1
|
Çelik N, Demir K, Dibeklioğlu SE, Dündar BN, Hatipoğlu N, Mutlu GY, Arslan E, Yıldırımçakar D, Çayır A, Hacıhamdioğlu B, Sütçü ZK, Ünsal Y, Karagüzel G. Clinical and genetic characteristics of patients with monocarboxylate transporter-8 deficiency: a multicentre retrospective study. Eur J Pediatr 2024; 184:92. [PMID: 39699593 DOI: 10.1007/s00431-024-05931-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/01/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
Allan-Herndon-Dudley syndrome is a neurodevelopmental disorder characterized by motor and intellectual disabilities. Despite its rarity, there has been a rise in interest due to ongoing research and emerging therapy suggestions. In this multicenter, retrospective, cross-sectional study, the genetic characteristics and clinical data of twenty-one cases of genetically confirmed MCT8 deficiency were evaluated. The median age at the diagnosis was 2.4 (1.29; 5.9) years, which ranged from 0.5 to 14.0 years. The median follow-up period was 2.34 years, ranging from four months to 7.9 years. In 21 patients, 17 different variants were detected in the SLC16A2 gene. Eleven of these variants (c.1456delC, c.439G > T, c.949C > A, c.1392dupC, c.1612C > T, c.407dup, c.781del, c.589C > A, c.712G > A, c.311 T > A, c.1461del) have not been previously reported. In this study, with the exception of three cases with fT3/fT4 ratios of 4.95, 3.58, and 4.52, all cases exhibited fT3/fT4 ratios higher than five (9.9 (7.9; 12.0)). CONCLUSION MCT8 deficiency is a rare and devastating disorder characterized by central hypothyroidism and peripheral thyrotoxicosis. The fT3/fT4 ratio can be used as a useful diagnostic indicator of MCT8 deficiency in males with mental and motor retardation. There is a need to raise clinicians' awareness of this potentially treatable condition with the emergence of new and promising treatments. WHAT IS KNOWN • Allan-Herndon-Dudley syndrome, also known as MCT8 deficiency is a rare and devastating disorder characterized by central hypothyroidism and peripheral thyrotoxicosis. WHAT IS NEW • In this study, seventeen different variants were detected in the SLC16A2 gene, eleven of which (c.1456delC; c.439G>T; c.949C>A; c.1392dupC; c.1612C>T; c.407dup; c.781del; c.589C>A; c.712G>A; c.311T>A; c.1461del) have not been reported before. • The fT3/fT4 ratio can be used as a useful diagnostic indicator of MCT8 deficiency in males with mental and motor retardation.
Collapse
Affiliation(s)
- Nurullah Çelik
- Department of Pediatric Endocrinology, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey.
| | - Korcan Demir
- Department of Pediatric Endocrinology, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | | | - Bumin Nuri Dündar
- Department of Pediatric Endocrinology, Faculty of Medicine, İzmir Katip Celebi University, Izmir, Turkey
| | - Nihal Hatipoğlu
- Department of Pediatric Endocrinology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Gül Yeşiltepe Mutlu
- Department of Pediatric Endocrinology and Diabetes, Koç University School of Medicine, Istanbul, Turkey
| | - Emrullah Arslan
- Faculty of Medicine, Department of Pediatric Endocrinology and Diabetes, Ege University, Izmir, Turkey
| | - Didem Yıldırımçakar
- Department of Pediatric Endocrinology, Denizli State Hospital, Denizli, Turkey
| | - Atilla Çayır
- Department of Pediatric Endocrinology and Diabetes, Erzurum Education and Research Hospital, University of Health Science, Erzurum, Turkey
| | - Bülent Hacıhamdioğlu
- Department of Pediatric Endocrinology, Faculty of Medicine, İstanbul Aydın University, Istanbul, Turkey
| | - Zümrüt Kocabey Sütçü
- Başakşehir Çam and Sakura City Hospital, Pediatric Endocrinology, Istanbul, Turkey
| | - Yağmur Ünsal
- Clinic of Pediatric Endocrinology, Şanlıurfa Education and Research Hospital, Şanlıurfa, Turkey
| | - Gülay Karagüzel
- Department of Pediatric Endocrinology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey.
| |
Collapse
|
2
|
Guillén-Yunta M, García-Aldea Á, Valcárcel-Hernández V, Sanz-Bógalo A, Muñoz-Moreno E, Matheus MG, Grijota-Martínez C, Montero-Pedrazuela A, Guadaño-Ferraz A, Bárez-López S. Defective thyroid hormone transport to the brain leads to astroglial alterations. Neurobiol Dis 2024; 200:106621. [PMID: 39097035 DOI: 10.1016/j.nbd.2024.106621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/01/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024] Open
Abstract
Allan-Herndon-Dudley syndrome (AHDS) is a rare X-linked disorder that causes severe neurological damage, for which there is no effective treatment. AHDS is due to inactivating mutations in the thyroid hormone transporter MCT8 that impair the entry of thyroid hormones into the brain, resulting in cerebral hypothyroidism. However, the pathophysiology of AHDS is still not fully understood and this is essential to develop therapeutic strategies. Based on evidence suggesting that thyroid hormone deficit leads to alterations in astroglial cells, including gliosis, in this work, we have evaluated astroglial impairments in MCT8 deficiency by means of magnetic resonance imaging, histological, ultrastructural, and immunohistochemical techniques, and by mining available RNA sequencing outputs. Apparent diffusion coefficient (ADC) imaging values obtained from magnetic resonance imaging showed changes indicative of alterations in brain cytoarchitecture in MCT8-deficient patients (n = 11) compared to control subjects (n = 11). Astroglial alterations were confirmed by immunohistochemistry against astroglial markers in autopsy brain samples of an 11-year-old and a 30th gestational week MCT8-deficient subjects in comparison to brain samples from control subjects at similar ages. These findings were validated and further explored in a mouse model of AHDS. Our findings confirm changes in all the astroglial populations of the cerebral cortex in MCT8 deficiency that impact astrocytic metabolic and mitochondrial cellular respiration functions. These impairments arise early in brain development and persist at adult stages, revealing an abnormal distribution, density, morphology of cortical astrocytes, along with altered transcriptome, compatible with an astrogliosis-like phenotype at adult stages. We conclude that astrocytes are potential novel therapeutic targets in AHDS, and we propose ADC imaging as a tool to monitor the progression of neurological impairments and potential effects of treatments in MCT8 deficiency.
Collapse
Affiliation(s)
- Marina Guillén-Yunta
- Department of Neurological Diseases and Aging, Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Ángel García-Aldea
- Department of Neurological Diseases and Aging, Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Víctor Valcárcel-Hernández
- Department of Neurological Diseases and Aging, Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Ainara Sanz-Bógalo
- Department of Neurological Diseases and Aging, Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Emma Muñoz-Moreno
- Magnetic Imaging Resonance Core Facility, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Maria Gisele Matheus
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Carmen Grijota-Martínez
- Department of Neurological Diseases and Aging, Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain; Department of Cell Biology, Faculty of Biology, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana Montero-Pedrazuela
- Department of Neurological Diseases and Aging, Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain.
| | - Ana Guadaño-Ferraz
- Department of Neurological Diseases and Aging, Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain.
| | - Soledad Bárez-López
- Department of Neurological Diseases and Aging, Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain.
| |
Collapse
|
3
|
Wilpert NM, Thamm R, Thamm M, Kratzsch J, Seelow D, Vogel M, Krude H, Schuelke M. Normal Values for the fT3/fT4 Ratio: Centile Charts (0-29 Years) and Their Application for the Differential Diagnosis of Children with Developmental Delay. Int J Mol Sci 2024; 25:8585. [PMID: 39201272 PMCID: PMC11354987 DOI: 10.3390/ijms25168585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024] Open
Abstract
Primary congenital hypothyroidism is easily diagnosed on the basis of elevated plasma levels of thyroid-stimulating hormone (TSH). In contrast, in the rare disorders of thyroid hormone resistance, TSH and, in mild cases, also thyroid hormone levels are within the normal range. Thyroid hormone resistance is caused by defects in hormone metabolism, transport, or receptor activation and can have the same serious consequences for child development as congenital hypothyroidism. A total of n = 23,522 data points from a large cohort of children and young adults were used to generate normal values and sex-specific percentiles for the ratio of free triiodothyronine (T3) to free thyroxine (T4), the fT3/fT4 ratio. The aim was to determine whether individuals with developmental delay and genetically confirmed thyroid hormone resistance, carrying defects in Monocarboxylate Transporter 8 (MCT8), Thyroid Hormone Receptor alpha (THRα), and Selenocysteine Insertion Sequence-Binding Protein 2 (SECISBP2), had abnormal fT3/fT4 ratios. Indeed, we were able to demonstrate a clear separation of patient values for the fT3/fT4 ratio from normal and pathological controls (e.g., children with severe cerebral palsy). We therefore recommend using the fT3/fT4 ratio as a readily available screening parameter in children with developmental delay for the identification of thyroid hormone resistance syndromes. The fT3/fT4 ratio can be easily plotted on centile charts using our free online tool, which accepts various SI and non-SI units for fT3, fT4, and TSH.
Collapse
Affiliation(s)
- Nina-Maria Wilpert
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
- Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-13353 Berlin, Germany
- BIH Charité Junior Clinician Scientist Program, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, D-10117 Berlin, Germany
| | - Roma Thamm
- Department of Epidemiology and Health Monitoring, Robert Koch Institute, D-13353 Berlin, Germany
| | - Michael Thamm
- Department of Epidemiology and Health Monitoring, Robert Koch Institute, D-13353 Berlin, Germany
| | - Jürgen Kratzsch
- Hospital for Children and Adolescents, Center for Pediatric Research, University of Leipzig, D-04103 Leipzig, Germany
| | - Dominik Seelow
- Berlin Institute of Health, Bioinformatics and Translational Genetics, D-10117 Berlin, Germany
| | - Mandy Vogel
- Hospital for Children and Adolescents, Center for Pediatric Research, University of Leipzig, D-04103 Leipzig, Germany
| | - Heiko Krude
- Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-13353 Berlin, Germany
| | - Markus Schuelke
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
- Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-13353 Berlin, Germany
| |
Collapse
|
4
|
Bauer AJ, Auble B, Clark AL, Hu TY, Isaza A, McNerney KP, Metzger DL, Nicol L, Pierce SR, Sidlow R. Unmet patient needs in monocarboxylate transporter 8 (MCT8) deficiency: a review. Front Pediatr 2024; 12:1444919. [PMID: 39132310 PMCID: PMC11310894 DOI: 10.3389/fped.2024.1444919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/03/2024] [Indexed: 08/13/2024] Open
Abstract
Monocarboxylate transporter 8 (MCT8) deficiency is a rare, X-linked disorder arising from mutations in the SLC16A2 gene and resulting from dysfunctional thyroid hormone transport. This disorder is characterized by profound neurodevelopmental delay and motor disability due to a lack of thyroid hormone in the brain, and coexisting endocrinological symptoms, due to chronic thyrotoxicosis, resulting from elevated thyroid hormone outside the central nervous system (CNS). In February 2024, we reviewed the published literature to identify relevant articles reporting on the current unmet needs of patients with MCT8 deficiency. There are several main challenges in the diagnosis and treatment of MCT8 deficiency, with decreased awareness and recognition of MCT8 deficiency among healthcare professionals (HCPs) associated with misdiagnosis and delays in diagnosis. Diagnostic delay may also be attributed to other factors, including the complex symptomology of MCT8 deficiency only becoming apparent several months after birth and pathognomonic serum triiodothyronine (T3) testing not being routinely performed. For patients with MCT8 deficiency, multidisciplinary team care is vital to optimize the support provided to patients and their caregivers. Although there are currently no approved treatments specifically for MCT8 deficiency, earlier identification and diagnosis of this disorder enables earlier access to supportive care and developing treatments focused on improving outcomes and quality of life for both patients and caregivers.
Collapse
Affiliation(s)
- Andrew J. Bauer
- The Thyroid Center, Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Bethany Auble
- Medical College of Wisconsin, Children’s Wisconsin, Milwaukee, WI, United States
| | - Amy L. Clark
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO, United States
- Department of Pediatric Endocrinology and Diabetes, SSM Health Cardinal Glennon, St. Louis, MO, United States
| | - Tina Y. Hu
- Department of Pediatrics, Division of Endocrinology, University of California San Francisco, San Francisco, CA, United States
| | - Amber Isaza
- The Thyroid Center, Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Kyle P. McNerney
- Diabetes Education Program, Washington University in St. Louis, St. Louis, MO, United States
| | - Daniel L. Metzger
- The Endocrinology & Diabetes Unit, British Columbia Children’s Hospital, Vancouver, BC, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Lindsey Nicol
- Department of Pediatric Endocrinology, Oregon Health & Science University Doernbecher Children’s Hospital, Portland, OR, United States
- Division of Endocrinology, Oregon Health & Science University, Portland, OR, United States
| | - Samuel R. Pierce
- Division of Rehabilitation Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Richard Sidlow
- Department of Medical Genetics and Metabolism, Valley Children’s Hospital, Madera, CA, United States
| |
Collapse
|
5
|
Ramon‐Gomez JL, Cortés‐Rojas MC, Polania‐Puentes MJ, Guerrero‐Ruiz GDP. Movement Disorder Perspectives on Monocarboxylate 8 Deficiency: A Case Series of 3 Colombian Patients with Allan-Herndon-Dudley Syndrome. Mov Disord Clin Pract 2024; 11:567-570. [PMID: 38454300 PMCID: PMC11078483 DOI: 10.1002/mdc3.14009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/10/2024] [Accepted: 01/26/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Deficiencies in the thyroid hormone transporter monocarboxylate 8 (MCT8) due to pathogenic variants in the SLC16A2 gene (OMIM 300095) result in a complex phenotype with main endocrine and neurologic symptoms. This rare disorder, named Allan-Herndon-Dudley syndrome (AHDS) (OMIM 300523), is inherited in an X-linked trait. One of the prominent features of AHDS is the presence of movement disorders (MD), which are complex and carry a significant burden of the disease. CASES Patient 1: male with hypotonia since birth, developmental delay, dystonic posturing at 4 months and at 15 months, and startle reaction developed with sensory stimuli. Patient 2: male, at 2 months, shows hypotonia and developmental delay, paroxysmal episodes triggered by a stimulus with sudden blush, tonic asymmetric posture, and no epileptiform activity. At 10 months, generalized dystonic posturing. Patient 3: typical neurodevelopmental milestones until 6 months; at 24 months, dystonia, startle reaction, and upper motoneuron signs. CONCLUSIONS We aim to describe our patients diagnosed with AHDS, focusing on MD phenomenology and strengthening the phenotype-genotype correlations for this rare condition.
Collapse
|
6
|
Mura E, Parazzini C, Tonduti D. Rare forms of hypomyelination and delayed myelination. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:225-252. [PMID: 39322381 DOI: 10.1016/b978-0-323-99209-1.00002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Hypomyelination is defined by the evidence of an unchanged pattern of deficient myelination on two MRIs performed at least 6 months apart in a child older than 1 year. When the temporal criteria are not fulfilled, and the follow-up MRI shows a progression of the myelination even if still not adequate for age, hypomyelination is excluded and the pattern is instead consistent with delayed myelination. This can be mild and nonspecific in some cases, while in other cases there is a severe delay that in the first disease stages could be difficult to differentiate from hypomyelination. In hypomyelinating leukodystrophies, hypomyelination is due to a primary impairment of myelin deposition, such as in Pelizaeus Merzabcher disease. Conversely, myelin lack is secondary, often to primary neuronal disorders, in delayed myelination and some condition with hypomyelination. Overall, the group of inherited white matter disorders with abnormal myelination has expanded significantly during the past 20 years. Many of these disorders have only recently been described, for many of them only a few patients have been reported and this contributes to make challenging the diagnostic process and the interpretation of Next Generation Sequencing results. In this chapter, we review the clinical and radiologic features of rare and lesser known forms of hypomyelination and delayed myelination not mentioned in other chapters of this handbook.
Collapse
Affiliation(s)
- Eleonora Mura
- Unit of Pediatric Neurology, Department of Biomedical and Clinical Sciences, V. Buzzi Children's Hospital, Università degli Studi di Milano, Milan, Italy; C.O.A.L.A (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Università degli Studi di Milano, Milan, Italy
| | - Cecilia Parazzini
- C.O.A.L.A (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Università degli Studi di Milano, Milan, Italy; Pediatric Radiology and Neuroradiology Department, V. Buzzi Children's Hospital, Milan, Italy
| | - Davide Tonduti
- Unit of Pediatric Neurology, Department of Biomedical and Clinical Sciences, V. Buzzi Children's Hospital, Università degli Studi di Milano, Milan, Italy; C.O.A.L.A (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
7
|
Yiu RSW, Ling TK, Ko CH, Poon SWY, Poon GWK, Wong FCK, Law CY, Iwayama H, Lam CW. Allan-Herndon-Dudley syndrome in Hong Kong: Implication for newborn screening. Clin Chim Acta 2023; 551:117621. [PMID: 37925810 DOI: 10.1016/j.cca.2023.117621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/21/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Allan-Herndon-Dudley syndrome (MCT 8 deficiency) is an X-linked recessive condition caused by hemizygous pathogenic variants in SLC16A2 encoding the monocarboxylate transporter 8 (MCT8). Patients present with global developmental delay and neurological impairment, and abnormal serum thyroid function tests. The drug, 3,3',5 triiodothyroacetic acid (TRIAC), was recently demonstrated to improve the endocrinological profile. Improvement in diagnostic approach is key to earlier start of treatment. PATIENT FINDINGS We described four Chinese patients with MCT8 deficiency undergoing different diagnostic odysseys. Their initial presentation included global developmental delay and dystonia. Patient 2 also had epilepsy. Patients 1 and 2 presented with two novel variants: (1)hemizygous NM_006517.4(SLC16A2):c.1170 + 2 T > A; p.(?), and (2)hemizygous NM_006517.4(SLC16A2):c.305dupT; p.(Val103GlyfsTer17) respectively. Patients 3 and 4 were biological brothers harboring hemizygous NM_006517.4(SLC16A2):c.305dupT; p.(Val103GlyfsTer17), which was first reported in 2004. We obtained the measurement of triiodothyronine (T3) and reverse T3 (rT3) from dried blood spot samples collected on Day 1 of life from Patient 1 and studied the biomarkers (rT3 and T3/rT3 ratio) proposed by Iwayama et al. for the detection of MCT8 deficiency at birth. Our data verified the significantly reduced rT3 level in Patient 1, compared with healthy newborns, although low T3 level and comparable T3/rT3 ratio with controls were detected. SUMMARY Patients with MCT8 deficiency often undergo diagnostic odysseys. An early diagnosis could be missed by a normal newborn thyroid function screening result based on biochemical measurement of TSH and/or T4/fT4. Early detection of rT3 is key to improving current diagnostic approach. CONCLUSION We recommend that full thyroid function profile (TSH, T4/fT4, T3/fT3, rT3) be considered early for all pediatric patients presenting with unexplained developmental delay and/or dystonia. The potential inclusion of rT3 measurement in newborn screening may prove promising.
Collapse
Affiliation(s)
- Rachel Sze-Wan Yiu
- Division of Chemical Pathology, Department of Pathology, Queen Mary Hospital, Hong Kong, China
| | - Tsz-Ki Ling
- Division of Chemical Pathology, Department of Pathology, Queen Mary Hospital, Hong Kong, China
| | - Chun-Hung Ko
- Department of Paediatrics and Adolescent Medicine, Caritas Medical Centre, Hong Kong, China
| | - Sarah Wing-Yiu Poon
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, Hong Kong, China
| | - Grace Wing-Kit Poon
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, Hong Kong, China
| | - Felix Chi-Kin Wong
- Division of Chemical Pathology, Department of Pathology, Queen Mary Hospital, Hong Kong, China
| | - Chun-Yiu Law
- Division of Chemical Pathology, Department of Pathology, Queen Mary Hospital, Hong Kong, China
| | - Hideyuki Iwayama
- Department of Pediatrics, Aichi Medical University, Nagakute, Japan
| | - Ching-Wan Lam
- Division of Chemical Pathology, Department of Pathology, Queen Mary Hospital, Hong Kong, China; Department of Pathology, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
8
|
Wilpert NM, Tonduti D, Vaia Y, Krude H, Sarret C, Schuelke M. Establishing Patient-Centered Outcomes for MCT8 Deficiency: Stakeholder Engagement and Systematic Literature Review. Neuropsychiatr Dis Treat 2023; 19:2195-2216. [PMID: 37881807 PMCID: PMC10595182 DOI: 10.2147/ndt.s379703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/07/2023] [Indexed: 10/27/2023] Open
Abstract
Introduction The SCL16A2 gene encodes the thyroid hormone (TH) transporter MCT8. Pathogenic variants result in a reduced TH uptake into the CNS despite high serum T3 concentrations. Patients suffer from severe neurodevelopmental delay and require multidisciplinary care. Since a first compassionate use study in 2008, the development of therapies has recently gained momentum. Treatment strategies range from symptom-based approaches, supplementation with TH or TH-analogs, to gene therapy. All these studies have mainly used surrogate endpoints and clinical outcomes. However, the EMA and FDA strongly encourage researchers to involve patients and their advocacy groups in the design of clinical trials. This should strengthen the patients' perspective and identify clinical endpoints that are clinically relevant to their daily life. Methods We involved patient families to define patient-relevant outcomes for MCT8 deficiency. In close collaboration with patient families, we designed a questionnaire asking for their five most preferred therapeutic goals, which, if achieved at least, make a difference in their lives. In addition, we performed a systematic review according to Cochrane recommendations of the published treatment trials. Results We obtained results from 15 families with completed questionnaires from 14 mothers and 8 fathers. Improvement in development, especially in gross motor skills, was most important to the parents. 59% wished for head control and 50% for sitting ability. Another 36% wished for weight gain, 32% for improvement of expressive language skills, and 18% for a reduction of dystonia/spasticity, less dysphagia, and reflux. Paraclinical aspects were least important (5-9%). In a treatment trial (n=46) and compassionate use cases (n=83), the results were mainly inconclusive, partly due to a lack of predefined patient-centered clinical endpoints. Discussion We recommend that future trials should define a relevant improvement in "development" and/or other patient-relevant outcomes compared to natural history as treatment goals.
Collapse
Affiliation(s)
- Nina-Maria Wilpert
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Department of Pediatric Neurology, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health (BIH), Center for Chronically Sick Children, Berlin, Germany
| | - Davide Tonduti
- Unit of Pediatric Neurology, C.O.A.L.A. (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children’s Hospital, Università Degli Studi Di Milano, Milan, Italy
| | - Ylenia Vaia
- Unit of Pediatric Neurology, C.O.A.L.A. (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children’s Hospital, Università Degli Studi Di Milano, Milan, Italy
| | - Heiko Krude
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Experimental Pediatric Endocrinology, Berlin, Germany
| | - Catherine Sarret
- Centre de Compétence des Leucodystrophies et Leucoencéphalopathies de Cause Rare, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Markus Schuelke
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Department of Pediatric Neurology, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health (BIH), Center for Chronically Sick Children, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), NeuroCure Clinical Research Center, Berlin, Germany
| |
Collapse
|
9
|
Siemes D, Vancamp P, Markova B, Spangenberg P, Shevchuk O, Siebels B, Schlüter H, Mayerl S, Heuer H, Engel DR. Proteome Analysis of Thyroid Hormone Transporter Mct8/Oatp1c1-Deficient Mice Reveals Novel Dysregulated Target Molecules Involved in Locomotor Function. Cells 2023; 12:2487. [PMID: 37887331 PMCID: PMC10605308 DOI: 10.3390/cells12202487] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Thyroid hormone (TH) transporter MCT8 deficiency causes severe locomotor disabilities likely due to insufficient TH transport across brain barriers and, consequently, compromised neural TH action. As an established animal model for this disease, Mct8/Oatp1c1 double knockout (DKO) mice exhibit strong central TH deprivation, locomotor impairments and similar histo-morphological features as seen in MCT8 patients. The pathways that cause these neuro-motor symptoms are poorly understood. In this paper, we performed proteome analysis of brain sections comprising cortical and striatal areas of 21-day-old WT and DKO mice. We detected over 2900 proteins by liquid chromatography mass spectrometry, 67 of which were significantly different between the genotypes. The comparison of the proteomic and published RNA-sequencing data showed a significant overlap between alterations in both datasets. In line with previous observations, DKO animals exhibited decreased myelin-associated protein expression and altered protein levels of well-established neuronal TH-regulated targets. As one intriguing new candidate, we unraveled and confirmed the reduced protein and mRNA expression of Pde10a, a striatal enzyme critically involved in dopamine receptor signaling, in DKO mice. As altered PDE10A activities are linked to dystonia, reduced basal ganglia PDE10A expression may represent a key pathogenic pathway underlying human MCT8 deficiency.
Collapse
Affiliation(s)
- Devon Siemes
- Department of Immunodynamics, Institute for Experimental Immunology and Imaging, University Duisburg-Essen, 45141 Essen, Germany; (D.S.); (P.S.); (O.S.); (D.R.E.)
| | - Pieter Vancamp
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (P.V.); (B.M.); (S.M.)
| | - Boyka Markova
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (P.V.); (B.M.); (S.M.)
| | - Philippa Spangenberg
- Department of Immunodynamics, Institute for Experimental Immunology and Imaging, University Duisburg-Essen, 45141 Essen, Germany; (D.S.); (P.S.); (O.S.); (D.R.E.)
| | - Olga Shevchuk
- Department of Immunodynamics, Institute for Experimental Immunology and Imaging, University Duisburg-Essen, 45141 Essen, Germany; (D.S.); (P.S.); (O.S.); (D.R.E.)
| | - Bente Siebels
- Section Mass Spectrometric Proteomics, Diagnostic Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (B.S.); (H.S.)
| | - Hartmut Schlüter
- Section Mass Spectrometric Proteomics, Diagnostic Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (B.S.); (H.S.)
| | - Steffen Mayerl
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (P.V.); (B.M.); (S.M.)
| | - Heike Heuer
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (P.V.); (B.M.); (S.M.)
| | - Daniel Robert Engel
- Department of Immunodynamics, Institute for Experimental Immunology and Imaging, University Duisburg-Essen, 45141 Essen, Germany; (D.S.); (P.S.); (O.S.); (D.R.E.)
| |
Collapse
|
10
|
Richard S, Ren J, Flamant F. Thyroid hormone action during GABAergic neuron maturation: The quest for mechanisms. Front Endocrinol (Lausanne) 2023; 14:1256877. [PMID: 37854197 PMCID: PMC10579935 DOI: 10.3389/fendo.2023.1256877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
Thyroid hormone (TH) signaling plays a major role in mammalian brain development. Data obtained in the past years in animal models have pinpointed GABAergic neurons as a major target of TH signaling during development, which opens up new perspectives to further investigate the mechanisms by which TH affects brain development. The aim of the present review is to gather the available information about the involvement of TH in the maturation of GABAergic neurons. After giving an overview of the kinds of neurological disorders that may arise from disruption of TH signaling during brain development in humans, we will take a historical perspective to show how rodent models of hypothyroidism have gradually pointed to GABAergic neurons as a main target of TH signaling during brain development. The third part of this review underscores the challenges that are encountered when conducting gene expression studies to investigate the molecular mechanisms that are at play downstream of TH receptors during brain development. Unravelling the mechanisms of action of TH in the developing brain should help make progress in the prevention and treatment of several neurological disorders, including autism and epilepsy.
Collapse
Affiliation(s)
| | | | - Frédéric Flamant
- Institut de Génomique Fonctionnelle de Lyon, UMR5242, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard-Lyon 1, USC1370 Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Lyon, France
| |
Collapse
|
11
|
Solazzi R, Nanni G, Esposito S, Estienne M, Freri E, Zibordi F, Canafoglia L, Castellotti B, Granata T. Repetitive Sleep Starts in Allan-Herndon-Dudley Syndrome. Pediatr Neurol 2023; 147:24-27. [PMID: 37542971 DOI: 10.1016/j.pediatrneurol.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/02/2023] [Accepted: 06/13/2023] [Indexed: 08/07/2023]
Abstract
Allan-Herndon-Dudley syndrome (AHDS) is caused by mutations in the SLC16A2 gene, encoding for the monocarboxylate transporter 8 (MCT8). Central hypothyroidism and chronic peripheral thyrotoxicosis result in a severe phenotype, mainly characterized by poor growth, intellectual disability, spastic tetraparesis, and movement disorders, including paroxysmal ones (startle reaction and paroxysmal dyskinesias). Seizures are rarely reported. We conducted a retrospective analysis on video electroencephalography (EEG) recordings in four subjects with AHDS, focused on paroxysmal events. Among other manifestations recorded on EEG, we diagnosed repetitive sleep starts (RSS) in all subjects. RSS are a paroxysmal nonepileptic phenomenon occurring during sleep, similar to epileptic spasms in their clinical and electromyography characteristics, but not related to any EEG change. This is the first report on RSS in AHDS. We present video-EEG polygraphic documentation, suggesting that RSS could be underestimated or misdiagnosed. The importance of a correct diagnosis is crucial in a therapeutic perspective.
Collapse
Affiliation(s)
- Roberta Solazzi
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giuliana Nanni
- Department of Pediatrics, San Salvatore Hospital, L'Aquila, Italy
| | - Silvia Esposito
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Margherita Estienne
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elena Freri
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Federica Zibordi
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Laura Canafoglia
- Integrated Diagnostics for Epilepsy, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Barbara Castellotti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| | - Tiziana Granata
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
12
|
Mayerl S, Heuer H. lThyroid hormone transporter Mct8/Oatp1c1 deficiency compromises proper oligodendrocyte maturation in the mouse CNS. Neurobiol Dis 2023:106195. [PMID: 37307933 DOI: 10.1016/j.nbd.2023.106195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/26/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023] Open
Abstract
Proper CNS myelination depends on the timed availability of thyroid hormone (TH) that induces differentiation of oligodendrocyte precursor cells (OPCs) to mature, myelinating oligodendrocytes. Abnormal myelination is frequently observed in Allan-Herndon-Dudley syndrome caused by inactivating mutations in the TH transporter MCT8. Likewise, persistent hypomyelination is a key CNS feature of the Mct8/Oatp1c1 double knockout (Dko) mouse model, a well-established mouse model for human MCT8 deficiency that exhibits diminished TH transport across brain barriers and thus a TH deficient CNS. Here, we explored whether decreased myelin content is caused by an impairment in oligodendrocyte maturation. To that end, we studied OPC and oligodendrocyte populations in Dko mice versus wild-type and single TH transporter knockout animals at different developmental time points (at postnatal days P12, P30, and P120) using multi-marker immunostaining and confocal microscopy. Only in Dko mice we observed a reduction in cells expressing the oligodendroglia marker Olig2, encompassing all stages between OPCs and mature oligodendrocytes. Moreover, Dko mice exhibited at all analysed time points an increased portion of OPCs and a reduced number of mature oligodendrocytes both in white and grey matter regions indicating a differentiation blockage in the absence of Mct8/Oatp1c1. We also assessed cortical oligodendrocyte structural parameters by visualizing and counting the number of mature myelin sheaths formed per oligodendrocyte. Again, only Dko mice displayed a reduced number of myelin sheaths that in turn exhibited an increase in length indicating a compensatory response to the reduced number of mature oligodendrocyte. Altogether, our studies underscore an oligodendrocyte differentiation impairment and altered oligodendrocyte structural parameters in the global absence of Mct8 and Oatp1c1. Both mechanisms most likely do not only cause the abnormal myelination state but also contribute to compromised neuronal functionality in Mct8/Oatp1c1 deficient animals.
Collapse
Affiliation(s)
- Steffen Mayerl
- Dept. of Endocrinology, Diabetes & Metabolism, University of Duisburg-Essen, Essen, Germany.
| | - Heike Heuer
- Dept. of Endocrinology, Diabetes & Metabolism, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
13
|
Wang T, Wang Y, Montero-Pedrazuela A, Prensa L, Guadaño-Ferraz A, Rausell E. Thyroid Hormone Transporters MCT8 and OATP1C1 Are Expressed in Projection Neurons and Interneurons of Basal Ganglia and Motor Thalamus in the Adult Human and Macaque Brains. Int J Mol Sci 2023; 24:9643. [PMID: 37298594 PMCID: PMC10254002 DOI: 10.3390/ijms24119643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Monocarboxylate transporter 8 (MCT8) and organic anion-transporting polypeptide 1C1 (OATP1C1) are thyroid hormone (TH) transmembrane transporters relevant for the availability of TH in neural cells, crucial for their proper development and function. Mutations in MCT8 or OATP1C1 result in severe disorders with dramatic movement disability related to alterations in basal ganglia motor circuits. Mapping the expression of MCT8/OATP1C1 in those circuits is necessary to explain their involvement in motor control. We studied the distribution of both transporters in the neuronal subpopulations that configure the direct and indirect basal ganglia motor circuits using immunohistochemistry and double/multiple labeling immunofluorescence for TH transporters and neuronal biomarkers. We found their expression in the medium-sized spiny neurons of the striatum (the receptor neurons of the corticostriatal pathway) and in various types of its local microcircuitry interneurons, including the cholinergic. We also demonstrate the presence of both transporters in projection neurons of intrinsic and output nuclei of the basal ganglia, motor thalamus and nucleus basalis of Meynert, suggesting an important role of MCT8/OATP1C1 for modulating the motor system. Our findings suggest that a lack of function of these transporters in the basal ganglia circuits would significantly impact motor system modulation, leading to clinically severe movement impairment.
Collapse
Affiliation(s)
- Ting Wang
- School of Medicine, Department Anatomy Histology & Neuroscience, Autónoma de Madrid University (UAM), 28029 Madrid, Spain; (T.W.); (Y.W.); (L.P.)
- PhD Program in Neuroscience, Autónoma de Madrid University (UAM)-Cajal Institute, 28029 Madrid, Spain
| | - Yu Wang
- School of Medicine, Department Anatomy Histology & Neuroscience, Autónoma de Madrid University (UAM), 28029 Madrid, Spain; (T.W.); (Y.W.); (L.P.)
- PhD Program in Neuroscience, Autónoma de Madrid University (UAM)-Cajal Institute, 28029 Madrid, Spain
| | - Ana Montero-Pedrazuela
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Autónoma de Madrid University (UAM), 28029 Madrid, Spain;
| | - Lucía Prensa
- School of Medicine, Department Anatomy Histology & Neuroscience, Autónoma de Madrid University (UAM), 28029 Madrid, Spain; (T.W.); (Y.W.); (L.P.)
| | - Ana Guadaño-Ferraz
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Autónoma de Madrid University (UAM), 28029 Madrid, Spain;
| | - Estrella Rausell
- School of Medicine, Department Anatomy Histology & Neuroscience, Autónoma de Madrid University (UAM), 28029 Madrid, Spain; (T.W.); (Y.W.); (L.P.)
| |
Collapse
|
14
|
Silva N, Campinho MA. In a zebrafish biomedical model of human Allan-Herndon-Dudley syndrome impaired MTH signaling leads to decreased neural cell diversity. Front Endocrinol (Lausanne) 2023; 14:1157685. [PMID: 37214246 PMCID: PMC10194031 DOI: 10.3389/fendo.2023.1157685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/04/2023] [Indexed: 05/24/2023] Open
Abstract
Background Maternally derived thyroid hormone (T3) is a fundamental factor for vertebrate neurodevelopment. In humans, mutations on the thyroid hormones (TH) exclusive transporter monocarboxylic acid transporter 8 (MCT8) lead to the Allan-Herndon-Dudley syndrome (AHDS). Patients with AHDS present severe underdevelopment of the central nervous system, with profound cognitive and locomotor consequences. Functional impairment of zebrafish T3 exclusive membrane transporter Mct8 phenocopies many symptoms observed in patients with AHDS, thus providing an outstanding animal model to study this human condition. In addition, it was previously shown in the zebrafish mct8 KD model that maternal T3 (MTH) acts as an integrator of different key developmental pathways during zebrafish development. Methods Using a zebrafish Mct8 knockdown model, with consequent inhibition of maternal thyroid hormones (MTH) uptake to the target cells, we analyzed genes modulated by MTH by qPCR in a temporal series from the start of segmentation through hatching. Survival (TUNEL) and proliferation (PH3) of neural progenitor cells (dla, her2) were determined, and the cellular distribution of neural MTH-target genes in the spinal cord during development was characterized. In addition, in-vivo live imaging was performed to access NOTCH overexpression action on cell division in this AHDS model. We determined the developmental time window when MTH is required for appropriate CNS development in the zebrafish; MTH is not involved in neuroectoderm specification but is fundamental in the early stages of neurogenesis by promoting the maintenance of specific neural progenitor populations. MTH signaling is required for developing different neural cell types and maintaining spinal cord cytoarchitecture, and modulation of NOTCH signaling in a non-autonomous cell manner is involved in this process. Discussion The findings show that MTH allows the enrichment of neural progenitor pools, regulating the cell diversity output observed by the end of embryogenesis and that Mct8 impairment restricts CNS development. This work contributes to the understanding of the cellular mechanisms underlying human AHDS.
Collapse
Affiliation(s)
- Nádia Silva
- Centre for Marine Sciences of the University of the Algarve, Faro, Portugal
- Algarve Biomedical Center-Research Institute, University of the Algarve, Faro, Portugal
| | - Marco António Campinho
- Centre for Marine Sciences of the University of the Algarve, Faro, Portugal
- Algarve Biomedical Center-Research Institute, University of the Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of the Algarve, Faro, Portugal
| |
Collapse
|
15
|
Lazcano I, Pech-Pool SM, Olvera A, García-Martínez I, Palacios-Pérez S, Orozco A. The importance of thyroid hormone signaling during early development: Lessons from the zebrafish model. Gen Comp Endocrinol 2023; 334:114225. [PMID: 36709002 DOI: 10.1016/j.ygcen.2023.114225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/16/2022] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
The zebrafish is an optimal experimental model to study thyroid hormone (TH) involvement in vertebrate development. The use of state-of-the-art zebrafish genetic tools available for the study of the effect of gene silencing, cell fate decisions and cell lineage differentiation have contributed to a more insightful comprehension of molecular, cellular, and tissue-specific TH actions. In contrast to intrauterine development, extrauterine embryogenesis observed in zebrafish has facilitated a more detailed study of the development of the hypothalamic-pituitary-thyroid axis. This model has also enabled a more insightful analysis of TH molecular actions upon the organization and function of the brain, the retina, the heart, and the immune system. Consequently, zebrafish has become a trendy model to address paradigms of TH-related functional and biomedical importance. We here compilate the available knowledge regarding zebrafish developmental events for which specific components of TH signaling are essential.
Collapse
Affiliation(s)
- I Lazcano
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Campus Juriquilla, Querétaro 76230, Mexico
| | - S M Pech-Pool
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Campus Juriquilla, Querétaro 76230, Mexico
| | - A Olvera
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Campus Juriquilla, Querétaro 76230, Mexico
| | - I García-Martínez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Campus Juriquilla, Querétaro 76230, Mexico
| | - S Palacios-Pérez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Campus Juriquilla, Querétaro 76230, Mexico
| | - A Orozco
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Campus Juriquilla, Querétaro 76230, Mexico; Escuela Nacional de Estudios Superiores, Unidad Juriquilla, Universidad Nacional Autónoma de México (UNAM), Campus Juriquilla, Querétaro 76230, Mexico.
| |
Collapse
|
16
|
Janot C, Perrin P, Bretones P, Plotton I, Roucher-Boulez F, des Portes V, Raverot V. Identifying elevated plasma free triiodothyronine levels: age-adapted reference intervals for pediatrics. J Pediatr Endocrinol Metab 2023; 36:478-483. [PMID: 36948219 DOI: 10.1515/jpem-2022-0330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/25/2023] [Indexed: 03/24/2023]
Abstract
OBJECTIVES Elevated free T3 (FT3) is an important feature for the early diagnosis of several diseases among which Grave's disease or Allan-Hernon-Dudley syndrome. However, there is a lack of age-adapted reference intervals for plasma thyroid hormones in children. We conducted a study to define reference values of peripheral FT3 in children using a commonly used automated immunoassay. METHODS All thyroid function test (TFT) results from our lab collected during 9 months were extracted anonymously, and reference intervals establishment followed recommendations validated by International Federation of Clinical Chemistry (IFCC). RESULTS We defined five reference intervals covering the whole pediatric period. Overall, 26.1% of peripheral FT3 measured in children with normal TSH are out of the adult reference range, and 22.2% are upper it leading to misinterpretation. In a 9-month old patient with severe neurodevelopmental disorders, a pathological elevated FT3 has been securely interpreted using the newly established interval. CONCLUSIONS The study highlights the poor relevance of adult intervals in pediatric cares, as it confirms that plasmatic FT3 is higher during the whole pediatric period. This work reports useful age-adapted reference intervals for free T3 in pediatrics using a widely used electrochemiluminescent Immunoassay (ECLIA) kit.
Collapse
Affiliation(s)
- Clément Janot
- Hospices Civils de Lyon, LBMMS, Service de Biochimie et Biologie moléculaire, Centre de Biologie et de Pathologie Est, Bron cedex, France
- Université Claude Bernard Lyon 1, Faculté de Médecine Lyon Est, Lyon, France
| | - Pauline Perrin
- Hospices Civils de Lyon, LBMMS, Service de Biochimie et Biologie moléculaire, Centre de Biologie et de Pathologie Est, Bron cedex, France
| | - Patricia Bretones
- Hospices Civils de Lyon, Groupement Hospitalier Est, Service d'Endocrinologie pédiatrique, Bron cedex, France
| | - Ingrid Plotton
- Hospices Civils de Lyon, LBMMS, Service de Biochimie et Biologie moléculaire, Centre de Biologie et de Pathologie Est, Bron cedex, France
- Université Claude Bernard Lyon 1, Faculté de Médecine Lyon Est, Lyon, France
| | - Florence Roucher-Boulez
- Hospices Civils de Lyon, LBMMS, Service de Biochimie et Biologie moléculaire, Centre de Biologie et de Pathologie Est, Bron cedex, France
- Université Claude Bernard Lyon 1, Faculté de Médecine Lyon Est, Lyon, France
| | - Vincent des Portes
- Hospices Civils de Lyon, Service de Neurologie pédiatrique, HFME, Bron cedex, France
- Université Claude Bernard Lyon 1, Faculté de Médecine Lyon Sud Charles Mérieux, Lyon, France
| | - Véronique Raverot
- Hospices Civils de Lyon, LBMMS, Service de Biochimie et Biologie moléculaire, Centre de Biologie et de Pathologie Est, Bron cedex, France
| |
Collapse
|
17
|
Valcárcel-Hernández V, Guillén-Yunta M, Scanlan TS, Bárez-López S, Guadaño-Ferraz A. Maternal Administration of the CNS-Selective Sobetirome Prodrug Sob-AM2 Exerts Thyromimetic Effects in Murine MCT8-Deficient Fetuses. Thyroid 2023; 33:632-640. [PMID: 36792926 PMCID: PMC10171952 DOI: 10.1089/thy.2022.0612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Background: Monocarboxylate transporter 8 (MCT8) deficiency is a rare X-linked disease where patients exhibit peripheral hyperthyroidism and cerebral hypothyroidism, which results in severe neurological impairments. These brain defects arise from a lack of thyroid hormones (TH) during critical stages of human brain development. Treatment options for MCT8-deficient patients are limited and none have been able to prevent or ameliorate effectively the neurological impairments. This study explored the effects of the TH agonist sobetirome and its CNS-selective amide prodrug, Sob-AM2, in the treatment of pregnant dams carrying fetuses lacking Mct8 and deiodinase type 2 (Mct8/Dio2 KO), as a murine model for MCT8 deficiency. Methods: Pregnant dams carrying Mct8/Dio2 KO fetuses were treated with 1 mg of sobetirome/kg body weight/day, or 0.3 mg of Sob-AM2/kg body weight/day for 7 days, starting at embryonic day 12.5 (E12.5). As controls, pregnant dams carrying wild-type and pregnant dams carrying Mct8/Dio2 KO fetuses were treated with daily subcutaneous injections of vehicle. Dams TH levels were measured by enzyme-linked immunosorbent assay (ELISA). Samples were extracted at E18.5 and the effect of treatments on the expression of triiodothyronine (T3)-dependent genes was measured in the placenta, fetal liver, and fetal cerebral cortex by real-time polymerase chain reaction. Results: Maternal sobetirome treatment led to spontaneous abortions. Sob-AM2 treatment, however, was able to cross the placental as well as the brain barriers and exert thyromimetic effects in Mct8/Dio2 KO fetal tissues. Sob-AM2 treatment did not affect the expression of the T3-target genes analyzed in the placenta, but it mediated thyromimetic effects in the fetal liver by increasing the expression of Dio1 and Dio3 genes. Interestingly, Sob-AM2 treatment increased the expression of several T3-dependent genes in the brain such as Hr, Shh, Dio3, Kcnj10, Klf9, and Faah in Mct8/Dio2 KO fetuses. Conclusions: Maternal administration of Sob-AM2 can cross the placental barrier and access the fetal tissues, including the brain, in the absence of MCT8, to exert thyromimetic actions by modulating the expression of T3-dependent genes. Therefore, Sob-AM2 has the potential to address the cerebral hypothyroidism characteristic of MCT8 deficiency from fetal stages and to prevent neurodevelopmental alterations in the MCT8-deficient fetal brain.
Collapse
Affiliation(s)
- Víctor Valcárcel-Hernández
- Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Marina Guillén-Yunta
- Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Thomas S Scanlan
- Department of Physiology and Pharmacology and Program in Chemical Biology, Oregon Health and Science University, Portland, Oregon, USA
| | - Soledad Bárez-López
- Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Ana Guadaño-Ferraz
- Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| |
Collapse
|
18
|
Garg D, Mohammad S, Shukla A, Sharma S. Genetic Links to Episodic Movement Disorders: Current Insights. Appl Clin Genet 2023; 16:11-30. [PMID: 36883047 PMCID: PMC9985884 DOI: 10.2147/tacg.s363485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Episodic or paroxysmal movement disorders (PxMD) are conditions, which occur episodically, are transient, usually have normal interictal periods, and are characterized by hyperkinetic disorders, including ataxia, chorea, dystonia, and ballism. Broadly, these comprise paroxysmal dyskinesias (paroxysmal kinesigenic and non-kinesigenic dyskinesia [PKD/PNKD], paroxysmal exercise-induced dyskinesias [PED]) and episodic ataxias (EA) types 1-9. Classification of paroxysmal dyskinesias has traditionally been clinical. However, with advancement in genetics and the discovery of the molecular basis of several of these disorders, it is becoming clear that phenotypic pleiotropy exists, that is, the same variant may give rise to a variety of phenotypes, and the classical understanding of these disorders requires a new paradigm. Based on molecular pathogenesis, paroxysmal disorders are now categorized as synaptopathies, transportopathies, channelopathies, second-messenger related disorders, mitochondrial or others. A genetic paradigm also has an advantage of identifying potentially treatable disorders, such as glucose transporter 1 deficiency syndromes, which necessitates a ketogenic diet, and ADCY5-related disorders, which may respond to caffeine. Clues for a primary etiology include age at onset below 18 years, presence of family history and fixed triggers and attack duration. Paroxysmal movement disorder is a network disorder, with both the basal ganglia and the cerebellum implicated in pathogenesis. Abnormalities in the striatal cAMP turnover pathway may also be contributory. Although next-generation sequencing has restructured the approach to paroxysmal movement disorders, the genetic underpinnings of several entities remain undiscovered. As more genes and variants continue to be reported, these will lead to enhanced understanding of pathophysiological mechanisms and precise treatment.
Collapse
Affiliation(s)
- Divyani Garg
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Shekeeb Mohammad
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, New South Wales, Australia
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College and Hospital, Manipal, India
| | - Suvasini Sharma
- Department of Pediatrics (Neurology Division), Lady Hardinge Medical College and Kalawati Saran Hospital, New Delhi, India
| |
Collapse
|
19
|
Kubota M, Yakuwa A, Terashima H, Hoshino H. A nationwide survey of monocarboxylate transporter 8 deficiency in Japan: Its incidence, clinical course, MRI and laboratory findings. Brain Dev 2022; 44:699-705. [PMID: 35945102 DOI: 10.1016/j.braindev.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Monocarboxylate transporter 8 (MCT8) deficiency is an X-linked recessive developmental disorder characterized by initially marked truncal hypotonia, later athetotic posturing, and severe intellectual disability caused by mutations in SLC16A2, which is responsible for the transport of triiodothyronine (T3) into neurons. We conducted a nationwide survey of patients with MCT8 deficiency to clarify their current status. METHODS Primary survey: In 2016-2017, we assessed the number of patients diagnosed with MCT8 deficiency from 1027 hospitals. Secondary survey: in 2017-2018, we sent case surveys to 31 hospitals (45 cases of genetic diagnosis), who responded in the primary survey. We asked for: 1) perinatal history, 2) developmental history, 3) head MRI findings, 4) neurophysiological findings, 5) thyroid function tests, and 5) genetic test findings. RESULTS We estimated the prevalence of MCT8 deficiency to be 1 in 1,890,000 and the incidence of MCT8 deficiency per million births to be 2.12 (95 % CI: 0.99-3.25). All patients showed severe psychomotor retardation, and none were able to walk or speak. The significantly higher value of the free T3/free T4 (fT3/fT4) ratio found in our study can be a simple and useful diagnostic biomarker (Our value 11.60 ± 4.14 vs control 3.03 ± 0.38). Initial white matter signal abnormalities on head MRI showed recovery, but somatosensory evoked potentials (SEP) showed no improvement, suggesting that the patient remained dysfunctional. CONCLUSION For early diagnosis, including in mild cases, it might be important to consider the clinical course, early head MRI, SEP, and fT3/fT4 ratio.
Collapse
Affiliation(s)
- Masaya Kubota
- Division of Neurology, National Center for Child Health and Development, Japan; Department of Pediatrics, Shimada Ryoiku Medical Center for Challenged Children, Japan.
| | - Akiko Yakuwa
- Department of Pediatrics, National Rehabilitation Center for Children with Disabilities, Japan.
| | - Hiroshi Terashima
- Division of Neurology, National Center for Child Health and Development, Japan.
| | | |
Collapse
|
20
|
Valcárcel-Hernández V, Guillén-Yunta M, Bueno-Arribas M, Montero-Pedrazuela A, Grijota-Martínez C, Markossian S, García-Aldea Á, Flamant F, Bárez-López S, Guadaño-Ferraz A. A CRISPR/Cas9-engineered avatar mouse model of monocarboxylate transporter 8 deficiency displays distinct neurological alterations. Neurobiol Dis 2022; 174:105896. [DOI: 10.1016/j.nbd.2022.105896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 10/31/2022] Open
|
21
|
Moran C, Schoenmakers N, Visser WE, Schoenmakers E, Agostini M, Chatterjee K. Genetic disorders of thyroid development, hormone biosynthesis and signalling. Clin Endocrinol (Oxf) 2022; 97:502-514. [PMID: 35999191 PMCID: PMC9544560 DOI: 10.1111/cen.14817] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/24/2022] [Accepted: 07/04/2022] [Indexed: 11/28/2022]
Abstract
Development and differentiation of the thyroid gland is directed by expression of specific transcription factors in the thyroid follicular cell which mediates hormone biosynthesis. Membrane transporters are rate-limiting for cellular entry of thyroid hormones (TH) (T4 and T3) into some tissues, with selenocysteine-containing, deiodinase enzymes (DIO1 and DIO2) converting T4 to the biologically active hormone T3. TH regulate expression of target genes via hormone-inducible nuclear receptors (TRα and TRβ) to exert their physiological effects. Primary congenital hypothyroidism (CH) due to thyroid dysgenesis may be mediated by defects in thyroid transcription factors or impaired thyroid stimulating hormone receptor function. Dyshormonogenic CH is usually due to mutations in genes mediating thyroidal iodide transport, organification or iodotyrosine synthesis and recycling. Disorders of TH signalling encompass conditions due to defects in membrane TH transporters, impaired hormone metabolism due to deficiency of deiodinases and syndromes of Resistance to thyroid hormone due to pathogenic variants in either TRα or TRβ. Here, we review the genetic basis, pathogenesis and clinical features of congenital, dysgenetic or dyshormonogenic hypothyroidism and disorders of TH transport, metabolism and action.
Collapse
Affiliation(s)
- Carla Moran
- Wellcome Trust‐MRC Institute of Metabolic ScienceUniversity of CambridgeCambridgeUK
- Present address:
Beacon Hospital and School of MedicineUniversity CollegeDublinIreland
| | - Nadia Schoenmakers
- Wellcome Trust‐MRC Institute of Metabolic ScienceUniversity of CambridgeCambridgeUK
| | - W. Edward Visser
- Department of Internal MedicineErasmus Medical Center, Academic Center for Thyroid DiseasesRotterdamThe Netherlands
| | - Erik Schoenmakers
- Wellcome Trust‐MRC Institute of Metabolic ScienceUniversity of CambridgeCambridgeUK
| | - Maura Agostini
- Wellcome Trust‐MRC Institute of Metabolic ScienceUniversity of CambridgeCambridgeUK
| | - Krishna Chatterjee
- Wellcome Trust‐MRC Institute of Metabolic ScienceUniversity of CambridgeCambridgeUK
| |
Collapse
|
22
|
Olivati C, Favilla BP, Freitas EL, Santos B, Melaragno MI, Meloni VA, Piazzon F. Allan-Herndon-Dudley syndrome in a female patient and related mechanisms. Mol Genet Metab Rep 2022; 31:100879. [PMID: 35782622 PMCID: PMC9248228 DOI: 10.1016/j.ymgmr.2022.100879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/30/2022] Open
Abstract
Allan-Herndon-Dudley syndrome (AHDS) is characterized by neuropsychomotor developmental delay/intellectual disability, neurological impairment with a movement disorder, and an abnormal thyroid hormone profile. This disease is an X-linked disorder that mainly affects men. We described a female patient with a de novo variant in the SLC16A2 gene, a milder AHDS phenotype, and a skewed X chromosome inactivation profile. We discuss the mechanisms associated with the expression of the phenotypic characteristics in female patients, including SLC16A2 gene variants and cytogenomic alterations, as well as preferential inactivation of the normal X chromosome.
Collapse
Affiliation(s)
- Caroline Olivati
- Rare Rosy Clinic, São Paulo, Brazil
- Fleury Medicina e Saúde, São Paulo, Brazil
- Corresponding author at: Rare Rosy Clinic, Rua Borges Lagoa, 1080, CEP 04038-020 São Paulo, SP, Brazil.
| | - Bianca Pereira Favilla
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | - Maria Isabel Melaragno
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Vera Ayres Meloni
- Rare Rosy Clinic, São Paulo, Brazil
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Flavia Piazzon
- Rare Rosy Clinic, São Paulo, Brazil
- Neuromuscular Reference Center, Department of Pediatrics, University Hospital Liège & University of Liège, Belgium
- Neurometabolic Unit, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
Liu Z, Zhao S, Chen J, Ma L, Shi Q, Zhou Y. A novel frameshift mutation in Allan-Herndon-Dudley syndrome. Int J Legal Med 2022; 136:1181-1187. [PMID: 35391604 DOI: 10.1007/s00414-022-02823-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/30/2022] [Indexed: 11/25/2022]
Abstract
Allan-Herndon-Dudley syndrome (AHDS) is a very rare, X-linked psychomotor disability syndrome with delayed myelination, almost exclusively affecting boys. We present a case of a 4-year-old boy with AHDS who was found cyanotic, with intermittent vomiting and paroxysmal convulsions about 4 h after his parents went out, and was then taken to the hospital, where he eventually died the next day. The autopsy revealed foreign bodies in the tiny bronchi and alveoli of the deceased, congestion, and punctate hemorrhage in multiple organs, consistent with the diagnosis of asphyxia. Compared with a normally developing 4-year-old boy, the deceased showed cerebral atrophy and cerebral edema, and Luxol Fast Blue (LFB) stain indicated delayed cerebellar, hippocampal, and basal ganglia development and myelination. A novel frameshift mutation c.584delG in the SLC16A2 gene was detected. Family lineage investigation showed that the mutation was also detected in the deceased's 8-year-old brother and biological mother. The present work enriches the profile mutations in SLC16A2 related to AHDS and emphasizes the importance of autopsy and postmortem genetic analysis in such cases.
Collapse
Affiliation(s)
- Zihao Liu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | - Shuquan Zhao
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | - Jianyi Chen
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | - Longda Ma
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | - Qing Shi
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | - Yiwu Zhou
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
24
|
Chen X, Liu L, Zeng C. A novel variant in SLC16A2 associated with typical Allan-Herndon-Dudley syndrome: a case report. BMC Pediatr 2022; 22:180. [PMID: 35382784 PMCID: PMC8981932 DOI: 10.1186/s12887-022-03259-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 03/31/2022] [Indexed: 11/23/2022] Open
Abstract
Background Allan-Herndon-Dudley syndrome (AHDS) is an X-linked recessive neurodegenerative disorder caused by mutations in the SLC16A2 gene that encodes thyroid hormone transporter. AHDS has been rarely reported in China. Case presentation This study reported a novel splicing mutation in the SLC16A2 gene in an 18-month-old male patient with AHDS. The patient was born to non-consanguineous, healthy parents of Chinese origin. He passed new-born screening for hypothyroidism, but failed to reach developmental milestones. He presented with hypotonia, severe mental retardation, dysarthria and ataxia. Genetic analysis identified a novel splicing mutation, NM_006517.4: c.431-2 A > G, in the SLC16A2 gene inherited from his mother. The patient received Triac treatment, (triiodothyroacetic acid), a thyroid hormone analogue for 3 months. Triac treatment effectively reduced serum TSH concentrations and normalized serum T3 concentrations in the patient. Conclusions This study reported the first case of AHDS treated by Triac in China. And the study expanded the mutational spectrum of the SLC16A2 gene in AHDS patients. Supplementary information The online version contains supplementary material available at 10.1186/s12887-022-03259-5.
Collapse
Affiliation(s)
- Xiaodan Chen
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd, 510623, Guangzhou, China
| | - Li Liu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd, 510623, Guangzhou, China.
| | - Chunhua Zeng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd, 510623, Guangzhou, China.
| |
Collapse
|
25
|
Adams JW, Malicki D, Levy M, Crawford JR. Ganglioglioma with novel molecular features presenting in a child with Allan-Herndon-Dudley syndrome. BMJ Case Rep 2022; 15:e248734. [PMID: 35236707 PMCID: PMC8895953 DOI: 10.1136/bcr-2021-248734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2022] [Indexed: 11/03/2022] Open
Affiliation(s)
- Jason W Adams
- Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Denise Malicki
- Pathology, Rady Children's Hospital University of California San Diego, San Diego, California, USA
| | - Michael Levy
- Neurosurgery, University of California San Diego, San Diego, California, USA
| | - John Ross Crawford
- Neurosciences and Pediatrics, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
26
|
Dhayalan B, Weiss MA. Diabetes-Associated Mutations in Proinsulin Provide a "Molecular Rheostat" of Nascent Foldability. Curr Diab Rep 2022; 22:85-94. [PMID: 35119630 DOI: 10.1007/s11892-022-01447-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW Diabetes mellitus (DM) due to toxic misfolding of proinsulin variants provides a monogenic model of endoplasmic reticulum (ER) stress. The mutant proinsulin syndrome (also designated MIDY; Mutant INS-gene-induced Diabetes of Youth or Maturity-onset diabetes of the young 10 (MODY10)) ordinarily presents as permanent neonatal-onset DM, but specific amino-acid substitutions may also present later in childhood or adolescence. This review highlights structural mechanisms of proinsulin folding as inferred from phenotype-genotype relationships. RECENT FINDINGS MIDY mutations most commonly add or remove a cysteine, leading to a variant polypeptide containing an odd number of thiol groups. Such variants are associated with aberrant intermolecular disulfide pairing, ER stress, and neonatal β-cell dysfunction. Non-cysteine-related (NCR) mutations (occurring in both the B and A domains of proinsulin) define distinct determinants of foldability and vary in severity. The range of ages of onset, therefore, reflects a "molecular rheostat" connecting protein biophysics to quality-control ER checkpoints. Because in most mammalian cell lines even wild-type proinsulin exhibits limited folding efficiency, molecular barriers to folding uncovered by NCR MIDY mutations may pertain to β-cell dysfunction in non-syndromic type 2 DM due to INS-gene overexpression in the face of peripheral insulin resistance. Recent studies of MIDY mutations and related NCR variants, combining molecular and cell-based approaches, suggest that proinsulin has evolved at the edge of non-foldability. Chemical protein synthesis promises to enable comparative studies of "non-foldable" proinsulin variants to define key steps in wild-type biosynthesis. Such studies may create opportunities for novel therapeutic approaches to non-syndromic type 2 DM.
Collapse
Affiliation(s)
- Balamurugan Dhayalan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Michael A Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA.
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
27
|
Zhang Q, Yang Q, Zhou X, Qin Z, Yi S, Luo J. Characteristics of Allan-Herndon-Dudley Syndrome in Chinese children: Identification of two novel pathogenic variants of the SLC16A2 gene. Front Pediatr 2022; 10:1050023. [PMID: 36458135 PMCID: PMC9705582 DOI: 10.3389/fped.2022.1050023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/02/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE The aim of this study was to identify causative variants associated with Allan-Herndon-Dudley syndrome (AHDS) in two unrelated Chinese families, and to determine their potential pathogenicity. We also summarized the core clinical symptoms of AHDS by reviewing the related literature. METHODS Genomic DNA was isolated from the peripheral blood of AHDS patients and their family members. Whole exome sequencing (WES) was performed on the proband from each family to identify the candidate variants. Subsequently, Sanger sequencing was used to verify the identified candidate variants and to assess co-segregation among the available family members. In silico prediction combined with 3D protein modeling was conducted to predict the functional effects of the variants on the encoded protein. RESULTS Two novel hemizygous variants of SLC16A2, c.1111_1112insGTCTTGT (Gly375fs*6) and c.942delA (Val315fs*28), were detected in two patients. We compared the clinical symptoms of the patients with all patients with AHDS reported in China and those reported in the literature. While both our patients presented symptoms mostly consistent with AHDS, Patient 1 had no abnormal brain structure and thyroid function, and yet showed other symptoms including lactic aciduria, conjunctival hyperemia, vomiting, laryngeal stridor, low immunoglobulin and iron levels. CONCLUSIONS This study expands the mutation spectrum of AHDS and has clinical value for variant-based prenatal and postnatal screening for this condition. Doctors often have difficulty identifying AHDS by using clinical symptoms. WES can help to identify specific disorder when diagnosis cannot be made based on symptoms alone.
Collapse
Affiliation(s)
- Qiang Zhang
- The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Guangxi Birth Defects Prevention and Control Institute, Nanning, China
| | - Qi Yang
- The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Guangxi Birth Defects Prevention and Control Institute, Nanning, China
| | - Xunzhao Zhou
- The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Guangxi Birth Defects Prevention and Control Institute, Nanning, China
| | - Zailong Qin
- The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Guangxi Birth Defects Prevention and Control Institute, Nanning, China
| | - Shang Yi
- The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Guangxi Birth Defects Prevention and Control Institute, Nanning, China
| | - Jingsi Luo
- The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Guangxi Birth Defects Prevention and Control Institute, Nanning, China
| |
Collapse
|
28
|
Masnada S, Sarret C, Antonello CE, Fadilah A, Krude H, Mura E, Mordekar S, Nicita F, Olivotto S, Orcesi S, Porta F, Remerand G, Siri B, Wilpert NM, Amir-Yazdani P, Bertini E, Schuelke M, Bernard G, Boespflug-Tanguy O, Tonduti D. Movement disorders in MCT8 deficiency/Allan-Herndon-Dudley Syndrome. Mol Genet Metab 2022; 135:109-113. [PMID: 34969638 DOI: 10.1016/j.ymgme.2021.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND OBJECTIVES MCT8 deficiency is a rare genetic leukoencephalopathy caused by a defect of thyroid hormone transport across cell membranes, particularly through blood brain barrier and into neural cells. It is characterized by a complex neurological presentation, signs of peripheral thyrotoxicosis and cerebral hypothyroidism. Movement disorders (MDs) have been frequently mentioned in this condition, but not systematically studied. METHODS Each patient recruited was video-recorded during a routine outpatient visit according to a predefined protocol. The presence and the type of MDs were evaluated. The type of MD was blindly scored by two child neurologists experts in inherited white matter diseases and in MD. Dystonia was scored according to Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS). When more than one MD was present, the predominant one was scored. RESULTS 27 patients were included through a multicenter collaboration. In many cases we saw a combination of different MDs. Hypokinesia was present in 25/27 patients and was the predominant MD in 19. It was often associated with hypomimia and global hypotonia. Dystonia was observed in 25/27 patients, however, in a minority of cases (5) it was deemed the predominant MD. In eleven patients, exaggerated startle reactions and/or other paroxysmal non-epileptic events were observed. CONCLUSION MDs are frequent clinical features of MCT8 deficiency, possibly related to the important role of thyroid hormones in brain development and functioning of normal dopaminergic circuits of the basal ganglia. Dystonia is common, but usually mild to moderate in severity, while hypokinesia was the predominant MD in the majority of patients.
Collapse
Affiliation(s)
- Silvia Masnada
- Unit of Pediatric Neurology, V. Buzzi Children's Hospital, Milan, Italy; C.O.A.L.A (Center for diagnosis and treatment of leukodystrophies), V. Buzzi Children's Hospital, Milan, Italy.
| | - Catherine Sarret
- Centre de Compétence des Leucodystrophies et Leucoencéphalopathies de Cause Rare, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France.
| | - Clara Eleonora Antonello
- C.O.A.L.A (Center for diagnosis and treatment of leukodystrophies), V. Buzzi Children's Hospital, Milan, Italy; Department of Paediatric Orthopaedics, V. Buzzi Children's Hospital, Milan, Italy.
| | - Ala Fadilah
- Department of Paediatric Neurology, Sheffield Children's NHS Foundation Trust, Sheffield, United Kingdom.
| | - Heiko Krude
- Institute of Experimental Pediatric Endocrinology, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Eleonora Mura
- Unit of Pediatric Neurology, V. Buzzi Children's Hospital, Milan, Italy; C.O.A.L.A (Center for diagnosis and treatment of leukodystrophies), V. Buzzi Children's Hospital, Milan, Italy
| | - Santosh Mordekar
- Department of Paediatric Neurology, Sheffield Children's NHS Foundation Trust, Sheffield, United Kingdom.
| | - Francesco Nicita
- Genetics and Rare Diseases Research Division, Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Sara Olivotto
- Unit of Pediatric Neurology, V. Buzzi Children's Hospital, Milan, Italy; C.O.A.L.A (Center for diagnosis and treatment of leukodystrophies), V. Buzzi Children's Hospital, Milan, Italy.
| | - Simona Orcesi
- Department of Brain and Behavioural Neurosciences, University of Pavia, Pavia, Italy; Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy.
| | - Francesco Porta
- Pediatric Department, Regina Margherita Hospital, Turin, Italy
| | - Ganaelle Remerand
- Service de Néonatologie, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Barbara Siri
- Pediatric Department, Regina Margherita Hospital, Turin, Italy; Metabolic Unit, Department Pediatrics, Bambino Gesù Children's Hospital, Italy.
| | - Nina-Maria Wilpert
- Department of Neuropediatrics, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Pouneh Amir-Yazdani
- Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montréal, Québec, Canada; Université Laval, Québec, Québec, Canada.
| | - Enrico Bertini
- Genetics and Rare Diseases Research Division, Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Markus Schuelke
- Department of Neuropediatrics, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Geneviève Bernard
- Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montréal, Québec, Canada; Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University, Montreal, Canada; Department Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal, Canada.
| | - Odile Boespflug-Tanguy
- Department of Pediatric Neurology and Metabolic Disorders, French Reference Center for Leukodystrophies, Robert Debré Hospital, Paris, France; Inserm UMR1141 Neuroprotect, Paris Diderot University, Sorbonne Cite, Paris, France
| | - Davide Tonduti
- Unit of Pediatric Neurology, V. Buzzi Children's Hospital, Milan, Italy; C.O.A.L.A (Center for diagnosis and treatment of leukodystrophies), V. Buzzi Children's Hospital, Milan, Italy.
| |
Collapse
|
29
|
Nguyen YTK, Ha HTT, Nguyen TH, Nguyen LN. The role of SLC transporters for brain health and disease. Cell Mol Life Sci 2021; 79:20. [PMID: 34971415 PMCID: PMC11071821 DOI: 10.1007/s00018-021-04074-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/05/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022]
Abstract
The brain exchanges nutrients and small molecules with blood via the blood-brain barrier (BBB). Approximately 20% energy intake for the body is consumed by the brain. Glucose is known for its critical roles for energy production and provides substrates for biogenesis in neurons. The brain takes up glucose via glucose transporters GLUT1 and 3, which are expressed in several neural cell types. The brain is also equipped with various transport systems for acquiring amino acids, lactate, ketone bodies, lipids, and cofactors for neuronal functions. Unraveling the mechanisms by which the brain takes up and metabolizes these nutrients will be key in understanding the nutritional requirements in the brain. This could also offer opportunities for therapeutic interventions in several neurological disorders. For instance, emerging evidence suggests a critical role of lactate as an alternative energy source for neurons. Neuronal cells express monocarboxylic transporters to acquire lactate. As such, treatment of GLUT1-deficient patients with ketogenic diets to provide the brain with alternative sources of energy has been shown to improve the health of the patients. Many transporters are present in the brain, but only a small number has been characterized. In this review, we will discuss about the roles of solute carrier (SLC) transporters at the blood brain barrier (BBB) and neural cells, in transport of nutrients and metabolites in the brain.
Collapse
Affiliation(s)
- Yen T K Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Hoa T T Ha
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Tra H Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Long N Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore.
- SLING/Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore.
- Immunology Translational and Cardiovascular Disease Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore.
| |
Collapse
|
30
|
Ipek R, Bozdogan ST, Kömür M, Okuyaz C. A Novel Mutation Diagnosing in Allan–Herndon–Dudley's Syndrome. J Pediatr Genet 2021. [DOI: 10.1055/s-0041-1740457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractAllan–Herndon–Dudley's syndrome (AHDS) is a rare X-linked recessive disease that causes abnormal serum thyroid function tests, severe hypotonia, intellectual disability, and motor deficit due to a mutation in the monocarboxylate transporter 8, which is a thyroid hormone transporter. A 6-month-old male patient presented to our outpatient clinic with a serious hypotonia complaint. With a preliminary diagnosis of AHDS, a molecular genetic examination was performed. The molecular genetic analysis detected a new previously unidentified variant in the SLC16A2 gene. This case has been presented to report the AHDS, which is a rare cause of hypotonia in patients presenting/consulting with severe hypotonia, global developmental delay, and abnormal thyroid function test results. Besides, a novel pathogenic mutation in the SLC16A2 gene has been described in the present article.
Collapse
Affiliation(s)
- Rojan Ipek
- Department of Pediatrics, Division of Neurology, Training and Research Hospital, Adıyaman University, Adıyaman, Turkey
| | - Sevcan Tug Bozdogan
- Department of Medical Genetics, Medical Faculty, Çukurova University, Adana, Turkey
| | - Mustafa Kömür
- Department of Pediatrics, Division of Neurology, Medical Faculty, Mersin University, Mersin, Turkey
| | - Cetin Okuyaz
- Department of Pediatrics, Division of Neurology, Medical Faculty, Mersin University, Mersin, Turkey
| |
Collapse
|
31
|
Billar RJ, Manoubi W, Kant SG, Wijnen RMH, Demirdas S, Schnater JM. Association between pectus excavatum and congenital genetic disorders: A systematic review and practical guide for the treating physician. J Pediatr Surg 2021; 56:2239-2252. [PMID: 34039477 DOI: 10.1016/j.jpedsurg.2021.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/13/2021] [Accepted: 04/18/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Pectus excavatum (PE) could be part of a genetic disorder, which then has implications regarding comorbidity, the surgical correction of PE, and reproductive choices. However, referral of a patient presenting with PE for genetic analysis is often delayed because additional crucial clinical signs may be subtle or even missed in syndromic patients. We reviewed the literature to inventory known genetic disorders associated with PE and create a standardized protocol for clinical evaluation. METHODS A systematic literature search was performed in electronic databases. Genetic disorders were considered associated with PE if studies reported at least five cases with PE. Characteristics of each genetic disorder were extracted from the literature and the OMIM database in order to create a practical guide for the clinician. RESULTS After removal of duplicates from the initial search, 1632 citations remained. Eventually, we included 119 full text articles, representing 20 different genetic disorders. Relevant characteristics and important clinical signs of each genetic disorder were summarized providing a standardized protocol in the form of a scoring list. The most important clinical sign was a positive family history for PE and/or congenital heart defect. CONCLUSIONS Twenty unique genetic disorders have been found associated with PE. We have created a scoring list for the clinician that systematically evaluates crucial clinical signs, thereby facilitating decision making for referral to a clinical geneticist.
Collapse
Affiliation(s)
- Ryan J Billar
- Erasmus University Medical Center - Sophia Children's Hospital, department of Paediatric Surgery Rotterdam, Netherlands
| | - Wiem Manoubi
- Erasmus University Medical Centre, department of Neuroscience, Rotterdam, Netherlands
| | - Sarina G Kant
- Erasmus University Medical Centre, department of Clinical Genetics, Rotterdam, Netherlands
| | - René M H Wijnen
- Erasmus University Medical Center - Sophia Children's Hospital, department of Paediatric Surgery Rotterdam, Netherlands
| | - Serwet Demirdas
- Erasmus University Medical Centre, department of Clinical Genetics, Rotterdam, Netherlands
| | - Johannes M Schnater
- Erasmus University Medical Center - Sophia Children's Hospital, department of Paediatric Surgery Rotterdam, Netherlands.
| |
Collapse
|
32
|
Valcárcel-Hernández V, López-Espíndola D, Guillén-Yunta M, García-Aldea Á, López de Toledo Soler I, Bárez-López S, Guadaño-Ferraz A. Deficient thyroid hormone transport to the brain leads to impairments in axonal caliber and oligodendroglial development. Neurobiol Dis 2021; 162:105567. [PMID: 34838669 DOI: 10.1016/j.nbd.2021.105567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/04/2023] Open
Abstract
Mutations in the thyroid hormone transporter monocarboxylate transporter 8 (MCT8) lead to profound brain alterations, including myelination impairments, in humans. We aimed to further explore the pathophysiological mechanisms underlying the MCT8 deficiency-associated myelination impairments to unravel new biomarkers and therapeutic targets. We have performed brain histological analysis on an MCT8-deficient subject and histological, ultrastructural, and magnetic resonance imaging (MRI) analysis in the brain of a mouse model of the syndrome, lacking MCT8 and enzyme deiodinase type 2 (DIO2, Mct8/Dio2 KO). We have found that the MCT8-deficient subject presents severely reduced myelin lipid and protein staining and increased proportion of small-caliber myelinated axons in detriment of large-caliber ones. Mct8/Dio2 KO mice present myelination impairments and abnormal oligodendroglial development. We conclude that the greater proportion of small-caliber axons and impairments in the oligodendroglia lineage progression arise as potential mechanisms underlying the permanent myelination defects in MCT8-deficiency. Moreover, we present the Mct8/Dio2 KO mouse model, and MRI as a non-invasive biomarker, as highly valuable tools for preclinical studies involving MCT8 deficiency. These findings contribute to the understanding of the pathological mechanisms in MCT8 deficiency and suggest new biomarkers and therapeutic targets to consider therapeutic options for the neurological defects in patients.
Collapse
Affiliation(s)
- Víctor Valcárcel-Hernández
- Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - Daniela López-Espíndola
- Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Arturo Duperier 4, 28029 Madrid, Spain; Escuela de Tecnología Médica and Centro de Investigaciones Biomédicas (CIB), Universidad de Valparaíso, Angamos 655, Reñaca, Viña del Mar, Chile
| | - Marina Guillén-Yunta
- Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - Ángel García-Aldea
- Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - Inés López de Toledo Soler
- Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - Soledad Bárez-López
- Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Arturo Duperier 4, 28029 Madrid, Spain; Translational Health Sciences, Bristol Medical School, University of Bristol, Dorothy Hodgkin Building, Whitson Street, BS1 3NY Bristol, United Kingdom.
| | - Ana Guadaño-Ferraz
- Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Arturo Duperier 4, 28029 Madrid, Spain.
| |
Collapse
|
33
|
Rosenberg AGW, Pater MRA, Pellikaan K, Davidse K, Kattentidt-Mouravieva AA, Kersseboom R, Bos-Roubos AG, van Eeghen A, Veen JMC, van der Meulen JJ, van Aalst-van Wieringen N, Hoekstra FME, van der Lely AJ, de Graaff LCG. What Every Internist-Endocrinologist Should Know about Rare Genetic Syndromes in Order to Prevent Needless Diagnostics, Missed Diagnoses and Medical Complications: Five Years of 'Internal Medicine for Rare Genetic Syndromes'. J Clin Med 2021; 10:jcm10225457. [PMID: 34830739 PMCID: PMC8622899 DOI: 10.3390/jcm10225457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023] Open
Abstract
Patients with complex rare genetic syndromes (CRGS) have combined medical problems affecting multiple organ systems. Pediatric multidisciplinary (MD) care has improved life expectancy, however, transfer to internal medicine is hindered by the lack of adequate MD care for adults. We have launched an MD outpatient clinic providing syndrome-specific care for adults with CRGS, which, to our knowledge, is the first one worldwide in the field of internal medicine. Between 2015 and 2020, we have treated 720 adults with over 60 syndromes. Eighty-nine percent of the syndromes were associated with endocrine problems. We describe case series of missed diagnoses and patients who had undergone extensive diagnostic testing for symptoms that could actually be explained by their syndrome. Based on our experiences and review of the literature, we provide an algorithm for the clinical approach of health problems in CRGS adults. We conclude that missed diagnoses and needless invasive tests seem common in CRGS adults. Due to the increased life expectancy, an increasing number of patients with CRGS will transfer to adult endocrinology. Internist-endocrinologists (in training) should be aware of their special needs and medical pitfalls of CRGS will help prevent the burden of unnecessary diagnostics and under- and overtreatment.
Collapse
Affiliation(s)
- Anna G. W. Rosenberg
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (A.G.W.R.); (M.R.A.P.); (K.P.); (K.D.); (F.M.E.H.); (A.J.v.d.L.)
- Dutch Center of Reference for Prader-Willi Syndrome, 3015 GD Rotterdam, The Netherlands
| | - Minke R. A. Pater
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (A.G.W.R.); (M.R.A.P.); (K.P.); (K.D.); (F.M.E.H.); (A.J.v.d.L.)
| | - Karlijn Pellikaan
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (A.G.W.R.); (M.R.A.P.); (K.P.); (K.D.); (F.M.E.H.); (A.J.v.d.L.)
- Dutch Center of Reference for Prader-Willi Syndrome, 3015 GD Rotterdam, The Netherlands
| | - Kirsten Davidse
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (A.G.W.R.); (M.R.A.P.); (K.P.); (K.D.); (F.M.E.H.); (A.J.v.d.L.)
- Dutch Center of Reference for Prader-Willi Syndrome, 3015 GD Rotterdam, The Netherlands
| | | | - Rogier Kersseboom
- Stichting Zuidwester, 3241 LB Middelharnis, The Netherlands; (A.A.K.-M.); (R.K.)
| | - Anja G. Bos-Roubos
- Center of Excellence for Neuropsychiatry, Vincent van Gogh, 5803 DN Venray, The Netherlands;
| | - Agnies van Eeghen
- ‘s Heeren Loo, Care Group, 3818 LA Amersfoort, The Netherlands;
- Department of Pediatrics, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
- Academic Center for Growth Disorders, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - José M. C. Veen
- ‘s Heeren Loo, Care Providing Agency, 6733 SC Wekerom, The Netherlands; (J.M.C.V.); (J.J.v.d.M.)
| | - Jiske J. van der Meulen
- ‘s Heeren Loo, Care Providing Agency, 6733 SC Wekerom, The Netherlands; (J.M.C.V.); (J.J.v.d.M.)
| | - Nina van Aalst-van Wieringen
- Department of Physical Therapy, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
| | - Franciska M. E. Hoekstra
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (A.G.W.R.); (M.R.A.P.); (K.P.); (K.D.); (F.M.E.H.); (A.J.v.d.L.)
- Department of Internal Medicine, Reinier de Graaf Hospital, 2625 AD Delft, The Netherlands
| | - Aart J. van der Lely
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (A.G.W.R.); (M.R.A.P.); (K.P.); (K.D.); (F.M.E.H.); (A.J.v.d.L.)
| | - Laura C. G. de Graaff
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (A.G.W.R.); (M.R.A.P.); (K.P.); (K.D.); (F.M.E.H.); (A.J.v.d.L.)
- Dutch Center of Reference for Prader-Willi Syndrome, 3015 GD Rotterdam, The Netherlands
- Academic Center for Growth Disorders, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- ENCORE—Dutch Center of Reference for Neurodevelopmental Disorders, 3015 GD Rotterdam, The Netherlands
- Dutch Center of Reference for Turner Syndrome, 3015 GD Rotterdam, The Netherlands
- Dutch Center of Reference for Disorders of Sex Development, 3015 GD Rotterdam, The Netherlands
- Correspondence:
| |
Collapse
|
34
|
Han JY, Lee S, Woo H, Kim SY, Kim H, Lim BC, Hwang H, Choi J, Kim KJ, Chae JH. Heterogeneous Clinical Characteristics of Allan-Herndon-Dudley Syndrome with SLC16A2 Mutations. ANNALS OF CHILD NEUROLOGY 2021. [DOI: 10.26815/acn.2021.00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Purpose: The purpose of this study was to expand our understanding of phenotypic and genetic variation in Allan-Herndon-Dudley syndrome (AHDS), which is a rare X-linked mental retardation syndrome characterized by hypotonia, generalized spasticity, and moderate-to-severe psychomotor retardation. AHDS is caused by a mutation of solute carrier family 16 member 2 (SLC16A2), which encodes monocarboxylate transporter 8 (MCT8), the transporter of triiodothyronine (T3) into neurons. Methods: We enrolled nine patients with AHDS from unrelated families, except for two patients who were cousins, through a retrospective chart review. Clinical features, brain imaging, electroencephalograms, thyroid hormone profiles, and genetic data were reviewed retrospectively and compared with previously reported cases. Results: We found three novel and five previously reported pathogenic variants in nine patients from eight families. All patients presented with hypotonia, spasticity, severe developmental delay, and elevated serum T3 levels. Cataplexy, which is a previously unreported phenotype, was found in two patients with the same mutation. In our cohort, seizures were uncommon (n=1) but intractable. Conclusion: This study broadens the known phenotypic variations of AHDS, ranging from relatively mild global developmental delay to a severe form of encephalopathy with hypotonia, spasticity, and no acquisition of independent sitting. The syndromic classification or genetic etiology of global developmental delay is extremely heterogeneous; therefore, early clinical suspicion is challenging for clinicians. However, severe mental retardation with hypotonia, spasticity, and elevated serum T3 levels in male patients is a highly suspicious clinical clue for the early diagnosis of AHDS.
Collapse
|
35
|
Gowda VK, Gupta P, Shivappa SK, Benakappa N. Thyroid Hormone Transporter Defect: Allan Herndon Dudley Syndrome, Masquerading as Dyskinetic Cerebral Palsy. J Pediatr Neurosci 2021; 16:293-295. [PMID: 36531774 PMCID: PMC9757515 DOI: 10.4103/jpn.jpn_135_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 10/22/2020] [Accepted: 11/22/2020] [Indexed: 06/17/2023] Open
Abstract
Allan Herndon Dudley syndrome (AHDS) is a rare X-linked recessive disorder due to mutation in the SLC16A2 gene, which encodes a thyroid hormone (TH) transporter that facilitates the movement of TH across the neurons. Mutation in this gene leads to a lack of T3 and T4 entry in the brain, which causes central hypothyroidism and dysthyroidism in the peripheral tissue. We report a child, a 21-month-old boy, who presented with developmental delay and stiffness. The child had facial dysmorphism with dystonia. MRI of the brain was normal. Thyroid profile showed low free T4, and normal TSH but high free T3. Hence, AHDS was suspected and was confirmed by targeted next-generation testing and Sanger sequencing.
Collapse
Affiliation(s)
| | - Priya Gupta
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, India
| | - Sanjay K Shivappa
- Department of Pediatric Medicine, Indira Gandhi Institute of Child Health, Bangalore, India
| | - Naveen Benakappa
- Department of Pediatric Medicine, Indira Gandhi Institute of Child Health, Bangalore, India
| |
Collapse
|
36
|
Mayerl S, Chen J, Salveridou E, Boelen A, Darras VM, Heuer H. Thyroid Hormone Transporter Deficiency in Mice Impacts Multiple Stages of GABAergic Interneuron Development. Cereb Cortex 2021; 32:329-341. [PMID: 34339499 PMCID: PMC8754375 DOI: 10.1093/cercor/bhab211] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/11/2021] [Accepted: 06/01/2021] [Indexed: 11/14/2022] Open
Abstract
Cortical interneuron neurogenesis is strictly regulated and depends on the presence of thyroid hormone (TH). In particular, inhibitory interneurons expressing the calcium binding protein Parvalbumin are highly sensitive toward developmental hypothyroidism. Reduced numbers of Parvalbumin-positive interneurons are observed in mice due to the combined absence of the TH transporters Mct8 and Oatp1c1. To unravel if cortical Parvalbumin-positive interneurons depend on cell-autonomous action of Mct8/Oatp1c1, we compared Mct8/Oatp1c1 double knockout (dko) mice to conditional knockouts with abolished TH transporter expression in progenitors of Parvalbumin-positive interneurons. These conditional knockouts exhibited a transient delay in the appearance of Parvalbumin-positive interneurons in the early postnatal somatosensory cortex while cell numbers remained permanently reduced in Mct8/Oatp1c1 dko mice. Using fluorescence in situ hybridization on E12.5 embryonic brains, we detected reduced expression of sonic hedgehog signaling components in Mct8/Oatp1c1 dko embryos only. Moreover, we revealed spatially distinct expression patterns of both TH transporters at brain barriers at E12.5 by immunofluorescence. At later developmental stages, we uncovered a sequential expression of first Oatp1c1 in individual interneurons and then Mct8 in Parvalbumin-positive subtypes. Together, our results point to multiple cell-autonomous and noncell-autonomous mechanisms that depend on proper TH transport during cortical interneuron development.
Collapse
Affiliation(s)
- Steffen Mayerl
- Leibniz Institute on Aging/Fritz Lipmann Institute, 07745 Jena, Germany.,MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK.,Department of Endocrinology, Diabetes and Metabolism; University Duisburg-Essen, 45147 Essen, Germany
| | - Jiesi Chen
- Leibniz Institute on Aging/Fritz Lipmann Institute, 07745 Jena, Germany.,Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Eva Salveridou
- Department of Endocrinology, Diabetes and Metabolism; University Duisburg-Essen, 45147 Essen, Germany.,Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Anita Boelen
- Endocrinology Laboratory, Department of Clinical Chemistry, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Veerle M Darras
- Laboratory of Comparative Endocrinology, Animal Physiology and Neurobiology Section, Biology Department, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Heike Heuer
- Leibniz Institute on Aging/Fritz Lipmann Institute, 07745 Jena, Germany.,Department of Endocrinology, Diabetes and Metabolism; University Duisburg-Essen, 45147 Essen, Germany.,Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| |
Collapse
|
37
|
Iwayama H, Tanaka T, Aoyama K, Moroto M, Adachi S, Fujisawa Y, Matsuura H, Takano K, Mizuno H, Okumura A. Regional Difference in Myelination in Monocarboxylate Transporter 8 Deficiency: Case Reports and Literature Review of Cases in Japan. Front Neurol 2021; 12:657820. [PMID: 34335438 PMCID: PMC8319638 DOI: 10.3389/fneur.2021.657820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/03/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Monocarboxylate transporter 8 (MCT8) is a thyroid hormone transmembrane transporter protein. MCT8 deficiency induces severe X-linked psychomotor retardation. Previous reports have documented delayed myelination in the central white matter (WM) in these patients; however, the regional pattern of myelination has not been fully elucidated. Here, we describe the regional evaluation of myelination in four patients with MCT8 deficiency. We also reviewed the myelination status of previously reported Japanese patients with MCT8 deficiency based on magnetic resonance imaging (MRI). Case Reports: Four patients were genetically diagnosed with MCT8 deficiency at the age of 4–9 months. In infancy, MRI signal of myelination was observed mainly in the cerebellar WM, posterior limb of internal capsule, and the optic radiation. There was progression of myelination with increase in age. Discussion: We identified 36 patients with MCT8 deficiency from 25 families reported from Japan. The available MRI images were obtained at the age of <2 years in 13 patients, between 2 and 4 years in six patients, between 4 and 6 years in three patients, and at ≥6 years in eight patients. Cerebellar WM, posterior limb of internal capsule, and optic radiation showed MRI signal of myelination by the age of 2 years, followed by centrum semiovale and corpus callosum by the age of 4 years. Most regions except for deep anterior WM showed MRI signal of myelination at the age of 6 years. Conclusion: The sequential pattern of myelination in patients with MCT8 deficiency was largely similar to that in normal children; however, delayed myelination of the deep anterior WM was a remarkable finding. Further studies are required to characterize the imaging features of patients with MCT8 deficiency.
Collapse
Affiliation(s)
- Hideyuki Iwayama
- Department of Pediatrics, School of Medicine, Aichi Medical University, Nagakute, Japan
| | - Tatsushi Tanaka
- Department of Pediatrics and Neonatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Kohei Aoyama
- Department of Pediatrics and Neonatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Masaharu Moroto
- Department of Pediatrics, Fukuchiyama City Hospital, Fukuchiyama, Japan
| | - Shinsuke Adachi
- Department of Pediatrics, Fukuchiyama City Hospital, Fukuchiyama, Japan.,Adachi Pediatric Clinic, Fukuchiyama, Japan
| | - Yasuko Fujisawa
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hiroki Matsuura
- Department of Pediatrics, Shinshu University School of Medicine, Nagano, Japan
| | - Kyoko Takano
- Center for Medical Genetics, Shinshu University Hospital, Matsumoto, Japan
| | - Haruo Mizuno
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Japan
| | - Akihisa Okumura
- Department of Pediatrics, School of Medicine, Aichi Medical University, Nagakute, Japan
| |
Collapse
|
38
|
Schiera G, Di Liegro CM, Di Liegro I. Involvement of Thyroid Hormones in Brain Development and Cancer. Cancers (Basel) 2021; 13:2693. [PMID: 34070729 PMCID: PMC8197921 DOI: 10.3390/cancers13112693] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/21/2022] Open
Abstract
The development and maturation of the mammalian brain are regulated by thyroid hormones (THs). Both hypothyroidism and hyperthyroidism cause serious anomalies in the organization and function of the nervous system. Most importantly, brain development is sensitive to TH supply well before the onset of the fetal thyroid function, and thus depends on the trans-placental transfer of maternal THs during pregnancy. Although the mechanism of action of THs mainly involves direct regulation of gene expression (genomic effects), mediated by nuclear receptors (THRs), it is now clear that THs can elicit cell responses also by binding to plasma membrane sites (non-genomic effects). Genomic and non-genomic effects of THs cooperate in modeling chromatin organization and function, thus controlling proliferation, maturation, and metabolism of the nervous system. However, the complex interplay of THs with their targets has also been suggested to impact cancer proliferation as well as metastatic processes. Herein, after discussing the general mechanisms of action of THs and their physiological effects on the nervous system, we will summarize a collection of data showing that thyroid hormone levels might influence cancer proliferation and invasion.
Collapse
Affiliation(s)
- Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy; (G.S.); (C.M.D.L.)
| | - Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy; (G.S.); (C.M.D.L.)
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata) (Bi.N.D.), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
39
|
Halewa J, Marouillat S, Dixneuf M, Thépault RA, Ung DC, Chatron N, Gérard B, Ghoumid J, Lesca G, Till M, Smol T, Couque N, Ruaud L, Chune V, Grotto S, Verloes A, Vuillaume ML, Toutain A, Raynaud M, Laumonnier F. Novel missense mutations in PTCHD1 alter its plasma membrane subcellular localization and cause intellectual disability and autism spectrum disorder. Hum Mutat 2021; 42:848-861. [PMID: 33856728 PMCID: PMC8359977 DOI: 10.1002/humu.24208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/29/2021] [Accepted: 04/08/2021] [Indexed: 12/22/2022]
Abstract
The X-linked PTCHD1 gene, encoding a synaptic membrane protein, has been involved in neurodevelopmental disorders with the description of deleterious genomic microdeletions or truncating coding mutations. Missense variants were also identified, however, without any functional evidence supporting their pathogenicity level. We investigated 13 missense variants of PTCHD1, including eight previously described (c.152G>A,p.(Ser51Asn); c.217C>T,p.(Leu73Phe); c.517A>G,p.(Ile173Val); c.542A>C,p.(Lys181Thr); c.583G>A,p.(Val195Ile); c.1076A>G,p.(His359Arg); c.1409C>A,p.(Ala470Asp); c.1436A>G,p.(Glu479Gly)), and five novel ones (c.95C>T,p.(Pro32Leu); c.95C>G,p.(Pro32Arg); c.638A>G,p.(Tyr213Cys); c.898G>C,p.(Gly300Arg); c.928G>C,p.(Ala310Pro)) identified in male patients with intellectual disability (ID) and/or autism spectrum disorder (ASD). Interestingly, several of these variants involve amino acids localized in structural domains such as transmembrane segments. To evaluate their potentially deleterious impact on PTCHD1 protein function, we performed in vitro overexpression experiments of the wild-type and mutated forms of PTCHD1-GFP in HEK 293T and in Neuro-2a cell lines as well as in mouse hippocampal primary neuronal cultures. We found that six variants impaired the expression level of the PTCHD1 protein, and were retained in the endoplasmic reticulum suggesting abnormal protein folding. Our functional analyses thus provided evidence of the pathogenic impact of missense variants in PTCHD1, which reinforces the involvement of the PTCHD1 gene in ID and in ASD.
Collapse
Affiliation(s)
- Judith Halewa
- UMR1253, iBrain, INSERM, University of Tours, Tours, France
| | | | - Manon Dixneuf
- UMR1253, iBrain, INSERM, University of Tours, Tours, France
| | | | - Dévina C Ung
- UMR1253, iBrain, INSERM, University of Tours, Tours, France
| | - Nicolas Chatron
- Department of Genetics, Hospices Civils de Lyon, Lyon, France.,Institut NeuroMyoGène, CNRS UMR-5310, INSERM U-1217, Univ Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Bénédicte Gérard
- Laboratoire de diagnostic génétique, Institut de Génétique Médicale d'Alsace, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Jamal Ghoumid
- EA7364 RADEME, Clinique de Génétique Guy Fontaine, Université de Lille, CHU de Lille, Lille, France
| | - Gaëtan Lesca
- Department of Genetics, Hospices Civils de Lyon, Lyon, France.,Institut NeuroMyoGène, CNRS UMR-5310, INSERM U-1217, Univ Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Marianne Till
- Department of Genetics, Hospices Civils de Lyon, Lyon, France
| | - Thomas Smol
- EA7364 RADEME, Institut de Génétique Médicale, Université de Lille, CHU de Lille, Lille, France
| | - Nathalie Couque
- Department of Genetics, APHP-Robert Debré University Hospital, Paris, France
| | - Lyse Ruaud
- Department of Genetics, APHP-Robert Debré University Hospital, Paris, France.,INSERM, UMR1141, Denis Diderot School of Medicine, Paris University, Paris, France
| | - Valérie Chune
- Department of Genetics, APHP-Robert Debré University Hospital, Paris, France
| | - Sarah Grotto
- Department of Genetics, APHP-Robert Debré University Hospital, Paris, France.,INSERM, UMR1141, Denis Diderot School of Medicine, Paris University, Paris, France
| | - Alain Verloes
- Department of Genetics, APHP-Robert Debré University Hospital, Paris, France.,INSERM, UMR1141, Denis Diderot School of Medicine, Paris University, Paris, France
| | - Marie-Laure Vuillaume
- UMR1253, iBrain, INSERM, University of Tours, Tours, France.,Service de Génétique, Centre hospitalier régional universitaire de Tours, Tours, France
| | - Annick Toutain
- UMR1253, iBrain, INSERM, University of Tours, Tours, France.,Service de Génétique, Centre hospitalier régional universitaire de Tours, Tours, France
| | - Martine Raynaud
- UMR1253, iBrain, INSERM, University of Tours, Tours, France.,Service de Génétique, Centre hospitalier régional universitaire de Tours, Tours, France
| | - Frédéric Laumonnier
- UMR1253, iBrain, INSERM, University of Tours, Tours, France.,Service de Génétique, Centre hospitalier régional universitaire de Tours, Tours, France
| |
Collapse
|
40
|
Field MJ, Kumar R, Hackett A, Kayumi S, Shoubridge CA, Ewans LJ, Ivancevic AM, Dudding-Byth T, Carroll R, Kroes T, Gardner AE, Sullivan P, Ha TT, Schwartz CE, Cowley MJ, Dinger ME, Palmer EE, Christie L, Shaw M, Roscioli T, Gecz J, Corbett MA. Different types of disease-causing noncoding variants revealed by genomic and gene expression analyses in families with X-linked intellectual disability. Hum Mutat 2021; 42:835-847. [PMID: 33847015 DOI: 10.1002/humu.24207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 03/19/2021] [Accepted: 04/08/2021] [Indexed: 11/06/2022]
Abstract
The pioneering discovery research of X-linked intellectual disability (XLID) genes has benefitted thousands of individuals worldwide; however, approximately 30% of XLID families still remain unresolved. We postulated that noncoding variants that affect gene regulation or splicing may account for the lack of a genetic diagnosis in some cases. Detecting pathogenic, gene-regulatory variants with the same sensitivity and specificity as structural and coding variants is a major challenge for Mendelian disorders. Here, we describe three pedigrees with suggestive XLID where distinctive phenotypes associated with known genes guided the identification of three different noncoding variants. We used comprehensive structural, single-nucleotide, and repeat expansion analyses of genome sequencing. RNA-Seq from patient-derived cell lines, reverse-transcription polymerase chain reactions, Western blots, and reporter gene assays were used to confirm the functional effect of three fundamentally different classes of pathogenic noncoding variants: a retrotransposon insertion, a novel intronic splice donor, and a canonical splice variant of an untranslated exon. In one family, we excluded a rare coding variant in ARX, a known XLID gene, in favor of a regulatory noncoding variant in OFD1 that correlated with the clinical phenotype. Our results underscore the value of genomic research on unresolved XLID families to aid novel, pathogenic noncoding variant discovery.
Collapse
Affiliation(s)
- Michael J Field
- NSW Genetics of Learning Disability Service, Newcastle, New South Wales, Australia
| | - Raman Kumar
- Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Anna Hackett
- NSW Genetics of Learning Disability Service, Newcastle, New South Wales, Australia.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
| | - Sayaka Kayumi
- Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Cheryl A Shoubridge
- Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Lisa J Ewans
- St Vincent's Clinical School, University of New South Wales, Darlinghurst, Australia.,Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Atma M Ivancevic
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Tracy Dudding-Byth
- NSW Genetics of Learning Disability Service, Newcastle, New South Wales, Australia.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
| | - Renée Carroll
- Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Thessa Kroes
- Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Alison E Gardner
- Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Patricia Sullivan
- Children's Cancer Institute, University of New South Wales, Kensington, New South Wales, Australia
| | - Thuong T Ha
- Molecular Pathology Department, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | | | - Mark J Cowley
- NSW Genetics of Learning Disability Service, Newcastle, New South Wales, Australia.,Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,Children's Cancer Institute, University of New South Wales, Kensington, New South Wales, Australia
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, New South Wales, Australia
| | - Elizabeth E Palmer
- NSW Genetics of Learning Disability Service, Newcastle, New South Wales, Australia.,School of Women's and Children's Health, University of New South Wales, Kensington, Sydney, New South Wales, Australia
| | - Louise Christie
- NSW Genetics of Learning Disability Service, Newcastle, New South Wales, Australia
| | - Marie Shaw
- Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Tony Roscioli
- NeuRA, University of New South Wales, Sydney, New South Wales, Australia.,Centre for Clinical Genetics, Sydney Children's Hospital, Randwick, Sydney, New South Wales, Australia
| | - Jozef Gecz
- Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Mark A Corbett
- Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
41
|
Liao JY, Salles PA, Shuaib UA, Fernandez HH. Genetic updates on paroxysmal dyskinesias. J Neural Transm (Vienna) 2021; 128:447-471. [PMID: 33929620 DOI: 10.1007/s00702-021-02335-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/31/2021] [Indexed: 12/17/2022]
Abstract
The paroxysmal dyskinesias are a diverse group of genetic disorders that manifest as episodic movements, with specific triggers, attack frequency, and duration. With recent advances in genetic sequencing, the number of genetic variants associated with paroxysmal dyskinesia has dramatically increased, and it is now evident that there is significant genotype-phenotype overlap, reduced (or incomplete) penetrance, and phenotypic variability. In addition, a variety of genetic conditions can present with paroxysmal dyskinesia as the initial symptom. This review will cover the 34 genes implicated to date and propose a diagnostic workflow featuring judicious use of whole-exome or -genome sequencing. The goal of this review is to provide a common understanding of paroxysmal dyskinesias so basic scientists, geneticists, and clinicians can collaborate effectively to provide diagnoses and treatments for patients.
Collapse
Affiliation(s)
- James Y Liao
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Philippe A Salles
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
- Centro de Trastornos del Movimiento, CETRAM, Santiago, Chile
| | - Umar A Shuaib
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Hubert H Fernandez
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| |
Collapse
|
42
|
Hackenberg S, Kraus F, Scherzad A. Rare Diseases of Larynx, Trachea and Thyroid. Laryngorhinootologie 2021; 100:S1-S36. [PMID: 34352904 PMCID: PMC8363221 DOI: 10.1055/a-1337-5703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This review article covers data on rare diseases of the larynx, the trachea and the thyroid. In particular, congenital malformations, rare manifestations of inflammatory laryngeal disorders, benign and malignant epithelial as well as non-epithelial tumors, laryngeal and tracheal manifestations of general diseases and, finally, thyroid disorders are discussed. The individual chapters contain an overview of the data situation in the literature, the clinical appearance of each disorder, important key points for diagnosis and therapy and a statement on the prognosis of the disease. Finally, the authors indicate on study registers and self-help groups.
Collapse
Affiliation(s)
- Stephan Hackenberg
- Klinik und Poliklinik für Hals-, Nasen- und Ohrenkrankheiten,
plastische und ästhetische Operationen, Universitätsklinikum
Würzburg
| | - Fabian Kraus
- Klinik und Poliklinik für Hals-, Nasen- und Ohrenkrankheiten,
plastische und ästhetische Operationen, Universitätsklinikum
Würzburg
| | - Agmal Scherzad
- Klinik und Poliklinik für Hals-, Nasen- und Ohrenkrankheiten,
plastische und ästhetische Operationen, Universitätsklinikum
Würzburg
| |
Collapse
|
43
|
van Geest FS, Groeneweg S, Visser WE. Monocarboxylate transporter 8 deficiency: update on clinical characteristics and treatment. Endocrine 2021; 71:689-695. [PMID: 33650046 PMCID: PMC8016746 DOI: 10.1007/s12020-020-02603-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/28/2020] [Indexed: 11/24/2022]
Abstract
Defective thyroid hormone transport due to deficiency in thyroid hormone transporter monocarboxylate transporter 8 (MCT8) results in severe neurodevelopmental delay due to cerebral hypothyroidism and in clinical negative sequelae following a chronic thyrotoxic state in peripheral tissues. The life expectancy of patients with MCT8 deficiency is severely impaired. Increased mortality is associated with lack of head control and being underweight at young age. Treatment options are available to alleviate the thyrotoxic state; particularly, treatment with the thyroid hormone analogue triiodothyroacetic acid seems a promising therapy. This review provides an overview of key clinical features and treatment options available and under development for this rare disorder.
Collapse
Affiliation(s)
- Ferdy S van Geest
- Academic Center For Thyroid Disease, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Stefan Groeneweg
- Academic Center For Thyroid Disease, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - W Edward Visser
- Academic Center For Thyroid Disease, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
44
|
van Geest FS, Meima ME, Stuurman KE, Wolf NI, van der Knaap MS, Lorea CF, Poswar FO, Vairo F, Brunetti-Pierri N, Cappuccio G, Bakhtiani P, de Munnik SA, Peeters RP, Visser WE, Groeneweg S. Clinical and Functional Consequences of C-Terminal Variants in MCT8: A Case Series. J Clin Endocrinol Metab 2021; 106:539-553. [PMID: 33141165 PMCID: PMC7823235 DOI: 10.1210/clinem/dgaa795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Indexed: 12/17/2022]
Abstract
CONTEXT Genetic variants in SLC16A2, encoding the thyroid hormone transporter MCT8, can cause intellectual and motor disability and abnormal serum thyroid function tests, known as MCT8 deficiency. The C-terminal domain of MCT8 is poorly conserved, which complicates prediction of the deleteriousness of variants in this region. We studied the functional consequences of 5 novel variants within this domain and their relation to the clinical phenotypes. METHODS We enrolled male subjects with intellectual disability in whom genetic variants were identified in exon 6 of SLC16A2. The impact of identified variants was evaluated in transiently transfected cell lines and patient-derived fibroblasts. RESULTS Seven individuals from 5 families harbored potentially deleterious variants affecting the C-terminal domain of MCT8. Two boys with clinical features considered atypical for MCT8 deficiency had a missense variant [c.1724A>G;p.(His575Arg) or c.1796A>G;p.(Asn599Ser)] that did not affect MCT8 function in transfected cells or patient-derived fibroblasts, challenging a causal relationship. Two brothers with classical MCT8 deficiency had a truncating c.1695delT;p.(Val566*) variant that completely inactivated MCT8 in vitro. The 3 other boys had relatively less-severe clinical features and harbored frameshift variants that elongate the MCT8 protein [c.1805delT;p.(Leu602HisfsTer680) and c.del1826-1835;p.(Pro609GlnfsTer676)] and retained ~50% residual activity. Additional truncating variants within transmembrane domain 12 were fully inactivating, whereas those within the intracellular C-terminal tail were tolerated. CONCLUSIONS Variants affecting the intracellular C-terminal tail of MCT8 are likely benign unless they cause frameshifts that elongate the MCT8 protein. These findings provide clinical guidance in the assessment of the pathogenicity of variants within the C-terminal domain of MCT8.
Collapse
Affiliation(s)
- Ferdy S van Geest
- Academic Center For Thyroid Disease, Department of Internal Medicine, Erasmus Medical Center, GD Rotterdam, The Netherlands
| | - Marcel E Meima
- Academic Center For Thyroid Disease, Department of Internal Medicine, Erasmus Medical Center, GD Rotterdam, The Netherlands
| | - Kyra E Stuurman
- Department of Clinical Genetics, Erasmus Medical Center, GD Rotterdam, The Netherlands
| | - Nicole I Wolf
- Department of Pediatric Neurology, Emma Children’s Hospital, Amsterdam University Medical Centre, AZ Amsterdam, Netherlands
- Amsterdam Neuroscience, HV Amsterdam, Netherlands
| | - Marjo S van der Knaap
- Department of Pediatric Neurology, Emma Children’s Hospital, Amsterdam University Medical Centre, AZ Amsterdam, Netherlands
- Amsterdam Neuroscience, HV Amsterdam, Netherlands
| | - Cláudia F Lorea
- Teaching Hospital of Universidade Federal de Pelotas, Brazil
| | - Fabiano O Poswar
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Filippo Vairo
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, Federico II University, Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Gerarda Cappuccio
- Department of Translational Medicine, Federico II University, Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | | | - Sonja A de Munnik
- Department of Human Genetics, Radboud University Medical Centre Nijmegen, GA Nijmegen, the Netherlands
| | - Robin P Peeters
- Academic Center For Thyroid Disease, Department of Internal Medicine, Erasmus Medical Center, GD Rotterdam, The Netherlands
| | - W Edward Visser
- Academic Center For Thyroid Disease, Department of Internal Medicine, Erasmus Medical Center, GD Rotterdam, The Netherlands
| | - Stefan Groeneweg
- Academic Center For Thyroid Disease, Department of Internal Medicine, Erasmus Medical Center, GD Rotterdam, The Netherlands
| |
Collapse
|
45
|
van Geest FS, Gunhanlar N, Groeneweg S, Visser WE. Monocarboxylate Transporter 8 Deficiency: From Pathophysiological Understanding to Therapy Development. Front Endocrinol (Lausanne) 2021; 12:723750. [PMID: 34539576 PMCID: PMC8440930 DOI: 10.3389/fendo.2021.723750] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/13/2021] [Indexed: 01/18/2023] Open
Abstract
Genetic defects in the thyroid hormone transporter monocarboxylate transporter 8 (MCT8) result in MCT8 deficiency. This disorder is characterized by a combination of severe intellectual and motor disability, caused by decreased cerebral thyroid hormone signalling, and a chronic thyrotoxic state in peripheral tissues, caused by exposure to elevated serum T3 concentrations. In particular, MCT8 plays a crucial role in the transport of thyroid hormone across the blood-brain-barrier. The life expectancy of patients with MCT8 deficiency is strongly impaired. Absence of head control and being underweight at a young age, which are considered proxies of the severity of the neurocognitive and peripheral phenotype, respectively, are associated with higher mortality rate. The thyroid hormone analogue triiodothyroacetic acid is able to effectively and safely ameliorate the peripheral thyrotoxicosis; its effect on the neurocognitive phenotype is currently under investigation. Other possible therapies are at a pre-clinical stage. This review provides an overview of the current understanding of the physiological role of MCT8 and the pathophysiology, key clinical characteristics and developing treatment options for MCT8 deficiency.
Collapse
|
46
|
Sharawat IK, Suthar R, Saini AG, Vyas S. Delayed Myelination Pattern and an Abnormal Thyroid Profile Caused by a Novel Mutation in the SLC16A2 Gene. Indian J Pediatr 2020; 87:764-765. [PMID: 32761447 DOI: 10.1007/s12098-020-03459-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/21/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Indar Kumar Sharawat
- Pediatric Neurology Division, Department of Pediatrics, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Renu Suthar
- Pediatric Neurology Unit, Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Arushi Gahlot Saini
- Pediatric Neurology Unit, Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Sameer Vyas
- Department of Radiodiagnosis and Imaging, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
47
|
Wilpert NM, Krueger M, Opitz R, Sebinger D, Paisdzior S, Mages B, Schulz A, Spranger J, Wirth EK, Stachelscheid H, Mergenthaler P, Vajkoczy P, Krude H, Kühnen P, Bechmann I, Biebermann H. Spatiotemporal Changes of Cerebral Monocarboxylate Transporter 8 Expression. Thyroid 2020; 30:1366-1383. [PMID: 32143555 DOI: 10.1089/thy.2019.0544] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background: Mutations of monocarboxylate transporter 8 (MCT8), a thyroid hormone (TH)-specific transmembrane transporter, cause a severe neurodevelopmental disorder, the Allan-Herndon-Dudley syndrome. In MCT8 deficiency, TH is not able to reach those areas of the brain where TH uptake depends on MCT8. Currently, therapeutic options for MCT8-deficient patients are missing, as TH treatment is not successful in improving neurological deficits. Available data on MCT8 protein and transcript levels indicate complex expression patterns in neural tissue depending on species, brain region, sex, and age. However, information on human MCT8 expression is still scattered and additional efforts are needed to map sites of MCT8 expression in neurovascular units and neural tissue. This is of importance because new therapeutic strategies for this disease are urgently needed. Methods: To identify regions and time windows of MCT8 expression, we used highly specific antibodies against MCT8 to perform immunofluorescence labeling of postnatal murine brains, adult human brain tissue, and human cerebral organoids. Results: Qualitative and quantitative analyses of murine brain samples revealed stable levels of MCT8 protein expression in endothelial cells of the blood-brain barrier (BBB), choroid plexus epithelial cells, and tanycytes during postnatal development. Conversely, the neuronal MCT8 protein expression that was robustly detectable in specific brain regions of young mice strongly declined with age. Similarly, MCT8 immunoreactivity in adult human brain tissue was largely confined to endothelial cells of the BBB. Recently, cerebral organoids emerged as promising models of human neural development and our first analyses of forebrain-like organoids revealed MCT8 expression in early neuronal progenitor cell populations. Conclusions: With respect to MCT8-deficient conditions, our analyses not only strongly support the contention that the BBB presents a lifelong barrier to TH uptake but also highlight the need to decipher the TH transport role of MCT8 in early neuronal cell populations in more detail. Improving the understanding of the spatiotemporal expression in latter barriers will be critical for therapeutic strategies addressing MCT8 deficiency in the future.
Collapse
Affiliation(s)
- Nina-Maria Wilpert
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Experimental Pediatric Endocrinology, Berlin, Germany
| | - Martin Krueger
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Robert Opitz
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Experimental Pediatric Endocrinology, Berlin, Germany
| | - David Sebinger
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Experimental Pediatric Endocrinology, Berlin, Germany
| | - Sarah Paisdzior
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Experimental Pediatric Endocrinology, Berlin, Germany
| | - Bianca Mages
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Angela Schulz
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Joachim Spranger
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Endocrinology, Diabetes and Nutrition, Berlin, Germany
| | - Eva K Wirth
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Endocrinology, Diabetes and Nutrition, Berlin, Germany
| | - Harald Stachelscheid
- Stem Cell Core Facility, Berlin Institute of Health, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Philipp Mergenthaler
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Experimental Neurology, Department of Neurology, Center for Stroke Research Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Peter Vajkoczy
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurosurgery, Berlin, Germany
| | - Heiko Krude
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Experimental Pediatric Endocrinology, Berlin, Germany
| | - Peter Kühnen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Experimental Pediatric Endocrinology, Berlin, Germany
| | - Ingo Bechmann
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Heike Biebermann
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Experimental Pediatric Endocrinology, Berlin, Germany
| |
Collapse
|
48
|
Abstract
Background: Movement disorders are often a prominent part of the phenotype of many neurologic rare diseases. In order to promote awareness and diagnosis of these rare diseases, the International Parkinson’s and Movement Disorders Society Rare Movement Disorders Study Group provides updates on rare movement disorders. Methods: In this narrative review, we discuss the differential diagnosis of the rare disorders that can cause chorea. Results: Although the most common causes of chorea are hereditary, it is critical to identify acquired or symptomatic choreas since these are potentially treatable conditions. Disorders of metabolism and mitochondrial cytopathies can also be associated with chorea. Discussion: The present review discusses clues to the diagnosis of chorea of various etiologies. Authors propose algorithms to help the clinician in the diagnosis of these rare disorders.
Collapse
|
49
|
Ahn H, Ko TS. The Genetic Relationship between Paroxysmal Movement Disorders and Epilepsy. ANNALS OF CHILD NEUROLOGY 2020. [DOI: 10.26815/acn.2020.00073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
50
|
Grijota-Martínez C, Bárez-López S, Ausó E, Refetoff S, Frey WH, Guadaño-Ferraz A. Intranasal delivery of Thyroid hormones in MCT8 deficiency. PLoS One 2020; 15:e0236113. [PMID: 32687511 PMCID: PMC7371167 DOI: 10.1371/journal.pone.0236113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/28/2020] [Indexed: 11/18/2022] Open
Abstract
Loss of function mutations in the gene encoding the thyroid hormone transporter monocarboxylate transporter 8 (MCT8) lead to severe neurodevelopmental defects in humans associated with a specific thyroid hormone phenotype manifesting high serum 3,5,3'-triiodothyronine (T3) and low thyroxine (T4) levels. Patients present a paradoxical state of peripheral hyperthyroidism and brain hypothyroidism, this last one most likely arising from impaired thyroid hormone transport across the brain barriers. The administration of thyroid hormones by delivery pathways that bypass the brain barriers, such as the intranasal delivery route, offers the possibility to improve the neurological defects of MCT8-deficient patients. In this study, the thyroid hormones T4 and T3 were administrated intranasally in different mouse models of MCT8 deficiency. We have found that, under the present formulation, intranasal administration of thyroid hormones does not increase the content of thyroid hormones in the brain and further raises the peripheral thyroid hormone levels. Our data suggests intranasal delivery of thyroid hormones is not a suitable therapeutic strategy for MCT8 deficiency, although alternative formulations could be considered in the future to improve the nose-to-brain transport.
Collapse
Affiliation(s)
- Carmen Grijota-Martínez
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Center for Biomedical Research on Rare Diseases (Ciberer), Unit 708, Instituto de Salud Carlos III, Madrid, Spain
| | - Soledad Bárez-López
- Center for Biomedical Research on Rare Diseases (Ciberer), Unit 708, Instituto de Salud Carlos III, Madrid, Spain
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Eva Ausó
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Departamento de Óptica, Farmacología y Anatomía, Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, Alicante, Spain
| | - Samuel Refetoff
- Departments of Medicine, The University of Chicago, Chicago, Illinois, United States of America
- Departments of Pediatrics, The University of Chicago, Chicago, Illinois, United States of America
- Departments of Committee on Genetics, The University of Chicago, Chicago, Illinois, United States of America
| | - William H. Frey
- HealthPartners Neuroscience Center, St. Paul, Minnesota, United States of America
- HealthPartners Institute, St. Paul, Minnesota, United States of America
| | - Ana Guadaño-Ferraz
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Center for Biomedical Research on Rare Diseases (Ciberer), Unit 708, Instituto de Salud Carlos III, Madrid, Spain
- * E-mail:
| |
Collapse
|