1
|
Jiao Y, Peng W, Yang J, Li C. Effect of Repetitive Transcranial Magnetic Stimulation on the Nutritional Status and Neurological Function of Patients With Postischemic Stroke Dysphagia. Neurologist 2023; 28:69-72. [PMID: 35593910 DOI: 10.1097/nrl.0000000000000442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND This project aimed to explore the effects of repetitive transcranial magnetic stimulation (rTMS) on the nutritional status and neurological function of patients with postischemic stroke dysphagia. MATERIALS AND METHODS After recruiting 70 inpatients with cerebral infarction combined with dysphagia hospitalized in the Cerebrovascular Center of Guangdong Second Provincial General Hospital from June 2017 to June 2020, we assigned them randomly into a control group and an rTMS group. Patients in the control group received swallowing training, while patients of the rTMS group received swallowing training and rTMS. RESULTS Fifteen days after treatment, serum nutrition indexes and neurotrophic indexes of both groups were higher than before treatment, and their serum nerve injury indexes were lower than before treatment. After 15 days of treatment, the body nutrition indexes and neuronutrition indexes of the rTMS group were higher than those of the control group, while the nerve injury indexes of the rTMS group were lower than those of the control group. CONCLUSION rTMS in the treatment of dysphagia after stroke can better improve nutritional status and nerve function, reducing nerve damage.
Collapse
Affiliation(s)
- Yonggang Jiao
- Department of Neurology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong Province
| | - Wei Peng
- Department of Neurology, People's Hospital of Wuwei of Gansu Province, Wuwei, Gansu Province, China
| | - Jingping Yang
- Department of Neurology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong Province
| | - Cheng Li
- Department of Neurology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong Province
| |
Collapse
|
2
|
McClelland VM, Lin JP. Sensorimotor Integration in Childhood Dystonia and Dystonic Cerebral Palsy-A Developmental Perspective. Front Neurol 2021; 12:668081. [PMID: 34367047 PMCID: PMC8343097 DOI: 10.3389/fneur.2021.668081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/07/2021] [Indexed: 11/15/2022] Open
Abstract
Dystonia is a disorder of sensorimotor integration, involving dysfunction within the basal ganglia, cortex, cerebellum, or their inter-connections as part of the sensorimotor network. Some forms of dystonia are also characterized by maladaptive or exaggerated plasticity. Development of the neuronal processes underlying sensorimotor integration is incompletely understood but involves activity-dependent modeling and refining of sensorimotor circuits through processes that are already taking place in utero and which continue through infancy, childhood, and into adolescence. Several genetic dystonias have clinical onset in early childhood, but there is evidence that sensorimotor circuit development may already be disrupted prenatally in these conditions. Dystonic cerebral palsy (DCP) is a form of acquired dystonia with perinatal onset during a period of rapid neurodevelopment and activity-dependent refinement of sensorimotor networks. However, physiological studies of children with dystonia are sparse. This discussion paper addresses the role of neuroplasticity in the development of sensorimotor integration with particular focus on the relevance of these mechanisms for understanding childhood dystonia, DCP, and implications for therapy selection, including neuromodulation and timing of intervention.
Collapse
Affiliation(s)
- Verity M McClelland
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Children's Neurosciences Department, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Jean-Pierre Lin
- Children's Neurosciences Department, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
3
|
Zewdie E, Ciechanski P, Kuo HC, Giuffre A, Kahl C, King R, Cole L, Godfrey H, Seeger T, Swansburg R, Damji O, Rajapakse T, Hodge J, Nelson S, Selby B, Gan L, Jadavji Z, Larson JR, MacMaster F, Yang JF, Barlow K, Gorassini M, Brunton K, Kirton A. Safety and tolerability of transcranial magnetic and direct current stimulation in children: Prospective single center evidence from 3.5 million stimulations. Brain Stimul 2019; 13:565-575. [PMID: 32289678 DOI: 10.1016/j.brs.2019.12.025] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/20/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Non-invasive brain stimulation is being increasingly used to interrogate neurophysiology and modulate brain function. Despite the high scientific and therapeutic potential of non-invasive brain stimulation, experience in the developing brain has been limited. OBJECTIVE To determine the safety and tolerability of non-invasive neurostimulation in children across diverse modalities of stimulation and pediatric populations. METHODS A non-invasive brain stimulation program was established in 2008 at our pediatric, academic institution. Multi-disciplinary neurophysiological studies included single- and paired-pulse Transcranial Magnetic Stimulation (TMS) methods. Motor mapping employed robotic TMS. Interventional trials included repetitive TMS (rTMS) and transcranial direct current stimulation (tDCS). Standardized safety and tolerability measures were completed prospectively by all participants. RESULTS Over 10 years, 384 children underwent brain stimulation (median 13 years, range 0.8-18.0). Populations included typical development (n = 118), perinatal stroke/cerebral palsy (n = 101), mild traumatic brain injury (n = 121) neuropsychiatric disorders (n = 37), and other (n = 7). No serious adverse events occurred. Drop-outs were rare (<1%). No seizures were reported despite >100 participants having brain injuries and/or epilepsy. Tolerability between single and paired-pulse TMS (542340 stimulations) and rTMS (3.0 million stimulations) was comparable and favourable. TMS-related headache was more common in perinatal stroke (40%) than healthy participants (13%) but was mild and self-limiting. Tolerability improved over time with side-effect frequency decreasing by >50%. Robotic TMS motor mapping was well-tolerated though neck pain was more common than with manual TMS (33% vs 3%). Across 612 tDCS sessions including 92 children, tolerability was favourable with mild itching/tingling reported in 37%. CONCLUSIONS Standard non-invasive brain stimulation paradigms are safe and well-tolerated in children and should be considered minimal risk. Advancement of applications in the developing brain are warranted. A new and improved pediatric NIBS safety and tolerability form is included.
Collapse
Affiliation(s)
- E Zewdie
- Calgary Pediatric Stroke Program, University of Calgary, Calgary, Alberta, Canada; Departments of Pediatrics and Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Neurosciences, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | - P Ciechanski
- Calgary Pediatric Stroke Program, University of Calgary, Calgary, Alberta, Canada; Department of Neurosciences, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - H C Kuo
- Calgary Pediatric Stroke Program, University of Calgary, Calgary, Alberta, Canada; Departments of Pediatrics and Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Neurosciences, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - A Giuffre
- Calgary Pediatric Stroke Program, University of Calgary, Calgary, Alberta, Canada; Departments of Pediatrics and Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Neurosciences, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - C Kahl
- Departments of Pediatrics and Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Neurosciences, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - R King
- Departments of Pediatrics and Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Neurosciences, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - L Cole
- Calgary Pediatric Stroke Program, University of Calgary, Calgary, Alberta, Canada; Departments of Pediatrics and Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Neurosciences, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - H Godfrey
- Departments of Pediatrics and Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Neurosciences, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - T Seeger
- Calgary Pediatric Stroke Program, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - R Swansburg
- Departments of Pediatrics and Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Neurosciences, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - O Damji
- Calgary Pediatric Stroke Program, University of Calgary, Calgary, Alberta, Canada; Department of Neurosciences, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - T Rajapakse
- Departments of Pediatrics and Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Neurosciences, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - J Hodge
- Calgary Pediatric Stroke Program, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - S Nelson
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - B Selby
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - L Gan
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Z Jadavji
- Calgary Pediatric Stroke Program, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - J R Larson
- Calgary Pediatric Stroke Program, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - F MacMaster
- Departments of Pediatrics and Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Neurosciences, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - J F Yang
- Department of Physical Therapy, University of Alberta, Edmonton, Alberta, Canada
| | - K Barlow
- Departments of Pediatrics and Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Neurosciences, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - M Gorassini
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - K Brunton
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - A Kirton
- Calgary Pediatric Stroke Program, University of Calgary, Calgary, Alberta, Canada; Departments of Pediatrics and Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Neurosciences, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
4
|
Grab J, Zewdie E, Carlson H, Kuo HC, Ciechanski P, Hodge J, Giuffre A, Kirton A. Robotic TMS mapping of motor cortex in the developing brain. J Neurosci Methods 2018; 309:41-54. [DOI: 10.1016/j.jneumeth.2018.08.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 08/08/2018] [Accepted: 08/08/2018] [Indexed: 12/22/2022]
|
5
|
Corticospinal Tract Wiring and Brain Lesion Characteristics in Unilateral Cerebral Palsy: Determinants of Upper Limb Motor and Sensory Function. Neural Plast 2018; 2018:2671613. [PMID: 30344602 PMCID: PMC6158964 DOI: 10.1155/2018/2671613] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/18/2018] [Accepted: 08/05/2018] [Indexed: 11/17/2022] Open
Abstract
Brain lesion characteristics (timing, location, and extent) and the type of corticospinal tract (CST) wiring have been proposed as determinants of upper limb (UL) motor function in unilateral cerebral palsy (uCP), yet an investigation of the relative combined impact of these factors on both motor and sensory functions is still lacking. Here, we first investigated whether structural brain lesion characteristics could predict the underlying CST wiring and we explored the role of CST wiring and brain lesion characteristics to predict UL motor and sensory functions in uCP. Fifty-two participants with uCP (mean age (SD): 11 y and 3 m (3 y and 10 m)) underwent a single-pulse Transcranial Magnetic Stimulation session to determine CST wiring between the motor cortex and the more affected hand (n = 17 contralateral, n = 19 ipsilateral, and n = 16 bilateral) and an MRI to determine lesion timing (n = 34 periventricular (PV) lesion, n = 18 corticosubcortical (CSC) lesion), location, and extent. Lesion location and extent were evaluated with a semiquantitative scale. A standardized protocol included UL motor (grip strength, unimanual capacity, and bimanual performance) and sensory measures. A combination of lesion locations (damage to the PLIC and frontal lobe) significantly contributed to differentiate between the CST wiring groups, reclassifying the participants in their original group with 57% of accuracy. Motor and sensory functions were influenced by each of the investigated neurological factors. However, multiple regression analyses showed that motor function was predicted by the CST wiring (more preserved in individuals with contralateral CST (p < 0.01)), lesion extent, and damage to the basal ganglia and thalamus. Sensory function was predicted by the combination of a large and later lesion and an ipsilateral or bilateral CST wiring, which led to increased sensory deficits (p < 0.05). These novel insights contribute to a better understanding of the underlying pathophysiology of UL function and may be useful to delineate individualized treatment strategies.
Collapse
|
6
|
Abstract
Assessing movement can be especially challenging in children. Refined yet flexible observational examination skills and utilization of established phenomenological approaches are essential in distinguishing normal from abnormal movements in the developing child and reaching an appropriate diagnosis. Mastering such skill requires an appreciation of the unique features of the developing motor system and an understanding of key concepts underlying normal motor development in children. Establishing a trusting therapeutic relationship with the patient and family, minimizing anxiety, and utilizing observation and distraction during physical examination are essential to successful diagnosis and management.
Collapse
Affiliation(s)
| | - Donald L Gilbert
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| |
Collapse
|
7
|
Monbaliu E, Himmelmann K, Lin JP, Ortibus E, Bonouvrié L, Feys H, Vermeulen RJ, Dan B. Clinical presentation and management of dyskinetic cerebral palsy. Lancet Neurol 2017; 16:741-749. [PMID: 28816119 DOI: 10.1016/s1474-4422(17)30252-1] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 06/02/2017] [Accepted: 06/29/2017] [Indexed: 12/21/2022]
Abstract
Cerebral palsy is the most frequent cause of severe physical disability in childhood. Dyskinetic cerebral palsy (DCP) is the second most common type of cerebral palsy after spastic forms. DCP is typically caused by non-progressive lesions to the basal ganglia or thalamus, or both, and is characterised by abnormal postures or movements associated with impaired tone regulation or movement coordination. In DCP, two major movement disorders, dystonia and choreoathetosis, are present together most of the time. Dystonia is often more pronounced and severe than choreoathetosis, with a major effect on daily activity, quality of life, and societal participation. The pathophysiology of both movement disorders is largely unknown. Some emerging hypotheses are an imbalance between indirect and direct basal ganglia pathways, disturbed sensory processing, and impaired plasticity in the basal ganglia. Rehabilitation strategies are typically multidisciplinary. Use of oral drugs to provide symptomatic relief of the movement disorders is limited by adverse effects and the scarcity of evidence that the drugs are effective. Neuromodulation interventions, such as intrathecal baclofen and deep brain stimulation, are promising options.
Collapse
Affiliation(s)
- Elegast Monbaliu
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium; Dominiek Savio Instituut, Gits, Belgium
| | - Kate Himmelmann
- Department of Pediatrics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jean-Pierre Lin
- Evelina Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, King's Health Partners, London, UK
| | - Els Ortibus
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Laura Bonouvrié
- Department of Rehabilitation Medicine, VU University Medical Center Amsterdam, Amsterdam, Netherlands
| | - Hilde Feys
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - R Jeroen Vermeulen
- Department of Neurology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Bernard Dan
- Department of Neurology, Université Libre de Bruxelles, Brussels, Belgium; Inkendaal Rehabilitation Hospital, Vlezenbeek, Belgium.
| |
Collapse
|
8
|
Safety of Transcranial Magnetic Stimulation in Children: A Systematic Review of the Literature. Pediatr Neurol 2017; 68:3-17. [PMID: 28216033 PMCID: PMC5346461 DOI: 10.1016/j.pediatrneurol.2016.12.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 12/02/2016] [Accepted: 12/19/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Data and best practice recommendations for transcranial magnetic stimulation (TMS) use in adults are largely available. Although there are fewer data in pediatric populations and no published guidelines, its practice in children continues to grow. METHODS We performed a literature search through PubMed to review all TMS studies from 1985 to 2016 involving children and documented any adverse events. Crude risks were calculated per session. RESULTS Following data screening we identified 42 single-pulse and/or paired-pulse TMS studies involving 639 healthy children, 482 children with central nervous system disorders, and 84 children with epilepsy. Adverse events occurred at rates of 3.42%, 5.97%, and 4.55% respective to population and number of sessions. We also report 23 repetitive TMS studies involving 230 central nervous system and 24 children with epilepsy with adverse event rates of 3.78% and 0.0%, respectively. We finally identified three theta-burst stimulation studies involving 90 healthy children, 40 children with central nervous system disorder, and no epileptic children, with adverse event rates of 9.78% and 10.11%, respectively. Three seizures were found to have occurred in central nervous system disorder individuals during repetitive TMS, with a risk of 0.14% per session. There was no significant difference in frequency of adverse events by group (P = 0.988) or modality (P = 0.928). CONCLUSIONS Available data suggest that risk from TMS/theta-burst stimulation in children is similar to adults. We recommend that TMS users in this population follow the most recent adult safety guidelines until sufficient data are available for pediatric specific guidelines. We also encourage continued surveillance through surveys and assessments on a session basis.
Collapse
|
9
|
Hameed MQ, Dhamne SC, Gersner R, Kaye HL, Oberman LM, Pascual-Leone A, Rotenberg A. Transcranial Magnetic and Direct Current Stimulation in Children. Curr Neurol Neurosci Rep 2017; 17:11. [PMID: 28229395 PMCID: PMC5962296 DOI: 10.1007/s11910-017-0719-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Promising results in adult neurologic and psychiatric disorders are driving active research into transcranial brain stimulation techniques, particularly transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), in childhood and adolescent syndromes. TMS has realistic utility as an experimental tool tested in a range of pediatric neuropathologies such as perinatal stroke, depression, Tourette syndrome, and autism spectrum disorder (ASD). tDCS has also been tested as a treatment for a number of pediatric neurologic conditions, including ASD, attention-deficit/hyperactivity disorder, epilepsy, and cerebral palsy. Here, we complement recent reviews with an update of published TMS and tDCS results in children, and discuss developmental neuroscience considerations that should inform pediatric transcranial stimulation.
Collapse
Affiliation(s)
- Mustafa Q Hameed
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Neurosurgery, Boston Children's Hospital Harvard Medical School, Boston, MA, 02115, USA
| | - Sameer C Dhamne
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Roman Gersner
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Harper L Kaye
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Lindsay M Oberman
- Neuroplasticity and Autism Spectrum Disorder Program and Department of Psychiatry and Human Behavior, E.P. Bradley Hospital and Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division for Cognitive Neurology, Beth Israel Deaconness Medical Center Harvard Medical School, Boston, MA, USA
- Institut Guttmann, Universitat Autonoma, Barcelona, Spain
| | - Alexander Rotenberg
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA.
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
10
|
Myers KA, Vecchiarelli HA, Damji O, Hill MN, Kirton A. Significance of BDNF Val66Met Polymorphism in Brain Plasticity of Children. Pediatr Neurol 2017; 66:e1-e2. [PMID: 27839823 DOI: 10.1016/j.pediatrneurol.2016.09.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 09/24/2016] [Indexed: 10/20/2022]
Affiliation(s)
- Kenneth A Myers
- Section of Neurology, Department of Pediatrics, Cumming School of Medicine, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada.
| | - Haley A Vecchiarelli
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Omar Damji
- Section of Neurology, Department of Pediatrics, Cumming School of Medicine, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Matthew N Hill
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Adam Kirton
- Section of Neurology, Department of Pediatrics, Cumming School of Medicine, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
11
|
Lee JC, Croarkin PE, Ameis SH, Sun Y, Blumberger DM, Rajji TK, Daskalakis ZJ. Paired-Associative Stimulation-Induced Long-term Potentiation-Like Motor Cortex Plasticity in Healthy Adolescents. Front Psychiatry 2017; 8:95. [PMID: 28611693 PMCID: PMC5447079 DOI: 10.3389/fpsyt.2017.00095] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/10/2017] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE The objective of this study was to evaluate the feasibility of using paired-associative stimulation (PAS) to study excitatory and inhibitory plasticity in adolescents while examining variables that may moderate plasticity (such as sex and environment). METHODS We recruited 34 healthy adolescents (aged 13-19, 13 males, 21 females). To evaluate excitatory plasticity, we compared mean motor-evoked potentials (MEPs) elicited by single-pulse transcranial magnetic stimulation (TMS) before and after PAS at 0, 15, and 30 min. To evaluate inhibitory plasticity, we evaluated the cortical silent period (CSP) elicited by single-pulse TMS in the contracted hand before and after PAS at 0, 15, and 30 min. RESULTS All participants completed PAS procedures. No adverse events occurred. PAS was well tolerated. PAS-induced significant increases in the ratio of post-PAS MEP to pre-PAS MEP amplitudes (p < 0.01) at all post-PAS intervals. Neither socioeconomic status nor sex was associated with post-PAS MEP changes. PAS induced significant CSP lengthening in males but not females. CONCLUSION PAS is a feasible, safe, and well-tolerated index of adolescent motor cortical plasticity. Gender may influence PAS-induced changes in cortical inhibition. PAS is safe and well tolerated by healthy adolescents and may be a novel tool with which to study adolescent neuroplasticity.
Collapse
Affiliation(s)
- Jonathan C Lee
- Temerty Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Paul E Croarkin
- Mayo Clinic Depression Center, Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Stephanie H Ameis
- Temerty Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Hospital for Sick Children, Toronto, ON, Canada
| | - Yinming Sun
- Temerty Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | | - Tarek K Rajji
- Temerty Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | |
Collapse
|
12
|
Abstract
This special issue surveys recent work and underscores the challenges of psychiatric brain stimulation research with child and adolescent populations. The field of child and adolescent psychopharmacology is replete with examples of potential pitfalls in the assumption that "children are little adults." Arguably, younger age portends more neurobiological and descriptive heterogeneity in research pursuits and clinical practice. For existing brain stimulation modalities, there are a paucity of translational models to design studies for youth and no well-studied dosing schemes. The long-term positive and negative effects of neuromodulation interventions in youth are unknown. Inherent pragmatic and ethical limitations often present barriers for participant recruitment and will necessitate innovative approaches to study design and team efforts. These challenges are not insurmountable, and sustained efforts will advance the growing field of pediatric neuromodulation.
Collapse
Affiliation(s)
- Paul E. Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota
| | - Alexander Rotenberg
- Pediatric Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
13
|
Pedapati EV, Gilbert DL, Erickson CA, Horn PS, Shaffer RC, Wink LK, Laue CS, Wu SW. Abnormal Cortical Plasticity in Youth with Autism Spectrum Disorder: A Transcranial Magnetic Stimulation Case-Control Pilot Study. J Child Adolesc Psychopharmacol 2016; 26:625-31. [PMID: 27007257 PMCID: PMC5035833 DOI: 10.1089/cap.2015.0183] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE This case-control study investigated the use of a low-intensity repetitive transcranial magnetic stimulation (rTMS) protocol to measure motor cortex (M1) plasticity in youth with autism spectrum disorder (ASD) compared with typically developing children (TDC). We hypothesized that impairments in long-term potentiation-like properties represent a neurophysiological biomarker of abnormal cortical function in ASD. METHODS We studied youth with ASD aged 11-18 years and matched controls (TDC). Intermittent theta burst stimulation (iTBS) was delivered to the dominant M1 at an intensity of 70% of resting motor threshold. Suprathreshold single-pulse TMS was performed to compare amplitudes of motor-evoked potentials (MEP) measured from surface electromyography electrodes on a target muscle before (20 pulses) and after (10 pulses/time point) iTBS at predefined timepoints (up to 30 minutes) to measure any potentiation effects. A linear mixed model was used to examine group differences in MEP amplitudes over time following iTBS. RESULTS Nine youth with ASD (mean age 15.6; 7 males; 6 right-hand dominant) and 9 TDC (mean age 14.5; 5 males; 9 right-hand dominant) participated. All subjects tolerated the procedure well. Both groups had a mean increase in excitability after iTBS for 30 minutes; however, the time course of excitability changes differed (F9,144 = 2.05; p = 0.038). Post-hoc testing identified a significant decrease in amplitude of the ASD group at 20 minutes following iTBS compared with the TDC after correcting for multiple comparisons. CONCLUSION In this study, we demonstrate early evidence for a potential physiological biomarker of cortical plasticity in youth with ASD using a rapid low-intensity rTMS protocol with a discriminate measure at 20 minutes following stimulation. The procedure was well tolerated by all 18 participants. Future work will include modification of the protocol to improve the ability to distinguish subtypes of ASD based on behavioral and cognitive testing.
Collapse
Affiliation(s)
- Ernest V. Pedapati
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Donald L. Gilbert
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Craig A. Erickson
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Paul S. Horn
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Rebecca C. Shaffer
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Logan K. Wink
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Cameron S. Laue
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Steve W. Wu
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
14
|
Affiliation(s)
- Steve W Wu
- Transcranial Magnetic Stimulation Laboratory, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Donald L Gilbert
- Transcranial Magnetic Stimulation Laboratory, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|