1
|
Xue Y, Zhao Y, Wu B, Shu J, Yan D, Li D, Yu X, Cai C. A novel variant in ALG1 gene associated with congenital disorder of glycosylation: A case report and short literature review. Mol Genet Genomic Med 2023; 11:e2197. [PMID: 37204045 PMCID: PMC10422073 DOI: 10.1002/mgg3.2197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND The congenital disorder of glycosylation associated with ALG1 (ALG1-CDG) is a rare autosomal recessive disease. Due to the deficiency of β1,4 mannosyltransferase caused by pathogenic variants in ALG1 gene, the assembly and processing of glycans in the protein glycosylation pathway are impaired, resulting in a broad clinical spectrum with multi-organ involvement. To raise awareness of clinicians for its manifestations and genotype, we here reported a new patient with a novel variant in ALG1 gene and reviewed the literature to study the genotype-phenotype correlation. METHOD Clinical characteristics were collected, and clinical exome sequencing was used to identify the causative variants. MutationTaster, PyMol, and FoldX were used to predict the pathogenicity, changes in 3D model molecular structure of protein, and changes of free energy caused by novel variants. RESULTS The proband was a 13-month-old Chinese Han male characterized by epileptic seizures, psychomotor development delay, muscular hypotonia, liver and cardiac involvement. Clinical exome sequencing revealed the biallelic compound heterozygosity variants, a previously reported variant c.434G>A (p.G145N, paternal) and a novel variant c.314T>A (p.V105N, maternal). The literature review found that in severe phenotypes, the incidences of clinical manifestations were significantly higher than that in mild phenotypes, including congenital nephrotic syndrome, agammaglobulinemia, and severe hydrops. Homozygous c.773C>T was a strongly pathogenic variant associated with a severe phenotype. When heterozygous for c.773C>T, patients with another variant leading to substitution in amino acids within the strongly conserved regions (c.866A>T, c.1025A>C, c.1182C>G) may cause a more severe phenotype than those within less-conserved regions (c.434G>A, c.450C>G, c.765G>A, c.1287T>A). c.1129A>G, c.1076C>T, and c.1287T>A were more likely to be associated with a mild phenotype. The assessment of disease phenotypes requires a combination of genotype and clinical manifestations. CONCLUSIONS The case reported herein adds to the mutations identified in ALG1-CDG and a review of this literature expands the study of the phenotypic and genotypic spectrum of this disorder.
Collapse
Affiliation(s)
- Yan Xue
- Tianjin Pediatric Research InstituteTianjin Children's Hospital (Tianjin University Children's Hospital)TianjinChina
- Tianjin Key Laboratory of Birth Defects for Prevention and TreatmentTianjinChina
| | - Yiran Zhao
- Tianjin Medical UniversityTianjinChina
- Department of PediatricsMaternal and Child Health Hospital of TangshanTangshanChina
| | - Bo Wu
- Department of NeurologyTianjin Children's Hospital (Tianjin University Children's Hospital)TianjinChina
| | - Jianbo Shu
- Tianjin Pediatric Research InstituteTianjin Children's Hospital (Tianjin University Children's Hospital)TianjinChina
- Tianjin Key Laboratory of Birth Defects for Prevention and TreatmentTianjinChina
| | - Dandan Yan
- Tianjin Pediatric Research InstituteTianjin Children's Hospital (Tianjin University Children's Hospital)TianjinChina
- Tianjin Key Laboratory of Birth Defects for Prevention and TreatmentTianjinChina
| | - Dong Li
- Department of NeurologyTianjin Children's Hospital (Tianjin University Children's Hospital)TianjinChina
| | - Xiaoli Yu
- Department of NeurologyTianjin Children's Hospital (Tianjin University Children's Hospital)TianjinChina
| | - Chunquan Cai
- Tianjin Pediatric Research InstituteTianjin Children's Hospital (Tianjin University Children's Hospital)TianjinChina
- Tianjin Key Laboratory of Birth Defects for Prevention and TreatmentTianjinChina
| |
Collapse
|
2
|
Lee HF, Chi CS. Congenital disorders of glycosylation and infantile epilepsy. Epilepsy Behav 2023; 142:109214. [PMID: 37086590 DOI: 10.1016/j.yebeh.2023.109214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/24/2023]
Abstract
Congenital disorders of glycosylation (CDG) are a group of rare inherited metabolic disorders caused by defects in various defects of protein or lipid glycosylation pathways. The symptoms and signs of CDG usually develop in infancy. Epilepsy is commonly observed in CDG individuals and is often a presenting symptom. These epilepsies can present across the lifespan, share features of refractoriness to antiseizure medications, and are often associated with comorbid developmental delay, psychomotor regression, intellectual disability, and behavioral problems. In this review, we discuss CDG and infantile epilepsy, focusing on an overview of clinical manifestations and electroencephalographic features. Finally, we propose a tiered approach that will permit a clinician to systematically investigate and identify CDG earlier, and furthermore, to provide genetic counseling for the family.
Collapse
Affiliation(s)
- Hsiu-Fen Lee
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, 145, Xingda Rd., Taichung 402, Taiwan; Division of Pediatric Neurology, Children's Medical Center, Taichung Veterans General Hospital, 1650, Taiwan Boulevard Sec. 4, Taichung 407, Taiwan.
| | - Ching-Shiang Chi
- Division of Pediatric Neurology, Children's Medical Center, Taichung Veterans General Hospital, 1650, Taiwan Boulevard Sec. 4, Taichung 407, Taiwan.
| |
Collapse
|
3
|
Paprocka J. Neurological Consequences of Congenital Disorders of Glycosylation. ADVANCES IN NEUROBIOLOGY 2023; 29:219-253. [PMID: 36255677 DOI: 10.1007/978-3-031-12390-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The chapter is devoted to neurological aspects of congenital disorders of glycosylation (CDG). At the beginning, the various types of CDG with neurological presentation of symptoms are summarized. Then, the occurrence of various neurological constellation of abnormalities (for example: epilepsy, brain anomalies on neuroimaging, ataxia, stroke-like episodes, autistic features) in different CDG types are discussed followed by data on possible biomarkers and limited treatment options.
Collapse
Affiliation(s)
- Justyna Paprocka
- Department of Pediatric Neurology, Faculty of Medical Sciences, Medical University of Silesia, Katowice, Poland.
| |
Collapse
|
4
|
Zuberi SM, Wirrell E, Yozawitz E, Wilmshurst JM, Specchio N, Riney K, Pressler R, Auvin S, Samia P, Hirsch E, Galicchio S, Triki C, Snead OC, Wiebe S, Cross JH, Tinuper P, Scheffer IE, Perucca E, Moshé SL, Nabbout R. ILAE classification and definition of epilepsy syndromes with onset in neonates and infants: Position statement by the ILAE Task Force on Nosology and Definitions. Epilepsia 2022; 63:1349-1397. [PMID: 35503712 DOI: 10.1111/epi.17239] [Citation(s) in RCA: 280] [Impact Index Per Article: 140.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 12/20/2022]
Abstract
The International League Against Epilepsy (ILAE) Task Force on Nosology and Definitions proposes a classification and definition of epilepsy syndromes in the neonate and infant with seizure onset up to 2 years of age. The incidence of epilepsy is high in this age group and epilepsy is frequently associated with significant comorbidities and mortality. The licensing of syndrome specific antiseizure medications following randomized controlled trials and the development of precision, gene-related therapies are two of the drivers defining the electroclinical phenotypes of syndromes with onset in infancy. The principal aim of this proposal, consistent with the 2017 ILAE Classification of the Epilepsies, is to support epilepsy diagnosis and emphasize the importance of classifying epilepsy in an individual both by syndrome and etiology. For each syndrome, we report epidemiology, clinical course, seizure types, electroencephalography (EEG), neuroimaging, genetics, and differential diagnosis. Syndromes are separated into self-limited syndromes, where there is likely to be spontaneous remission and developmental and epileptic encephalopathies, diseases where there is developmental impairment related to both the underlying etiology independent of epileptiform activity and the epileptic encephalopathy. The emerging class of etiology-specific epilepsy syndromes, where there is a specific etiology for the epilepsy that is associated with a clearly defined, relatively uniform, and distinct clinical phenotype in most affected individuals as well as consistent EEG, neuroimaging, and/or genetic correlates, is presented. The number of etiology-defined syndromes will continue to increase, and these newly described syndromes will in time be incorporated into this classification. The tables summarize mandatory features, cautionary alerts, and exclusionary features for the common syndromes. Guidance is given on the criteria for syndrome diagnosis in resource-limited regions where laboratory confirmation, including EEG, MRI, and genetic testing, might not be available.
Collapse
Affiliation(s)
- Sameer M Zuberi
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Institute of Health & Wellbeing, Collaborating Centre of European Reference Network EpiCARE, University of Glasgow, Glasgow, UK
| | - Elaine Wirrell
- Divisions of Child and Adolescent Neurology and Epilepsy, Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Elissa Yozawitz
- Isabelle Rapin Division of Child Neurology, Saul R. Korey Department of Neurology, Montefiore Medical Center, Bronx, New York, USA
| | - Jo M Wilmshurst
- Department of Paediatric Neurology, Red Cross War Memorial Children's Hospital, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Nicola Specchio
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesu' Children's Hospital, IRCCS, Member of European Reference Network EpiCARE, Rome, Italy
| | - Kate Riney
- Neurosciences Unit, Queensland Children's Hospital, South Brisbane, Queensland, Australia.,Faculty of Medicine, University of Queensland, St Lucia, Queensland, Australia
| | - Ronit Pressler
- Clinical Neuroscience, UCL- Great Ormond Street Institute of Child Health, London, UK.,Department of Clinical Neurophysiology, Great Ormond Street Hospital for Children NHS Foundation Trust, Member of European Reference Network EpiCARE, London, UK
| | - Stephane Auvin
- AP-HP, Hôpital Robert-Debré, INSERM NeuroDiderot, DMU Innov-RDB, Neurologie Pédiatrique, Member of European Reference Network EpiCARE, Université de Paris, Paris, France
| | - Pauline Samia
- Department of Paediatrics and Child Health, Aga Khan University, Nairobi, Kenya
| | - Edouard Hirsch
- Neurology Epilepsy Unit "Francis Rohmer", INSERM 1258, FMTS, Strasbourg University, Strasbourg, France
| | - Santiago Galicchio
- Child Neurology Department, Victor J Vilela Child Hospital of Rosario, Santa Fe, Argentina
| | - Chahnez Triki
- Child Neurology Department, LR19ES15 Neuropédiatrie, Sfax Medical School, University of Sfax, Sfax, Tunisia
| | - O Carter Snead
- Pediatric Neurology, Hospital for Sick Children, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Samuel Wiebe
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - J Helen Cross
- Programme of Developmental Neurosciences, UCL NIHR BRC Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children, Member of European Reference Network EpiCARE, London, UK.,Young Epilepsy, Lingfield, UK
| | - Paolo Tinuper
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche, Bologna, Italy
| | - Ingrid E Scheffer
- Austin Health and Royal Children's Hospital, Florey Institute, Murdoch Children's Research Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Emilio Perucca
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Solomon L Moshé
- Isabelle Rapin Division of Child Neurology, Saul R. Korey Department of Neurology, Bronx, New York, USA.,Departments of Neuroscience and Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA.,Montefiore Medical Center, Bronx, New York, USA
| | - Rima Nabbout
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker-Enfants Malades University Hospital, APHP, Member of European Reference Network EpiCARE, Institut Imagine, INSERM, UMR 1163, Université Paris cité, Paris, France
| |
Collapse
|
5
|
González-Domínguez CA, Fiesco-Roa MO, Gómez-Carmona S, Kleinert-Altamirano API, He M, Daniel EJP, Raymond KM, Abreu-González M, Manrique-Hernández S, González-Jaimes A, Salinas-Marín R, Molina-Garay C, Carrillo-Sánchez K, Flores-Lagunes LL, Jiménez-Olivares M, Muñoz-Rivas A, Cruz-Muñoz ME, Ruíz-García M, Freeze HH, Mora-Montes HM, Alaez-Verson C, Martínez-Duncker I. ALG1-CDG Caused by Non-functional Alternative Splicing Involving a Novel Pathogenic Complex Allele. Front Genet 2021; 12:744884. [PMID: 34567092 PMCID: PMC8458739 DOI: 10.3389/fgene.2021.744884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022] Open
Abstract
This study reports on a Mexican mestizo patient with a multi-systemic syndrome including neurological involvement and a type I serum transferrin profile. Clinical exome sequencing revealed complex alleles in ALG1, the encoding gene for the chitobiosyldiphosphodolichol beta-mannosyltransferase that participates in the formation of the dolichol-pyrophosphate-GlcNAc2Man5, a lipid-linked glycan intermediate during N-glycan synthesis. The identified complex alleles were NM_019109.5(ALG1): c.[208 + 16_208 + 19dup; 208 + 25G > T] and NM_019109.5(ALG1): c.[208 + 16_208 + 19dup; 1312C > T]. Although both alleles carried the benign variant c.208 + 16_208 + 19dup, one allele carried a known ALG1 pathogenic variant (c.1312C > T), while the other carried a new uncharacterized variant (c.208 + 25G > T) causing non-functional alternative splicing that, in conjunction with the benign variant, defines the pathogenic protein effect (p.N70S_S71ins9). The presence in the patient’s serum of the pathognomonic N-linked mannose-deprived tetrasaccharide marker for ALG1-CDG (Neu5Acα2,6Galβ1,4-GlcNAcβ1,4GlcNAc) further supported this diagnosis. This is the first report of an ALG1-CDG patient from Latin America.
Collapse
Affiliation(s)
- Carlos Alberto González-Domínguez
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico.,Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Moisés O Fiesco-Roa
- Programa de Maestría y Doctorado en Ciencias Médicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City, Mexico.,Laboratorio de Citogenética, Instituto Nacional de Pediatría, Mexico City, Mexico
| | | | - Anke Paula Ingrid Kleinert-Altamirano
- Centro de Rehabilitación e Inclusión Infantil Teletón, Tuxtla Gutiérrez, Mexico.,Palmieri Metabolic Disease Laboratory, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Miao He
- Hospital Regional de Alta Especialidad Ciudad Salud, Tapachula, Mexico
| | | | - Kimiyo M Raymond
- Department of Laboratory Medicine and Pathology, Laboratory Genetics and Genomics, Mayo Clinic, Rochester, MN, United States
| | | | - Sandra Manrique-Hernández
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico.,Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Ana González-Jaimes
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Roberta Salinas-Marín
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Carolina Molina-Garay
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica, Secretaría de Salud, Mexico City, Mexico
| | - Karol Carrillo-Sánchez
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica, Secretaría de Salud, Mexico City, Mexico
| | - Luis Leonardo Flores-Lagunes
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica, Secretaría de Salud, Mexico City, Mexico
| | - Marco Jiménez-Olivares
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica, Secretaría de Salud, Mexico City, Mexico
| | - Anallely Muñoz-Rivas
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica, Secretaría de Salud, Mexico City, Mexico
| | - Mario E Cruz-Muñoz
- Laboratorio de Inmunología Molecular, Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Matilde Ruíz-García
- Departamento de Neurología, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Hudson H Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | - Carmen Alaez-Verson
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica, Secretaría de Salud, Mexico City, Mexico
| | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico.,Sociedad Latinoamericana de Glicobiología A.C., Cuernavaca, Mexico
| |
Collapse
|
6
|
Öncül Ü, Kose E, Eminoğlu FT. ALG1-CDG: A Patient with a Mild Phenotype and Literature Review. Mol Syndromol 2021; 13:69-74. [DOI: 10.1159/000517797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/10/2021] [Indexed: 11/19/2022] Open
Abstract
ALG1-congenital disorder of glycosylation (ALG1-CDG) is an autosomal recessive multisystem disease. We here present a patient with a mild phenotype of ALG1-CDG. A 15-month-old female was referred with hypotonia, failure to thrive, and developmental delay. At 8 months of age, failure to thrive, feeding difficulties and developmental delay became apparent, and an epileptic seizure was observed at 11 months of age. Progressive deterioration and swallowing difficulty were observed. A brain MRI revealed a widening of the cerebrospinal fluid spaces and ventricular system, and decreased protein C, protein S and antithrombin III levels were identified. The isoelectric focusing showed a type 1 pattern. A homozygous c.1076C>T (p.Ser359Leu) variant was found in the <i>ALG1</i> gene. CDG should be taken into consideration in patients presenting with unexplained multisystem involvement.
Collapse
|
7
|
Almannai M, Al Mahmoud RA, Mekki M, El-Hattab AW. Metabolic Seizures. Front Neurol 2021; 12:640371. [PMID: 34295297 PMCID: PMC8290068 DOI: 10.3389/fneur.2021.640371] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 05/21/2021] [Indexed: 12/13/2022] Open
Abstract
Metabolic diseases should always be considered when evaluating children presenting with seizures. This is because many metabolic disorders are potentially treatable and seizure control can be achieved when these diseases are appropriately treated. Seizures caused by underlying metabolic diseases (metabolic seizures) should be particularly considered in unexplained neonatal seizures, refractory seizures, seizures related to fasting or food intake, seizures associated with other systemic or neurologic features, parental consanguinity, and family history of epilepsy. Metabolic seizures can be caused by various amino acids metabolic disorders, disorders of energy metabolism, cofactor-related metabolic diseases, purine and pyrimidine metabolic diseases, congenital disorders of glycosylation, and lysosomal and peroxisomal disorders. Diagnosing metabolic seizures without delay is essential because the immediate initiation of appropriate therapy for many metabolic diseases can prevent or minimize complications.
Collapse
Affiliation(s)
- Mohammed Almannai
- Section of Medical Genetics, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Rabah A Al Mahmoud
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Pediatrics, University Hospital Sharjah, Sharjah, United Arab Emirates
| | - Mohammed Mekki
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Pediatrics, Al Qassimi Women's and Children's Hospital, Sharjah, United Arab Emirates
| | - Ayman W El-Hattab
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Clinical Genetics, University Hospital Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
8
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
9
|
Alsharhan H, Ng BG, Daniel EJP, Friedman J, Pivnick EK, Al-Hashem A, Faqeih EA, Liu P, Engelhardt NM, Keller KN, Chen J, Mazzeo PA, Rosenfeld JA, Bamshad MJ, Nickerson DA, Raymond KM, Freeze HH, He M, Edmondson AC, Lam C. Expanding the phenotype, genotype and biochemical knowledge of ALG3-CDG. J Inherit Metab Dis 2021; 44:987-1000. [PMID: 33583022 PMCID: PMC8282734 DOI: 10.1002/jimd.12367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/15/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022]
Abstract
Congenital disorders of glycosylation (CDGs) are a continuously expanding group of monogenic disorders of glycoprotein and glycolipid biosynthesis that cause multisystem diseases. Individuals with ALG3-CDG frequently exhibit severe neurological involvement (epilepsy, microcephaly, and hypotonia), ocular anomalies, dysmorphic features, skeletal anomalies, and feeding difficulties. We present 10 unreported individuals diagnosed with ALG3-CDG based on molecular and biochemical testing with 11 novel variants in ALG3, bringing the total to 40 reported individuals. In addition to the typical multisystem disease seen in ALG3-CDG, we expand the symptomatology of ALG3-CDG to now include endocrine abnormalities, neural tube defects, mild aortic root dilatation, immunodeficiency, and renal anomalies. N-glycan analyses of these individuals showed combined deficiencies of hybrid glycans and glycan extension beyond Man5 GlcNAc2 consistent with their truncated lipid-linked precursor oligosaccharides. This spectrum of N-glycan changes is unique to ALG3-CDG. These expanded features of ALG3-CDG facilitate diagnosis and suggest that optimal management should include baseline endocrine, renal, cardiac, and immunological evaluation at the time of diagnosis and with ongoing monitoring.
Collapse
Affiliation(s)
- Hind Alsharhan
- Department of Pediatrics, Division of Human Genetics,
Section of Metabolism, The Children’s Hospital of Philadelphia, Philadelphia,
Pennsylvania
- Department of Pathology and Laboratory Medicine,
Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Faculty of Medicine, Kuwait
University, Kuwait City, Kuwait
| | - Bobby G. Ng
- Human Genetics Program, Sanford Burnham Prebys Medical
Discovery Institute, La Jolla, California
| | - Earnest James Paul Daniel
- Department of Pathology and Laboratory Medicine,
Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jennifer Friedman
- Division of Neurosciences and Pediatrics, University of
California San Diego and Rady Children’s Hospital, San Diego,
California
| | - Eniko K. Pivnick
- Department of Pediatrics, Division of Medical Genetics,
University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee
| | - Amal Al-Hashem
- Department of Pediatrics, Prince Sultan Military Medical
City, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi
Arabia
| | - Eissa Ali Faqeih
- Section of Medical Genetics, Children’s Specialist
Hospital King Fahad Medical City, Riyadh, Saudi Arabia
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor
College of Medicine, Houston, Texas
- Baylor Genetics Laboratories, Houston, Texas
| | - Nicole M. Engelhardt
- Department of Pediatrics, Division of Human Genetics,
Section of Metabolism, The Children’s Hospital of Philadelphia, Philadelphia,
Pennsylvania
| | - Kierstin N. Keller
- Department of Pediatrics, Division of Human Genetics,
Section of Metabolism, The Children’s Hospital of Philadelphia, Philadelphia,
Pennsylvania
| | - Jie Chen
- Department of Pathology and Laboratory Medicine,
Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Pamela A. Mazzeo
- Department of Pediatrics, The Children’s Hospital
of Philadelphia, Philadelphia, Pennsylvania
| | | | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor
College of Medicine, Houston, Texas
- Baylor Genetics Laboratories, Houston, Texas
| | - Michael J. Bamshad
- Division of Genetic Medicine, Department of Pediatrics,
University of Washington School of Medicine, Seattle, Washington
- Department of Genome Sciences, University of Washington,
Seattle, Washington
- Brotman-Baty Institute, Seattle, Washington
| | - Deborah A. Nickerson
- Department of Genome Sciences, University of Washington,
Seattle, Washington
- Brotman-Baty Institute, Seattle, Washington
| | - Kimiyo M. Raymond
- Department of Laboratory Medicine and Pathology, Mayo
Clinic, Rochester, Minnesota
| | - Hudson H. Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical
Discovery Institute, La Jolla, California
| | - Miao He
- Department of Pathology and Laboratory Medicine,
Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Andrew C. Edmondson
- Department of Pediatrics, Division of Human Genetics,
Section of Metabolism, The Children’s Hospital of Philadelphia, Philadelphia,
Pennsylvania
| | - Christina Lam
- Division of Genetic Medicine, Department of Pediatrics,
University of Washington School of Medicine, Seattle, Washington
- Center of Integrated Brain Research, Seattle
Children’s Research Institute, Seattle, Washington
| |
Collapse
|
10
|
ALG3-CDG: a patient with novel variants and review of the genetic and ophthalmic findings. BMC Ophthalmol 2021; 21:249. [PMID: 34090370 PMCID: PMC8180164 DOI: 10.1186/s12886-021-02013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/26/2021] [Indexed: 12/01/2022] Open
Abstract
Background ALG3-CDG is a rare autosomal recessive disease. It is characterized by deficiency of alpha-1,3-mannosyltransferase caused by pathogenic variants in the ALG3 gene. Patients manifest with severe neurologic, cardiac, musculoskeletal and ophthalmic phenotype in combination with dysmorphic features, and almost half of them die before or during the neonatal period. Case presentation A 23 months-old girl presented with severe developmental delay, epilepsy, cortical atrophy, cerebellar vermis hypoplasia and ocular impairment. Facial dysmorphism, clubfeet and multiple joint contractures were observed already at birth. Transferrin isoelectric focusing revealed a type 1 pattern. Funduscopy showed hypopigmentation and optic disc pallor. Profound retinal ganglion cell loss and inner retinal layer thinning was documented on spectral-domain optical coherence tomography imaging. The presence of optic nerve hypoplasia was also supported by magnetic resonance imaging. A gene panel based next-generation sequencing and subsequent Sanger sequencing identified compound heterozygosity for two novel variants c.116del p.(Pro39Argfs*40) and c.1060 C > T p.(Arg354Cys) in ALG3. Conclusions Our study expands the spectrum of pathogenic variants identified in ALG3. Thirty-three variants in 43 subjects with ALG3-CDG have been reported. Literature review shows that visual impairment in ALG3-CDG is most commonly linked to optic nerve hypoplasia.
Collapse
|
11
|
Fang ZX, Xie LL, Yan LS, Lin H, Pan YN, Liu BK, Jiang Y, Cheng M, Li XJ, Jiang L. Clinical and genetic characteristics of epilepsy of infancy with migrating focal seizures in Chinese children. Epilepsy Res 2021; 174:106669. [PMID: 34020146 DOI: 10.1016/j.eplepsyres.2021.106669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/08/2021] [Accepted: 05/10/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Epilepsy of infancy with migrating focal seizures (EIMFS) is a rare and severe developmental epileptic encephalopathy. The aim of this study was to improve our understanding of EIMFS by using phenotype-genotype correlation. METHODS We recruited, performed clinical genetic testing, and summarized the clinical features and genetic characteristics in five patients with EIMFS in China. RESULTS The five recruited patients included 2 males and 3 females. The median age of seizure onset was 2 months (range, day 3 to 3 months). All patients exhibited the characteristics of clinically migrating focal motor (tonic or clonic) seizures. Typical migrating ictal electrical patterns were found in 1 patient; the remaining four patients presented with overlapping seizures with different areas of ictal onset in differing hemispheres. All the patients had the associated variants, including KCNT1, SCN1A, SCN2A, TBC1D24 and ALG1. All patients received two or more antiseizure medications, and 1 patient became seizure-free, 1 reported >75 % seizure reduction, 2 reported >50 % seizure reduction, and 1 patient showed no improvement. Varying degrees of psychomotor developmental delays were observed in all patients. CONCLUSIONS The course of EIMFS could be related to the type of gene variant present, and different genes may have specific clinical features. Larger cohorts are required to elucidate such potential phenotype-genotype correlations.
Collapse
Affiliation(s)
- Zhi-Xu Fang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Ling-Ling Xie
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Li-Si Yan
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Huan Lin
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Ya-Nan Pan
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Ben-Ke Liu
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Yan Jiang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Min Cheng
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Xiu-Juan Li
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Li Jiang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China.
| |
Collapse
|
12
|
Paprocka J, Jezela-Stanek A, Tylki-Szymańska A, Grunewald S. Congenital Disorders of Glycosylation from a Neurological Perspective. Brain Sci 2021; 11:brainsci11010088. [PMID: 33440761 PMCID: PMC7827962 DOI: 10.3390/brainsci11010088] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/01/2021] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Most plasma proteins, cell membrane proteins and other proteins are glycoproteins with sugar chains attached to the polypeptide-glycans. Glycosylation is the main element of the post-translational transformation of most human proteins. Since glycosylation processes are necessary for many different biological processes, patients present a diverse spectrum of phenotypes and severity of symptoms. The most frequently observed neurological symptoms in congenital disorders of glycosylation (CDG) are: epilepsy, intellectual disability, myopathies, neuropathies and stroke-like episodes. Epilepsy is seen in many CDG subtypes and particularly present in the case of mutations in the following genes: ALG13, DOLK, DPAGT1, SLC35A2, ST3GAL3, PIGA, PIGW, ST3GAL5. On brain neuroimaging, atrophic changes of the cerebellum and cerebrum are frequently seen. Brain malformations particularly in the group of dystroglycanopathies are reported. Despite the growing number of CDG patients in the world and often neurological symptoms dominating in the clinical picture, the number of performed screening tests eg transferrin isoforms is systematically decreasing as broadened genetic testing is recently more favored. The aim of the review is the summary of selected neurological symptoms in CDG described in the literature in one paper. It is especially important for pediatric neurologists not experienced in the field of metabolic medicine. It may help to facilitate the diagnosis of this expanding group of disorders. Biochemically, this paper focuses on protein glycosylation abnormalities.
Collapse
Affiliation(s)
- Justyna Paprocka
- Department of Pediatric Neurology, Faculty of Medical Science in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
- Correspondence: ; Tel.: +48-606-415-888
| | - Aleksandra Jezela-Stanek
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland;
| | - Anna Tylki-Szymańska
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, W 04-730 Warsaw, Poland;
| | - Stephanie Grunewald
- NIHR Biomedical Research Center (BRC), Metabolic Unit, Great Ormond Street Hospital and Institute of Child Health, University College London, London SE1 9RT, UK;
| |
Collapse
|
13
|
Huo J, Ren S, Gao P, Wan D, Rong S, Li X, Liu S, Xu S, Sun K, Guo B, Wang P, Yu B, Wu J, Wang F, Sun T. ALG13 participates in epileptogenesis via regulation of GABA A receptors in mouse models. Cell Death Discov 2020; 6:87. [PMID: 33014431 PMCID: PMC7499177 DOI: 10.1038/s41420-020-00319-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/09/2020] [Accepted: 09/01/2020] [Indexed: 12/23/2022] Open
Abstract
ALG13 (asparagine-linked glycosylation 13) plays crucial roles in the process of N-linked glycosylation. Mutations of the ALG13 gene underlie congenital disorders of glycosylation type I (CDG-I), a rare human genetic disorder with defective glycosylation. Epilepsy is commonly observed in congenital disorders of glycosylation type I (CDG-I). In our study, we found that about 20% of adult ALG13KO knockout mice display spontaneous seizures, which were identified in a simultaneous video and intracranial EEG recording. However, the mechanisms of ALG13 by which deficiency leads to epilepsy are unknown. Whole-cell patch-clamp recordings demonstrated that ALG13KO mice show a marked decrease in gamma-aminobutyric acid A receptor (GABAAR)-mediated inhibitory synaptic transmission. Furthermore, treatment with low-dose diazepam (a positive allosteric modulator of GABAA receptors), which enhances GABAAR function, also markedly ameliorates severity of epileptic seizures in ALG13KO mice. Moreover, ALG13 may influenced the expression of GABAARα2 membrane and total protein by changing transcription level of GABAARα2. Furthermore, protein interactions between ALG13 and GABAARα2 were observed in the cortex of wild-type mice. Overall, these results reveal that ALG13 may be involved in the occurrence of epilepsy through the regulation of GABAAR function, and may provide new insight into epilepsy prevention and treatment.
Collapse
Affiliation(s)
- Junming Huo
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001 Ningxia China
| | - Shuanglai Ren
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001 Ningxia China
| | - Peng Gao
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001 Ningxia China
- Department of Neurosurgery, General Hospital of Ningxia Medical University, 804 Shengli Street, Yinchuan, 750001 Ningxia China
| | - Ding Wan
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001 Ningxia China
- Department of Neurosurgery, General Hospital of Ningxia Medical University, 804 Shengli Street, Yinchuan, 750001 Ningxia China
| | - Shikuo Rong
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001 Ningxia China
| | - Xinxiao Li
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001 Ningxia China
| | - Shenhai Liu
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001 Ningxia China
| | - Siying Xu
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001 Ningxia China
| | - Kuisheng Sun
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001 Ningxia China
| | - Baorui Guo
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001 Ningxia China
| | - Peng Wang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001 Ningxia China
| | - Baoli Yu
- Renji Hospital Shanghai Jiaotong University School of Medicine, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Ji Wu
- Renji Hospital Shanghai Jiaotong University School of Medicine, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200240 China
- Ningxia Key Laboratory of Reproduction and Genetics, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001 Ningxia China
| | - Feng Wang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001 Ningxia China
- Department of Neurosurgery, General Hospital of Ningxia Medical University, 804 Shengli Street, Yinchuan, 750001 Ningxia China
| | - Tao Sun
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001 Ningxia China
| |
Collapse
|
14
|
Scheffer IE, Boysen KE, Schneider AL, Myers CT, Mehaffey MG, Rochtus AM, Yuen YP, Ronen GM, Chak WK, Gill D, Poduri A, Mefford HC. BRAT1 encephalopathy: a recessive cause of epilepsy of infancy with migrating focal seizures. Dev Med Child Neurol 2020; 62:1096-1099. [PMID: 31868227 DOI: 10.1111/dmcn.14428] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/04/2019] [Indexed: 01/03/2023]
Abstract
Epilepsy of infancy with migrating focal seizures (EIMFS), one of the most severe developmental and epileptic encephalopathy syndromes, is characterized by seizures that migrate from one hemisphere to the other. EIMFS is genetically heterogeneous with 33 genes. We report five patients with EIMFS caused by recessive BRAT1 variants, identified via next generation sequencing. Recessive pathogenic variants in BRAT1 cause the rigidity and multifocal seizure syndrome, lethal neonatal with hypertonia, microcephaly, and intractable multifocal seizures. The epileptology of BRAT1 encephalopathy has not been well described. All five patients were profoundly impaired with seizure onset in the first week of life and focal seizure migration between hemispheres. We show that BRAT1 is an important recessive cause of EIMFS with onset in the first week of life, profound impairment, and early death. Early recognition of this genetic aetiology will inform management and reproductive counselling.
Collapse
Affiliation(s)
- Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia.,Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia.,Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Paediatrics, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Katja E Boysen
- Epilepsy Research Centre, Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Amy L Schneider
- Epilepsy Research Centre, Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Candace T Myers
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Michele G Mehaffey
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Anne M Rochtus
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA
| | | | - Gabriel M Ronen
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Wai Km Chak
- Tuen Mun Hospital, New Territories, West Cluster, Hong Kong
| | - Deepak Gill
- T. Y. Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Annapurna Poduri
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Heather C Mefford
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| |
Collapse
|
15
|
PAKETCI C, EDEM P, HIZ S, SONMEZLER E, SOYDEMIR D, UZAN GS, OKTAY Y, O’HEIR E, BELTRAN S, LAURIE S, TÖPF A, LOCHMULLER H, HORVATH R, YIS U. Successful treatment of intractable epilepsy with ketogenic diet therapy in twins with ALG3-CDG. Brain Dev 2020; 42:539-545. [PMID: 32389449 PMCID: PMC7906126 DOI: 10.1016/j.braindev.2020.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/23/2020] [Accepted: 04/19/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Congenital disorders of glycosylation (CDG) is a heterogeneous group of congenital metabolic diseases with multisystem clinical involvement. ALG3-CDG is a very rare subtype with only 24 cases reported so far. CASE Here, we report two siblings with dysmorphic features, growth retardation, microcephaly, intractable epilepsy, and hemangioma in the frontal, occipital and lumbosacral regions. RESULTS We studied two siblings by whole exome sequencing. A pathogenic variant in ALG3 (NM_005787.6: c.165C > T; p.Gly55=) that had been previously associated with congenital glycolysis defect type 1d was identified. Their intractable seizures were controlled by ketogenic diet. CONCLUSION Although prominent findings of growth retardation and microcephaly seen in our patients have been extensively reported before, presence of hemangioma is a novel finding that may be used as an indication for ALG3-CDG diagnosis. Our patients are the first reported cases whose intractable seizures were controlled with ketogenic diet. This report adds ketogenic diet as an option for treatment of intractable epilepsy in ALG3-CDG.
Collapse
Affiliation(s)
- C PAKETCI
- Department of Paediatric Neurology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - P EDEM
- Department of Paediatric Neurology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - S HIZ
- Department of Paediatric Neurology, School of Medicine, Dokuz Eylul University, Izmir, Turkey.,Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
| | - E SONMEZLER
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - D SOYDEMIR
- Department of Paediatric Neurology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - GS UZAN
- Department of Paediatric Neurology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Y OKTAY
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - E O’HEIR
- Center for Mendelian Genomics and Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - S BELTRAN
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - S LAURIE
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - A TÖPF
- John Walton Muscular Dystrophy Research Centre, Institute of Translational and Clinical Research, Newcastle University and Newcastle Hospitals, Newcastle upon Tyne, UK
| | - H LOCHMULLER
- Department of Neuropediatrics and Muscle Disorders, Medical Center – University of Freiburg, Faculty of Medicine, Freiburg, Germany,Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain,Children’s Hospital of Eastern Ontario Research Institute; Division of Neurology, Department of Medicine, The Ottawa Hospital; and Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| | - R HORVATH
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - U YIS
- Department of Paediatric Neurology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
16
|
Zhang R, Tang BS, Guo JF. Research advances on neurite outgrowth inhibitor B receptor. J Cell Mol Med 2020; 24:7697-7705. [PMID: 32542927 PMCID: PMC7348171 DOI: 10.1111/jcmm.15391] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/17/2020] [Accepted: 04/27/2020] [Indexed: 12/24/2022] Open
Abstract
Neurite outgrowth inhibitor‐B (Nogo‐B) is a membrane protein which is extensively expressed in multiple organs, especially in endothelial cells and vascular smooth muscle cells of blood vessels and belongs to the reticulon protein family. Notably, its specific receptor, Nogo‐B receptor (NgBR), encoded by NUS1, has been implicated in many crucial cellular processes, such as cholesterol trafficking, lipid metabolism, dolichol synthesis, protein N‐glycosylation, vascular remodelling, angiogenesis, tumorigenesis and neurodevelopment. In recent years, accumulating studies have demonstrated the statistically significant changes of NgBR expression levels in human diseases, including Niemann‐Pick type C disease, fatty liver, congenital disorders of glycosylation, persistent pulmonary hypertension of the newborn, invasive ductal breast carcinoma, malignant melanoma, non‐small cell lung carcinoma, paediatric epilepsy and Parkinson's disease. Besides, both the in vitro and in vivo studies have shown that NgBR overexpression or knockdown contribute to the alteration of various pathophysiological processes. Thus, there is a broad development potential in therapeutic strategies by modifying the expression levels of NgBR.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bei-Sha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Parkinson's Disease Center, Beijing Institute for Brain Disorders, Beijing, China
| | - Ji-Feng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| |
Collapse
|
17
|
CRISPR/Cas9-mediated mutation of asparagine-linked glycosylation 13 transcript variant 1 causes epilepsy in mice. JOURNAL OF BIO-X RESEARCH 2020. [DOI: 10.1097/jbr.0000000000000059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
18
|
ALG13 Deficiency Associated with Increased Seizure Susceptibility and Severity. Neuroscience 2019; 409:204-221. [DOI: 10.1016/j.neuroscience.2019.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/02/2019] [Accepted: 03/04/2019] [Indexed: 01/31/2023]
|
19
|
van Karnebeek CDM, Sayson B, Lee JJY, Tseng LA, Blau N, Horvath GA, Ferreira CR. Metabolic Evaluation of Epilepsy: A Diagnostic Algorithm With Focus on Treatable Conditions. Front Neurol 2018; 9:1016. [PMID: 30559706 PMCID: PMC6286965 DOI: 10.3389/fneur.2018.01016] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/12/2018] [Indexed: 01/04/2023] Open
Abstract
Although inborn errors of metabolism do not represent the most common cause of seizures, their early identification is of utmost importance, since many will require therapeutic measures beyond that of common anti-epileptic drugs, either in order to control seizures, or to decrease the risk of neurodegeneration. We translate the currently-known literature on metabolic etiologies of epilepsy (268 inborn errors of metabolism belonging to 21 categories, with 74 treatable errors), into a 2-tiered diagnostic algorithm, with the first-tier comprising accessible, affordable, and less invasive screening tests in urine and blood, with the potential to identify the majority of treatable conditions, while the second-tier tests are ordered based on individual clinical signs and symptoms. This resource aims to support the pediatrician, neurologist, biochemical, and clinical geneticists in early identification of treatable inborn errors of metabolism in a child with seizures, allowing for timely initiation of targeted therapy with the potential to improve outcomes.
Collapse
Affiliation(s)
- Clara D M van Karnebeek
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada.,Departments of Pediatrics and Clinical Genetics, Emma Children's Hospital, Amsterdam University Medical Centres, Amsterdam, Netherlands
| | - Bryan Sayson
- Division of Biochemical Diseases, Department of Pediatrics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Jessica J Y Lee
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Laura A Tseng
- Departments of Pediatrics and Clinical Genetics, Emma Children's Hospital, Amsterdam University Medical Centres, Amsterdam, Netherlands
| | - Nenad Blau
- Dietmar-Hopp Metabolic Center, University Children's Hospital, Heidelberg, Germany.,Division of Metabolism, University Children's Hospital, Zurich, Switzerland
| | - Gabriella A Horvath
- Division of Biochemical Diseases, Department of Pediatrics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Carlos R Ferreira
- Division of Genetics and Metabolism, Children's National Health System, Washington, DC, United States.,National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
20
|
Ng BG, Underhill HR, Palm L, Bengtson P, Rozet JM, Gerber S, Munnich A, Zanlonghi X, Stevens CA, Kircher M, Nickerson DA, Buckingham KJ, Josephson KD, Shendure J, Bamshad MJ, Freeze HH, Eklund EA. DPAGT1 Deficiency with Encephalopathy (DPAGT1-CDG): Clinical and Genetic Description of 11 New Patients. JIMD Rep 2018; 44:85-92. [PMID: 30117111 DOI: 10.1007/8904_2018_128] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022] Open
Abstract
Pathogenic mutations in DPAGT1 cause a rare type of a congenital disorder of glycosylation termed DPAGT1-CDG or, alternatively, a milder version with only myasthenia known as DPAGT1-CMS. Fourteen disease-causing mutations in 28 patients from 10 families have previously been reported to cause the systemic form, DPAGT1-CDG. We here report on another 11 patients from 8 families and add 10 new mutations. Most patients have a very severe disease course, where common findings are pronounced muscular hypotonia, intractable epilepsy, global developmental delay/intellectual disability, and early death. We also present data on three affected females that are young adults and have a somewhat milder, stable disease. Our findings expand both the molecular and clinical knowledge of previously published data but also widen the phenotypic spectrum of DPAGT1-CDG.
Collapse
Affiliation(s)
- Bobby G Ng
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Hunter R Underhill
- Division of Medical Genetics, University of Utah, Salt Lake City, UT, USA
| | - Lars Palm
- Division of Pediatrics, Skane University Hospital, Malmö, Sweden
| | - Per Bengtson
- Clinical Chemistry, Skane University Hospital, Lund, Sweden
| | - Jean-Michel Rozet
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Descartes University, Paris, France
| | - Sylvie Gerber
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Descartes University, Paris, France
| | - Arnold Munnich
- Department of Genetics, Hôpital Necker-Enfants Malades, APHP, Paris Descartes University, Paris, France
| | | | - Cathy A Stevens
- Department of Pediatrics, University of Tennessee College of Medicine, Chattanooga, TN, USA
| | - Martin Kircher
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Kati J Buckingham
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Michael J Bamshad
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.,Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | | - Hudson H Freeze
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Erik A Eklund
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA. .,Division of Pediatrics, Lund University, Lund, Sweden.
| |
Collapse
|
21
|
Quelhas D, Jaeken J, Fortuna A, Azevedo L, Bandeira A, Matthijs G, Martins E. RFT1-CDG: Absence of Epilepsy and Deafness in Two Patients with Novel Pathogenic Variants. JIMD Rep 2018; 43:111-116. [PMID: 29923091 DOI: 10.1007/8904_2018_112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/29/2018] [Accepted: 05/03/2018] [Indexed: 12/14/2022] Open
Abstract
This report is on two novel patients with RFT1-CDG. Their phenotype is characterized by mild psychomotor disability, behavioral problems, ataxia, and mild dysmorphism. Neither of them shows signs of epilepsy, which was observed in all RFT1-CDG patients reported to date (n = 14). Also, deafness, which is often associated with this condition, was not observed in our patients. Molecular analysis of RFT1 showed biallelic missense variants including three novel ones: c.827G > A (p.G276D), c.73C > T (p.R25W), and c.208T > C (p.C70R).
Collapse
Affiliation(s)
- D Quelhas
- Unidade de Bioquímica Genética, Centro de Genética Médica, Centro Hospitalar do Porto, Porto, Portugal. .,Unit for Multidisciplinary Research in Biomedicine, ICBAS, UP, Porto, Portugal.
| | - J Jaeken
- Center for Metabolic Diseases, KU Leuven, Leuven, Belgium
| | - A Fortuna
- Unidade de Bioquímica Genética, Centro de Genética Médica, Centro Hospitalar do Porto, Porto, Portugal.,Unit for Multidisciplinary Research in Biomedicine, ICBAS, UP, Porto, Portugal
| | - L Azevedo
- i3S-Instituto de Investigação e Inovação em Saúde, UP, Population Genetics and Evolution Group, Porto, Portugal.,IPATIMUP-Institute of Molecular Pathology and Immunology, UP, Porto, Portugal.,FCUP-Department of Biology, Faculty of Sciences, UP, Porto, Portugal
| | - A Bandeira
- Centro Referência Doenças Hereditárias do Metabolismo, Centro Hospitalar do Porto, Porto, Portugal
| | - G Matthijs
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - E Martins
- Unit for Multidisciplinary Research in Biomedicine, ICBAS, UP, Porto, Portugal.,Centro Referência Doenças Hereditárias do Metabolismo, Centro Hospitalar do Porto, Porto, Portugal
| |
Collapse
|
22
|
Gupta N, Tewari VV, Kumar M, Langeh N, Gupta A, Mishra P, Kaur P, Ramprasad V, Murugan S, Kumar R, Jana M, Kabra M. Asparagine Synthetase deficiency-report of a novel mutation and review of literature. Metab Brain Dis 2017; 32:1889-1900. [PMID: 28776279 DOI: 10.1007/s11011-017-0073-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 07/19/2017] [Indexed: 02/01/2023]
Abstract
Asparagine synthetase deficiency is a rare inborn error of metabolism caused by a defect in ASNS, a gene encoding asparagine synthetase. It manifests with a severe neurological phenotype manifesting as severe developmental delay, congenital microcephaly, spasticity and refractory seizures. To date, nineteen patients from twelve unrelated families have been identified. Majority of the mutations are missense and nonsense mutations in homozygous or compound heterozygous state. We add another case from India which harbored a novel homozygous missense variation in exon 11 and compare the current case with previously reported cases.
Collapse
Affiliation(s)
- Neerja Gupta
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | | | - Manoj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Nitika Langeh
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Aditi Gupta
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Pallavi Mishra
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Vedam Ramprasad
- Department of Radiology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sakthivel Murugan
- Department of Radiology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Reema Kumar
- Department of Pediatrics, Army Hospital (Referral & Research), New Delhi, India
| | - Manisha Jana
- Department of Radiology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Madhulika Kabra
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| |
Collapse
|
23
|
Long SL, Li YK, Xie YJ, Long ZF, Shi JF, Mo ZC. Neurite Outgrowth Inhibitor B Receptor: A Versatile Receptor with Multiple Functions and Actions. DNA Cell Biol 2017; 36:1142-1150. [PMID: 29058484 DOI: 10.1089/dna.2017.3813] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Members of the reticulon protein family are predominantly distributed within the endoplasmic reticulum. The neurite outgrowth inhibitor (Nogo) has three subtypes, including Nogo-A (200 kDa), Nogo-B (55 kDa), and Nogo-C (25 kDa). Nogo-A and Nogo-C are potent Nogos that are predominantly expressed in the central nervous system. Nogo-B, the splice variant of reticulon-4, is expressed widely in multiple human organ systems, including the liver, lung, kidney, blood vessels, and inflammatory cells. Moreover, the Nogo-B receptor (NgBR) can interact with Nogo-B and can independently affect nervous system regeneration, the chemotaxis of endothelial cells, proliferation, and apoptosis. In recent years, it has been demonstrated that NgBR plays an important role in human pathophysiological processes, including lipid metabolism, angiogenesis, N-glycosylation, cell apoptosis, chemoresistance in human hepatocellular carcinoma, and epithelial-mesenchymal transition. The pathophysiologic effects of NgBR have garnered increased attention, and the detection and enhancement of NgBR expression may be a novel approach to monitor the development and to improve the prognosis of relevant human clinical diseases.
Collapse
Affiliation(s)
- Shuang-Lian Long
- Department of Histology and Embryology, Clinical Anatomy and Reproductive Medicine Application Institute, University of South China , Hengyang, China
| | - Yu-Kun Li
- Department of Histology and Embryology, Clinical Anatomy and Reproductive Medicine Application Institute, University of South China , Hengyang, China
| | - Yuan-Jie Xie
- Department of Histology and Embryology, Clinical Anatomy and Reproductive Medicine Application Institute, University of South China , Hengyang, China
| | - Zhi-Feng Long
- Department of Histology and Embryology, Clinical Anatomy and Reproductive Medicine Application Institute, University of South China , Hengyang, China
| | - Jin-Feng Shi
- Department of Histology and Embryology, Clinical Anatomy and Reproductive Medicine Application Institute, University of South China , Hengyang, China
| | - Zhong-Cheng Mo
- Department of Histology and Embryology, Clinical Anatomy and Reproductive Medicine Application Institute, University of South China , Hengyang, China
| |
Collapse
|
24
|
Kasapkara ÇS, Barış Z, Kılıç M, Yüksel D, Keldermans L, Matthijs G, Jaeken J. PMM2-CDG and sensorineural hearing loss. J Inherit Metab Dis 2017; 40:629-630. [PMID: 28762107 DOI: 10.1007/s10545-017-0073-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/05/2017] [Accepted: 07/10/2017] [Indexed: 10/19/2022]
Affiliation(s)
- Çiğdem Seher Kasapkara
- Department of Pediatric Metabolism and Nutrition, Dr. Sami Ulus Maternity and Children's Training and Research Hospital, Ankara, Turkey.
| | - Zeren Barış
- Department of Pediatric Gastroenterology, Başkent University, Ankara, Turkey
| | - Mustafa Kılıç
- Department of Pediatric Metabolism and Nutrition, Dr. Sami Ulus Maternity and Children's Training and Research Hospital, Ankara, Turkey
| | - Deniz Yüksel
- Department of Pediatric Neurology, Dr. Sami Ulus Maternity and Children's Training and Research Hospital, Ankara, Turkey
| | | | - Gert Matthijs
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Jaak Jaeken
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| |
Collapse
|
25
|
Alsubhi S, Alhashem A, Faqeih E, Alfadhel M, Alfaifi A, Altuwaijri W, Alsahli S, Aldhalaan H, Alkuraya FS, Hundallah K, Mahmoud A, Alasmari A, Mutairi FA, Abduraouf H, AlRasheed L, Alshahwan S, Tabarki B. Congenital disorders of glycosylation: The Saudi experience. Am J Med Genet A 2017; 173:2614-2621. [DOI: 10.1002/ajmg.a.38358] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/10/2017] [Accepted: 06/14/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Sarah Alsubhi
- Division of Pediatric Neurology; Department of Pediatrics, Prince Sultan Military Medical City; Riyadh Saudi Arabia
| | - Amal Alhashem
- Division of Genetics; Department of Pediatrics; Prince Sultan Military Medical City; Riyadh Saudi Arabia
| | - Eissa Faqeih
- Department of Pediatric Subspecialties; Children's Hospital, King Fahad Medical City; Riyadh Saudi Arabia
| | - Majid Alfadhel
- Division of Genetics; Department of Pediatrics, King Abdulaziz Medical City; Riyadh Saudi Arabia
| | - Abdullah Alfaifi
- Division of Genetics; Department of Pediatrics, King Abdulaziz Medical City; Riyadh Saudi Arabia
| | - Waleed Altuwaijri
- Division of Pediatric Neurology; Department of Pediatrics, King Abdulaziz Medical City; Riyadh Saudi Arabia
| | - Saud Alsahli
- Division of Genetics; Department of Pediatrics, King Abdulaziz Medical City; Riyadh Saudi Arabia
| | - Hesham Aldhalaan
- Division of Pediatric Neurology; Department of Neurosciences, King Faisal Specialist Hospital and Research Center; Riyadh Saudi Arabia
| | - Fowzan S. Alkuraya
- Department of Genetics; King Faisal Specialist Hospital and Research Center; Riyadh Saudi Arabia
- Department of Anatomy and Cell Biology; College of Medicine, Alfaisal University; Riyadh Saudi Arabia
| | - Khalid Hundallah
- Division of Pediatric Neurology; Department of Pediatrics, Prince Sultan Military Medical City; Riyadh Saudi Arabia
| | - Adel Mahmoud
- Department of Pediatric Subspecialties; Children's Hospital, King Fahad Medical City; Riyadh Saudi Arabia
| | - Ali Alasmari
- Department of Pediatric Subspecialties; Children's Hospital, King Fahad Medical City; Riyadh Saudi Arabia
| | - Fuad Al Mutairi
- Division of Genetics; Department of Pediatrics, King Abdulaziz Medical City; Riyadh Saudi Arabia
| | - Hanem Abduraouf
- Division of Genetics; Department of Pediatrics; Prince Sultan Military Medical City; Riyadh Saudi Arabia
| | - Layan AlRasheed
- Division of Genetics; Department of Pediatrics; Prince Sultan Military Medical City; Riyadh Saudi Arabia
| | - Saad Alshahwan
- Division of Pediatric Neurology; Department of Pediatrics, Prince Sultan Military Medical City; Riyadh Saudi Arabia
| | - Brahim Tabarki
- Division of Pediatric Neurology; Department of Pediatrics, Prince Sultan Military Medical City; Riyadh Saudi Arabia
| |
Collapse
|
26
|
Pérez-Cerdá C, Girós ML, Serrano M, Ecay MJ, Gort L, Pérez Dueñas B, Medrano C, García-Alix A, Artuch R, Briones P, Pérez B. A Population-Based Study on Congenital Disorders of Protein N- and Combined with O-Glycosylation Experience in Clinical and Genetic Diagnosis. J Pediatr 2017; 183:170-177.e1. [PMID: 28139241 DOI: 10.1016/j.jpeds.2016.12.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/18/2016] [Accepted: 12/20/2016] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To describe the clinical, biochemical, and genetic features of patients with congenital disorders of glycosylation (CDG) identified in Spain during the last 20 years. STUDY DESIGN Patients were selected among those presenting with multisystem disease of unknown etiology. The isoforms of transferrin and of ApoC3 and dolichols were analyzed in serum; phosphomannomutase and mannosephosphate isomerase activities were measured in fibroblasts. Conventional or massive parallel sequencing (customized panel or Illumina Clinical-Exome Sequencing TruSight One Gene Panel) was used to identify genes and mutations. RESULTS Ninety-seven patients were diagnosed with 18 different CDG. Eighty-nine patients had a type 1 transferrin profile; 8 patients had a type 2 transferrin profile, with 6 of them showing an alteration in the ApoC3 isoform profile. A total of 75% of the patients had PMM2-CDG presenting with a heterogeneous mutational spectrum. The remaining patients showed mutations in any of the following genes: MPI, PGM1, GFPT1, SRD5A3, DOLK, DPGAT1, ALG1, ALG6, RFT1, SSR4, B4GALT1, DPM1, COG6, COG7, COG8, ATP6V0A2, and CCDC115. CONCLUSION Based on literature and on this population-based study of CDG, a comprehensive scheme including reported clinical signs of CDG is offered, which will hopefully reduce the timeframe from clinical suspicion to genetic confirmation. The different defects of CDG identified in Spain have contributed to expand the knowledge of CDG worldwide. A predominance of PMM2 deficiency was detected, with 5 novel PMM2 mutations being described.
Collapse
Affiliation(s)
- Celia Pérez-Cerdá
- Center of Molecular Biology-Severo Ochoa, University Autonomous of Madrid-Spanish National Research Council, La Paz Institute for Health Research, Center for Biomedical Research on Rare Diseases, Madrid, Spain.
| | - Ma Luisa Girós
- Inborn Errors of Metabolism, Biochemical and Molecular Genetics Serv., Biomedical Diagnostic Center, Hospital Clinic, August Pi i Sunyer Biomedical Research Institute, Center for Biomedical Research on Rare Diseases, Barcelona, Spain
| | - Mercedes Serrano
- Department of Pediatric Neurology, Institute of Pediatric Research-Hospital Sant Joan de Déu, Center for Biomedical Research on Rare Diseases, Barcelona, Spain; Department of Clinical Biochemistry, Institute of Pediatric Research-Hospital Sant Joan de Déu, Centre for Biomedical Research on Rare Diseases, Barcelona, Spain
| | - M Jesús Ecay
- Center of Molecular Biology-Severo Ochoa, University Autonomous of Madrid-Spanish National Research Council, La Paz Institute for Health Research, Center for Biomedical Research on Rare Diseases, Madrid, Spain
| | - Laura Gort
- Inborn Errors of Metabolism, Biochemical and Molecular Genetics Serv., Biomedical Diagnostic Center, Hospital Clinic, August Pi i Sunyer Biomedical Research Institute, Center for Biomedical Research on Rare Diseases, Barcelona, Spain
| | - Belén Pérez Dueñas
- Department of Pediatric Neurology, Institute of Pediatric Research-Hospital Sant Joan de Déu, Center for Biomedical Research on Rare Diseases, Barcelona, Spain; Department of Clinical Biochemistry, Institute of Pediatric Research-Hospital Sant Joan de Déu, Centre for Biomedical Research on Rare Diseases, Barcelona, Spain
| | - Celia Medrano
- Center of Molecular Biology-Severo Ochoa, University Autonomous of Madrid-Spanish National Research Council, La Paz Institute for Health Research, Center for Biomedical Research on Rare Diseases, Madrid, Spain
| | - Alfredo García-Alix
- Division of Neonatology, Institute of Pediatric Research-Hospital San Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Rafael Artuch
- Department of Pediatric Neurology, Institute of Pediatric Research-Hospital Sant Joan de Déu, Center for Biomedical Research on Rare Diseases, Barcelona, Spain; Department of Clinical Biochemistry, Institute of Pediatric Research-Hospital Sant Joan de Déu, Centre for Biomedical Research on Rare Diseases, Barcelona, Spain
| | - Paz Briones
- Inborn Errors of Metabolism, Biochemical and Molecular Genetics Serv., Biomedical Diagnostic Center, Hospital Clinic, August Pi i Sunyer Biomedical Research Institute, Center for Biomedical Research on Rare Diseases, Barcelona, Spain
| | - Belén Pérez
- Center of Molecular Biology-Severo Ochoa, University Autonomous of Madrid-Spanish National Research Council, La Paz Institute for Health Research, Center for Biomedical Research on Rare Diseases, Madrid, Spain
| |
Collapse
|
27
|
Al Teneiji A, Bruun TUJ, Sidky S, Cordeiro D, Cohn RD, Mendoza-Londono R, Moharir M, Raiman J, Siriwardena K, Kyriakopoulou L, Mercimek-Mahmutoglu S. Phenotypic and genotypic spectrum of congenital disorders of glycosylation type I and type II. Mol Genet Metab 2017; 120:235-242. [PMID: 28122681 DOI: 10.1016/j.ymgme.2016.12.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/28/2016] [Accepted: 12/29/2016] [Indexed: 11/21/2022]
Abstract
BACKGROUND Congenital disorders of glycosylation (CDG) are inborn defects of glycan metabolism. They are multisystem disorders. Analysis of transferrin isoforms is applied as a screening test for CDG type I (CDG-I) and type II (CDG-II). We performed a retrospective cohort study to determine spectrum of phenotype and genotype and prevalence of the different subtypes of CDG-I and CDG-II. MATERIAL AND METHODS All patients with CDG-I and CDG-II evaluated in our institution's Metabolic Genetics Clinics were included. Electronic and paper patient charts were reviewed. We set-up a high performance liquid chromatography transferrin isoelectric focusing (TIEF) method to measure transferrin isoforms in our Institution. We reviewed the literature for the rare CDG-I and CDG-II subtypes seen in our Institution. RESULTS Fifteen patients were included: 9 with PMM2-CDG and 6 with non-PMM2-CDG (one ALG3-CDG, one ALG9-CDG, two ALG11-CDG, one MPDU1-CDG and one ATP6V0A2-CDG). All patients with PMM2-CDG and 5 patients with non-PMM2-CDG showed abnormal TIEF suggestive of CDG-I or CDG-II pattern. In all patients, molecular diagnosis was confirmed either by single gene testing, targeted next generation sequencing for CDG genes, or by whole exome sequencing. CONCLUSION We report 15 new patients with CDG-I and CDG-II. Whole exome sequencing will likely identify more patients with normal TIEF and expand the phenotypic spectrum of CDG-I and CDG-II.
Collapse
Affiliation(s)
- Amal Al Teneiji
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Theodora U J Bruun
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada; Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Sarah Sidky
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Dawn Cordeiro
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ronald D Cohn
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada; Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Roberto Mendoza-Londono
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada; Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mahendranath Moharir
- Division of Neurology, Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | - Lianna Kyriakopoulou
- Division of Genome Diagnostics, Department of Paediatric Laboratory Medicine, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Saadet Mercimek-Mahmutoglu
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada; Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
28
|
Varadkar S. The biochemical basis of genetic epilepsies and the genetic basis of inherited metabolic disease. Dev Med Child Neurol 2016; 58:1001-2. [PMID: 27302035 DOI: 10.1111/dmcn.13184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Sophia Varadkar
- Neurosciences Unit, Great Ormond Street Hospital, London, UK
| |
Collapse
|
29
|
Grabińska KA, Park EJ, Sessa WC. cis-Prenyltransferase: New Insights into Protein Glycosylation, Rubber Synthesis, and Human Diseases. J Biol Chem 2016; 291:18582-90. [PMID: 27402831 PMCID: PMC5000101 DOI: 10.1074/jbc.r116.739490] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
cis-Prenyltransferases (cis-PTs) constitute a large family of enzymes conserved during evolution and present in all domains of life. cis-PTs catalyze consecutive condensation reactions of allylic diphosphate acceptor with isopentenyl diphosphate (IPP) in the cis (Z) configuration to generate linear polyprenyl diphosphate. The chain lengths of isoprenoid carbon skeletons vary widely from neryl pyrophosphate (C10) to natural rubber (C>10,000). The homo-dimeric bacterial enzyme, undecaprenyl diphosphate synthase (UPPS), has been structurally and mechanistically characterized in great detail and serves as a model for understanding the mode of action of eukaryotic cis-PTs. However, recent experiments have revealed that mammals, fungal, and long-chain plant cis-PTs are heteromeric enzymes composed of two distantly related subunits. In this review, the classification, function, and evolution of cis-PTs will be discussed with a special emphasis on the role of the newly described NgBR/Nus1 subunit and its plants' orthologs as essential, structural components of the cis-PTs activity.
Collapse
Affiliation(s)
- Kariona A Grabińska
- From the Department of Pharmacology and Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520
| | - Eon Joo Park
- From the Department of Pharmacology and Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520
| | - William C Sessa
- From the Department of Pharmacology and Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|