1
|
Zhao Y, Ma Y, Ba T, Han X, Ren Q, Ji L. Hypoglycemic Response to Dorzagliatin in a Patient With GCK-MODY. Diabetes Care 2024; 47:1140-1142. [PMID: 38691834 DOI: 10.2337/dc23-2417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/02/2024] [Indexed: 05/03/2024]
Abstract
OBJECTIVE Metformin, insulin, and insulin secretagogues do not alter HbA1c levels in glucokinase maturity-onset diabetes of the young (GCK-MODY). However, the efficacy of the new hypoglycemic drugs on GCK-MODY remains unclear. RESEARCH DESIGN AND METHODS We describe a case of GCK-MODY with unchanged blood glucose under different therapies during an 8 years' follow-up. His HbA1c and biochemical indices under different hypoglycemic treatments were recorded. RESULTS Oral glucose-lowering drugs, including thiazolidinediones, dipeptidyl peptidase 4 inhibitor, α-glucosidase inhibitor, and sodium-glucose cotransporter 2 inhibitor that had not been evaluated previously, did not improve the HbA1c level in this patient. However, the glucokinase activator dorzagliatin effectively and safely lowered his HbA1c level. CONCLUSIONS Dorzagliatin was effective and safe in this patient with GCK-MODY, providing potential application prospects for precise treatment of GCK-MODY with dorzagliatin.
Collapse
Affiliation(s)
- Yilin Zhao
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, People's Republic of China
| | - Yumin Ma
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, People's Republic of China
| | - Tianhao Ba
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, People's Republic of China
| | - Xueyao Han
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, People's Republic of China
| | - Qian Ren
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, People's Republic of China
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, People's Republic of China
| |
Collapse
|
2
|
Urakami T, Terada H, Mine Y, Aoki M, Suzuki J, Morioka I. Clinical characteristics in children with maturity-onset diabetes of the young detected by urine glucose screening at schools in the Tokyo Metropolitan Area. Clin Pediatr Endocrinol 2024; 33:113-123. [PMID: 38993716 PMCID: PMC11234186 DOI: 10.1297/cpe.2024-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/27/2024] [Indexed: 07/13/2024] Open
Abstract
This study aimed to examine the clinical characteristics of young children diagnosed with maturity-onset diabetes (MODY) using urine glucose screening at schools. The study participants were 70 non-obese children who were clinically diagnosed with type 2 diabetes through urine glucose screening at schools in Tokyo between 1974 and 2020. Of these children, 55 underwent genetic testing, and 21 were finally diagnosed with MODY: MODY2 in eight, MODY3 in eight, MODY1 in four and MODY5 in one. A family history of diabetes was found in 76.2% of the patients. Fasting plasma glucose levels did not differ between the different MODY subtypes, while patients with MODY 3, 1, and 5 had significantly higher levels of glycosylated hemoglobin and 2-hour glucose in an oral glucose tolerance test than those with MODY2. In contrast, most patients exhibit mild insulin resistance and sustained β-cell function. In the initial treatment, all patients with MODY2 were well controlled with diet and exercise, whereas the majority of those with MODY3, 1, and 5 required pharmacological treatment within one month of diagnosis. In conclusion, urine glucose screening in schools appears to be one of the best opportunities for early detection of the disease and providing appropriate treatment to patients.
Collapse
Affiliation(s)
- Tatsuhiko Urakami
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Hiroki Terada
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Yusuke Mine
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Masako Aoki
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Junichi Suzuki
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Ichiro Morioka
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Yu R, Zhang H, Xiao X. Partial GCK gene deletion mutations causing maturity-onset diabetes of the young. Acta Diabetol 2024; 61:107-115. [PMID: 37704826 DOI: 10.1007/s00592-023-02173-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/17/2023] [Indexed: 09/15/2023]
Abstract
AIMS Maturity-onset diabetes of the young (MODY) is an autosomal dominant monogenic form of diabetes, and glucokinase-maturity-onset diabetes of the young (GCK-MODY), or MODY 2, being the most prevalent type. However, the presence of copy number variants (CNVs) may lead to misdiagnoses, as genetic testing for MODY is typically reliant on sequencing techniques. This study aimed to describe the process of diagnosis in a Chinese pedigree with an exon 8-10 deletion of the GCK gene. METHODS This study collected clinical data and medical history through direct interviews with the patient and reviewing relevant medical records. Sanger sequencing and whole exome sequencing (WES) were conducted over years of follow up. WES-based CNV sequencing technology was used to detect CNVs and the results were validated by multiplex ligation-dependent amplification dosage assay (MLPA). Additionally, we reviewed the previously reported cases caused by heterozygous exon deletion of the GCK gene. RESULTS WES-based CNV detection revealed a heterozygous exon 8-10 deletion in the GCK gene within this particular pedigree after Sanger sequencing and WES failed to find causal variants in single nucleotide variations (SNVs) and small indels. The deletion was considered pathogenic according to ACMG/AMP and ClinGen guidelines. Most of the previously reported cases caused by heterozygous exon deletion or whole gene deletion of the GCK gene present similarly to GCK-MODY caused by SNVs and small indels. CONCLUSIONS This study contributed to progress in our comprehension of the mutation spectrum of the GCK gene and underscored the significance of CNV detection in the genetic testing of MODY.
Collapse
Affiliation(s)
- Ruiqi Yu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Haichen Zhang
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
- The Beijing Genomics Institute-Research, Beijing, 100101, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
4
|
Salina A, Bassi M, Aloi C, Strati MF, Bocciardi R, d’Annunzio G, Maghnie M, Minuto N. "Pesto" Mutation: Phenotypic and Genotypic Characteristics of Eight GCK/MODY Ligurian Patients. Int J Mol Sci 2023; 24:ijms24044034. [PMID: 36835446 PMCID: PMC9961661 DOI: 10.3390/ijms24044034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 02/19/2023] Open
Abstract
Maturity Onset Diabetes of the Young (MODY) is a monogenic form of diabetes mellitus (DM) that accounts for around 2-5% of all types of diabetes. Autosomal dominant inheritance in pathogenic variations of 14 genes related to β-cell functions can lead to monogenic types of diabetes. In Italy, GCK/MODY is the most frequent form and it is caused by mutations of the glucokinase (GCK). Patients with GCK/MODY usually have stable mild fasting hyperglycaemia with mildly elevated HbA1c levels and rarely need pharmacological treatment. Molecular analysis of the GCK coding exons was carried out by Sanger sequencing in eight Italian patients. All the probands were found to be heterozygous carriers of a pathogenic gross insertion/deletion c.1279_1358delinsTTACA; p.Ser426_Ala454delinsLeuGln. It was previously described for the first time by our group in a large cohort of Italian GCK/MODY patients. The higher levels of HbA1c (6.57% vs. 6.1%), and the higher percentage of patients requiring insulin therapy (25% vs. 2%) compared to the previously studied Italian patients with GCK/MODY, suggest that the mutation discovered could be responsible for a clinically worse form of GCK/MODY. Moreover, as all the patients carrying this variant share an origin from the same geographic area (Liguria), we postulate a possible founder effect and we propose to name it the "pesto" mutation.
Collapse
Affiliation(s)
- Alessandro Salina
- LABSIEM (Laboratory for the Study of Inborn Errors of Metabolism), Pediatric Clinic, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Marta Bassi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16100 Genoa, Italy
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Concetta Aloi
- LABSIEM (Laboratory for the Study of Inborn Errors of Metabolism), Pediatric Clinic, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
- Correspondence: ; Tel.: +39-01-05636-3786
| | - Marina Francesca Strati
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16100 Genoa, Italy
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Renata Bocciardi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16100 Genoa, Italy
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Giuseppe d’Annunzio
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Mohamad Maghnie
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16100 Genoa, Italy
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Nicola Minuto
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| |
Collapse
|
5
|
Chow E, Wang K, Lim CK, Tsoi ST, Fan B, Poon E, Luk AO, Ma RC, Ferrannini E, Mari A, Chen L, Chan JC. Dorzagliatin, a Dual-Acting Glucokinase Activator, Increases Insulin Secretion and Glucose Sensitivity in Glucokinase Maturity-Onset Diabetes of the Young and Recent-Onset Type 2 Diabetes. Diabetes 2023; 72:299-308. [PMID: 36342518 PMCID: PMC9871194 DOI: 10.2337/db22-0708] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022]
Abstract
Glucokinase (GK, gene symbol GCK) maturity-onset diabetes of the young (MODY) is caused by heterozygous inactivating mutations in GK and impaired glucose sensing. We investigated effects of dorzagliatin, a novel allosteric GK activator, on insulin secretion rates (ISRs) and β-cell glucose sensitivity (βCGS) in GCK-MODY and recent-onset type 2 diabetes. In a double-blind, randomized, crossover study, 8 participants with GCK-MODY and 10 participants with type 2 diabetes underwent 2-h 12 mmol/L hyperglycemic clamps following a single oral dose of dorzagliatin 75 mg or matched placebo. Effects of dorzagliatin on wild-type and mutant GK enzyme activity were investigated using an NADP+-coupled assay with glucose-6-phosphate dehydrogenase in vitro. In GCK-MODY, dorzagliatin significantly increased absolute and incremental second-phase ISRs versus placebo but not the acute insulin response. Dorzagliatin improved βCGS in GCK-MODY with an upward and leftward shift in ISR-glucose response. Dorzagliatin increased basal ISRs in type 2 diabetes, with smaller changes in second-phase ISRs versus GCK-MODY. In vitro, dorzagliatin directly reduced the glucose half saturation concentration of wild-type GK and selected GK mutants to varying degrees. Dorzagliatin directly restored enzyme activity of select GK mutants and enhanced wild-type GK activity, thereby correcting the primary defect of glucose sensing in GCK-MODY.
Collapse
Affiliation(s)
- Elaine Chow
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
- Corresponding authors: Juliana C.N. Chan, , and Elaine Chow,
| | - Ke Wang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Cadmon K.P. Lim
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Sandra T.F. Tsoi
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Baoqi Fan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Emily Poon
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Andrea O.Y. Luk
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Ronald C.W. Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Ele Ferrannini
- Institute of Clinical Physiology, National Research Council of Italy (CNR), Pisa, Italy
| | - Andrea Mari
- Institute of Neuroscience, National Research Council of Italy (CNR), Padua, Italy
| | - Li Chen
- Hua Medicine, Shanghai, China
| | - Juliana C.N. Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong, Hong Kong, China
- Corresponding authors: Juliana C.N. Chan, , and Elaine Chow,
| |
Collapse
|
6
|
Yorifuji T, Watanabe Y, Kitayama K, Yamada Y, Higuchi S, Mori J, Kato M, Takahashi T, Okuda T, Aoyama T. Targeted gene panel analysis of Japanese patients with maturity-onset diabetes of the young-like diabetes mellitus: Roles of inactivating variants in the ABCC8 and insulin resistance genes. J Diabetes Investig 2022; 14:387-403. [PMID: 36504295 PMCID: PMC9951579 DOI: 10.1111/jdi.13957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/23/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
AIMS/INTRODUCTION To investigate the genetic background of Japanese patients with suspected maturity-onset diabetes of the young (MODY). MATERIALS AND METHODS On 340 proband patients referred from across Japan, genomic variants were analyzed using a targeted multigene panel analysis combined with the multiplex ligation probe amplification (MLPA) analysis, mitochondrial m.3243A > G analysis and methylation-specific polymerase chain reaction of the imprinted 6q24 locus. Pathogenic/likely pathogenic variants were listed according to the 2015 American College of Medical Genetics and Genomics and the Association for Molecular Pathology criteria. Additionally, variants with a population frequency <0.001 and Combined Annotation Dependent Depletion score >20 (CS >20) were listed as rare variants of uncertain significance-CS >20. RESULTS A total of 157 pathogenic/likely pathogenic variants and 44 rare variants of uncertain significance-CS >20 were identified. In the pathogenic/likely pathogenic variants, alterations in the GCK gene were the most common (82, 52.2%) followed by HNF1A (29, 18.5%), HNF4A (13, 8.3%) and HNF1B (13, 8.3%). One patient was a 29.5% mosaic with a truncating INSR variant. In the rare variants of uncertain significance-CS >20, 20 (45.5%) were in the genes coding for the adenosine triphosphate-sensitive potassium channel, KCNJ11 or ABCC8, and four were in the genes of the insulin-signaling pathway, INSR and PIK3R1. Four variants in ABCC8 were previously reported in patients with congenital hyperinsulinism, suggesting the inactivating nature of these variants, and at least two of our patients had a history of congenital hyperinsulinism evolving into diabetes. In two patients with INSR or PIK3R1 variants, insulin resistance was evident at diagnosis. CONCLUSIONS Causative genomic variants could be identified in at least 46.2% of clinically suspected MODY patients. ABCC8-MODY with inactivating variants could represent a distinct category of MODY. Genes of insulin resistance should be included in the sequencing panel for MODY.
Collapse
Affiliation(s)
- Tohru Yorifuji
- Division of Pediatric Endocrinology and MetabolismChildren's Medical Center, Osaka City General HospitalOsakaJapan,Department of Genetic MedicineOsaka City General HospitalOsakaJapan,Clinical Research CenterOsaka City General HospitalOsakaJapan,2nd Department of Internal MedicineDate Red Cross HospitalDate, HokkaidoJapan
| | - Yoh Watanabe
- Division of Pediatric Endocrinology and MetabolismChildren's Medical Center, Osaka City General HospitalOsakaJapan
| | - Kana Kitayama
- Division of Pediatric Endocrinology and MetabolismChildren's Medical Center, Osaka City General HospitalOsakaJapan
| | - Yuki Yamada
- Division of Pediatric Endocrinology and MetabolismChildren's Medical Center, Osaka City General HospitalOsakaJapan
| | - Shinji Higuchi
- Division of Pediatric Endocrinology and MetabolismChildren's Medical Center, Osaka City General HospitalOsakaJapan
| | - Jun Mori
- Division of Pediatric Endocrinology and MetabolismChildren's Medical Center, Osaka City General HospitalOsakaJapan
| | - Masaru Kato
- Department of Genetic MedicineOsaka City General HospitalOsakaJapan
| | - Toru Takahashi
- Department of Genetic MedicineOsaka City General HospitalOsakaJapan
| | - Tokuko Okuda
- Clinical Research CenterOsaka City General HospitalOsakaJapan
| | - Takane Aoyama
- Clinical Research CenterOsaka City General HospitalOsakaJapan
| |
Collapse
|
7
|
Campos Franco P, Santos de Santana L, Dantas Costa-Riquetto A, Santomauro Junior AC, Jorge AAL, Gurgel Teles M. Clinical and genetic characterization and long-term evaluation of individuals with maturity-onset diabetes of the young (MODY): The journey towards appropriate treatment. Diabetes Res Clin Pract 2022; 187:109875. [PMID: 35472491 DOI: 10.1016/j.diabres.2022.109875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/09/2022] [Accepted: 04/12/2022] [Indexed: 11/22/2022]
Abstract
AIMS To describe the clinical and genetic characteristics and long-term follow-up of a cohort with maturity-onset diabetes of the young (MODY), and to evaluate how molecular diagnosis impacted on treatment. METHODS A large observational, retrospective, cohort study included individuals referred to the University of São Paulo's Monogenic Diabetes Unit between 2011 and 2020. Comprehensive clinical and genetic evaluations were performed. RESULTS Overall, 228 individuals (190 GCK-MODY and 38 HNF1A-MODY) were enrolled. Sixty-two different GCK gene mutations (5 novel) and 17 HNF1A gene mutations (2 novel) were found. Data were available on treatment status for 76 index individuals with GCK-MODY. Before molecular diagnosis, nutritional intervention alone was used in 41 cases (53.9%). After molecular diagnosis, this number increased to 72 (94.8%). Glycated haemoglobin (HbA1c) remained stable over the 6-year follow-up period: 6.5% (47 mmol/mol) at the first and 6.3% (45 mmol/mol) at the final visit (p = 0.056). Prior to molecular diagnosis, 7/21 (33.3%) HNF1A-MODY individuals were using sulfonylurea compared to 17/21 (81%) after testing. After a median of 5 years on sulfonylureas, HbA1c values improved from 7.5% (58 mmol/mol) to 6.5% (48 mmol/mol) (p = 0.006). CONCLUSIONS Molecular diagnosis resulted in appropriate adjustment of treatment in approximately 80% of participants with GCK-MODY or HNF1A-MODY.
Collapse
Affiliation(s)
- Pedro Campos Franco
- Grupo de Diabetes Monogênico (Monogenic Diabetes Group), Unidade de Endocrinologia Genética (LIM25), Unidade de Diabetes, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), 01246-903 São Paulo, SP, Brazil
| | - Lucas Santos de Santana
- Grupo de Diabetes Monogênico (Monogenic Diabetes Group), Unidade de Endocrinologia Genética (LIM25), Unidade de Diabetes, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), 01246-903 São Paulo, SP, Brazil
| | - Aline Dantas Costa-Riquetto
- Grupo de Diabetes Monogênico (Monogenic Diabetes Group), Unidade de Endocrinologia Genética (LIM25), Unidade de Diabetes, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), 01246-903 São Paulo, SP, Brazil
| | - Augusto Cezar Santomauro Junior
- Grupo de Diabetes Monogênico (Monogenic Diabetes Group), Unidade de Endocrinologia Genética (LIM25), Unidade de Diabetes, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), 01246-903 São Paulo, SP, Brazil
| | - Alexander A L Jorge
- Unidade de Endocrinologia Genética (LIM25), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil; Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular (LIM42), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), 01246-903 São Paulo, SP, Brazil.
| | - Milena Gurgel Teles
- Grupo de Diabetes Monogênico (Monogenic Diabetes Group), Unidade de Endocrinologia Genética (LIM25), Unidade de Diabetes, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), 01246-903 São Paulo, SP, Brazil.
| |
Collapse
|
8
|
Elias-Assad G, Saab R, Molnes J, Hess O, Abu-Ras R, Darawshi H, Rasmus Njølstad P, Tenenbaum-Rakover Y. Maturity onset diabetes of the young type 2 (MODY2): Insight from an extended family. Diabetes Res Clin Pract 2021; 175:108791. [PMID: 33812904 DOI: 10.1016/j.diabres.2021.108791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/18/2021] [Accepted: 03/30/2021] [Indexed: 10/21/2022]
Abstract
AIMS To assess long-term outcome of patients with maturity onset diabetes of the young, type 2 (MODY2) in a unique large cohort of patients with the same genetic and environmental background. METHODS We prospectively evaluated 162 patients aged 5 to 82 years, belonging to the same extended family living in the same village. All patients underwent molecular testing for the glucokinase (GCK) gene mutation identified in the proband, and were categorized into three groups (MODY2, type 2 diabetes and controls). RESULTS The 5.5-year-old proband had the c.1278_1286del mutation in the GCK and was diagnosed with MODY2. Forty-two out of 162 participants were positive for the mutation and 39 had type 2 diabetes. Patients were followed for a mean 10.2 ± 3.7 years (range 0-14). Mean fasting blood glucose and HbA1c increased significantly over the years in MODY2 patients (133 vs. 146 mg/dL; 6.9% vs. 8.2%, respectively). Increase in HbA1c occurred only in the obese/overweight subgroups. Twenty-five percent of MODY2 patients developed diabetes complications, all were above 40 years of age. CONCLUSIONS Although MODY2 commonly has a benign disease course, weight gain is a risk factor for diabetes complications, requiring life-long follow-up and in some patients, medical intervention.
Collapse
Affiliation(s)
- Ghadir Elias-Assad
- Pediatric Endocrine Institute, Ha'Emek Medical Center, Afula, Israel; The Rappaport Faculty of Medicine, Israel Institute of Technology, Haifa, Israel.
| | | | - Janne Molnes
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Ora Hess
- Pediatric Endocrine Institute, Ha'Emek Medical Center, Afula, Israel
| | - Rasmi Abu-Ras
- Faculty of Medicine, Bar-Ilan University, Zefat, Israel
| | | | - Pal Rasmus Njølstad
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Pediatrics and Adolescents, Haukeland University Hospital, Bergen, Norway
| | - Yardena Tenenbaum-Rakover
- Pediatric Endocrine Institute, Ha'Emek Medical Center, Afula, Israel; The Rappaport Faculty of Medicine, Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
9
|
Zhou Y, Wang S, Wu J, Dong J, Liao L. MODY2 in Asia: analysis of GCK mutations and clinical characteristics. Endocr Connect 2020; 9:471-478. [PMID: 32375122 PMCID: PMC7274558 DOI: 10.1530/ec-20-0074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022]
Abstract
AIMS Heterozygous inactivating mutations in the GCK gene cause the familial, mild fasting hyperglycaemia named MODY2. Many patients with MODY2 in Asia have delayed timely treatment because they did not receive the correct diagnosis. This study aims to analyze the clinical characteristics and GCK mutations in Asian MODY2. METHODS We have collected 110 Asian patients with MODY2 from the PubMed, Embase, Medline, Web of Science, CNKI, and Wanfang with the following search terms: 'maturity-onset diabetes of the young' OR 'MODY' OR 'maturity-onset diabetes of the young type 2' OR 'MODY2' OR 'GCK-DM' OR 'GCK-MODY'. Both mutations of GCK and clinical characteristics of MODY2 were analyzed. RESULTS There were 96 different mutations that occurred in coding regions and non-coding regions. Exon 5 and 7 were the most common location in coding regions and missense was the primary mutation type. The proportion of probands younger than 25 was 81.8%, and 81.4% of the probands had family history of hyperglycaemia. Ninety percent and 93% of Asian MODY2 probands exhibited mild elevation in FPG (5.4-8.3 mmol/L) and HbA1c (5.6-7.6%), respectively. CONCLUSIONS In most Asian patients, MODY2 occurred due to GCK mutation in coding regions, and exon 5 and 7 were the most common locations. FPG, HbA1c, and familial diabetes were important reference indicators for diagnosing MODY2. Altogether, the study indicates that for the young onset of diabetes with mild elevated blood glucose and HbA1c and family history of hyperglycaemia, molecular genetic testing is suggested in order to differentiate MODY2 from other types of diabetes earlier.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University, Ji-nan, China
- Laboratory of Endocrinology, Medical Research Center, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Ji-nan, China
| | - ShengNan Wang
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University, Ji-nan, China
- Laboratory of Endocrinology, Medical Research Center, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Ji-nan, China
| | - Jing Wu
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University, Ji-nan, China
- Laboratory of Endocrinology, Medical Research Center, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Ji-nan, China
| | - JianJun Dong
- Department of Endocrinology, Qilu Hospital of Shandong University, Ji-nan, China
- Correspondence should be addressed to J Dong or L Liao: or
| | - Lin Liao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University, Ji-nan, China
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, China
- Correspondence should be addressed to J Dong or L Liao: or
| |
Collapse
|
10
|
Hosokawa Y, Higuchi S, Kawakita R, Hata I, Urakami T, Isojima T, Takasawa K, Matsubara Y, Mizuno H, Maruo Y, Matsui K, Aizu K, Jinno K, Araki S, Fujisawa Y, Osugi K, Tono C, Takeshima Y, Yorifuji T. Pregnancy outcome of Japanese patients with glucokinase-maturity-onset diabetes of the young. J Diabetes Investig 2019; 10:1586-1589. [PMID: 30897270 PMCID: PMC6825925 DOI: 10.1111/jdi.13046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/04/2019] [Accepted: 03/17/2019] [Indexed: 12/12/2022] Open
Abstract
AIMS/INTRODUCTION Glucokinase-maturity-onset diabetes of the young (GCK-MODY; also known as MODY2) is a benign hyperglycemic condition, which generally does not require medical interventions. The only known exception is increased birthweight and related perinatal complications in unaffected offspring of affected women. As previous data were obtained mostly from white Europeans, the present study analyzed the pregnancy outcomes of Japanese women with GCK-MODY to better formulate the management plan for this population. MATERIALS AND METHODS The study participants were 34 GCK-MODY families whose members were diagnosed at Osaka City General Hospital during 2010-2017. A total of 53 pregnancies (40 from 23 affected women, 13 from 11 unaffected women) were retrospectively analyzed by chart review. RESULTS Birthweights of unaffected offspring born to affected women were significantly greater as compared with those of affected offspring (P = 0.003). The risk of >4,000 g birthweight (16%), however, was lower as compared with that previously reported for white Europeans, and none of the offspring had complications related to large birthweight. Insulin treatment of the affected women resulted in a significant reduction in the birthweights of unaffected offspring. Perinatal complications including small-for-gestational age birthweight were found only in affected offspring born to insulin-treated women. CONCLUSIONS In Japanese GCK-MODY families, unaffected offspring born to affected women were heavier than affected offspring. However, insulin treatment of affected women might not be advisable because of the lower risk of macrosomic birth injury, and an increased risk of perinatal complications in affected offspring.
Collapse
Affiliation(s)
- Yuki Hosokawa
- Division of Pediatric Endocrinology and MetabolismChildren's Medical CenterOsakaJapan
- Present address:
Department of PediatricsKurashiki Central HospitalKurashikiOkayamaJapan
| | - Shinji Higuchi
- Division of Pediatric Endocrinology and MetabolismChildren's Medical CenterOsakaJapan
| | - Rie Kawakita
- Division of Pediatric Endocrinology and MetabolismChildren's Medical CenterOsakaJapan
- Department of Genetic MedicineOsaka City General HospitalOsakaJapan
| | - Ikue Hata
- Faculty of Medical SciencesDepartment of PediatricsUniversity of FukuiFukuiJapan
| | - Tatsuhiko Urakami
- Department of PediatricsNihon University School of MedicineTokyoJapan
| | - Tsuyoshi Isojima
- Department of PediatricsTeikyo University School of MedicineTokyoJapan
| | - Kei Takasawa
- Department of Pediatrics and Developmental BiologyTokyo Medical and Dental UniversityTokyoJapan
| | - Yohei Matsubara
- Department of Pediatrics and Developmental BiologyTokyo Medical and Dental UniversityTokyoJapan
| | - Haruo Mizuno
- Department of PediatricsInternational University of Health and Welfare School of MedicineChibaJapan
| | - Yoshihiro Maruo
- Department of PediatricsShiga University of Medical ScienceShigaJapan
| | - Katsuyuki Matsui
- Department of PediatricsShiga University of Medical ScienceShigaJapan
| | - Katsuya Aizu
- Division of Endocrinology and MetabolismSaitama Children's Medical CenterSaitamaJapan
| | - Kazuhiko Jinno
- Department of PediatricsHiroshima Prefectural HospitalHiroshimaJapan
| | - Shunsuke Araki
- Department of PediatricsSchool of MedicineUniversity of Occupational and Environmental HealthFukuokaJapan
| | - Yasuko Fujisawa
- Department of PediatricsHamamatsu University School of MedicineShizuokaJapan
| | - Koji Osugi
- Department of PediatricsYokohama City University Medical CenterKanagawaJapan
| | - Chikako Tono
- Department of PediatricsIwate Prefectural Chubu HospitalIwateJapan
| | | | - Tohru Yorifuji
- Division of Pediatric Endocrinology and MetabolismChildren's Medical CenterOsakaJapan
- Department of Genetic MedicineOsaka City General HospitalOsakaJapan
| |
Collapse
|
11
|
Urakami T. Maturity-onset diabetes of the young (MODY): current perspectives on diagnosis and treatment. Diabetes Metab Syndr Obes 2019; 12:1047-1056. [PMID: 31360071 PMCID: PMC6625604 DOI: 10.2147/dmso.s179793] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/22/2019] [Indexed: 12/11/2022] Open
Abstract
Maturity-onset diabetes of the young (MODY) is characterized by autosomal dominant inheritance, onset before 25 years of age, absence of β-cell autoimmunity, and sustained pancreatic β-cell function. To date, mutations have been identified in at least 14 different genes, including six genes encoding proteins that, respectively, correspond to MODY subtypes 1-6: hepatocyte nuclear factor (HNF) 4α (HNF4α), glucokinase (GCK), HNF1α (HNF1 α), pancreatic and duodenal homeobox 1 (PDX1), HNF1β (HNF1 β), and neurogenic differentiation 1 (NEUROD1). Diagnostic tools based on currently available genetic tests can facilitate the correct diagnosis and appropriate treatment of patients with MODY. Candidates for genetic testing include nonobese subjects with hyperglycemia, no evidence of β-cell autoimmunity, sustained β-cell function, and a strong family history of similar-type diabetes among first-degree relatives. Moreover, identification of the MODY subtype is important, given the subtype-related differences in the age of onset, clinical course and progression, type of hyperglycemia, and response to treatment. This review discusses the current perspectives on the diagnosis and treatment of MODY, particularly with regard to the six major subtypes (MODY 1-6).
Collapse
Affiliation(s)
- Tatsuhiko Urakami
- Department of Pediatrics, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Fu J, Wang T, Liu J, Wang X, Li M, Xiao X. Birthweight correlates with later metabolic abnormalities in Chinese patients with maturity-onset diabetes of the young type 2. Endocrine 2019; 65:53-60. [PMID: 31028668 PMCID: PMC6606659 DOI: 10.1007/s12020-019-01929-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 04/08/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE Glucokinase-maturity onset diabetes of the young (GCK-MODY), also known as MODY2, is caused by heterozygous inactivating mutations in the GCK gene. The aim of this study is to investigate the relationship of birthweight and cardiometabolic characteristics in MODY2 patients. METHODS Genetic screening for GCK mutations from 192 classical MODY families was performed, and birthweight and clinical profiles of 76 patients from 25 families with identified GCK mutations were collected. RESULTS Mutations in GCK were identified in 25 (13%) of the 192 families. Four novel (c.1334 G > C, c.1289_1294delTGACGC, c.584 T > C, and c.30delC) and twenty-one previously reported mutations were identified and cosegregated with the clinical phenotypes of MODY2 within the pedigrees. MODY2 patients presented a mean birthweight of 3.11 ± 0.44 kg. Additionally, birthweight was negatively correlated with 2 h-postprandial glucose (r = -0.426, P = 0.006), glycated albumin (r = -0.462, P = 0.035), glycated hemoglobin (r = -0.529, P = 0.001), total cholesterol (r = -0.430, P = 0.016), and low-density lipoprotein cholesterol (LDL-C) (r = -0.383, P = 0.033) levels after adjustment for age, gender and BMI. Importantly, among the patients who inherited mutations from their mothers, 7 patients whose mothers were treated with insulin during pregnancy had particularly lower birthweight (2.83 ± 0.39 vs. 3.37 ± 0.39 kg; P = 0.003), higher total cholesterol (6.15 ± 0.43 vs. 4.06 ± 0.16 mmol/L; P = 0.002) and LDL-C (4.05 ± 0.35 vs. 2.21 ± 0.13 mmol/L; P = 0.001) levels compared to the other 21 patients whose mothers received no treatment. CONCLUSIONS The correlations between birthweight and cardiometabolic indexes indicated that MODY2 patients with lower birthweight (<3.1 kg) should be monitored and treated more actively to prevent metabolic abnormalities, particularly dyslipidemia. Importantly, prenatal genic diagnosis is highly recommended to avoid inappropriate treatment in pregnancy leading to lower birthweight of offspring.
Collapse
Affiliation(s)
- Junling Fu
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Tong Wang
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jieying Liu
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xiaojing Wang
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ming Li
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xinhua Xiao
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
13
|
Park SS, Jang SS, Ahn CH, Kim JH, Jung HS, Cho YM, Lee YA, Shin CH, Chae JH, Kim JH, Choi SH, Jang HC, Bae JC, Won JC, Kim SH, Kim JI, Kwak SH, Park KS. Identifying Pathogenic Variants of Monogenic Diabetes Using Targeted Panel Sequencing in an East Asian Population. J Clin Endocrinol Metab 2019; 104:4188-4198. [PMID: 30977832 DOI: 10.1210/jc.2018-02397] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/08/2019] [Indexed: 02/05/2023]
Abstract
PURPOSE Monogenic diabetes is a specific type of diabetes in which precision medicine could be applied. In this study, we used targeted panel sequencing to investigate pathogenic variants in Korean patients clinically suspected to have monogenic diabetes. METHODS The eligibility criteria for inclusion were non-type 1 diabetes patients with an age of onset ≤ 30 years and a BMI (body mass index) ≤ 30 kg/m2. Among the 2,090 non-type 1 diabetes patients, 109 were suspected to have monogenic diabetes and subjected to genetic testing. We analyzed 30 monogenic diabetes genes using targeted panel sequencing. The pathogenicity of the genetic variants was evaluated according to the American College of Medical Genetics and Genomics and the Association for Molecular Pathology guidelines. RESULTS Among the 109 suspected monogenic diabetes patients, 23 (21.1%) patients harbored pathogenic/likely pathogenic variants. A total of 14 pathogenic/likely pathogenic variants of common maturity onset diabetes of the young (MODY) genes were identified in GCK, HNF1A, HNF4A, and HNF1B. Other pathogenic/likely pathogenic variants were identified in WFS1, INS, ABCC8 and FOXP3. The mitochondrial DNA 3243 A>G variant was identified in five participants. Patients with pathogenic/likely pathogenic variants had a significantly higher MODY probability, a lower BMI, and a lower C-peptide level than those without pathogenic/likely pathogenic variants (P=0.007, P=0.001, and P=0.012, respectively). CONCLUSIONS Using targeted panel sequencing followed by pathogenicity evaluation, we were able to make molecular genetic diagnoses for 23 (21.1%) suspected monogenic diabetes patients. Lower BMI, higher MODY probability, and lower C-peptide levels were characteristics of these participants.
Collapse
Affiliation(s)
- Seung Shin Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Se Song Jang
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Chang Ho Ahn
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jung Hee Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hye Seung Jung
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Young Min Cho
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Ah Lee
- Department of Pediatrics, Seoul National University Hospital, Seoul, Republic of Korea
| | - Choong Ho Shin
- Department of Pediatrics, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jong Hee Chae
- Department of Pediatrics, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae Hyun Kim
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Sung Hee Choi
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital
| | - Hak C Jang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital
| | - Jee Cheol Bae
- Department of Internal Medicine, Samsung Changwon Hospital, Changwon, Republic of Korea
| | - Jong Cheol Won
- Department of Internal Medicine, Sanggye Paik Hospital, Seoul, Republic of Korea
| | - Sung-Hoon Kim
- Department of Internal Medicine, Cheil General Hospital & Women's Healthcare Center, Seoul, Republic of Korea
- Department of Internal Medicine, Dankook University College of Medicine, Seoul, Republic of Korea
| | - Jong-Il Kim
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Soo Heon Kwak
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
14
|
Rudland VL. Diagnosis and management of glucokinase monogenic diabetes in pregnancy: current perspectives. Diabetes Metab Syndr Obes 2019; 12:1081-1089. [PMID: 31372018 PMCID: PMC6628087 DOI: 10.2147/dmso.s186610] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/22/2019] [Indexed: 12/21/2022] Open
Abstract
Glucokinase-maturity-onset diabetes of the young (GCK-MODY) is an autosomal dominant disorder caused by heterozygous inactivating GCK gene mutations. GCK-MODY is one the most common MODY subtypes, affecting 0.1% of the population and 0.4-1% of women with gestational diabetes mellitus. Glucokinase is predominantly expressed in pancreatic beta cells and catalyzes the phosphorylation of glucose to glucose-6-phosphate. The unique kinetics of glucokinase enable it to change the rate of glucose phosphorylation according to the glucose concentration, thereby regulating insulin secretion. Individuals with GCK-MODY have mildly elevated fasting blood glucose levels (5.5-8.0 mmol/L) and regulate glucose perturbations to a higher set-point, resulting in a relatively flat glucose profile on a 75 g oral glucose tolerance test. The hyperglycemia is usually subclinical and may only be detected on incidental glucose testing. It is important to correctly identify GCK-MODY as the clinical course and management differs substantially from other types of diabetes. Diabetes-related complications are relatively uncommon, so glucose-lowering treatment is not usually required. The exception is pregnancy, where fetal growth and therefore glucose-lowering treatment are predominantly determined by whether or not the fetus inherits the GCK mutation. The fetal genotype is not usually known but can be inferred from serial fetal ultrasound measurements. If there is evidence of accelerating fetal abdominal circumference on serial ultrasounds, the fetus is assumed to not have the GCK mutation and treatment of maternal hyperglycemia is indicated to reduce the risk of macrosomia, Caesarean section and neonatal hypoglycemia. If there is no evidence of accelerating fetal growth, the fetus is assumed to have inherited the GCK mutation and will have a similarly elevated glucose set-point as their mother, so maternal hyperglycemia is not treated. With recent advances in genetic technology, such as next-generation sequencing and noninvasive fetal genotyping, the detection and management of GCK-MODY in pregnancy should continue to improve.
Collapse
Affiliation(s)
- Victoria L Rudland
- Department of Diabetes and Endocrinology, Westmead Hospital, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Correspondence: Victoria L RudlandDepartment of Diabetes and Endocrinology, Westmead Hospital, Hawkesbury Road, Westmead, NSW2145, AustraliaTel +61 2 8890 6796; +61 2 9635 5691Fax +61 2 9635 5691Email
| |
Collapse
|
15
|
Liu L, Liu Y, Ge X, Liu X, Chen C, Wang Y, Li M, Yin J, Zhang J, Chen Y, Zhang R, Jiang Y, Zhao W, Yang D, Zheng T, Lu M, Zhuang L, Jiang M. Insights into pathogenesis of five novel GCK mutations identified in Chinese MODY patients. Metabolism 2018; 89:8-17. [PMID: 30257192 DOI: 10.1016/j.metabol.2018.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/29/2018] [Accepted: 09/19/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Heterozygous inactivating mutations in GCK are associated with defects in pancreatic insulin secretion and/or hepatic glycogen synthesis leading to mild chronic hyperglycaemia of maturity onset diabetes of young type 2 (MODY2). However, the effect of naturally occurring GCK mutations on the pathogenesis for MODY2 hyperglycaemia remains largely unclear, especially in the Asian population. The aim of this study is to explore the potential pathogenicity of novel GCK mutations related to MODY2. METHODS Genetic screening for GCK mutations from 96 classical MODY families was performed, and structure-function characterization and clinical profile of identified GCK mutations were conducted. RESULTS Five novel (F195S, I211T, V222D, E236G and K458R) and five known (T49N, I159V, R186X, A188T and M381T) mutations were identified and co-segregated with hyperglycaemia in their pedigrees. R186X generates non-functional truncated form and V222D and E236G fully inactivate glucokinase due to severe structure disruptions. The other seven GCK mutations exhibited marked reductions in catalytic efficiency and thermo-stability; notably, the interaction with GKRP was significantly enhanced in I211T, I159V, T49N and K458R, reduced in F195S and M381T, and completely lost with A188T. 31% (17/55) of MODY2 patients showed signs of insulin resistance. Conventional hypoglycaemia treatment did not improve the HbA1C in MODY2 patients when insulin resistance is not present. CONCLUSIONS Five novel GCK mutations have been identified in Chinese MODY. The defects in enzymatic activity and protein stability, together with alteration of GKRP binding on GCK mutants may synergistically contribute to the development of MODY2 hyperglycaemia. No treatment should be prescribed to MODY2 patients when insulin resistance is not present.
Collapse
Affiliation(s)
- Limei Liu
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.
| | - Yanjun Liu
- Department of Internal Medicine, Charles R. Drew University, USA; David Geffen School of Medicine at University of California, USA
| | - Xiaoxu Ge
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Xipeng Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China
| | - Chen Chen
- Department of Molecular Cell and Biology, University of California at Berkeley, USA
| | - Yanzhong Wang
- School of Population Health and Environmental Science, King's College London, UK
| | - Ming Li
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Jun Yin
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Juan Zhang
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Yating Chen
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Rong Zhang
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Yanyan Jiang
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Weijing Zhao
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Di Yang
- Department of Nutritional Sciences and Toxicology, University of California at Berkeley, USA
| | - Taishan Zheng
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Ming Lu
- Department of Endocrinology & Metabolism, Putuo Hospital Attached to Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai 200000, China
| | - Langen Zhuang
- Department of Endocrinology, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, China
| | - Meisheng Jiang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
16
|
Yorifuji T, Higuchi S, Kawakita R, Hosokawa Y, Aoyama T, Murakami A, Kawae Y, Hatake K, Nagasaka H, Tamagawa N. Genetic basis of early-onset, maturity-onset diabetes of the young-like diabetes in Japan and features of patients without mutations in the major MODY genes: Dominance of maternal inheritance. Pediatr Diabetes 2018; 19:1164-1172. [PMID: 29927023 DOI: 10.1111/pedi.12714] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/05/2018] [Accepted: 06/07/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Causative mutations cannot be identified in the majority of Asian patients with suspected maturity-onset diabetes of the young (MODY). OBJECTIVES To elucidate the genetic basis of Japanese patients with MODY-like diabetes and gain insight into the etiology of patients without mutations in the major MODY genes. SUBJECTS A total of 263 Japanese patients with early-onset, non-obese, MODY-like diabetes mellitus referred to Osaka City General Hospital for diagnosis. METHODS Mutational analysis of the four major MODY genes (GCK, HNF1A, HNF4A, HNF1B) by Sanger sequencing. Mutation-positive and mutation-negative patients were further analyzed for clinical features. RESULTS Mutations were identified in 103 (39.2%) patients; 57 mutations in GCK; 29, HNF1A; 7, HNF4A; and 10, HNF1B. Contrary to conventional diagnostic criteria, 18.4% of mutation-positive patients did not have affected parents and 8.2% were in the overweight range (body mass index [BMI] >85th percentile). HOMA-IR at diagnosis was elevated (>2) in 15 of 66 (22.7%) mutation-positive patients. Compared with mutation-positive patients, mutation-negative patients were significantly older (P = 0.003), and had higher BMI percentile at diagnosis (P = 0.0006). Interestingly, maternal inheritance of diabetes was significantly more common in mutation-negative patients (P = 0.0332) and these patients had significantly higher BMI percentile as compared with mutation-negative patients with paternal inheritance (P = 0.0106). CONCLUSIONS Contrary to the conventional diagnostic criteria, de novo diabetes, overweight, and insulin-resistance are common in Japanese patients with mutation-positive MODY. A significant fraction of mutation-negative patients had features of early-onset type 2 diabetes common in Japanese, and non-Mendelian inheritance needs to be considered for these patients.
Collapse
Affiliation(s)
- Tohru Yorifuji
- Division of Pediatric Endocrinology and Metabolism, Children's Medical Center, Osaka City General Hospital, Osaka, Japan.,Department of Genetic Medicine, Osaka City General Hospital, Osaka, Japan.,Clinical Research Center, Osaka City General Hospital, Osaka, Japan
| | - Shinji Higuchi
- Division of Pediatric Endocrinology and Metabolism, Children's Medical Center, Osaka City General Hospital, Osaka, Japan
| | - Rie Kawakita
- Division of Pediatric Endocrinology and Metabolism, Children's Medical Center, Osaka City General Hospital, Osaka, Japan.,Department of Genetic Medicine, Osaka City General Hospital, Osaka, Japan
| | - Yuki Hosokawa
- Division of Pediatric Endocrinology and Metabolism, Children's Medical Center, Osaka City General Hospital, Osaka, Japan
| | - Takane Aoyama
- Department of Genetic Medicine, Osaka City General Hospital, Osaka, Japan
| | - Akiko Murakami
- Department of Genetic Medicine, Osaka City General Hospital, Osaka, Japan
| | - Yoshiko Kawae
- Clinical Research Center, Osaka City General Hospital, Osaka, Japan
| | - Kazue Hatake
- Clinical Research Center, Osaka City General Hospital, Osaka, Japan
| | - Hironori Nagasaka
- Department of Pediatrics, Takarazuka City Hospital, Takarazuka, Hyogo, Japan
| | - Nobuyoshi Tamagawa
- Department of Genetic Medicine, Osaka City General Hospital, Osaka, Japan
| |
Collapse
|
17
|
Horikawa Y. Maturity-onset diabetes of the young as a model for elucidating the multifactorial origin of type 2 diabetes mellitus. J Diabetes Investig 2018; 9:704-712. [PMID: 29406598 PMCID: PMC6031504 DOI: 10.1111/jdi.12812] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 01/30/2018] [Accepted: 01/30/2018] [Indexed: 12/19/2022] Open
Abstract
Maturity‐onset diabetes of the young (MODY) is a form of diabetes classically characterized as having autosomal dominant inheritance, onset before the age of 25 years in at least one family member and partly preserved pancreatic β‐cell function. The 14 responsible genes are reported to be MODY type 1~14, of which MODY 2 and 3 might be the most common forms. Although MODY is currently classified as diabetes of a single gene defect, it has become clear that mutations in rare MODYs, such as MODY 5 and MODY 6, have small mutagenic effects and low penetrance. In addition, as there are differences in the clinical phenotypes caused by the same mutation even in the same family, other phenotypic modifying factors are thought to exist; MODY could well have characteristics of type 2 diabetes mellitus, which is of multifactorial origin. Here, we outline the effects of genetic and environmental factors on the known phenotypes of MODY, focusing mainly on the examples of MODY 5 and 6, which have low penetrance, as suggestive models for elucidating the multifactorial origin of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Yukio Horikawa
- Department of Diabetes and Endocrinology, Graduate School of Medicine, Gifu University, Gifu, Japan
| |
Collapse
|
18
|
Ushijima K, Fukami M, Ayabe T, Narumi S, Okuno M, Nakamura A, Takahashi T, Ihara K, Ohkubo K, Tachikawa E, Nakayama S, Arai J, Kikuchi N, Kikuchi T, Kawamura T, Urakami T, Hata K, Nakabayashi K, Matsubara Y, Amemiya S, Ogata T, Yokota I, Sugihara S. Comprehensive screening for monogenic diabetes in 89 Japanese children with insulin-requiring antibody-negative type 1 diabetes. Pediatr Diabetes 2018; 19:243-250. [PMID: 28597946 DOI: 10.1111/pedi.12544] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 04/03/2017] [Accepted: 05/02/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Mutations in causative genes for neonatal diabetes or maturity-onset diabetes of the young have been identified in multiple patients with autoantibody-negative type 1 diabetes (T1D). OBJECTIVES We aimed to clarify the prevalence and phenotypic characteristics of monogenic abnormalities among 89 children with autoantibody-negative insulin-requiring T1D. METHODS Mutations in 30 genes were screened using next-generation sequencing, and copy-number alterations of 4 major causative genes were examined using multiplex-ligation-dependent probe amplification. We compared the clinical characteristics between mutation carriers and non-carriers. RESULTS We identified 11 probable pathogenic substitutions (6 in INS , 2 in HNF1A , 2 in HNF4A , and 1 in HNF1B ) in 11 cases, but no copy-number abnormalities. Only 2 mutation carriers had affected parents. De novo occurrence was confirmed for 3 mutations. The non-carrier group, but not the carrier group, was enriched with susceptible HLA alleles. Mutation carriers exhibited comparable phenotypes to those of non-carriers, except for a relatively normal body mass index (BMI) at diagnosis. CONCLUSIONS This study demonstrated significant genetic overlap between autoantibody-negative T1D and monogenic diabetes. Mutations in INS and HNF genes, but not those in GCK and other monogenic diabetes genes, likely play critical roles in children with insulin-requiring T1D. This study also suggests the relatively high de novo rates of INS and HNF mutations, and the etiological link between autoimmune abnormalities and T1D in the non-carrier group. Carriers of monogenic mutations show non-specific phenotypes among all T1D cases, although they are more likely to have a normal BMI at diagnosis than non-carriers.
Collapse
Affiliation(s)
- Kikumi Ushijima
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tadayuki Ayabe
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Pediatrics, Sanaikai General Hospital, Misato, Japan
| | - Satoshi Narumi
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Misako Okuno
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Akie Nakamura
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | | | - Kenji Ihara
- Department of Pediatrics, Oita University School of Medicine, Oita, Japan
| | - Kazuhiro Ohkubo
- Department of Pediatrics, Kyushu University School of Medicine, Fukuoka, Japan
| | - Emiko Tachikawa
- Department of Pediatrics, Tokyo Women's Medical University Hospital, Tokyo, Japan
| | - Shoji Nakayama
- Department of Pediatrics, Mominoki Hospital, Kochi, Japan
| | - Junichi Arai
- Department of Pediatrics, Hosogi Hospital, Kochi, Japan
| | - Nobuyuki Kikuchi
- Department of Pediatrics, Yokohama City Minato Red Cross Hospital, Yokohama, Japan
| | - Toru Kikuchi
- Department of Pediatrics, Saitama Medical University Faculty of Medicine, Saitama, Japan
| | - Tomoyuki Kawamura
- Department of Pediatrics, Osaka City University School of Medicine, Osaka, Japan
| | - Tatsuhiko Urakami
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yoichi Matsubara
- Institute Director, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Shin Amemiya
- Department of Pediatrics, Saitama Medical University Faculty of Medicine, Saitama, Japan
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Ichiro Yokota
- Department of Pediatrics, Division of Pediatric Endocrinology and Metabolism, Shikoku Medical Center for Children and Adults, Kagawa, Japan
| | - Shigetaka Sugihara
- Department of Pediatrics, Tokyo Women's Medical University Medical Center East, Tokyo, Japan
| | | |
Collapse
|
19
|
Urbanová J, Brunerová L, Brož J. Hidden MODY-Looking for a Needle in a Haystack. Front Endocrinol (Lausanne) 2018; 9:355. [PMID: 30013516 PMCID: PMC6037194 DOI: 10.3389/fendo.2018.00355] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 06/13/2018] [Indexed: 11/17/2022] Open
Affiliation(s)
- Jana Urbanová
- Second Department of Internal Medicine, Third Faculty of Medicine, Center for Research of Diabetes, Metabolism and Nutrition, University Hospital Královské Vinohrady, Prague, Czechia
| | - Ludmila Brunerová
- Second Department of Internal Medicine, Third Faculty of Medicine, Center for Research of Diabetes, Metabolism and Nutrition, University Hospital Královské Vinohrady, Prague, Czechia
- *Correspondence: Ludmila Brunerová
| | - Jan Brož
- Department of Internal Medicine, Second Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
20
|
Flack JR, Ross GP, Cheung NW. GCK monogenic diabetes and gestational diabetes: possible diagnosis on clinical grounds. Diabet Med 2015; 32:1596-601. [PMID: 26043405 DOI: 10.1111/dme.12830] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/01/2015] [Indexed: 11/29/2022]
Abstract
AIM To determine if the previously published clinical criteria for identifying glucokinase monogenic diabetes [GCK gene mutation in maturity-onset diabetes of the young (GCK-MODY)], an elevated antenatal fasting blood glucose of 5.5-8.0 mmol/l, an increment of < 4.6 mmol/l at 2 h in an oral glucose tolerance test and slim are applicable in a large multi-ethnic cohort of women with gestational diabetes. METHODS We analysed de-identified data from all women with gestational diabetes, diagnosed using the Australasian Diabetes in Pregnancy Society (1998) Australian criteria at our institution between 1993 and 2013, making comparisons among those with complete antenatal data including: diagnostic oral glucose tolerance test results meeting the above criteria; pregestational BMI; birth outcomes; and postpartum oral glucose tolerance test data. We categorized these women into two groups: Group A1 had a BMI ≤ 21 kg/m(2) and Group A2 had a BMI > 21 kg/m(2) and < 25 kg/m(2). RESULTS Of the 302 women meeting the study entry criteria, we had complete data including a postpartum oral glucose tolerance test result for 171 women: 54 in Group A1 and 117 in Group A2. Ethnicity was significantly different between the groups. The oral glucose tolerance test and postpartum HbA1c results identified few women ( < 14%) in Group A1 and Group A2 who still had 'possible GCK-MODY'. CONCLUSIONS Our findings indicate that previously recommended clinical criteria for the identification of women likely to have GCK-MODY lack specificity in a cohort of women with multi-ethnic backgrounds. Using these criteria to select women for testing for GCK-MODY in pregnancy would therefore be costly and is likely to yield few women positive for this condition.
Collapse
Affiliation(s)
- J R Flack
- Department of Diabetes and Endocrinology, Bankstown-Lidcombe Hospital, Bankstown, NSW, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - G P Ross
- Department of Diabetes and Endocrinology, Bankstown-Lidcombe Hospital, Bankstown, NSW, Australia
- Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| | - N W Cheung
- Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
- Department of Diabetes and Endocrinology, Westmead Hospital, Westmead, NSW, Australia
| |
Collapse
|
21
|
Abstract
Maturity-onset diabetes of the young (MODY) is a monogenic form of diabetes that accounts for at least 1 % of all cases of diabetes mellitus. MODY classically presents as non-insulin-requiring diabetes in lean individuals typically younger than 25 with evidence of autosomal dominant inheritance, but these criteria do not capture all cases and can also overlap with other diabetes types. Genetic diagnosis of MODY is important for selecting the right treatment, yet ~95 % of MODY cases in the USA are misdiagnosed. MODY prevalence and characteristics have been well-studied in some populations, such as the UK and Norway, while other ethnicities, like African and Latino, need much more study. Emerging next-generation sequencing methods are making more widespread study and clinical diagnosis increasingly feasible; at the same time, they are detecting other mutations in the same genes of unknown clinical significance. This review will cover the current epidemiological studies of MODY and barriers and opportunities for moving toward a goal of access to an appropriate diagnosis for all affected individuals.
Collapse
Affiliation(s)
- Jeffrey W Kleinberger
- Division of Endocrinology, Diabetes, and Nutrition and Program in Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, 660 West Redwood Street, Room 445C, Baltimore, MD, 21201, USA.
| | - Toni I Pollin
- Division of Endocrinology, Diabetes, and Nutrition and Program in Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, 660 West Redwood Street, Room 445C, Baltimore, MD, 21201, USA.
- University of Maryland School of Medicine, 660 West Redwood Street, Room 464, Baltimore, MD, 21201, USA.
| |
Collapse
|
22
|
Kim SH. Maturity-Onset Diabetes of the Young: What Do Clinicians Need to Know? Diabetes Metab J 2015; 39:468-77. [PMID: 26706916 PMCID: PMC4696982 DOI: 10.4093/dmj.2015.39.6.468] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/25/2015] [Indexed: 11/15/2022] Open
Abstract
Maturity-onset diabetes of the young (MODY) is a monogenic form of diabetes that is characterized by an early onset, autosomal dominant mode of inheritance and a primary defect in pancreatic β-cell function. MODY represents less than 2% of all diabetes cases and is commonly misdiagnosed as type 1 or type 2 diabetes mellitus. At least 13 MODY subtypes with distinct genetic etiologies have been identified to date. A correct genetic diagnosis is important as it often leads to personalized treatment for those with diabetes and enables predictive genetic testing for their asymptomatic relatives. Next-generation sequencing may provide an efficient method for screening mutations in this form of diabetes as well as identifying new MODY genes. In this review, I discuss a current update on MODY in the literatures and cover the studies that have been performed in Korea.
Collapse
Affiliation(s)
- Sung Hoon Kim
- Division of Endocrinology & Metabolism, Department of Medicine, Cheil General Hospital & Women's Healthcare Center, Dankook University College of Medicine, Seoul, Korea.
| |
Collapse
|
23
|
Chakera AJ, Steele AM, Gloyn AL, Shepherd MH, Shields B, Ellard S, Hattersley AT. Recognition and Management of Individuals With Hyperglycemia Because of a Heterozygous Glucokinase Mutation. Diabetes Care 2015; 38:1383-92. [PMID: 26106223 DOI: 10.2337/dc14-2769] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Glucokinase-maturity-onset diabetes of the young (GCK-MODY), also known as MODY2, is caused by heterozygous inactivating mutations in the GCK gene. GCK gene mutations are present in ∼1 in 1,000 of the population, but most are not diagnosed. They are common causes of MODY (10-60%): persistent incidental childhood hyperglycemia (10-60%) and gestational diabetes mellitus (1-2%). GCK-MODY has a unique pathophysiology and clinical characteristics, so it is best considered as a discrete genetic subgroup. People with GCK-MODY have a defect in glucose sensing; hence, glucose homeostasis is maintained at a higher set point resulting in mild, asymptomatic fasting hyperglycemia (5.4-8.3 mmol/L, HbA1c range 5.8-7.6% [40-60 mmol/mol]), which is present from birth and shows slight deterioration with age. Even after 50 years of mild hyperglycemia, people with GCK-MODY do not develop significant microvascular complications, and the prevalence of macrovascular complications is probably similar to that in the general population. Treatment is not recommended outside pregnancy because glucose-lowering therapy is ineffective in people with GCK-MODY and there is a lack of long-term complications. In pregnancy, fetal growth is primarily determined by whether the fetus inherits the GCK gene mutation from their mother. Insulin treatment of the mother is only appropriate when increased fetal abdominal growth on scanning suggests the fetus is unaffected. The impact on outcome of maternal insulin treatment is limited owing to the difficulty in altering maternal glycemia in these patients. Making the diagnosis of GCK-MODY through genetic testing is essential to avoid unnecessary treatment and investigations, especially when patients are misdiagnosed with type 1 or type 2 diabetes.
Collapse
Affiliation(s)
- Ali J Chakera
- Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, U.K. MacLeod Diabetes and Endocrine Centre, Royal Devon and Exeter National Health Service Foundation Trust, Exeter, U.K.
| | - Anna M Steele
- Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, U.K. National Institute for Health Research Exeter Clinical Research Facility, Royal Devon and Exeter National Health Service Foundation Trust, and University of Exeter Medical School, Exeter, U.K
| | - Anna L Gloyn
- Oxford Centre for Diabetes Endocrinology and Metabolism, University of Oxford, Oxford, U.K. National Institute for Health Research Oxford Biomedical Research Centre, The Churchill Hospital, Oxford, U.K
| | - Maggie H Shepherd
- Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, U.K. National Institute for Health Research Exeter Clinical Research Facility, Royal Devon and Exeter National Health Service Foundation Trust, and University of Exeter Medical School, Exeter, U.K
| | - Beverley Shields
- Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Sian Ellard
- Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, U.K. Department of Molecular Genetics, Royal Devon and Exeter National Health Service Foundation Trust, and University of Exeter Medical School, Exeter, U.K
| | - Andrew T Hattersley
- Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, U.K. MacLeod Diabetes and Endocrine Centre, Royal Devon and Exeter National Health Service Foundation Trust, Exeter, U.K. National Institute for Health Research Exeter Clinical Research Facility, Royal Devon and Exeter National Health Service Foundation Trust, and University of Exeter Medical School, Exeter, U.K.
| |
Collapse
|