1
|
Soileau LG, Nguyen A, Senthil A, Boullion JA, Talbot NC, Ahmadzadeh S, Shekoohi S, Kaye AD, Varrassi G. Bromocriptine and Colesevelam Hydrochloride: Novel Therapies for Type II Diabetes Mellitus. Cureus 2023; 15:e50138. [PMID: 38192911 PMCID: PMC10771968 DOI: 10.7759/cureus.50138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/07/2023] [Indexed: 01/10/2024] Open
Abstract
The increasing prevalence of type II diabetes mellitus (T2DM) is a worldwide healthcare concern. Over the years, our understanding of T2DM has grown considerably in uncovering the pathophysiology of the disease and, in turn, understanding how improved treatment methods can be used to slow disease progression. Some long-term complications that are responsible for most T2DM mortalities include cardiovascular disease, neurological decline, and renal failure. In treating T2DM, it is important that not only glycemic control be obtained but also control of associated complications. Bromocriptine and colesevelam hydrochloride have both been approved by the Food and Drug Administration (FDA) to treat T2DM but are not readily used in practice. These medications are known to treat glycemic dysregulation via unconventional mechanisms, which might contribute to their potential to provide protection against common diabetic complications such as cardiovascular disease. In order to ensure that these overlooked medications become more readily used, it is vital that more research be performed to further elucidate their efficacy in a clinical setting. Future studies should continue to provide clinicians a better understanding of the role these medications have on the treatment of T2DM such as their ability to be used in combination with other commonly used T2DM medications or as monotherapies.
Collapse
Affiliation(s)
- Lenise G Soileau
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Angela Nguyen
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Aarthi Senthil
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Jolie A Boullion
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Norris C Talbot
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Shahab Ahmadzadeh
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Sahar Shekoohi
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | | |
Collapse
|
2
|
Esan O, Viljoen A, Wierzbicki AS. Colesevelam - a bile acid sequestrant for treating hypercholesterolemia and improving hyperglycemia. Expert Opin Pharmacother 2022; 23:1363-1370. [PMID: 35968655 DOI: 10.1080/14656566.2022.2112945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Low density Lipoprotein cholesterol)LDL-C) levels show a clear relationship with cardiovascular disease (CVD). Statins are first line agents to reduce LDL-C and CVD risk. However, combination lipid-lowering therapy is often required to achieve large reductions in LDL-C. AREA COVERED Colesevelam HCl is a bile acid sequestrant (BAS), which reduces LDL-C by 16-22% in monotherapy and adds a further 12-14% reduction in LDL-C when combined with other lipid-lowering drugs. Like statins, colesevelam reduces C-reactive protein levels by 16% in monotherapy and additional 6% when added to statins. Colesevelam also reduced HbA1c by 4mmol/mol (0.5%) when used alone and added to other hypoglycaemic drugs in studies of patients with diabetes . EXPERT OPINION Bile acid sequestrants reduce LDL-C and HbA1c and have some CVD outcome evidence. The uses of these agents are limited in patients with gastrointestinal disease or high triglycerides due to adverse effects on gut function and raising triglycerides and they interfere with the absorption of lipid-soluble drugs. Colesevelam has a higher bile acid binding capacity, and fewer adverse effects than other BAS. Colesevelam may be useful as a third line agent for treatment of hypercholesterolemia with some additional specific benefits on glycemic control.
Collapse
Affiliation(s)
- Oluwayemisi Esan
- Metabolic Medicine/Chemical Pathology, Guy's & St Thomas Hospitals, London SE1 7EH, UK
| | - Adie Viljoen
- Metabolic Medicine/Chemical Pathology, East & North Hertfordshire Hospitals, Lister Hospital, Stevenage, Hertfordshire SG1 4AB, UK
| | - Anthony S Wierzbicki
- Metabolic Medicine/Chemical Pathology, Guy's & St Thomas Hospitals, London SE1 7EH, UK
| |
Collapse
|
3
|
Hartmann P, Duan Y, Miyamoto Y, Demir M, Lang S, Hasa E, Stern P, Yamashita D, Conrad M, Eckmann L, Schnabl B. Colesevelam ameliorates non-alcoholic steatohepatitis and obesity in mice. Hepatol Int 2022; 16:359-370. [PMID: 35075592 PMCID: PMC9013343 DOI: 10.1007/s12072-022-10296-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Obesity, non-alcoholic fatty liver disease (NAFLD) and its more advanced form non-alcoholic steatohepatitis (NASH) are important causes of morbidity and mortality worldwide. Bile acid dysregulation is a pivotal part in their pathogenesis. The aim of this study was to evaluate the bile acid sequestrant colesevelam in a microbiome-humanized mouse model of diet-induced obesity and steatohepatitis. METHODS Germ-free C57BL/6 mice were associated with stool from patients with NASH and subjected to 20 weeks of Western diet feeding with and without colesevelam. RESULTS Colesevelam reduced Western diet-induced body and liver weight gain in microbiome-humanized mice compared with controls. It ameliorated Western diet-induced hepatic inflammation, steatosis, fibrosis and insulin resistance. Colesevelam increased de novo bile acid synthesis and decreased hepatic cholesterol content in microbiome-humanized mice fed a Western diet. It further induced the gene expression of the antimicrobials Reg3g and Reg3b in the distal small intestine and decreased plasma levels of LPS. CONCLUSIONS Colesevelam ameliorates Western diet-induced steatohepatitis and obesity in microbiome-humanized mice.
Collapse
Affiliation(s)
- Phillipp Hartmann
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, MC0063, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Yi Duan
- Department of Medicine, University of California San Diego, MC0063, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Yukiko Miyamoto
- Department of Medicine, University of California San Diego, MC0063, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Münevver Demir
- Department of Hepatology and Gastroenterology, Campus Virchow Clinic and Campus Charité Mitte, Charité University Medicine, Berlin, Germany
| | - Sonja Lang
- Department of Medicine, University of California San Diego, MC0063, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Faculty of Medicine, and University Hospital Cologne, Department of Gastroenterology and Hepatology, University of Cologne, Cologne, Germany
| | - Elda Hasa
- Department of Medicine, University of California San Diego, MC0063, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | | | | | | | - Lars Eckmann
- Department of Medicine, University of California San Diego, MC0063, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, MC0063, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
4
|
C Thambiah S, Lai LC. Diabetic dyslipidaemia. Pract Lab Med 2021; 26:e00248. [PMID: 34368411 PMCID: PMC8326412 DOI: 10.1016/j.plabm.2021.e00248] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/16/2021] [Accepted: 07/14/2021] [Indexed: 12/22/2022] Open
Abstract
Diabetes mellitus (DM) is an escalating pandemic and an established cardiovascular risk factor. An important aspect of the interaction between DM and atherosclerotic cardiovascular disease (ASCVD) is diabetic dyslipidaemia, an atherogenic dyslipidaemia encompassing quantitative [hypertriglyceridaemia (hyperTG) and decreased high density lipoprotein cholesterol (HDL)] and qualitative [increased small dense low density lipoprotein cholesterol (sdLDL) particles, large very low density lipoprotein cholesterol (VLDL) subfraction (VLDL1) and dysfunctional HDL] modifications in lipoproteins. Much of the pathophysiology linking DM and dyslipidaemia has been elucidated. This paper aims to review the pathophysiology and management of diabetic dyslipidaemia with respect to ASCVD. Briefly, the influence of diabetic kidney disease on lipid profile and lipid changes causing type 2 diabetes mellitus are highlighted. Biomarkers of diabetic dyslipidaemia, including novel markers and clinical trials that have demonstrated that non-lipid and lipid lowering therapies can lower cardiovascular risk in diabetics are discussed. The stands of various international guidelines on lipid management in DM are emphasised. It is important to understand the underlying mechanisms of diabetic dyslipidaemia in order to develop new therapeutic strategies against dyslipidaemia and diabetes. The various international guidelines on lipid management can be used to tailor a holistic approach specific to each patient with diabetic dyslipidaemia.
Collapse
Affiliation(s)
- Subashini C Thambiah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | | |
Collapse
|
5
|
Cabré N, Duan Y, Llorente C, Conrad M, Stern P, Yamashita D, Schnabl B. Colesevelam Reduces Ethanol-Induced Liver Steatosis in Humanized Gnotobiotic Mice. Cells 2021; 10:cells10061496. [PMID: 34198609 PMCID: PMC8232222 DOI: 10.3390/cells10061496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 12/12/2022] Open
Abstract
Alcohol-related liver disease is associated with intestinal dysbiosis. Functional changes in the microbiota affect bile acid metabolism and result in elevated serum bile acids in patients with alcohol-related liver disease. The aim of this study was to identify the potential role of the bile acid sequestrant colesevelam in a humanized mouse model of ethanol-induced liver disease. We colonized germ-free (GF) C57BL/6 mice with feces from patients with alcoholic hepatitis and subjected humanized mice to the chronic–binge ethanol feeding model. Ethanol-fed gnotobiotic mice treated with colesevelam showed reduced hepatic levels of triglycerides and cholesterol, but liver injury and inflammation were not decreased as compared with non-treated mice. Colesevelam reduced hepatic cytochrome P450, family 7, subfamily a, polypeptide 1 (Cyp7a1) protein expression, although serum bile acids were not lowered. In conclusion, our findings indicate that colesevelam treatment mitigates ethanol-induced liver steatosis in mice.
Collapse
Affiliation(s)
- Noemí Cabré
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (N.C.); (Y.D.); (C.L.)
| | - Yi Duan
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (N.C.); (Y.D.); (C.L.)
| | - Cristina Llorente
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (N.C.); (Y.D.); (C.L.)
| | - Mary Conrad
- Axial Therapeutics, Woburn, MA 01801, USA; (M.C.); (P.S.); (D.Y.)
| | - Patrick Stern
- Axial Therapeutics, Woburn, MA 01801, USA; (M.C.); (P.S.); (D.Y.)
| | - Dennis Yamashita
- Axial Therapeutics, Woburn, MA 01801, USA; (M.C.); (P.S.); (D.Y.)
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (N.C.); (Y.D.); (C.L.)
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA 92161, USA
- Correspondence:
| |
Collapse
|
6
|
Cao M, Bloomgarden Z. New insights into the older hypoglycemic agents in type 2 diabetes therapy. J Diabetes 2020; 12:844-847. [PMID: 32767624 DOI: 10.1111/1753-0407.13096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Min Cao
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Zachary Bloomgarden
- Department of Medicine, Division of Endocrinology, Diabetes, and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|