPO-deficient patients from the other cohorts. The plasma PM/PA ratio thus represents a robust biomarker for the selective screening of PNPO deficiency.
Collapse
Affiliation(s)
- Déborah Mathis
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Zurich, Switzerland
| | - Lucia Abela
- Division of Child Neurology, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland
- Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
- Radiz - Rare Disease Initiative Zurich, Clinical Research Priority Program for Rare Diseases, University of Zurich, Zurich, Switzerland
| | - Monique Albersen
- Department of Genetics, University Medical Center (UMC) Utrecht, Utrecht, Netherlands
| | - Céline Bürer
- Division of Metabolism, University Children's Hospital Zurich, Zurich, Switzerland
| | - Lisa Crowther
- Division of Child Neurology, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland
- Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
- Radiz - Rare Disease Initiative Zurich, Clinical Research Priority Program for Rare Diseases, University of Zurich, Zurich, Switzerland
| | - Karin Beese
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Zurich, Switzerland
| | - Hans Hartmann
- Department of Pediatrics, Hannover Medical School, Hannover, Germany
| | - Levinus A Bok
- Department of Pediatrics, MMC, Veldhoven, Netherlands
| | - Eduard Struys
- Metabolic Unit, Department of Clinical Chemistry, VU University Medical Center, Amsterdam, Netherlands
| | - Sorina M Papuc
- Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
- Radiz - Rare Disease Initiative Zurich, Clinical Research Priority Program for Rare Diseases, University of Zurich, Zurich, Switzerland
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Anita Rauch
- Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
- Radiz - Rare Disease Initiative Zurich, Clinical Research Priority Program for Rare Diseases, University of Zurich, Zurich, Switzerland
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Martin Hersberger
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Zurich, Switzerland
| | | | - Barbara Plecko
- Division of Child Neurology, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland.
- Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland.
- Radiz - Rare Disease Initiative Zurich, Clinical Research Priority Program for Rare Diseases, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
19
|
Abstract
Vitamin-dependent epilepsies and multiple metabolic epilepsies are amenable to treatment that markedly improves the disease course. Knowledge of these amenably treatable severe pediatric epilepsies allows for early identification, testing, and treatment. These disorders present with various phenotypes, including early onset epileptic encephalopathy (refractory neonatal seizures, early myoclonic encephalopathy, and early infantile epileptic encephalopathy), infantile spasms, or mixed generalized seizure types in infancy, childhood, or even adolescence and adulthood. The disorders are presented as vitamin responsive epilepsies such as pyridoxine, pyridoxal-5-phosphate, folinic acid, and biotin; transportopathies like GLUT-1, cerebral folate deficiency, and biotin thiamine responsive disorder; amino and organic acidopathies including serine synthesis defects, creatine synthesis disorders, molybdenum cofactor deficiency, and cobalamin deficiencies; mitochondrial disorders; urea cycle disorders; neurotransmitter defects; and disorders of glucose homeostasis. In each case, targeted intervention directed toward the underlying metabolic pathophysiology affords for the opportunity to significantly effect the outcome and prognosis of an otherwise severe pediatric epilepsy.
Collapse
Affiliation(s)
- Phillip L Pearl
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA.
| |
Collapse
|
20
|
Normal Neurodevelopmental Outcomes in PNPO Deficiency: A Case Series and Literature Review. JIMD Rep 2015; 26:91-7. [PMID: 26303608 DOI: 10.1007/8904_2015_482] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 07/07/2015] [Accepted: 07/08/2015] [Indexed: 12/13/2022] Open
Abstract
Pyridox(am)ine 5'-phosphate oxidase deficiency results in an early-onset neonatal encephalopathy that can be fatal if not detected and treated early. The condition is rare, can result in preterm delivery, and can mimic hypoxic ischemic encephalopathy. Thus, suspicion of the diagnosis, appropriate investigations, and therapeutic trials with pyridoxal-5'-phosphate are often delayed. In this paper we report four cases of pyridox(am)ine 5'-phosphate oxidase deficiency, two of whom are siblings. Three were treated with pyridoxal-5'-phosphate in the first few days of life and the fourth within the first month. One of the siblings was electively treated from birth until a diagnosis was secured. Our cases demonstrate that early diagnosis and treatment can be associated with normal neurodevelopment in childhood. We suggest that a low threshold for investigating for pyridox(am)ine 5'-phosphate oxidase deficiency and electively treating with pyridoxal-5'-phosphate is considered in any neonate with encephalopathy, including those with presumed hypoxic ischemic encephalopathy in whom the degree of encephalopathy is not expected from perinatal history, cord gases and/or neuroimaging.
Collapse
|
21
|
Guerin A, Aziz AS, Mutch C, Lewis J, Go CY, Mercimek-Mahmutoglu S. Pyridox(am)ine-5-Phosphate Oxidase Deficiency Treatable Cause of Neonatal Epileptic Encephalopathy With Burst Suppression: Case Report and Review of the Literature. J Child Neurol 2015; 30:1218-25. [PMID: 25296925 DOI: 10.1177/0883073814550829] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 01/17/2014] [Indexed: 12/14/2022]
Abstract
Pyridox(am)ine-5-phosphate oxidase deficiency is an autosomal recessive disorder of pyridoxine metabolism. Intractable neonatal epileptic encephalopathy is the classical presentation. Pyridoxal-5-phosphate or pyridoxine supplementation improves symptoms. We report a patient with myoclonic and tonic seizures at the age of 1 hour. Pyridoxal-5-phosphate was started on the first day of life and seizures stopped at the age of 3 days, but encephalopathy persisted for 4 weeks. She had normal neurodevelopmental outcome at the age of 12 months on pyridoxal-5-phosphate monotherapy. She had novel homozygous pathogenic frameshift mutation (c.448_451del;p.Pro150Argfs*27) in the PNPO gene. Long-lasting encephalopathy despite well-controlled clinical seizures does neither confirm nor exclude pyridox(am)ine-5-phosphate oxidase deficiency. Normal neurodevelopmental outcome of our patient emphasizes the importance of pyridoxal-5-phosphate treatment. Pyridox(am)ine-5-phosphate oxidase deficiency should be included in the differential diagnosis of Ohtahara syndrome and neonatal myoclonic encephalopathy as a treatable underlying cause. In addition, we reviewed the literature for pyridox(am)ine-5-phosphate oxidase deficiency and summarized herein all confirmed cases.
Collapse
Affiliation(s)
- Andrea Guerin
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, University of Toronto, Toronto, Canada
| | - Aly S Aziz
- Division of Neurology, Department of Pediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Carly Mutch
- Occupational Therapy, Department of Rehabilitation Services, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jillian Lewis
- Division of Neonatology, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Cristina Y Go
- Division of Neurology, Department of Pediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Saadet Mercimek-Mahmutoglu
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, University of Toronto, Toronto, Canada Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
22
|
PNPO Deficiency and Cirrhosis: Expanding the Clinical Phenotype? JIMD Rep 2015; 25:71-75. [PMID: 26108646 DOI: 10.1007/8904_2015_456] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 05/06/2015] [Accepted: 05/08/2015] [Indexed: 12/13/2022] Open
Abstract
We report the case of a 4-year-old boy with pyridoxamine 5-phosphate oxidase deficiency, now the second reported case to develop hepatic cirrhosis. He presented with an encephalopathy in the first 1.5 h of life and received a first dose of PLP at 40 h of life. PNPO gene sequencing identified homozygosity for a novel variant in exon 7, c.637C>T (p.Pro213Ser). Persistent elevations in alanine transferase and aspartate transferase combined with an echogenic liver on ultrasound prompted performance of a liver biopsy which demonstrated hepatic cirrhosis. This is the second reported case of hepatic cirrhosis in PNPO deficiency. The pathogenesis is unclear but may be related to epigenetic activation of purinergic signaling in the hepatic stellate cells. PNPO deficiency may in time prove to be a suitable candidate for consideration of therapeutic orthotropic liver transplantation in select patients.
Collapse
|
23
|
Levtova A, Camuzeaux S, Laberge AM, Allard P, Brunel-Guitton C, Diadori P, Rossignol E, Hyland K, Clayton PT, Mills PB, Mitchell GA. Normal Cerebrospinal Fluid Pyridoxal 5'-Phosphate Level in a PNPO-Deficient Patient with Neonatal-Onset Epileptic Encephalopathy. JIMD Rep 2015; 22:67-75. [PMID: 25762494 DOI: 10.1007/8904_2015_413] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/23/2015] [Accepted: 01/26/2015] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Deficiency of pyridox(am)ine 5'-phosphate oxidase (PNPO, OMIM 610090) is a treatable autosomal recessive inborn error of metabolism. Neonatal epileptic encephalopathy and a low cerebrospinal fluid (CSF) pyridoxal 5'-phosphate level are the reported hallmarks of PNPO deficiency, but its clinical and biochemical spectra are not fully known. CASE PRESENTATION A girl born at 33 3/7 weeks of gestation developed seizures in the first hours of life. Her seizures initially responded to GABAergic agonists, but she subsequently developed a severe epileptic encephalopathy. Brain MRI and infectious and metabolic evaluations at birth, including urinary alpha-aminoadipic semialdehyde (AASA), were normal. Lumbar puncture at age 3 months showed: pyridoxal 5'-phosphate, 52 nmol/L (normal, 23-64); homovanillic acid, 392 nmol/L (normal, 450-1,132); 5-hydroxyindoleacetic acid, 341 nmol/L (normal, 179-711); and 3-ortho-methyldopa, 30 nmol/L (normal, below 300). The patient was not being treated with pyridoxine nor with pyridoxal 5'-phosphate at the time of the lumbar puncture. She died at age 14 months. A sequencing panel targeting 53 epilepsy-related genes revealed a homozygous missense mutation in PNPO (c.674G>A, p.R225H). Homozygosity was confirmed by parental testing. Expression studies of mutant p.R225H PNPO revealed greatly reduced activity. In conclusion, a normal CSF level of pyridoxal 5'-phosphate does not rule out PNPO deficiency.
Collapse
Affiliation(s)
- Alina Levtova
- Divisions of Medical Genetics (AL, AML, CBG, GM) and Neurology (PD, ER), Department of Paediatrics, Biochemical Genetics Laboratory (CBG, PA), CHU Sainte-Justine and Université de Montréal, 3175 Côte-Sainte-Catherine, Montreal, QC, Canada, H3T 1C5
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|