1
|
Powers SK, Radak Z, Ji LL, Jackson M. Reactive oxygen species promote endurance exercise-induced adaptations in skeletal muscles. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:780-792. [PMID: 38719184 PMCID: PMC11336304 DOI: 10.1016/j.jshs.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 05/22/2024]
Abstract
The discovery that contracting skeletal muscle generates reactive oxygen species (ROS) was first reported over 40 years ago. The prevailing view in the 1980s was that exercise-induced ROS production promotes oxidation of proteins and lipids resulting in muscle damage. However, a paradigm shift occurred in the 1990s as growing research revealed that ROS are signaling molecules, capable of activating transcriptional activators/coactivators and promoting exercise-induced muscle adaptation. Growing evidence supports the notion that reduction-oxidation (redox) signaling pathways play an important role in the muscle remodeling that occurs in response to endurance exercise training. This review examines the specific role that redox signaling plays in this endurance exercise-induced skeletal muscle adaptation. We begin with a discussion of the primary sites of ROS production in contracting muscle fibers followed by a summary of the antioxidant enzymes involved in the regulation of ROS levels in the cell. We then discuss which redox-sensitive signaling pathways promote endurance exercise-induced muscle adaptation and debate the strength of the evidence supporting the notion that redox signaling plays an essential role in muscle adaptation to endurance exercise training. In hopes of stimulating future research, we highlight several important unanswered questions in this field.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology, University of Florida, Gainesville, FL 32608, USA.
| | - Zsolt Radak
- Research Institute of Sport Science, Hungarian University of Sport Science, Budapest 1123, Hungary
| | - Li Li Ji
- Department of Kinesiology, University of Minnesota, St. Paul, MN 55455, USA
| | - Malcolm Jackson
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| |
Collapse
|
2
|
Seibert P, Anklam CFV, Costa-Beber LC, Sulzbacher LM, Sulzbacher MM, Sangiovo AMB, dos Santos FK, Goettems-Fiorin PB, Heck TG, Frizzo MN, Ludwig MS. Increased eHSP70-to-iHSP70 ratio in prediabetic and diabetic postmenopausal women: a biomarker of cardiometabolic risk. Cell Stress Chaperones 2022; 27:523-534. [PMID: 35767179 PMCID: PMC9485348 DOI: 10.1007/s12192-022-01288-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/01/2022] [Accepted: 06/22/2022] [Indexed: 11/03/2022] Open
Abstract
Decreased estrogen levels in menopause are associated with anthropometric, metabolic, and inflammatory impairments, predisposing women to cardiometabolic risk factors such as diabetes. Menopause and type two diabetes (DM2) are marked by altered heat shock response (HSR), shown by decreased expression of the 70-kDa heat shock protein in the intracellular milieu (iHSP70). While iHSP70 plays an anti-inflammatory role, extracellular HSP70 (eHSP70) may mediate pro-inflammatory pathways and has been associated with insulin resistance in DM2. Considering the roles of these proteins according to localization, the eHSP70-to-iHSP70 ratio (H-index) has been proposed as a biomarker for HSR. We, therefore, evaluated whether this biomarker is associated with glycemic and inflammatory status in postmenopausal women. In this transversal study, 36 postmenopausal women were grouped according to fasting glycemia status as either the control group (normoglycemic, ≤ 99 mg/dL) or DM2 (prediabetic and diabetic, glycemia ≥ 100 mg/dL). DM2 group showed higher triglyceride/glucose (TyG) index and plasma atherogenic index (PAI), both of which are indicators of cardiometabolic risk. In addition, we found that the eHSP70-to-iHSP70 ratio (plasma/peripheral blood mononuclear cells-PBMC ratio) was higher in the DM2 group, compared with the control group. Furthermore, blood leukocyte and glycemia levels were positively correlated with the eHSP70-to-iHSP70 ratio in women that presented H-index values above 1.0 (a.u.). Taken together, our results highlight the eHSP70-to-iHSP70 ratio as a biomarker of altered HSR in DM2 postmenopausal women.
Collapse
Affiliation(s)
- Priscila Seibert
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
| | - Carolain Felipin Vincensi Anklam
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
| | - Lílian Corrêa Costa-Beber
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
| | - Lucas Machado Sulzbacher
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
| | - Maicon Machado Sulzbacher
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
- Post Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, RS Brazil
| | - Angela Maria Blanke Sangiovo
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
| | - Fernanda Knopp dos Santos
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
| | - Pauline Brendler Goettems-Fiorin
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
| | - Thiago Gomes Heck
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
- Post Graduate Program in Mathematical and Computational Modeling (PPGMMC-UNIJUI), Ijuí, RS Brazil
| | - Matias Nunes Frizzo
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
| | - Mirna Stela Ludwig
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
| |
Collapse
|
3
|
Dong Y, Ma N, Fan L, Yuan L, Wu Q, Gong L, Tao Z, Chen J, Ren J. GADD45β stabilized by direct interaction with HSP72 ameliorates insulin resistance and lipid accumulation. Pharmacol Res 2021; 173:105879. [PMID: 34508810 DOI: 10.1016/j.phrs.2021.105879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 12/30/2022]
Abstract
Growth arrest and DNA damage-inducible 45β (GADD45β) belongs to the GADD45 family which is small acidic proteins in response to cellular stress. GADD45β has already been reported to have excellent capabilities against cancer, innate immunity and neurological diseases. However, there is little information regard GADD45β and non-alcoholic fatty liver disease (NAFLD). In the current work, we found that the expression of GADD45β was markedly decreased in the livers of NAFLD patients via analyzing Gene Expression Omnibus (GEO) dataset and in mouse model through detecting its mRNA in high-fat-high-fructose diet (HFHFr)-fed mice. Moreover, the results from in vivo experiment demonstrated that overexpression of GADD45β by AAV8-mediated gene transfer in HFHFr-fed mouse model could reduce the level of serum and hepatic triglyceride (TG), and alleviate insulin resistance. Subsequently, by combining immunoprecipitation (IP) and mass spectrometry, we identified that HSP72 directly interacted with GADD45β to prevent GADD45β from being degraded by the proteasome pathway. Finally, the benefits of GADD45β in regulating key factors of TG synthesis and insulin signaling pathway were abolished after HSP72 knockdown. In conclusion, GADD45β stabilized by the interaction with HSP72 could alleviate the NAFLD-related pathologies, suggested it might be a potential target for the treatment of NAFLD.
Collapse
Affiliation(s)
- Yunxia Dong
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Ningning Ma
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Lei Fan
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Luyang Yuan
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Qian Wu
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Likun Gong
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Zhouteng Tao
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.
| | - Jing Chen
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.
| | - Jin Ren
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
4
|
Mohanty S, Rashid MHA, Mohanty C, Swayamsiddha S. Modern computational intelligence based drug repurposing for diabetes epidemic. Diabetes Metab Syndr 2021; 15:102180. [PMID: 34186343 DOI: 10.1016/j.dsx.2021.06.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIM Objectives are to explore recent advances in discovery of new antidiabetic agents using repurposing strategies and to discuss modern technologies used for drug repurposing highlighting diabetic specific web portal. METHODS Recent literature were studied and analyzed from various sources such as Scopus, PubMed, and IEEE Xplore databases. RESULTS Drugs like Niclosamideethanolamine, Methazolamide, Diacerein, Berberine, Clobetasol, etc. with possibility of repurposing to curb diabetes can be potential late-stage clinical candidates, providing access to information on pharmacology, formulation, and probable toxicity if any. CONCLUSIONS With collaboration of artificial intelligence (AI) with pharmacology, the efficiency of drug repurposing can improve significantly.
Collapse
Affiliation(s)
- Sweta Mohanty
- School of Applied Science, KIIT University, Bhubaneswar, Odisha, India
| | | | - Chandana Mohanty
- School of Applied Science, KIIT University, Bhubaneswar, Odisha, India.
| | - Swati Swayamsiddha
- School of Electronics Engineering, KIIT University, Bhubaneswar, Odisha, India.
| |
Collapse
|
5
|
Heat Stress Reduces Metabolic Rate While Increasing Respiratory Exchange Ratio in Growing Pigs. Animals (Basel) 2021; 11:ani11010215. [PMID: 33477278 PMCID: PMC7830201 DOI: 10.3390/ani11010215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 01/19/2023] Open
Abstract
Heat stress (HS) diminishes animal production, reducing muscle growth and increasing adiposity, especially in swine. Excess heat creates a metabolic phenotype with limited lipid oxidation that relies on aerobic and anaerobic glycolysis as a predominant means of energy production, potentially reducing metabolic rate. To evaluate the effects of HS on substrate utilization and energy expenditure, crossbred barrows (15.2 ± 2.4 kg) were acclimatized for 5 days (22 °C), then treated with 5 days of TN (thermal neutral, 22 °C, n = 8) or HS (35 °C, n = 8). Pigs were fed ad libitum and monitored for respiratory rate (RR) and rectal temperature. Daily energy expenditure (DEE) and respiratory exchange ratio (RER, CO2:O2) were evaluated fasted in an enclosed chamber through indirect calorimetry. Muscle biopsies were obtained from the longissimus dorsi pre/post. HS increased temperature (39.2 ± 0.1 vs. 39.6 ± 0.1 °C, p < 0.01) and RER (0.91 ± 0.02 vs. 1.02 ± 0.02 VCO2:VO2, p < 0.01), but decreased DEE/BW (68.8 ± 1.7 vs. 49.7 ± 4.8 kcal/day/kg, p < 0.01) relative to TN. Weight gain (p = 0.80) and feed intake (p = 0.84) did not differ between HS and TN groups. HS decreased muscle metabolic flexibility (~33%, p = 0.01), but increased leucine oxidation (~35%, p = 0.02) compared to baseline values. These data demonstrate that HS disrupts substrate regulation and energy expenditure in growing pigs.
Collapse
|
6
|
Deletion of Trim28 in committed adipocytes promotes obesity but preserves glucose tolerance. Nat Commun 2021; 12:74. [PMID: 33397965 PMCID: PMC7782476 DOI: 10.1038/s41467-020-20434-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 12/01/2020] [Indexed: 12/19/2022] Open
Abstract
The effective storage of lipids in white adipose tissue (WAT) critically impacts whole body energy homeostasis. Many genes have been implicated in WAT lipid metabolism, including tripartite motif containing 28 (Trim28), a gene proposed to primarily influence adiposity via epigenetic mechanisms in embryonic development. However, in the current study we demonstrate that mice with deletion of Trim28 specifically in committed adipocytes, also develop obesity similar to global Trim28 deletion models, highlighting a post-developmental role for Trim28. These effects were exacerbated in female mice, contributing to the growing notion that Trim28 is a sex-specific regulator of obesity. Mechanistically, this phenotype involves alterations in lipolysis and triglyceride metabolism, explained in part by loss of Klf14 expression, a gene previously demonstrated to modulate adipocyte size and body composition in a sex-specific manner. Thus, these findings provide evidence that Trim28 is a bona fide, sex specific regulator of post-developmental adiposity and WAT function.
Collapse
|
7
|
Lissarassa YPS, Vincensi CF, Costa-Beber LC, Dos Santos AB, Goettems-Fiorin PB, Dos Santos JB, Donato YH, Wildner G, Homem de Bittencourt Júnior PI, Frizzo MN, Heck TG, Ludwig MS. Chronic heat treatment positively impacts metabolic profile of ovariectomized rats: association with heat shock response pathways. Cell Stress Chaperones 2020; 25:467-479. [PMID: 32215846 PMCID: PMC7192980 DOI: 10.1007/s12192-020-01087-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 01/11/2023] Open
Abstract
Low estrogen levels may predispose women to increased bodyweight and dyslipidemia. Previous studies from our laboratory suggest an involvement of depressed heat shock response (HSR) in this scenario because estrogen potently stimulates HSR. As heat treatment induces the expression of the anti-inflammatory heat shock proteins of the 70-kDa family (HSP70) and its accompanying HSR, we aimed to investigate whether chronic heat treatment promotes beneficial effects on biometric, lipid profile, oxidative stress, and HSR in ovariectomized rats. Wistar adult female rats (n = 32) were divided into four groups: control (C, n = 7), ovariectomized (OVX, n = 9), heat-treated (HT, n = 9), and heat-treated ovariectomized rats (OVX+HT, n = 7). HT and OVX+HT rats were anesthetized and submitted to heat treatment (once a week for 12 weeks) in a water bath (41 °C) to increase rats' rectal temperature up to 41 °C for 15 min, while C and OVX animals were submitted to a 36 °C water bath. HT attenuated the weight gain induced by OVX and increased HDL cholesterol and triglyceride serum levels. Also, OVX rats showed increased total cholesterol and LDL cholesterol levels that were not influenced by HT. Interestingly, it was found that an overall trend for HT to decrease tissue catalase and superoxide dismutase antioxidant activities was paralleled by a decrease in malondialdehyde levels (indicative of lower lipoperoxidation), especially in the skeletal muscle. Surprisingly, OVX was not able to depress intracellular HSP70 expression in the skeletal muscle, as expected, and this remained unchanged with HT. However, chronic HT did enhance intracellular HSP70 contents in white adipose tissue of OVX animals. As both glucose and insulin tolerance tests were not affected by OVX, which was not modified by HT, we suppose that estrogen absence alone is not sufficient to determine a state of insulin resistance associated with low intramuscular HSP70 content.
Collapse
Affiliation(s)
- Yana Picinin Sandri Lissarassa
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
- Postgraduation Program in Integral Attention to Health (PPGAIS), Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
| | - Carolain Felipin Vincensi
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
- Postgraduation Program in Integral Attention to Health (PPGAIS), Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
| | - Lílian Corrêa Costa-Beber
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
- Postgraduation Program in Integral Attention to Health (PPGAIS), Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
| | - Analú Bender Dos Santos
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
- Postgraduation Program in Integral Attention to Health (PPGAIS), Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
| | - Pauline Brendler Goettems-Fiorin
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
| | - Jaíne Borges Dos Santos
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
- Postgraduation Program in Integral Attention to Health (PPGAIS), Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
| | - Yohanna Hannnah Donato
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
- Postgraduation Program in Integral Attention to Health (PPGAIS), Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
| | - Guilherme Wildner
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
| | - Paulo Ivo Homem de Bittencourt Júnior
- Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, ICBS, Porto Alegre, RS, Brazil
| | - Matias Nunes Frizzo
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
- Postgraduation Program in Integral Attention to Health (PPGAIS), Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
| | - Thiago Gomes Heck
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil.
- Postgraduation Program in Integral Attention to Health (PPGAIS), Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil.
| | - Mirna Stela Ludwig
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil.
- Postgraduation Program in Integral Attention to Health (PPGAIS), Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil.
| |
Collapse
|
8
|
Production of adeno-associated virus vectors for in vitro and in vivo applications. Sci Rep 2019; 9:13601. [PMID: 31537820 PMCID: PMC6753157 DOI: 10.1038/s41598-019-49624-w] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 07/11/2019] [Indexed: 12/14/2022] Open
Abstract
Delivering and expressing a gene of interest in cells or living animals has become a pivotal technique in biomedical research and gene therapy. Among viral delivery systems, adeno-associated viruses (AAVs) are relatively safe and demonstrate high gene transfer efficiency, low immunogenicity, stable long-term expression, and selective tissue tropism. Combined with modern gene technologies, such as cell-specific promoters, the Cre/lox system, and genome editing, AAVs represent a practical, rapid, and economical alternative to conditional knockout and transgenic mouse models. However, major obstacles remain for widespread AAV utilization, such as impractical purification strategies and low viral quantities. Here, we report an improved protocol to produce serotype-independent purified AAVs economically. Using a helper-free AAV system, we purified AAVs from HEK293T cell lysates and medium by polyethylene glycol precipitation with subsequent aqueous two-phase partitioning. Furthermore, we then implemented an iodixanol gradient purification, which resulted in preparations with purities adequate for in vivo use. Of note, we achieved titers of 1010-1011 viral genome copies per µl with a typical production volume of up to 1 ml while requiring five times less than the usual number of HEK293T cells used in standard protocols. For proof of concept, we verified in vivo transduction via Western blot, qPCR, luminescence, and immunohistochemistry. AAVs coding for glutaredoxin-1 (Glrx) shRNA successfully inhibited Glrx expression by ~66% in the liver and skeletal muscle. Our study provides an improved protocol for a more economical and efficient purified AAV preparation.
Collapse
|
9
|
Weeks KL, Henstridge DC, Salim A, Shaw JE, Marwick TH, McMullen JR. CORP: Practical tools for improving experimental design and reporting of laboratory studies of cardiovascular physiology and metabolism. Am J Physiol Heart Circ Physiol 2019; 317:H627-H639. [PMID: 31347916 DOI: 10.1152/ajpheart.00327.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The exercise consisted of: 1) a short survey to acquire baseline data on current practices regarding the conduct of animal studies, 2) a series of presentations for promoting awareness and providing advice and practical tools for improving experimental design, and 3) a follow-up survey 12 mo later to assess whether practices had changed. The surveys were compulsory for responsible investigators (n = 16; paired data presented). Other investigators named on animal ethics applications were encouraged to participate (2017, total of 36 investigators; 2018, 37 investigators). The major findings to come from the exercise included 1) a willingness of investigators to make changes when provided with knowledge/tools and solutions that were relatively simple to implement (e.g., proportion of responsible investigators showing improved practices using a structured method for randomization was 0.44, 95% CI (0.19; 0.70), P = 0.003, and deidentifying drugs/interventions was 0.40, 95% CI (0.12; 0.68), P = 0.010); 2) resistance to change if this involved more personnel and time (e.g., as required for allocation concealment); and 3) evidence that changes to long-term practices ("habits") require time and follow-up. Improved practices could be verified based on changes in reporting within publications or documented evidence provided during laboratory visits. In summary, this exercise resulted in changed attitudes, practices, and reporting, but continued follow-up, monitoring, and incentives are required. Efforts to improve experimental rigor will reduce bias and will lead to findings with the greatest translational potential.NEW & NOTEWORTHY The goal of this exercise was to encourage preclinical researchers to improve the quality of their cardiac and metabolic animal studies by 1) increasing awareness of concerns, which can arise from suboptimal experimental designs; 2) providing knowledge, tools, and templates to overcome bias; and 3) conducting two short surveys over 12 mo to monitor change. Improved practices were identified for the uptake of structured methods for randomization, and de-identifying interventions/drugs.Listen to this article's corresponding podcast at https://ajpheart.podbean.com/e/experimental-design-survey-training-practical-tools/.
Collapse
Affiliation(s)
- Kate L Weeks
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia
| | | | - Agus Salim
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Department of Mathematics and Statistics, La Trobe University Victoria, Australia
| | | | | | - Julie R McMullen
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
10
|
Abstract
The health-promoting effects of physical activity to prevent and treat metabolic disorders are numerous. However, the underlying molecular mechanisms are not yet completely deciphered. In recent years, studies have referred to the liver as an endocrine organ, since it releases specific proteins called hepatokines. Some of these hepatokines are involved in whole body metabolic homeostasis and are theorized to participate in the development of metabolic disease. In this regard, the present review describes the role of Fibroblast Growth Factor 21, Fetuin-A, Angiopoietin-like protein 4, and Follistatin in metabolic disease and their production in response to acute exercise. Also, we discuss the potential role of hepatokines in mediating the beneficial effects of regular exercise and the future challenges to the discovery of new exercise-induced hepatokines.
Collapse
Affiliation(s)
- Gaël Ennequin
- PEPITE EA4267, EPSI, Université de Bourgogne Franche-Comté , Besançon , France
| | - Pascal Sirvent
- Université Clermont Auvergne, Laboratoire des Adaptations Métaboliques à l'Exercice en conditions Physiologiques et Pathologiques (AME2P), CRNH Auvergne, Clermont-Ferrand , France
| | - Martin Whitham
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham , Birmingham , United Kingdom
| |
Collapse
|
11
|
The Zinc Transporter Zip7 Is Downregulated in Skeletal Muscle of Insulin-Resistant Cells and in Mice Fed a High-Fat Diet. Cells 2019; 8:cells8070663. [PMID: 31266232 PMCID: PMC6678147 DOI: 10.3390/cells8070663] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/14/2022] Open
Abstract
Background: The zinc transporter Zip7 modulates zinc flux and controls cell signaling molecules associated with glucose metabolism in skeletal muscle. The present study evaluated the role of Zip7 in cell signaling pathways involved in insulin-resistant skeletal muscle and mice fed a high-fat diet. Methods: Insulin-resistant skeletal muscle cells were prepared by treatment with an inhibitor of the insulin receptor, HNMPA-(AM)3 or palmitate, and Zip7 was analyzed along with pAkt, pTyrosine and Glut4. Similarly, mice fed normal chow (NC) or a high-fat diet (HFD) were also analyzed for protein expression of Glut4 and Zip7. An overexpression system for Zip7 was utilized to determine the action of this zinc transporter on several genes implicated in insulin signaling and glucose control. Results: We identified that Zip7 is upregulated by glucose in normal skeletal muscle cells and downregulated in insulin-resistant skeletal muscle. We also observed (as expected) a decrease in pAkt and Glut4 in the insulin-resistant skeletal muscle cells. The overexpression of Zip7 in skeletal muscle cells led to the modulation of key genes involved in the insulin signaling axis and glucose metabolism including Akt3, Dok2, Fos, Hras, Kras, Nos2, Pck2, and Pparg. In an in vivo mouse model, we identified a reduction in Glut4 and Zip7 in the skeletal muscle of mice fed a HFD compared to NC controls. Conclusions: These data suggest that Zip7 plays a role in skeletal muscle insulin signaling and is downregulated in an insulin-resistant, and HFD state. Understanding the molecular mechanisms of Zip7 action will provide novel opportunities to target this transporter therapeutically for the treatment of insulin resistance and type 2 diabetes.
Collapse
|
12
|
Hesketh K, Shepherd SO, Strauss JA, Low DA, Cooper RJ, Wagenmakers AJM, Cocks M. Passive heat therapy in sedentary humans increases skeletal muscle capillarization and eNOS content but not mitochondrial density or GLUT4 content. Am J Physiol Heart Circ Physiol 2019; 317:H114-H123. [PMID: 31074654 DOI: 10.1152/ajpheart.00816.2018] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Passive heat therapy (PHT) has been proposed as an alternative intervention to moderate-intensity continuous training (MICT) in individuals who are unable or unwilling to exercise. This study aimed to make the first comparison of the effect of PHT and MICT on 1) skeletal muscle capillarization and endothelial-specific endothelial nitric oxide synthase (eNOS) content and 2) mitochondrial density, glucose transporter 4 (GLUT4), and intramuscular triglyceride (IMTG) content. Twenty young sedentary males (21 ± 1 yr, body mass index 25 ± 1 kg/m2) were allocated to either 6 wk of PHT (n = 10; 40-50 min at 40°C in a heat chamber, 3×/wk) or MICT (n = 10; time-matched cycling at ~65% V̇o2peak). Muscle biopsies were taken from the vastus lateralis muscle before and after training. Immunofluorescence microscopy was used to assess changes in skeletal muscle mitochondrial density (mitochondrial marker cytochrome c oxidase subunit 4), GLUT4, and IMTG content, capillarization, and endothelial-specific eNOS content. V̇o2peak and whole body insulin sensitivity were also assessed. PHT and MICT both increased capillary density (PHT 21%; MICT 12%), capillary-fiber perimeter exchange index (PHT 15%; MICT 12%) (P < 0.05), and endothelial-specific eNOS content (PHT 8%; MICT 12%) (P < 0.05). However, unlike MICT (mitochondrial density 40%; GLUT4 14%; IMTG content 70%) (P < 0.05), PHT did not increase mitochondrial density (11%, P = 0.443), GLUT4 (7%, P = 0.217), or IMTG content (1%, P = 0.957). Both interventions improved aerobic capacity (PHT 5%; MICT 7%) and whole body insulin sensitivity (PHT 15%; MICT 36%) (P < 0.05). Six-week PHT in young sedentary males increases skeletal muscle capillarization and eNOS content to a similar extent as MICT; however, unlike MICT, PHT does not affect skeletal muscle mitochondrial density, GLUT4, or IMTG content. NEW & NOTEWORTHY The effect of 6-wk passive heat therapy (PHT) compared with moderate-intensity continuous training (MICT) was investigated in young sedentary males. PHT induced similar increases in skeletal muscle capillarization and endothelial-specific endothelial nitric oxide synthase content to MICT. Unlike MICT, PHT did not improve skeletal muscle mitochondrial density, glucose transporter 4, or intramuscular triglyceride content. These microvascular adaptations were paralleled by improvements in V̇o2peak and insulin sensitivity, suggesting that microvascular adaptations may contribute to functional improvements following PHT.
Collapse
Affiliation(s)
- Katie Hesketh
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University , Liverpool , United Kingdom
| | - Sam O Shepherd
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University , Liverpool , United Kingdom
| | - Juliette A Strauss
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University , Liverpool , United Kingdom
| | - David A Low
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University , Liverpool , United Kingdom
| | - Robert J Cooper
- Institute of Aging and Chronic Disease, University of Liverpool , Liverpool , United Kingdom
| | - Anton J M Wagenmakers
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University , Liverpool , United Kingdom
| | - Matthew Cocks
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University , Liverpool , United Kingdom
| |
Collapse
|
13
|
Bond ST, Kim J, Calkin AC, Drew BG. The Antioxidant Moiety of MitoQ Imparts Minimal Metabolic Effects in Adipose Tissue of High Fat Fed Mice. Front Physiol 2019; 10:543. [PMID: 31139092 PMCID: PMC6517842 DOI: 10.3389/fphys.2019.00543] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/17/2019] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunction is associated with a diverse array of diseases ranging from dystrophy and heart failure to obesity and hepatosteatosis. One of the major biochemical consequences of impaired mitochondrial function is an accumulation of mitochondrial superoxide, or reactive oxygen species (ROS). Excessive ROS can be detrimental to cellular health and is proposed to underpin many mitochondrial diseases. Accordingly, much research has been committed to understanding ways to therapeutically prevent and reduce ROS accumulation. In white adipose tissue (WAT), ROS is associated with obesity and its subsequent complications, and thus reducing mitochondrial ROS may represent a novel strategy for treating obesity related disorders. One therapeutic approach employed to reduce ROS abundance is the mitochondrial-targeted coenzyme Q (MitoQ), which enables mitochondrial specific delivery of a CoQ10 antioxidant via its triphenylphosphonium bromide (TPP+) cation. Indeed, MitoQ has been successfully shown to accumulate at the outer mitochondrial membrane and prevent ROS accumulation in several tissues in vivo; however, the specific effects of MitoQ on adipose tissue metabolism in vivo have not been studied. Here we demonstrate that mice fed high-fat diet with concomitant administration of MitoQ, exhibit minimal metabolic benefit in adipose tissue. We also demonstrate that both MitoQ and its control agent dTPP+ had significant and equivalent effects on whole-body metabolism, suggesting that the dTPP+ cation rather than the antioxidant moiety, was responsible for these changes. These findings have important implications for future studies using MitoQ and other TPP+ compounds.
Collapse
Affiliation(s)
- Simon T Bond
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Jisu Kim
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Anna C Calkin
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Brian G Drew
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
14
|
Bond ST, Moody SC, Liu Y, Civelek M, Villanueva CJ, Gregorevic P, Kingwell BA, Hevener AL, Lusis AJ, Henstridge DC, Calkin AC, Drew BG. The E3 ligase MARCH5 is a PPARγ target gene that regulates mitochondria and metabolism in adipocytes. Am J Physiol Endocrinol Metab 2019; 316:E293-E304. [PMID: 30512991 PMCID: PMC6397360 DOI: 10.1152/ajpendo.00394.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mitochondrial dynamics refers to the constant remodeling of mitochondrial populations by multiple cellular pathways that help maintain mitochondrial health and function. Disruptions in mitochondrial dynamics often lead to mitochondrial dysfunction, which is frequently associated with disease in rodents and humans. Consistent with this, obesity is associated with reduced mitochondrial function in white adipose tissue, partly via alterations in mitochondrial dynamics. Several proteins, including the E3 ubiquitin ligase membrane-associated RING-CH-type finger 5 (MARCH5), are known to regulate mitochondrial dynamics; however, the role of these proteins in adipocytes has been poorly studied. Here, we show that MARCH5 is regulated by peroxisome proliferator-activated receptor-γ (PPARγ) during adipogenesis and is correlated with fat mass across a panel of genetically diverse mouse strains, in ob/ob mice, and in humans. Furthermore, manipulation of MARCH5 expression in vitro and in vivo alters mitochondrial function, affects cellular metabolism, and leads to differential regulation of several metabolic genes. Thus our data demonstrate an association between mitochondrial dynamics and metabolism that defines MARCH5 as a critical link between these interconnected pathways.
Collapse
Affiliation(s)
- Simon T Bond
- Baker Heart and Diabetes Institute , Melbourne, Victoria , Australia
| | - Sarah C Moody
- Baker Heart and Diabetes Institute , Melbourne, Victoria , Australia
| | - Yingying Liu
- Baker Heart and Diabetes Institute , Melbourne, Victoria , Australia
| | - Mete Civelek
- University of California , Los Angeles, California
| | | | - Paul Gregorevic
- Baker Heart and Diabetes Institute , Melbourne, Victoria , Australia
| | | | | | | | | | - Anna C Calkin
- Baker Heart and Diabetes Institute , Melbourne, Victoria , Australia
- Central Clinical School, Monash University , Melbourne, Victoria , Australia
| | - Brian G Drew
- Baker Heart and Diabetes Institute , Melbourne, Victoria , Australia
- Central Clinical School, Monash University , Melbourne, Victoria , Australia
| |
Collapse
|
15
|
Kitano S, Kondo T, Matsuyama R, Ono K, Goto R, Takaki Y, Hanatani S, Sakaguchi M, Igata M, Kawashima J, Motoshima H, Matsumura T, Kai H, Araki E. Impact of hepatic HSP72 on insulin signaling. Am J Physiol Endocrinol Metab 2019; 316:E305-E318. [PMID: 30532989 DOI: 10.1152/ajpendo.00215.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Heat shock protein 72 (HSP72) is a major inducible molecule in the heat shock response that enhances intracellular stress tolerance. Decreased expression of HSP72 is observed in type 2 diabetes, which may contribute to the development of insulin resistance and chronic inflammation. We used HSP72 knockout (HSP72-KO) mice to investigate the impact of HSP72 on glucose metabolism and endoplasmic reticulum (ER) stress, particularly in the liver. Under a high-fat diet (HFD) condition, HSP72-KO mice showed glucose intolerance, insulin resistance, impaired insulin secretion, and enhanced hepatic gluconeogenic activity. Furthermore, activity of the c-Jun NH2-terminal kinase (JNK) was increased and insulin signaling suppressed in the liver. Liver-specific expression of HSP72 by lentivirus (lenti) in HFD-fed HSP72-KO mice ameliorated insulin resistance and hepatic gluconeogenic activity. Furthermore, increased adipocyte size and hepatic steatosis induced by the HFD were suppressed in HSP72-KO lenti-HSP72 mice. Increased JNK activity and ER stress upon HFD were suppressed in the liver as well as the white adipose tissue of HSP72-KO lenti-HSP72 mice. Thus, HSP72 KO caused a deterioration in glucose metabolism, hepatic gluconeogenic activity, and β-cell function. Moreover, liver-specific recovery of HSP72 restored glucose homeostasis. Therefore, hepatic HSP72 may play a critical role in the pathogenesis of type 2 diabetes.
Collapse
Affiliation(s)
- Sayaka Kitano
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University , Kumamoto , Japan
| | - Tatsuya Kondo
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University , Kumamoto , Japan
| | - Rina Matsuyama
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University , Kumamoto , Japan
| | - Kaoru Ono
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University , Kumamoto , Japan
| | - Rieko Goto
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University , Kumamoto , Japan
| | - Yuki Takaki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University , Kumamoto , Japan
| | - Satoko Hanatani
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University , Kumamoto , Japan
| | - Masaji Sakaguchi
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University , Kumamoto , Japan
| | - Motoyuki Igata
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University , Kumamoto , Japan
| | - Junji Kawashima
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University , Kumamoto , Japan
| | - Hiroyuki Motoshima
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University , Kumamoto , Japan
| | - Takeshi Matsumura
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University , Kumamoto , Japan
| | - Hirofumi Kai
- Department of Molecular Medicine, Faculty of Life Sciences, Global COE "Cell Fate Regulation Research and Education Unit, " Kumamoto University , Kumamoto , Japan
| | - Eiichi Araki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University , Kumamoto , Japan
| |
Collapse
|