1
|
Bian R, Shang Y, Xu N, Liu B, Ma Y, Li H, Chen J, Yao Q. HDAC inhibitor enhances ferroptosis susceptibility of AML cells by stimulating iron metabolism. Cell Signal 2025:111583. [PMID: 39756501 DOI: 10.1016/j.cellsig.2024.111583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/14/2024] [Accepted: 12/28/2024] [Indexed: 01/07/2025]
Abstract
Acute Myeloid Leukemia (AML) are challenging blood cancers with limited long-term survival rates, necessitating novel therapeutic strategies. This study explored the role of Histone deacetylase (HDAC) inhibitors in enhancing ferroptosis in AML cells by modulating iron metabolism. We demonstrated that HDAC inhibitors (Entinostat and Vorinostat) sensitize AML cells to ferroptosis both in vitro and in vivo. Mechanistically, we show that HDAC inhibitor treatment upregulated the expression of iron metabolism genes that lead to increased labile iron pool. Notably, NCOA4, a ferritin degradation mediator, and HMOX1/2 proteins, involved in heme breakdown, were identified as critical contributors to this process. The functional role of these genes was confirmed through CRISPR-Cas9 mediated knockouts, which significantly rescued cells from HDAC-induced ferroptosis sensitivity. Our results suggest a novel therapeutic approach for AML, where combining HDAC inhibitors with ferroptosis inducers could exploit the disrupted iron metabolism in AML cells. This study highlights the potential of HDAC inhibitors to modulate iron metabolism pathways, offering new insights into the treatment of these malignancies.
Collapse
Affiliation(s)
- Ruipeng Bian
- Guizhou University Medical College, Guiyang 550025, Guizhou Province, China
| | - Yingying Shang
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Nahua Xu
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children (Women and Children's Hospital of Chongqing Medical University), Chongqing 401120, China
| | - Baiping Liu
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children (Women and Children's Hospital of Chongqing Medical University), Chongqing 401120, China
| | - Yanni Ma
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hui Li
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children (Women and Children's Hospital of Chongqing Medical University), Chongqing 401120, China
| | - Jieping Chen
- Guizhou University Medical College, Guiyang 550025, Guizhou Province, China; Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Qi Yao
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
2
|
Jensen ABH, Andersen HRP, Jensen ST, Jensen CF, Amstrup J, Mathiasen R, Henriksen KA, Hasle H, Callesen MT, Brix N. Musculoskeletal Symptoms and Misdiagnoses in Children With Acute Myeloid Leukaemia: A Nationwide Cohort Study. Eur J Haematol 2025; 114:57-69. [PMID: 39295289 PMCID: PMC11613657 DOI: 10.1111/ejh.14303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024]
Abstract
OBJECTIVES Childhood cancer often presents with non-specific signs and symptoms that might mimic non-malignant disorders including musculoskeletal diseases, potentially leading to rheumatic and orthopaedic misdiagnoses. We aimed to compare clinical presentation, diagnostic interval and survival in paediatric acute myeloid leukaemia (AML) with and without initial musculoskeletal symptoms. METHODS This nationwide retrospective, cohort study reviewed medical records of 144 children below 15 years diagnosed with AML in Denmark from 1996 to 2018. RESULTS Musculoskeletal symptoms occurred in 29% (42/144) of children with AML and 8% (11/144) received an initial musculoskeletal misdiagnosis, being mainly non-specific and pain-related. The children with and without musculoskeletal symptoms did not differ markedly up to the diagnosis of AML and blood counts were affected equally in both groups. However, the children with prior musculoskeletal symptoms were more likely to have elevated levels of LDH and ferritin. Furthermore, they revealed a tendency towards a longer total interval (median 53 days vs. 32 days, p = 0.07), but the overall survival did not differ. CONCLUSION AML should be considered as an underlying cause in children with unexplained musculoskeletal symptoms and abnormal blood counts. Concomitant elevation of LDH and ferritin should strengthen the suspicion.
Collapse
Affiliation(s)
| | | | - Sarah Thorius Jensen
- Department of Pediatric and Adolescent MedicineAalborg University HospitalAalborgDenmark
| | - Christina Friis Jensen
- Department of Pediatric and Adolescent MedicineAalborg University HospitalAalborgDenmark
| | - Jesper Amstrup
- Department of Pediatric and Adolescent MedicineAalborg University HospitalAalborgDenmark
| | - René Mathiasen
- Department of Pediatric and Adolescent MedicineRigshospitaletCopenhagenDenmark
| | | | - Henrik Hasle
- Department of Pediatric and Adolescent MedicineAarhus University HospitalAarhusDenmark
| | | | - Ninna Brix
- Department of Pediatric and Adolescent MedicineAalborg University HospitalAalborgDenmark
| |
Collapse
|
3
|
Wang Y, Feng W, Wang F, Min J. [Research progress of iron metabolism and ferroptosis in myeloid neoplasms]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:735-746. [PMID: 39608794 DOI: 10.3724/zdxbyxb-2024-0211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
It is reported that iron metabolism and ferroptosis can influence the occurrence and development of myeloid tumors, which can serve as therapeutic targets. Dysregulation of iron metabolism is present in a variety of myeloid neoplasms. The prognosis of acute myeloid leukemia is related to differential expression of molecules related to iron metabolism. The prognosis of myelodysplastic syndrome patients with iron overload is poor. Myeloproliferative neoplasms are often characterized by the coexistence of iron deficiency and erythrocytosis, which can be treated by targeting hepcidin. Myeloid tumor cells are susceptible to oxidative damage caused by the accumulation of reactive oxygen species and are sensitive to ferroptosis. Ferroptosis has anti-tumor effect in acute myeloid leukemia and myelodysplastic syndrome. Targeting ferroptosis can reverse imatinib resistance in chronic myeloid leukemia. This article reviews the characteristics of iron metabolism in the development and progression of myeloid neoplasms, as well as the mechanism of ferroptosis, to provide a basis for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Yudi Wang
- Department of Hematology, Shaoxing People's Hospital, Shaoxing 312000, Zhejiang Province, China.
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Weiying Feng
- Department of Hematology, Shaoxing People's Hospital, Shaoxing 312000, Zhejiang Province, China
| | - Fudi Wang
- School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Junxia Min
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Wu SF, Ga Y, Ma DY, Hou SL, Hui QY, Hao ZH. The role of ferroptosis in environmental pollution-induced male reproductive system toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125118. [PMID: 39414070 DOI: 10.1016/j.envpol.2024.125118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/28/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
This article provides a comprehensive review of the toxic effects of environmental pollution on the male reproductive system, with a particular emphasis on ferroptosis, a form of programmed cell death. Research has shown that environmental pollutants, such as heavy metals, pesticide residues, and plastic additives, can disrupt oxidative stress, increasing the production of reactive oxygen species (ROS) in germ cells. This disruption damages cellular lipids, proteins, and DNA, culminating in cell dysfunction or death. Ferroptosis, a cell death pathway closely linked to oxidative stress, is characterized by the accumulation of intracellular iron ions and elevated levels of lipid ROS. This review also explores the role of ferroptosis in male reproductive disorders, including its contributions to reduced sperm count, decreased motility, and abnormal morphology. Environmental pollutants, particularly heavy metals, can induce ferroptosis by interfering with intracellular antioxidant systems, notably the NRF2, GSH, and GPX4 pathways, accumulating toxic lipid peroxides. Furthermore, the article examines the potential interplay between ferroptosis and other forms of cell death, such as apoptosis, autophagy, pyroptosis, and necrosis, in the context of male reproductive health. The review underscores the critical need for further research into the link between environmental pollutants and male fertility, particularly focusing on ferroptosis. It advocates for targeted research efforts to mitigate the adverse effects of ferroptosis and protect reproductive health, emphasizing that a deeper understanding of these mechanisms could lead to innovative preventive strategies against environmental threats to fertility.
Collapse
Affiliation(s)
- Shao-Feng Wu
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, 572025, China.
| | - Yu Ga
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, 572025, China.
| | - Dan-Yang Ma
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, 572025, China.
| | - Si-Lu Hou
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, 572025, China.
| | - Qiao-Yue Hui
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, 572025, China.
| | - Zhi-Hui Hao
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, 572025, China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China; National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing, 100193, China.
| |
Collapse
|
5
|
Yang G, Yang S, Li J, Jiang P, Tian X, Wang X, Wei J, Zhang X, Liu J. Low-dose treatment with Epirubicin, a novel histone deacetylase 1 inhibitor, exerts anti-leukemic effects by inducing ferroptosis. Eur J Pharmacol 2024; 985:177058. [PMID: 39413949 DOI: 10.1016/j.ejphar.2024.177058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024]
Abstract
AIMS Leukemia is hematopoietic stem cell malignant tumor with poor outcomes. Histone deacetylase 1 (HDAC1) is highly expressed in leukemia and current HDAC1 inhibitors have clinical limitations in leukemia therapy. Therefore, novel HDAC1 inhibitor is imperative to being found and its mechanism needs to be further explored. MATERIALS AND METHODS Novel HDAC1 inhibitors were discovered through drug virtual screening. CCK-8, EdU and soft agar assay were used to assess the anti-leukemic effect of the candidate HDAC1 inhibitor. ROS, lipid peroxidation, intracellular Fe2+ and LIP assay were employed to verify cell ferroptosis. Additionally, a xenograft model was performed to explore the efficacy and safety of the candidate HDAC1 inhibitor in vivo. RESULTS HDAC1 might be a promising therapeutic target for leukemia and Epirubicin (Epi) could be used as a potential HDAC1 inhibitor. Low-dose Epi exhibited good anti-leukemic effects by inhibiting cell proliferation, DNA synthesis and colony formation. Low-dose Epi could induce ferroptosis by triggering lipid peroxidation, which was better than that treated with current HDAC1 inhibitors Chidamide or Vorinostat, ROS generation and Fe2+ overload in leukemia cells. Mechanistically, low-dose Epi induced ferroptosis by targeting amino acid metabolism and iron metabolism. Similar results were found in a xenograft model in NOG mice with a good safety profile. CONCLUSION Our study demonstrated that Epi might be used as a HDAC1 inhibitor. Low-dose Epi could inhibit tumor progression by inducing cell ferroptosis in vitro and in vivo. Thus, Epi administration with lower concentration may be much more favorable and safer in the treatment with leukemia.
Collapse
Affiliation(s)
- Guancui Yang
- State Key Laboratory of Trauma and Chemical Poisoning, Medical Center of Hematology, Military Key Clinical Specialty, Chongqing Key Clinical Specialty, Chongqing Key Laboratory of Hematology and Microenvironment, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China; Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637002, China
| | - Shijie Yang
- State Key Laboratory of Trauma and Chemical Poisoning, Medical Center of Hematology, Military Key Clinical Specialty, Chongqing Key Clinical Specialty, Chongqing Key Laboratory of Hematology and Microenvironment, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Jiarun Li
- State Key Laboratory of Trauma and Chemical Poisoning, Medical Center of Hematology, Military Key Clinical Specialty, Chongqing Key Clinical Specialty, Chongqing Key Laboratory of Hematology and Microenvironment, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Peijie Jiang
- State Key Laboratory of Trauma and Chemical Poisoning, Medical Center of Hematology, Military Key Clinical Specialty, Chongqing Key Clinical Specialty, Chongqing Key Laboratory of Hematology and Microenvironment, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China; Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637002, China
| | - Xiaolong Tian
- State Key Laboratory of Trauma and Chemical Poisoning, Medical Center of Hematology, Military Key Clinical Specialty, Chongqing Key Clinical Specialty, Chongqing Key Laboratory of Hematology and Microenvironment, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Xiaoqi Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Medical Center of Hematology, Military Key Clinical Specialty, Chongqing Key Clinical Specialty, Chongqing Key Laboratory of Hematology and Microenvironment, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Jin Wei
- Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637002, China
| | - Xi Zhang
- State Key Laboratory of Trauma and Chemical Poisoning, Medical Center of Hematology, Military Key Clinical Specialty, Chongqing Key Clinical Specialty, Chongqing Key Laboratory of Hematology and Microenvironment, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China; Jinfeng Laboratory, Chongqing, 401329, China.
| | - Jinyi Liu
- State Key Laboratory of Trauma and Chemical Poisoning, Medical Center of Hematology, Military Key Clinical Specialty, Chongqing Key Clinical Specialty, Chongqing Key Laboratory of Hematology and Microenvironment, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China.
| |
Collapse
|
6
|
Sauter C, Bastie JN, Delva L, Aucagne R. [Protein arginine methyltransferase PRMT2 is involved in the control of inflammation in acute myeloid leukemia]. Med Sci (Paris) 2024; 40:979-982. [PMID: 39705572 DOI: 10.1051/medsci/2024168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024] Open
Affiliation(s)
- Camille Sauter
- Inserm UMR 1231, équipe Epi2THM, équipe LabEx LipSTIC, UFR des sciences de santé, Université de Bourgogne, Dijon, France
| | - Jean-Noël Bastie
- Inserm UMR 1231, équipe Epi2THM, équipe LabEx LipSTIC, UFR des sciences de santé, Université de Bourgogne, Dijon, France - Département d'hématologie clinique, Hôpital universitaire Dijon Bourgogne François-Mitterrand, Dijon, France
| | - Laurent Delva
- Inserm UMR 1231, équipe Epi2THM, équipe LabEx LipSTIC, UFR des sciences de santé, Université de Bourgogne, Dijon, France
| | - Romain Aucagne
- Inserm UMR 1231, équipe Epi2THM, équipe LabEx LipSTIC, UFR des sciences de santé, Université de Bourgogne, Dijon, France
| |
Collapse
|
7
|
Skar ET, Wendelbo Ø, Reikvam H. The prognostic impact of C-reactive protein and albumin in patients diagnosed with acute myeloid leukaemia. EJHAEM 2024; 5:1223-1235. [PMID: 39691271 PMCID: PMC11647729 DOI: 10.1002/jha2.1022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 12/19/2024]
Abstract
Background Acute myeloid leukaemia (AML) is an aggressive and heterogeneous malignant disease. Patient age, comorbidities and disease-specific genetic abnormalities are recognized as primary determinants of treatment response. Recent years have elucidated the significance of nutritional status and inflammation across various malignancies, including AML, in influencing treatment outcomes. Aims To assess the prognostic value of the C-reactive protein-albumin ratio (CAR) and the Glasgow Prognostic Score (GPS) in predicting overall survival (OS) rates among patients diagnosed with AML. Material and methods 189 AML patients receiving standard cytarabine and anthracycline-based induction treatment were included. Baseline demographic, clinical and laboratory data were collected, and treatment outcomes and survival were registered for all patients. Results No significant association between CAR and prognosis among AML patients was found, even in subgroup analyses. Hypoalbuminemia was an independent predictor of poor survival among all patients (OS 28 vs. 16 months; p < 0.02). Patients with a GPS of 0 or 1 demonstrated superior OS compared to those with a GPS of 2 (median OS 28 vs. 16 months, respectively; p = 0.015). Results remained consistent among patients ≥ 60 years (median OS 15 vs. 6 months; p = 0.020). Conclusion Heightened inflammation and suboptimal nutritional status correlate with unfavourable prognoses in AML patients. Such insights hold the potential for guiding clinical decision-making, offering easily accessible prognostic information for the induction treatment of eligible AML patients.
Collapse
Affiliation(s)
- Espen Talseth Skar
- Department of Clinical Science, University of BergenK.G. Jebsen Center for Myeloid Blood CancerBergenNorway
| | - Øystein Wendelbo
- Department of MedicineHaukeland University HospitalBergenNorway
- Department of NursingFaculty of HealthVID Specialized UniversityBergenNorway
| | - Håkon Reikvam
- Department of Clinical Science, University of BergenK.G. Jebsen Center for Myeloid Blood CancerBergenNorway
- Department of MedicineHaukeland University HospitalBergenNorway
| |
Collapse
|
8
|
Park JM, Su YH, Fan CS, Chen HH, Qiu YK, Chen LL, Chen HA, Ramasamy TS, Chang JS, Huang SY, Chang WSW, Lee AYL, Huang TS, Kuo CC, Chiu CF. Crosstalk between FTH1 and PYCR1 dysregulates proline metabolism and mediates cell growth in KRAS-mutant pancreatic cancer cells. Exp Mol Med 2024; 56:2065-2081. [PMID: 39294443 PMCID: PMC11447051 DOI: 10.1038/s12276-024-01300-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 04/06/2024] [Accepted: 05/21/2024] [Indexed: 09/20/2024] Open
Abstract
Ferritin, comprising heavy (FTH1) and light (FTL) chains, is the main iron storage protein, and pancreatic cancer patients exhibit elevated serum ferritin levels. Specifically, higher ferritin levels are correlated with poorer pancreatic ductal adenocarcinoma (PDAC) prognosis; however, the underlying mechanism and metabolic programming of ferritin involved in KRAS-mutant PDAC progression remain unclear. Here, we observed a direct correlation between FTH1 expression and cell viability and clonogenicity in KRAS-mutant PDAC cell lines as well as with in vivo tumor growth through the control of proline metabolism. Our investigation highlights the intricate relationship between FTH1 and pyrroline-5-carboxylate reductase 1 (PYCR1), a crucial mitochondrial enzyme facilitating the glutamate-to-proline conversion, underscoring its impact on proline metabolic imbalance in KRAS-mutant PDAC. This regulation is further reversed by miR-5000-3p, whose dysregulation results in the disruption of proline metabolism, thereby accentuating the progression of KRAS-mutant PDAC. Additionally, our study demonstrated that deferasirox, an oral iron chelator, significantly diminishes cell viability and tumor growth in KRAS-mutant PDAC by targeting FTH1-mediated pathways and altering the PYCR1/PRODH expression ratio. These findings underscore the novel role of FTH1 in proline metabolism and its potential as a target for PDAC therapy development.
Collapse
Grants
- TMU106-AE1-B38 Taipei Medical University (TMU)
- DP2-109-21121-03-C-08-03, DP2-110-21121-03-C-08-02 and DP2-111-21121-01-C-08-03 Ministry of Education (Ministry of Education, Republic of China (Taiwan))
- the National Science and Technology Council (Ministry of Science and Technology),Taiwan [MOST107-2320-B-038-065, MOST108-2320-B-038-015, MOST109-2314-B-866-001-MY3, MOST110-2320-B-038-071, MOST111-2314-B-038-072, and NSTC112-2314-B-038-099-MY3] 2021;2022 SATU Joint Research Scheme (JRS) [UM 118, UM119, TMU01, and TMU02]
Collapse
Affiliation(s)
- Ji Min Park
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Yen-Hao Su
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Shuan Fan
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Hsin-Hua Chen
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan
| | - Yuan-Kai Qiu
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Li-Li Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Hsin-An Chen
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Thamil Selvee Ramasamy
- Stem Cell Biology Laboratory, Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Jung-Su Chang
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Shih-Yi Huang
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Wun-Shaing Wayne Chang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Alan Yueh-Luen Lee
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Tze-Sing Huang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Cheng-Chin Kuo
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan.
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, Taiwan.
| | - Ching-Feng Chiu
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
- Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
- Taipei Medical University and Affiliated Hospitals Pancreatic Cancer Groups, Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
9
|
Hassan N, Yi H, Malik B, Gaspard-Boulinc L, Samaraweera SE, Casolari DA, Seneviratne J, Balachandran A, Chew T, Duly A, Carter DR, Cheung BB, Norris M, Haber M, Kavallaris M, Marshall GM, Zhang XD, Liu T, Wang J, Liebermann DA, D’Andrea RJ, Wang JY. Loss of the stress sensor GADD45A promotes stem cell activity and ferroptosis resistance in LGR4/HOXA9-dependent AML. Blood 2024; 144:84-98. [PMID: 38579286 PMCID: PMC11251412 DOI: 10.1182/blood.2024024072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 04/07/2024] Open
Abstract
ABSTRACT The overall prognosis of acute myeloid leukemia (AML) remains dismal, largely because of the inability of current therapies to kill leukemia stem cells (LSCs) with intrinsic resistance. Loss of the stress sensor growth arrest and DNA damage-inducible 45 alpha (GADD45A) is implicated in poor clinical outcomes, but its role in LSCs and AML pathogenesis is unknown. Here, we define GADD45A as a key downstream target of G protein-coupled receptor (LGR)4 pathway and discover a regulatory role for GADD45A loss in promoting leukemia-initiating activity and oxidative resistance in LGR4/HOXA9-dependent AML, a poor prognosis subset of leukemia. Knockout of GADD45A enhances AML progression in murine and patient-derived xenograft (PDX) mouse models. Deletion of GADD45A induces substantial mutations, increases LSC self-renewal and stemness in vivo, and reduces levels of reactive oxygen species (ROS), accompanied by a decreased response to ROS-associated genotoxic agents (eg, ferroptosis inducer RSL3) and acquisition of an increasingly aggressive phenotype on serial transplantation in mice. Our single-cell cellular indexing of transcriptomes and epitopes by sequencing analysis on patient-derived LSCs in PDX mice and subsequent functional studies in murine LSCs and primary AML patient cells show that loss of GADD45A is associated with resistance to ferroptosis (an iron-dependent oxidative cell death caused by ROS accumulation) through aberrant activation of antioxidant pathways related to iron and ROS detoxification, such as FTH1 and PRDX1, upregulation of which correlates with unfavorable outcomes in patients with AML. These results reveal a therapy resistance mechanism contributing to poor prognosis and support a role for GADD45A loss as a critical step for leukemia-initiating activity and as a target to overcome resistance in aggressive leukemia.
Collapse
Affiliation(s)
- Nunki Hassan
- Cancer and Stem Cell Laboratory, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Kolling Institute, Sydney, NSW, Australia
| | - Hangyu Yi
- Cancer and Stem Cell Laboratory, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Kolling Institute, Sydney, NSW, Australia
| | - Bilal Malik
- Cancer and Stem Cell Laboratory, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Kolling Institute, Sydney, NSW, Australia
| | - Lucie Gaspard-Boulinc
- Cancer and Stem Cell Laboratory, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Kolling Institute, Sydney, NSW, Australia
- Department of Biology, Ecole Normale Supérieure, PSL University Paris, Paris, France
| | - Saumya E. Samaraweera
- Acute Leukaemia Laboratory, Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Debora A. Casolari
- Acute Leukaemia Laboratory, Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Janith Seneviratne
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Anushree Balachandran
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Tracy Chew
- Sydney Informatics Hub, Core Research Facilities, University of Sydney, Camperdown, NSW, Australia
| | - Alastair Duly
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Daniel R. Carter
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Belamy B. Cheung
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Murray Norris
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Michelle Haber
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Maria Kavallaris
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
- Australian Centre for NanoMedicine and ARC Centre of Excellence in Convergent Bio-Nano-Science and Technology, University of New South Wales, Sydney, NSW, Australia
| | - Glenn M. Marshall
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW, Australia
| | - Xu Dong Zhang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
- Translational Research Institute, Henan Provincial People’s Hospital and People's Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Tao Liu
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Jianlong Wang
- Department of Medicine, Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY
| | - Dan A. Liebermann
- Fels Institute for Cancer Research and Molecular Biology and Department of Medical Genetics and Molecular Biochemistry, School of Medicine, Temple University, Philadelphia, PA
| | - Richard J. D’Andrea
- Acute Leukaemia Laboratory, Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Jenny Y. Wang
- Cancer and Stem Cell Laboratory, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Kolling Institute, Sydney, NSW, Australia
| |
Collapse
|
10
|
Shete PA, Ghatpande NS, Varma ME, Joshi PV, Suryavanshi KR, Misar AV, Jadhav SH, Apte PP, Kulkarni PP. Chronic dietary iron overload affects hepatic iron metabolism and cognitive behavior in Wistar rats. J Trace Elem Med Biol 2024; 84:127422. [PMID: 38492476 DOI: 10.1016/j.jtemb.2024.127422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Iron accumulation in organs affects iron metabolism, leading to deleterious effects on the body. Previously, it was studied that high dietary iron in various forms and concentrations influences iron metabolism, resulting in iron accumulation in the liver and spleen and cognitive impairment. However, the actual mechanism and impact of long-term exposure to high dietary iron remain unknown. As a result, we postulated that iron overload caused by chronic exposure to excessive dietary iron supplementation would play a role in iron dyshomeostasis and inflammation in the liver and brain of Wistar rats. METHODS Animals were segregated into control, low iron (FAC-Ferric Ammonium Citrate 5000 ppm), and high iron dose group (FAC 20,000 ppm). The outcome of dietary iron overload on Wistar rats was evaluated in terms of body weight, biochemical markers, histological examination of liver and brain tissue, and cognitive-behavioral studies. Also, gene expression of rat brain tissue involving iron transporters Dmt1, TfR1, iron storage protein Fpn1, inflammatory markers Nf-kB, Tnf-α, Il-6, and hepcidin was performed. RESULTS Our data indicate that excess iron supplementation for 30 weeks leads to decreased body weight, increased serum iron levels, and decreased RBC levels in iron fed Wistar rats. Morris water maze (MWM) studies after 30 weeks showed increased escape latency in the high iron dose group compared with the control group. Histological studies of the high iron dose group showed an iron accumulation in the liver and brain loss of cellular architecture, and cellular degeneration was observed. Excess iron treatment showed upregulation of the Dmt1 gene in iron metabolism and a remarkable increase in the Nf-kB gene in rat brain tissue. CONCLUSION The results show chronic excess iron supplementation leads to iron accumulation in the liver, leading to inflammation in Wistar rats.
Collapse
Affiliation(s)
- Padmaja Anil Shete
- Bioprospecting Group, Agharkar Research Institute, G. G. Agarkar Road, Pune, Maharashtra 411004, India; Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra 411007, India.
| | - Niraj Sudhir Ghatpande
- Bioprospecting Group, Agharkar Research Institute, G. G. Agarkar Road, Pune, Maharashtra 411004, India.
| | - Mokshada Evameshwar Varma
- Bioprospecting Group, Agharkar Research Institute, G. G. Agarkar Road, Pune, Maharashtra 411004, India.
| | - Pranav Vijay Joshi
- Bioprospecting Group, Agharkar Research Institute, G. G. Agarkar Road, Pune, Maharashtra 411004, India.
| | - Komal Ravindra Suryavanshi
- Bioprospecting Group, Agharkar Research Institute, G. G. Agarkar Road, Pune, Maharashtra 411004, India; Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra 411007, India.
| | - Ashwini Vivek Misar
- Bioprospecting Group, Agharkar Research Institute, G. G. Agarkar Road, Pune, Maharashtra 411004, India.
| | - Sachin Hanumantrao Jadhav
- Nanobioscience Group, Agharkar Research Institute, G. G. Agarkar Road, Pune, Maharashtra 411004, India.
| | - Priti Parag Apte
- Bioprospecting Group, Agharkar Research Institute, G. G. Agarkar Road, Pune, Maharashtra 411004, India.
| | - Prasad Padmakar Kulkarni
- Bioprospecting Group, Agharkar Research Institute, G. G. Agarkar Road, Pune, Maharashtra 411004, India; Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra 411007, India.
| |
Collapse
|
11
|
Sauter C, Morin T, Guidez F, Simonet J, Fournier C, Row C, Masnikov D, Pernon B, Largeot A, Aznague A, Hérault Y, Sauvageau G, Maynadié M, Callanan M, Bastie JN, Aucagne R, Delva L. Protein arginine methyltransferase 2 controls inflammatory signaling in acute myeloid leukemia. Commun Biol 2024; 7:753. [PMID: 38902349 PMCID: PMC11190286 DOI: 10.1038/s42003-024-06453-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024] Open
Abstract
Arginine methylation is catalyzed by protein arginine methyltransferases (PRMTs) and is involved in various cellular processes, including cancer development. PRMT2 expression is increased in several cancer types although its role in acute myeloid leukemia (AML) remains unknown. Here, we investigate the role of PRMT2 in a cohort of patients with AML, PRMT2 knockout AML cell lines as well as a Prmt2 knockout mouse model. In patients, low PRMT2 expressors are enriched for inflammatory signatures, including the NF-κB pathway, and show inferior survival. In keeping with a role for PRMT2 in control of inflammatory signaling, bone marrow-derived macrophages from Prmt2 KO mice display increased pro-inflammatory cytokine signaling upon LPS treatment. In PRMT2-depleted AML cell lines, aberrant inflammatory signaling has been linked to overproduction of IL6, resulting from a deregulation of the NF-κB signaling pathway, therefore leading to hyperactivation of STAT3. Together, these findings identify PRMT2 as a key regulator of inflammation in AML.
Collapse
Affiliation(s)
- Camille Sauter
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France.
| | - Thomas Morin
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
| | - Fabien Guidez
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
| | - John Simonet
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
| | - Cyril Fournier
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
- Unit for Innovation in Genetics and Epigenetics in Oncology, Dijon University Hospital, Dijon, France
| | - Céline Row
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
- Unit for Innovation in Genetics and Epigenetics in Oncology, Dijon University Hospital, Dijon, France
- Department of Hematology Biology, University Hospital Dijon Bourgogne François-Mitterrand, Dijon, France
| | - Denis Masnikov
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
| | - Baptiste Pernon
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
| | - Anne Largeot
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
- Tumor Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Aziza Aznague
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
- Inserm UMS 58 BioSanD, CRISPR Functional Genomics (CRIGEN) facility, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
| | - Yann Hérault
- Université de Strasbourg, CNRS UMR7104, Inserm U1258, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch-Graffenstaden, France
| | - Guy Sauvageau
- Molecular Genetics of Stem Cells, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| | - Marc Maynadié
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
- Department of Hematology Biology, University Hospital Dijon Bourgogne François-Mitterrand, Dijon, France
| | - Mary Callanan
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
- Unit for Innovation in Genetics and Epigenetics in Oncology, Dijon University Hospital, Dijon, France
- Inserm UMS 58 BioSanD, CRISPR Functional Genomics (CRIGEN) facility, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
| | - Jean-Noël Bastie
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
- Department of Clinical Hematology, University Hospital Dijon Bourgogne François-Mitterrand, Dijon, France
| | - Romain Aucagne
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
- Unit for Innovation in Genetics and Epigenetics in Oncology, Dijon University Hospital, Dijon, France
- Inserm UMS 58 BioSanD, CRISPR Functional Genomics (CRIGEN) facility, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
| | - Laurent Delva
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France.
| |
Collapse
|
12
|
Yi W, Zhang J, Huang Y, Zhan Q, Zou M, Cheng X, Zhang X, Yin Z, Tao S, Cheng H, Wang F, Guo J, Ju Z, Chen Z. Ferritin-mediated mitochondrial iron homeostasis is essential for the survival of hematopoietic stem cells and leukemic stem cells. Leukemia 2024; 38:1003-1018. [PMID: 38402368 DOI: 10.1038/s41375-024-02169-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 02/26/2024]
Abstract
Iron metabolism plays a crucial role in cell viability, but its relationship with adult stem cells and cancer stem cells is not fully understood. The ferritin complex, responsible for intracellular iron storage, is important in this process. We report that conditional deletion of ferritin heavy chain 1 (Fth1) in the hematopoietic system reduced the number and repopulation capacity of hematopoietic stem cells (HSCs). These effects were associated with a decrease in cellular iron level, leading to impaired mitochondrial function and the initiation of apoptosis. Iron supplementation, antioxidant, and apoptosis inhibitors reversed the reduced cell viability of Fth1-deleted hematopoietic stem and progenitor cells (HSPCs). Importantly, leukemic stem cells (LSCs) derived from MLL-AF9-induced acute myeloid leukemia (AML) mice exhibited reduced Fth1 expression, rendering them more susceptible to apoptosis induced by the iron chelation compared to normal HSPCs. Modulating FTH1 expression using mono-methyl fumarate increased LSCs resistance to iron chelator-induced apoptosis. Additionally, iron supplementation, antioxidant, and apoptosis inhibitors protected LSCs from iron chelator-induced cell death. Fth1 deletion also extended the survival of AML mice. These findings unveil a novel mechanism by which ferritin-mediated iron homeostasis regulates the survival of both HSCs and LSCs, suggesting potential therapeutic strategies for blood cancer with iron dysregulation.
Collapse
Affiliation(s)
- Weiwei Yi
- Department of Cardiology, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jinhua Zhang
- Department of Cardiology, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China
| | - Yingxin Huang
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Qiang Zhan
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Mi Zou
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Xiang Cheng
- Department of Hematology, Children's Hospital, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Xuguang Zhang
- Mengniu Institute of Nutrition Science, Global R&D Innovation Center, Shanghai, China
- Shanghai Institute of Nutrition and Health, The Chinese Academy of Sciences, Shanghai, China
| | - Zhinan Yin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, Guangdong, China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632, Guangdong, China
| | - Si Tao
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
- The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jun Guo
- Department of Cardiology, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China.
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China.
| | - Zhiyang Chen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
13
|
Ashoub MH, Razavi R, Heydaryan K, Salavati-Niasari M, Amiri M. Targeting ferroptosis for leukemia therapy: exploring novel strategies from its mechanisms and role in leukemia based on nanotechnology. Eur J Med Res 2024; 29:224. [PMID: 38594732 PMCID: PMC11003188 DOI: 10.1186/s40001-024-01822-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/30/2024] [Indexed: 04/11/2024] Open
Abstract
The latest findings in iron metabolism and the newly uncovered process of ferroptosis have paved the way for new potential strategies in anti-leukemia treatments. In the current project, we reviewed and summarized the current role of nanomedicine in the treatment and diagnosis of leukemia through a comparison made between traditional approaches applied in the treatment and diagnosis of leukemia via the existing investigations about the ferroptosis molecular mechanisms involved in various anti-tumor treatments. The application of nanotechnology and other novel technologies may provide a new direction in ferroptosis-driven leukemia therapies. The article explores the potential of targeting ferroptosis, a new form of regulated cell death, as a new therapeutic strategy for leukemia. It discusses the mechanisms of ferroptosis and its role in leukemia and how nanotechnology can enhance the delivery and efficacy of ferroptosis-inducing agents. The article not only highlights the promise of ferroptosis-targeted therapies and nanotechnology in revolutionizing leukemia treatment, but also calls for further research to overcome challenges and fully realize the clinical potential of this innovative approach. Finally, it discusses the challenges and opportunities in clinical applications of ferroptosis.
Collapse
Affiliation(s)
- Muhammad Hossein Ashoub
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Razieh Razavi
- Department of Chemistry, Faculty of Science, University of Jiroft, Jiroft, Iran
| | - Kamran Heydaryan
- Department of Medical Biochemical Analysis, Cihan University-Erbil, Kurdistan Region, Iraq
| | - Masoud Salavati-Niasari
- Institute of Nano Science and Nano Technology, University of Kashan, P.O. Box 87317-51167, Kashan, Iran
| | - Mahnaz Amiri
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran.
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran.
| |
Collapse
|
14
|
Alqahtani SAM, Alsaleem MA, Ghazy RM. Association between serum ferritin level and lipid profile among diabetic patients: A retrospective cohort study. Medicine (Baltimore) 2024; 103:e37631. [PMID: 38552070 PMCID: PMC10977537 DOI: 10.1097/md.0000000000037631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/26/2024] [Indexed: 04/02/2024] Open
Abstract
High serum ferritin (SF) levels have been linked to obesity, metabolic syndrome, atherosclerosis, diabetes, dyslipidemia, and cancer. This study aimed to investigate the association between SF and dyslipidemia in adults diagnosed with diabetes mellitus. This cross-sectional study retrospectively analyzed the electronic medical records of eligible patients from 3 primary locations in Saudi Arabia namely - Abha, Khamis Mushyt, and Jeddah - from 2010 to 2020. The study included adult patients aged 18 years or older who were diagnosed with diabetes mellitus and identified with an HbA1c level of ≥6.5. This study involved 3674 participants, with males accounting for 26.6% of the total. The mean age of the studied population was 48.0 ± 18.4 years. The median [interquartile range] of SF among males was higher than females, however, this difference was not statistically significant (60.0 [23.4-125.8] vs 55.4 [24.0-113.4], P = 0.204). On the other hand, age and region were significantly associated with SF (P = .032 and 0.035). SF had a significant positive correlation with cholesterol (r = 0.081, P < .001), low-density lipoprotein cholesterol (r = .087, P < .001), and triglycerides (r = 0.068, P < .001) and negative correlation with high-density lipoprotein cholesterol (r = -0.13, P < .001). Multivariate analysis revealed that age, sex, residence, and HbA1c were significantly affecting the lipid profile. Clinicians should consider including SF testing as part of the comprehensive evaluation of patients with diabetes and dyslipidemia.
Collapse
Affiliation(s)
- Saif Aboud M Alqahtani
- Internal Medicine Department, College of Medicine, King Khalid University, Abha, Saudia Arabia
| | - Mohammed Abadi Alsaleem
- Department of Family and Community Medicine, College of Medicine, King Khalid University, Abha, Saudia Arabia
| | - Ramy Mohamed Ghazy
- Department of Family and Community Medicine, College of Medicine, King Khalid University, Abha, Saudia Arabia
- Tropical Health Department, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| |
Collapse
|
15
|
Yang F, Cui X, Wang H, Zhang D, Luo S, Li Y, Dai Y, Yang D, Zhang X, Wang L, Zheng G, Zhang X. Iron overload promotes the progression of MLL-AF9 induced acute myeloid leukemia by upregulation of FOS. Cancer Lett 2024; 583:216652. [PMID: 38242196 DOI: 10.1016/j.canlet.2024.216652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/26/2023] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
Systemic iron overload is a common clinical challenge leading to significantly serious complications in patients with acute myeloid leukemia (AML), which affects both the quality of life and the overall survival of patients. Symptoms can be relieved after iron chelation therapy in clinical practice. However, the roles and mechanisms of iron overload on the initiation and progression of leukemia remain elusive. Here we studied the correlation between iron overload and AML clinical outcome, and further explored the role and pathophysiologic mechanism of iron overload in AML by using two mouse models: an iron overload MLL-AF9-induced AML mouse model and a nude xenograft mouse model. Patients with AML had an increased ferritin level, particularly in the myelomonocytic (M4) or monocytic (M5) subtypes. High level of iron expression correlated with a worsened prognosis in AML patients and a shortened survival time in AML mice. Furthermore, iron overload increased the tumor load in the bone marrow (BM) and extramedullary tissues by promoting the proliferation of leukemia cells through the upregulation of FOS. Collectively, our findings provide new insights into the roles of iron overload in AML. Additionally, this study may provide a potential therapeutic target to improve the outcome of AML patients and a rationale for the prospective evaluation of iron chelation therapy in AML.
Collapse
Affiliation(s)
- Feifei Yang
- Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Xiaoxi Cui
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China; Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Hao Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China; Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Dongyue Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China; Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Shulin Luo
- Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Yifei Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China; Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yibo Dai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China; Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Dan Yang
- Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Xiuqun Zhang
- Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Lina Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China; Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Guoguang Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China; Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Xuezhong Zhang
- Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| |
Collapse
|
16
|
Zhang W, Chen Q, Cheng Y, Wang M, Tong J, Tang R, Pan Y, Yang J. Can serum ferritin serve as a biomarker for the prognosis of gynecological malignant tumors? A retrospective cohort study. Cancer Biomark 2024; 39:127-136. [PMID: 38160345 PMCID: PMC11002721 DOI: 10.3233/cbm-230040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 11/03/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE It is widely accepted that there is a strong relationship between iron levels and cancer. This study aimed to investigate the relationship between serum ferritin levels and the severity and prognosis of gynecological malignant tumors. METHODS This retrospective study included patients with gynecological malignant tumors at Sir Run Run Shaw Hospital in the Department of Obstetrics and Gynecology from January 2013 to June 2019. Patients were grouped according to their serum ferritin level: low (< 13 μg/L), normal (13-150 μg/L), and high (> 150 μg/L). Correlation analyses were performed between serum ferritin level and other factors. Cox univariable and multivariable analysis and Kaplan-Meier survival curves were used to assess the impact of ferritin on survival in patients with gynecologic tumors. RESULTS The 402 total patients were divided into a low (n= 37), normal (n= 182), and high (n= 183) ferritin level group. Correlation analyses were performed that WBC, MCV, CRP, CA125, and CA153 were significantly positively correlated with serum ferritin level. The Kaplan-Meier survival curves revealed that of the three groups analyzed, the high serum ferritin level group had a significantly shorter survival time versus the normal and low serum ferritin level groups (log-rank P= 0.003). Univariable Cox regression analysis identified that patients with high serum ferritin levels had a significant correlation with risk of death compared to the patients with lower and normal serum ferritin levels. Serum ferritin was not found to be significant (HR = 0.792, 95% CI: 0.351-1.787, P= 0.574) in the multivariable Cox analysis. CONCLUSION Although this study did not find serum ferritin to be a significant independent prognosis indicator in gynecological malignant tumors, this study did identify that gynecological malignant tumor patients with high serum ferritin levels have significantly less survival time than patients with low or normal serum ferritin levels.
Collapse
Affiliation(s)
- Weidan Zhang
- Department of Obstetrics and Gynecology, Taizhou Hospital of Zhejiang Province, Zhejiang University, Taizhou, Zhejiang, China
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Qiaoqiao Chen
- Department of Obstetrics and Gynecology, Taizhou Hospital of Zhejiang Province, Zhejiang University, Taizhou, Zhejiang, China
- Center for Reproductive Medicine and Obstetrics and Gynecology, Drum Tower Clinic Medical College of Nanjing Medical University, Nanjing, China
| | - Yali Cheng
- Department of Obstetrics and Gynecology, Taizhou Hospital of Zhejiang Province Affiliate to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Miao Wang
- Department of Obstetrics and Gynecology, Taizhou Maternal and Child Health Hospital, Taizhou, Zhejiang, China
| | - Jinfei Tong
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Rongrong Tang
- School of Medicine, ShaoXing University, Shaoxing, Zhejiang, China
| | - Yihong Pan
- Department of Obstetrics and Gynecology, Taizhou Hospital of Zhejiang Province Affiliate to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Jianhua Yang
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China
| |
Collapse
|
17
|
Xiang Y, Wan F, Ren Y, Yang D, Xiang K, Zhu B, Ruan X, Li S, Zhang L, Liu X, Si Y, Liu Y. Polyphyllin VII induces autophagy-dependent ferroptosis in human gastric cancer through targeting T-lymphokine-activated killer cell-originated protein kinase. Phytother Res 2023; 37:5803-5820. [PMID: 37632389 DOI: 10.1002/ptr.7986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/20/2023] [Accepted: 08/06/2023] [Indexed: 08/28/2023]
Abstract
T-lymphokine-activated killer cell-originated protein kinase (TOPK) is a serine-threonine kinase that is overexpressed in gastric cancer (GC) and promotes tumor progression. Polyphyllin VII (PPVII), a pennogenin isolated from the rhizomes of Paris polyphylla, shows anticancer effects. Here, we explored the antitumor activity and mechanism of PPVII in GC. Ferroptosis was detected by transmission electron microscope, malondialdehyde, and iron determination assays. Autophagy and its upstream signaling pathway were detected by Western blot, and gene alterations. The binding of PPVII and TOPK was examined through microscale thermophoresis and drug affinity responsive target stability assays. An in vivo mouse model was performed to evaluate the therapeutic of PPVII. PPVII inhibits GC by inducing autophagy-mediated ferroptosis. PPVII promotes the degradation of ferritin heavy chain 1, which is responsible for autophagy-mediated ferroptosis. PPVII activates the Unc-51-like autophagy-activating kinase 1 (ULK1) upstream of autophagy. PPVII inhibits the activity of TOPK, thereby weakening the inhibition of downstream ULK1. PPVII stabilizes the dimer of the inactive form of TOPK by direct binding. PPVII inhibits tumor growth without causing obvious toxicity in vivo. Collectively, this study suggests that PPVII is a potential agent for the treatment of GC by targeting TOPK to activate autophagy-mediated ferroptosis.
Collapse
Affiliation(s)
- Yuchen Xiang
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Fang Wan
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yuliang Ren
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Dan Yang
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Ke Xiang
- Gucheng People's Hospital, Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Bingxin Zhu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xuzhi Ruan
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Shuzhen Li
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
| | - Liang Zhang
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xuewen Liu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yuan Si
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Ying Liu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
18
|
Czerwińska-Ledwig O, Jurczyszyn A, Piotrowska A, Pilch W, Antosiewicz J, Żychowska M. The Effect of a Six-Week Nordic Walking Training Cycle on Oxidative Damage of Macromolecules and Iron Metabolism in Older Patients with Multiple Myeloma in Remission-Randomized Clinical Trial. Int J Mol Sci 2023; 24:15358. [PMID: 37895038 PMCID: PMC10607094 DOI: 10.3390/ijms242015358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/17/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Multiple myeloma (MM) is an incurable hematologic malignancy originating from clonal plasma cell proliferation within the bone marrow, predominantly affecting older individuals. While anemia serves as a diagnostic criterion for MM, it often ameliorates upon achieving disease remission. Iron metabolism parameters have emerged as potential prognostic indicators in MM. Notably, physical exercise has been established to influence iron metabolism. This study aimed to assess alterations in serum iron, ferritin, and transferrin concentrations, as well as leukocyte gene expression, in MM patients undergoing a six-week cycle of Nordic walking training. Thirty patients divided into an exercise group (NW, n = 15, mean age 63.1 ± 8.4 years) and a control group (CG, n = 15, mean age: 63.5 ± 3.6 years) completed the study protocol. Blood samples were collected at baseline, after three and six weeks of training, and after nine weeks. Serum ferritin, transferrin, and iron concentrations were measured, along with the leukocyte expression of genes. Additionally, serum oxidative damage marker levels were determined. Following the Nordic walking training cycle, a declining trend in serum ferritin concentrations was observed. Intracellular mRNA levels of genes associated with iron metabolism were positively influenced by the training regimen, indicating the potential impact of this physical activity on gene expression and ferritin concentrations. Although positive trends were noted, extended training periods might be requisite for significant changes. To conclude, moderate-intensity exercise induces favorable shifts in the analyzed parameters among MM patients, potentially influencing disease progression. Consequently, Nordic walking training is a safe recommendation for MM patients, though sustained training beyond six weeks could be necessary for notable effects on iron metabolism factors.
Collapse
Affiliation(s)
- Olga Czerwińska-Ledwig
- Department of Chemistry and Biochemistry, Institute of Basics Sciences, Faculty of Physiotherapy, University of Physical Education, 31-571 Kraków, Poland; (O.C.-L.); (A.P.); (W.P.)
| | - Artur Jurczyszyn
- Plasma Cell Dyscrasia Center, Department of Hematology, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Krakow, Poland;
| | - Anna Piotrowska
- Department of Chemistry and Biochemistry, Institute of Basics Sciences, Faculty of Physiotherapy, University of Physical Education, 31-571 Kraków, Poland; (O.C.-L.); (A.P.); (W.P.)
| | - Wanda Pilch
- Department of Chemistry and Biochemistry, Institute of Basics Sciences, Faculty of Physiotherapy, University of Physical Education, 31-571 Kraków, Poland; (O.C.-L.); (A.P.); (W.P.)
| | - Jędrzej Antosiewicz
- Department of Bioenergetics and Exercise Physiology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Małgorzata Żychowska
- Department of Biological Foundations of Physical Culture, Faculty of Health Science and Physical Culture, Kazimierz Wielki University, 85-091 Bydgoszcz, Poland;
| |
Collapse
|
19
|
Tang C, Zhang B, Yang Y, Lin Z, Liu Y. Overexpression of ferritin light chain as a poor prognostic factor for breast cancer. Mol Biol Rep 2023; 50:8097-8109. [PMID: 37542685 DOI: 10.1007/s11033-023-08675-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/11/2023] [Indexed: 08/07/2023]
Abstract
BACKGROUND Ferritin light chain (FTL) is involved in tumor progression, but the specific molecular processes by which FTL affects the development of breast cancer (BRCA) have remained unknown. In this research, the clinicopathological significance of FTL overexpression in BRCA was investigated. METHODS To investigate the role of FTL in BRCA, we utilized multiple online databases to analyse FTL expression levels in BRCA. Next, we reviewed the expression and localization of the FTL protein in BRCA by immunohistochemistry (IHC), Western blot (WB) and immunofluorescence (IF) staining. To assess the impact of FTL on patient prognosis, we conducted Kaplan‒Meier, univariate and multivariate survival analyses. The relationship between FTL and immune infiltration in BRCA was also analysed in the TISCH and SangerBox databases. MTT, malondialdehyde (MDA) and reactive oxygen species (ROS) assays were carried out to investigate the molecular mechanisms of FTL action in BRCA cells. RESULTS FTL was significantly upregulated in BRCA compared to normal tissues. Its expression significantly linked to histological grade (P = 0.038), PR expression (P = 0.021), Her2 expression (P = 0.012) and Ki-67 expression (P = 0.040) in patients with BRCA. Furthermore, the expression of the FTL protein was higher in the BRCA cell lines than in the normal breast cells and mainly localized in the cytoplasm. Compared to patients with a low level of FTL expression, patients with a high level of FTL expression showed lower overall survival (OS). More convincingly, univariate and multivariate statistical analyses revealed that FTL expression (P = 0.000), ER expression (P = 0.036) and Her2 expression (P = 0.028) were meaningful independent prognostic factors in patients with BRCA. FTL was associated with immune infiltration in BRCA. Functional experiments further revealed that FTL knockdown inhibited the capacity of proliferation and increased the level of oxidative stress in BRCA cells. CONCLUSIONS Overexpression of FTL was associated with the progression of BRCA. FTL overexpression may become a biomarker for the evaluation of poor prognosis in patients with BRCA.
Collapse
Affiliation(s)
- Chunxiao Tang
- Central Laboratory, The Affiliated Hospital of Yanbian University, Yanji, 133000, China
- Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Yanji, 133000, China
| | - Baojian Zhang
- Central Laboratory, The Affiliated Hospital of Yanbian University, Yanji, 133000, China
| | - Yang Yang
- Central Laboratory, The Affiliated Hospital of Yanbian University, Yanji, 133000, China
- Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Yanji, 133000, China
| | - Zhenhua Lin
- Central Laboratory, The Affiliated Hospital of Yanbian University, Yanji, 133000, China
- Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Yanji, 133000, China
| | - Yanqun Liu
- Central Laboratory, The Affiliated Hospital of Yanbian University, Yanji, 133000, China.
| |
Collapse
|
20
|
Zhang H, Sun C, Sun Q, Li Y, Zhou C, Sun C. Susceptibility of acute myeloid leukemia cells to ferroptosis and evasion strategies. Front Mol Biosci 2023; 10:1275774. [PMID: 37818101 PMCID: PMC10561097 DOI: 10.3389/fmolb.2023.1275774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/15/2023] [Indexed: 10/12/2023] Open
Abstract
Acute myeloid leukemia (AML) is a highly aggressive hematologic malignancy with a 5-year survival rate of less than 30%. Continuous updating of diagnostic and therapeutic strategies has not been effective in improving the clinical benefit of AML. AML cells are prone to iron metabolism imbalance due to their unique pathological characteristics, and ferroptosis is a novel cell death mode that is dominated by three cellular biological processes: iron metabolism, oxidative stress and lipid metabolism. An in-depth exploration of the unique ferroptosis mechanism in AML can provide new insights for the diagnosis and treatment of this disease. This study summarizes recent studies on ferroptosis in AML cells and suggests that the metabolic characteristics, gene mutation patterns, and dependence on mitochondria of AML cells greatly increase their susceptibility to ferroptosis. In addition, this study suggests that AML cells can establish a variety of strategies to evade ferroptosis to maintain their survival during the process of occurrence and development, and summarizes the related drugs targeting ferroptosis pathway in AML treatment, which provides development directions for the subsequent mechanism research and clinical treatment of AML.
Collapse
Affiliation(s)
- Hanyun Zhang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chunjie Sun
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qi Sun
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ye Li
- State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Chao Zhou
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| |
Collapse
|
21
|
Jiang D, Niu C, Mo G, Wang X, Sun Q, An X, Ji C, Ling W, Li L, Zhao H, Han C, Liu H, Hu J, Kang B. Ferritin heavy chain participated in ameliorating 3-nitropropionic acid-induced oxidative stress and apoptosis of goose follicular granulosa cells. Poult Sci 2023; 102:102606. [PMID: 36940654 PMCID: PMC10033315 DOI: 10.1016/j.psj.2023.102606] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Oxidative stress is the major culprits responsible for ovarian dysfunction by damaging granulosa cells (GCs). Ferritin heavy chain (FHC) may participate in the regulation of ovarian function by mediating GCs apoptosis. However, the specific regulatory function of FHC in follicular GCs remains unclear. Here, 3-nitropropionic acid (3-NPA) was utilized to establish an oxidative stress model of follicular GCs of Sichuan white geese. To explore the regulatory effects of FHC on oxidative stress and apoptosis of primary GCs in geese by interfering or overexpressing FHC gene. After transfection of siRNA-FHC to GCs for 60 h, the expressions of FHC gene and protein decreased significantly (P < 0.05). After FHC overexpression for 72 h, the expressions of FHC mRNA and protein upregulated considerably (P < 0.05). The activity of GCs was impaired after interfering with FHC and 3-NPA coincubated (P < 0.05). When overexpression of FHC combined with 3-NPA treatment, the activity of GCs was remarkably enhanced (P < 0.05). After interference FHC and 3-NPA treatment, NF-κB and NRF2 gene expression decreased (P < 0.05), the intracellular reactive oxygen species (ROS) level increased greatly (P < 0.05), BCL-2 expression reduced, BAX/BCL-2 ratio intensified (P < 0.05), the mitochondrial membrane potential decreased notably (P < 0.05), and the apoptosis rate of GCs aggravated (P < 0.05). While overexpression of FHC combined with 3-NPA treatment could promote BCL-2 protein expression and reduce BAX/BCL-2 ratio, indicating that FHC regulated the mitochondrial membrane potential and apoptosis of GCs by mediating the expression of BCL-2. Taken together, our research manifested that FHC alleviated the inhibitory effect of 3-NPA on the activity of GCs. FHC knockdown could suppress the expression of NRF2 and NF-κB genes, reduce BCL-2 expression and augment BAX/BCL-2 ratio, contributing to the accumulation of ROS and jeopardizing mitochondrial membrane potential, as well as exacerbating GCs apoptosis.
Collapse
Affiliation(s)
- Dongmei Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China
| | - Chunyang Niu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China
| | - Guilin Mo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Xin Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China
| | - Qian Sun
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China
| | - Xiaoguang An
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China
| | - Chengweng Ji
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China
| | - Weikang Ling
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China
| | - Liang Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China
| | - Hua Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, PR China
| | - Chunchun Han
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China
| | - Hehe Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China
| | - Jiwei Hu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China
| | - Bo Kang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China.
| |
Collapse
|
22
|
Lyu T, Li X, Song Y. Ferroptosis in acute leukemia. Chin Med J (Engl) 2023; 136:886-898. [PMID: 37010259 PMCID: PMC10278762 DOI: 10.1097/cm9.0000000000002642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Indexed: 04/04/2023] Open
Abstract
ABSTRACT Ferroptosis is an iron-dependent cell death pathway that is different from apoptosis, pyroptosis, and necrosis. The main characteristics of ferroptosis are the Fenton reaction mediated by intracellular free divalent iron ions, lipid peroxidation of cell membrane lipids, and inhibition of the anti-lipid peroxidation activity of intracellular glutathione peroxidase 4 (GPX4). Recent studies have shown that ferroptosis can be involved in the pathological processes of many disorders, such as ischemia-reperfusion injury, nervous system diseases, and blood diseases. However, the specific mechanisms by which ferroptosis participates in the occurrence and development of acute leukemia still need to be more fully and deeply studied. This article reviews the characteristics of ferroptosis and the regulatory mechanisms promoting or inhibiting ferroptosis. More importantly, it further discusses the role of ferroptosis in acute leukemia and predicts a change in treatment strategy brought about by increased knowledge of the role of ferroptosis in acute leukemia.
Collapse
Affiliation(s)
- Tianxin Lyu
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Xudong Li
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan 450008, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yongping Song
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
23
|
Li G, Yu W, Yang H, Wang X, Ma T, Luo X. Relationship between Serum Ferritin Level and Dyslipidemia in US Adults Based on Data from the National Health and Nutrition Examination Surveys 2017 to 2020. Nutrients 2023; 15:1878. [PMID: 37111096 PMCID: PMC10143246 DOI: 10.3390/nu15081878] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Previous research has suggested that high serum ferritin (SF) levels may be associated with dyslipidemia. This study investigated the association between SF levels and dyslipidemia in American adults, which held relevance for both clinical and public health areas concerned with screening and prevention. Data from the pre-pandemic National Health and Nutrition Examination Surveys (NHANES), conducted between 2017 and 2020, were utilized for this analysis. Multivariate linear regression models were used to explore the correlation between lipid and SF concentrations, and the connection between SF and the four types of dyslipidemia was further assessed by using multivariate logistic regression analysis. Odds ratios (ORs; 95% CI) for dyslipidemia were calculated for quartiles of SF concentrations, with the lowest ferritin quartile as the reference. The final subjects consisted of 2676 participants (1290 males and 1386 females). ORs for dyslipidemia were the highest in the fourth quartile (Q4) of SF both in males (OR: 1.60, 95% CI: 1.12-2.28) and females (OR: 1.52, 95% CI: 1.07-2.17). The crude ORs (95% CI) for the risk of High TC and High LDL-C increased progressively in both genders. However, after adjusting for covariates, the trend of significance was only present in females. Finally, the association between total daily iron intake and the four types of dyslipidemia was examined, revealing that the risk of High TG in the third quartile of the total daily iron intake was 2.16 times greater in females (adjusted OR: 3.16, 95% CI: 1.38-7.23). SF concentrations were remarkably associated with dyslipidemia. In females, daily dietary iron intake was associated with High-TG dyslipidemia.
Collapse
Affiliation(s)
| | | | | | | | - Tianyou Ma
- Department of Nutrition and Food Safety, School of Public Health, Xi’an Jiaotong University, Xi’an 710061, China
| | - Xiaoqin Luo
- Department of Nutrition and Food Safety, School of Public Health, Xi’an Jiaotong University, Xi’an 710061, China
| |
Collapse
|
24
|
Zhang J, Liu L, Wei J, Wu X, Luo J, Wei H, Ning L, He Y. High expression level of the FTH1 gene is associated with poor prognosis in children with non-M3 acute myeloid leukemia. Front Oncol 2023; 12:1068094. [PMID: 36818670 PMCID: PMC9928996 DOI: 10.3389/fonc.2022.1068094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/29/2022] [Indexed: 02/04/2023] Open
Abstract
Acute myelogenous leukemia (AML) is a disease that severely affects the physical health of children. Thus, we aimed to identify biomarkers associated with AML prognosis in children. Using transcriptomics on an mRNA dataset from 27 children with non-M3 AML, we selected genes from among those with the top 5000 median absolute deviation (MAD) values for subsequent analysis which showed that two modules were associated with AML risk groups. Thus, enrichment analysis was performed using genes from these modules. A one-way Cox analysis was performed on a dataset of 149 non-M3 AML patients downloaded from the TCGA. This identified four genes as significant: FTH1, RCC2, ABHD17B, and IRAK1. Through survival analysis, FTH1 was identified as a key gene associated with AML prognosis. We verified the proliferative and regulatory effects of ferroptosis on MOLM-13 and THP-1 cells using Liproxstatin-1 and Erastin respectively by CCK-8 and flow cytometry assays. Furthermore, we assayed expression levels of FTH1 in MOLM-13 and THP-1 cells after induction and inhibition of ferroptosis by real-time quantitative PCR, which showed that upregulated FTH1 expression promoted proliferation and inhibited apoptosis in leukemia cells. In conclusion, high expression of FTH1 promoted proliferation and inhibited apoptosis of leukemic cells through the ferroptosis pathway and is thus a potential risk factor that affects the prognosis of non-M3 AML in children.
Collapse
Affiliation(s)
- Junlin Zhang
- First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liying Liu
- First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinshuang Wei
- First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaojing Wu
- First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jianming Luo
- First Affiliated Hospital of Guangxi Medical University, Nanning, China
- The Key Laboratory of Children’s Disease Research in Guangxi’s Colleges and Universities, Education Department of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Hongying Wei
- First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liao Ning
- First Affiliated Hospital of Guangxi Medical University, Nanning, China
- The Key Laboratory of Children’s Disease Research in Guangxi’s Colleges and Universities, Education Department of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yunyan He
- First Affiliated Hospital of Guangxi Medical University, Nanning, China
- The Key Laboratory of Children’s Disease Research in Guangxi’s Colleges and Universities, Education Department of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
25
|
Tislevoll BS, Hellesøy M, Fagerholt OHE, Gullaksen SE, Srivastava A, Birkeland E, Kleftogiannis D, Ayuda-Durán P, Piechaczyk L, Tadele DS, Skavland J, Panagiotis B, Hovland R, Andresen V, Seternes OM, Tvedt THA, Aghaeepour N, Gavasso S, Porkka K, Jonassen I, Fløisand Y, Enserink J, Blaser N, Gjertsen BT. Early response evaluation by single cell signaling profiling in acute myeloid leukemia. Nat Commun 2023; 14:115. [PMID: 36611026 PMCID: PMC9825407 DOI: 10.1038/s41467-022-35624-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 12/13/2022] [Indexed: 01/09/2023] Open
Abstract
Aberrant pro-survival signaling is a hallmark of cancer cells, but the response to chemotherapy is poorly understood. In this study, we investigate the initial signaling response to standard induction chemotherapy in a cohort of 32 acute myeloid leukemia (AML) patients, using 36-dimensional mass cytometry. Through supervised and unsupervised machine learning approaches, we find that reduction of extracellular-signal-regulated kinase (ERK) 1/2 and p38 mitogen-activated protein kinase (MAPK) phosphorylation in the myeloid cell compartment 24 h post-chemotherapy is a significant predictor of patient 5-year overall survival in this cohort. Validation by RNA sequencing shows induction of MAPK target gene expression in patients with high phospho-ERK1/2 24 h post-chemotherapy, while proteomics confirm an increase of the p38 prime target MAPK activated protein kinase 2 (MAPKAPK2). In this study, we demonstrate that mass cytometry can be a valuable tool for early response evaluation in AML and elucidate the potential of functional signaling analyses in precision oncology diagnostics.
Collapse
Affiliation(s)
- Benedicte Sjo Tislevoll
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Monica Hellesøy
- Department of Internal Medicine, Hematology Section, Haukeland University Hospital, Helse Bergen HF, Bergen, Norway
| | - Oda Helen Eck Fagerholt
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Stein-Erik Gullaksen
- Department of Internal Medicine, Hematology Section, Haukeland University Hospital, Helse Bergen HF, Bergen, Norway
| | - Aashish Srivastava
- Genome Core Facility, Clinical Laboratory, K2 Haukeland University Hospital, Bergen, Norway
| | - Even Birkeland
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, Bergen, Norway
| | - Dimitrios Kleftogiannis
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway.,Centre for Cancer Biomarkers and Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Pilar Ayuda-Durán
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0379, Oslo, Norway.,Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318, Oslo, Norway
| | - Laure Piechaczyk
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0379, Oslo, Norway.,Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Dagim Shiferaw Tadele
- Department of Molecular Genetics, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway.,Department of Translational Hematology and Oncology Research, Cleveland Clinic, OH, 44106, USA
| | - Jørn Skavland
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Baliakas Panagiotis
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Randi Hovland
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Vibeke Andresen
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ole Morten Seternes
- Department of Pharmacy, UiT-The Arctic University of Norway, 9037, Tromsø, Norway
| | | | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, 94121, USA.,Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94121, USA.,Department of Biomedical Informatics, Stanford University School of Medicine, Stanford, CA, 94121, USA
| | - Sonia Gavasso
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway.,Centre for Clinical Treatment Research (NeuroSysMed), Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Kimmo Porkka
- Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Inge Jonassen
- Centre for Cancer Biomarkers and Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Yngvar Fløisand
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318, Oslo, Norway.,Department of Hematology, Oslo University Hospital, Oslo, Norway
| | - Jorrit Enserink
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0379, Oslo, Norway.,Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318, Oslo, Norway.,Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, 0037, Oslo, Norway
| | - Nello Blaser
- Department of Informatics, University of Bergen, Bergen, Norway.
| | - Bjørn Tore Gjertsen
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway. .,Department of Internal Medicine, Hematology Section, Haukeland University Hospital, Helse Bergen HF, Bergen, Norway.
| |
Collapse
|
26
|
Song X, Zheng Y, Liu Y, Meng H, Yu R, Zhang C. Production of Recombinant Human Hybrid Ferritin with Heavy Chain and Light Chain in Escherichia coli and its Characterization. Curr Pharm Biotechnol 2023; 24:341-349. [PMID: 35585819 DOI: 10.2174/1389201023666220517225048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/07/2022] [Accepted: 03/24/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Natural human ferritin generally contains 24 subunits with different ratios of heavy chain to light chain, and the ratio of both subunits varies depending on tissue distribution and pathological conditions. However, the production of recombinant hybrid ferritin with both subunits is more challenging. OBJECTIVE This study aimed to prepare the recombinant hybrid ferritin for prokaryotic expression and characterize its structure and physicochemical properties. METHODS A prokaryotic expression vector of pACYCDuet-1 harboring the two individual genes of human ferritin heavy chain and light chain (FTH/FTL-pACYCDuet-1) was constructed and transfected into Escherichia coli bacteria. Then the genes were co-induced by IPTG to express. RESULTS The ferritin was purified by hydrophobic interaction chromatography combining size exclusion chromatography and verified by mass spectrometry and characterized by spectral and morphological analysis. CONCLUSION FTH and FTL subunits were successfully co-assembled into a hybrid ferritin nanoparticle (rhFTH/L). The structure of rhFTH/L was demonstrated highly ordered and fairly compact. Besides, the hybrid rhFTH/L nanoparticle was shown more sensitive to thermal stress and reduced stability when compared with that of both individual rhFTH and rhFTL.
Collapse
Affiliation(s)
- Xiaotong Song
- Department of Biopharmaceutics, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yongxiang Zheng
- Department of Biopharmaceutics, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yongdong Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huan Meng
- Department of Biopharmaceutics, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Rong Yu
- Department of Biopharmaceutics, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Chun Zhang
- Department of Biopharmaceutics, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
27
|
Yao Y, Ji P, Chen H, Ge J, Xu Y, Wang P, Xu L, Yan Z. Ferroptosis-based drug delivery system as a new therapeutic opportunity for brain tumors. Front Oncol 2023; 13:1084289. [PMID: 36910646 PMCID: PMC9996339 DOI: 10.3389/fonc.2023.1084289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
The brain tumor is a kind of malignant tumor with brutal treatment, high recurrence rate, and poor prognosis, and the incidence and death rate is increasing yearly. Surgery is often used to remove the primary tumor, supplemented by radiotherapy and chemotherapy, which have highly toxic side effects. Therefore, there is an urgent need to explore new strategies, methods, and technologies that can genuinely improve the treatment of brain tumors. Ferroptosis differs from traditional apoptosis's morphological and biochemical characteristics, and ferroptosis possesses its unique characteristics and mechanisms, opening up a new field of ferroptosis treatment for cancer. It has been found that there is a close relationship between ferroptosis and brain tumors, and a novel nano-drug delivery system based on ferroptosis has been used for the ferroptosis treatment of brain tumors with remarkable effects. This review firstly analyzes the characteristics of ferroptosis, summarizes the mechanism of its occurrence and some factors that can be involved in the regulation of ferroptosis, introduces the potential link between ferroptosis and brain tumors, and clarifies the feasibility of ferroptosis in the treatment of brain tumors. It then presents the ferroptosis nano drug delivery systems developed under different metabolic pathways for ferroptosis treatment of brain tumors. Finally, it summarizes the current problems and solutions of ferroptosis nano drugs for brain tumor treatment, aiming to provide a reference for developing ferroptosis nano drugs against brain tumors.
Collapse
Affiliation(s)
- Yansheng Yao
- Department of Endocrinology, The Affiliated Taixing People's Hospital of Medical College, Yangzhou University, Taixing, China
| | - Peng Ji
- College of Pharmacy and Chemistry & Chemical Engineering, Jiangsu Provincial Key Laboratory of Chiral Pharmaceutical Chemicals Biologically Manufacturing, Taizhou University, Taizhou, China
| | - Hao Chen
- College of Pharmacy and Chemistry & Chemical Engineering, Jiangsu Provincial Key Laboratory of Chiral Pharmaceutical Chemicals Biologically Manufacturing, Taizhou University, Taizhou, China
| | - Jianwen Ge
- College of Pharmacy and Chemistry & Chemical Engineering, Jiangsu Provincial Key Laboratory of Chiral Pharmaceutical Chemicals Biologically Manufacturing, Taizhou University, Taizhou, China
| | - Yajing Xu
- College of Pharmacy and Chemistry & Chemical Engineering, Jiangsu Provincial Key Laboratory of Chiral Pharmaceutical Chemicals Biologically Manufacturing, Taizhou University, Taizhou, China
| | - Peng Wang
- College of Pharmacy and Chemistry & Chemical Engineering, Jiangsu Provincial Key Laboratory of Chiral Pharmaceutical Chemicals Biologically Manufacturing, Taizhou University, Taizhou, China
| | - Li Xu
- Department of Nursing, Liaoning Vocational College of Medicine, Shenyang, China
| | - Zhirong Yan
- Department of Anesthesiology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian, China
| |
Collapse
|
28
|
Zhang H, Yan C, Xia Y, Guan J, Zhou S. Causal Gene Identification Using Non-Linear Regression-Based Independence Tests. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:185-195. [PMID: 35139025 DOI: 10.1109/tcbb.2022.3149864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
With the development of biomedical techniques in the past decades, causal gene identification has become one of the most promising applications in human genome-based business, which can help doctors to evaluate the risk of certain genetic diseases and provide further treatment recommendations for potential patients. When no controlled experiments can be applied, machine learning techniques like causal inference-based methods are generally used to identify causal genes. Unfortunately, most of the existing methods detect disease-related genes by ranking-based strategies or feature selection techniques, which generally return a superset of the corresponding real causal genes. There are also some causal inference-based methods that can identify a part of real causal genes from those supersets, but they are just able to return a few causal genes. This is contrary to our knowledge, as many results from controlled experiments have demonstrated that a certain disease, especially cancer, is usually related to dozens or hundreds of genes. In this work, we present an effective approach for identifying causal genes from gene expression data by using a new search strategy based on non-linear regression-based independence tests, which is able to greatly reduce the search space, and simultaneously establish the causal relationships from the candidate genes to the disease variable. Extensive experiments on real-world cancer datasets show that our method is superior to the existing causal inference-based methods in three aspects: 1) our method can identify dozens of causal genes, and 1/3 ∼ 1/2 of the discovered causal genes can be verified by existing works that they are really directly related to the corresponding disease; 2) The discovered causal genes are able to distinguish the status or disease subtype of the target patient; 3) Most of the discovered causal genes are closely relevant to the disease variable.
Collapse
|
29
|
The presence of clear cell glands around the ovarian endometrioid cyst has an association with clear cell carcinoma. Virchows Arch 2022:10.1007/s00428-022-03479-1. [PMID: 36580137 DOI: 10.1007/s00428-022-03479-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/30/2022]
Abstract
We found some clear cell glands appeared in the endometrioid cysts (ECs) of the ovary (EC-CCG). To explore the clinicopathological features, molecular biological changes, and prognosis in EC-CCG and analyze the association with ovarian clear cell borderline tumors (CCBT) and clear cell carcinoma (CCC). We retrospectively examined 35 cases of EC-CCG, compared them to 13 cases of clear cell cystadenomas, 14 cases of CCBT, and 49 cases of CCC. We analyzed the differences in clinicopathological features and prognosis between the four groups. Data on clinicopathology and survival were gathered. Immunohistochemistry (IHC) was performed in all cases, and we analyzed the molecular changes of 2 cases of EC-CCG and 1 case of CCC by whole-exome sequencing (WES). EC-CCG shared some common clinicopathological features with CCBT: they occurred before menopause, had an elevated serum CA125 level in some cases, had an ovarian cystic mass on B-ultrasound, and had a risk of recurrence. Microscopically, both diseases were based on typical EC, and clear cell glands in the EC cyst wall were seen in varying numbers. Some cases of EC-CCG had IHC results similar to those of CCBT and CCC, with positive expression of HNF1β and NapsinA; decreased expression of ER, PR, and ARID1A; and increased expression of Ki67 (> 5%). WES results revealed that EC-CCG had mutations in TP53BP1, ZNF462, FN1, and FTL (which was also mutated in CCC). In summary, we found that clear cell glands appearing around EC in the ovary have an association with CCC.
Collapse
|
30
|
Li J, Zhang W. From iron chelation to overload as a therapeutic strategy to induce ferroptosis in hematologic malignancies. HEMATOLOGY (AMSTERDAM, NETHERLANDS) 2022; 27:1163-1170. [PMID: 36222350 DOI: 10.1080/16078454.2022.2132362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Ferroptosis is an iron-dependent, non-apoptotic mode of cell death characterized by excessive accumulation of reactive oxygen species (ROS). It plays an important role in the occurrence, development and treatment of various cancers, but little is known regarding the role of ferroptosis in hematologic malignancies. This review elaborates the regulatory mechanism of ferroptosis and the treatment opportunities for targeting ferroptosis in hematologic malignancies. METHODS A systematic literature review through PubMed was conducted to summarize the published evidence on the therapeutic potential of targeting ferroptosis in hematological malignant tumors. Literature sources published in English were searched, using the terms ferroptosis, leukemia, myelodysplastic syndrome, lymphoma and multiple myeloma. RESULTS More and more small molecules have been found to induce ferroptosis in hematologic malignancies through targeted iron metabolism and lipid peroxidation, and some ferroptosis inducers have been proved to have synergistic effect with other chemotherapeutic drugs. CONCLUSION This paper discusses the significance of ferroptosis in hematologic malignancies and provides a new way for the treatment of hematologic malignancies, and more experimental studies should be conducted in future.
Collapse
Affiliation(s)
- Jiaojiao Li
- Department of Hematology, General Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Wei Zhang
- Department of Hematology, General Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
31
|
Zhang W, Wang J, Liu Z, Zhang L, Jing J, Han L, Gao A. Iron-dependent ferroptosis participated in benzene-induced anemia of inflammation through IRP1-DHODH-ALOX12 axis. Free Radic Biol Med 2022; 193:122-133. [PMID: 36244588 DOI: 10.1016/j.freeradbiomed.2022.10.273] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 10/31/2022]
Abstract
Benzene, a widely existing environmental pollutant, gives huge harm to the hematopoietic system. Iron is one of the raw materials for the creation of blood cells, but the role of iron in the blood toxicity of benzene is still unknown. Here, we examined the role of iron homeostasis in benzene-induced toxicity both in vivo and in vitro. In this study, mice exposed to benzene at 50 ppm for 8 weeks demonstrated the anemia of inflammation, mainly manifested as the decreased serum Fe2+, increased serum ferritin and inflammation factors (TNF-α, IL6, IL1β) in the plasma of mice. Furthermore, we found that iron maldistribution in the spleen and bone marrow is accompanied by inflammation reaction and ferroptosis. In the vitro study, benzene metabolite 1,4-BQ stimulated the obvious ROS production and ferroptosis activation in the normal B lymphocytes cells. Meanwhile, from the molecular perspective, the combined proteomics and transcriptome enriched the ferroptosis pathway, and we further confirmed the increased expression of iron regulator IRP1, ferroptosis-regulator DHODH, and fatty acids metabolism enzyme ALOX12 were the crucial participators in regulating benzene-mediated iron metabolism imbalance and ferroptosis. Particularly, the targeted and un-targeted metabolomics in the vivo and vitro study further emphasized the importance of DHODH in benzene-induced ferroptosis. In conclusion, this study revealed that iron-dependent ferroptosis participated in benzene-induced anemia of inflammation and provided a constructive perspective on targeting ferroptosis for the prevention and control of benzene toxicity.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Jingyu Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - ZiYan Liu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Lei Zhang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Jiaru Jing
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Lin Han
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Ai Gao
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| |
Collapse
|
32
|
Słomka A, Łęcka M, Styczyński J. Hepcidin in Children and Adults with Acute Leukemia or Undergoing Hematopoietic Cell Transplantation: A Systematic Review. Cancers (Basel) 2022; 14:cancers14194936. [PMID: 36230859 PMCID: PMC9561996 DOI: 10.3390/cancers14194936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/24/2022] [Accepted: 10/04/2022] [Indexed: 01/19/2023] Open
Abstract
Objectives: The association between hepcidin and acute leukemia (AL) or hematopoietic cell transplantation (HCT) in children and adults remains obscure. We aimed to assess this potential relationship through a systematic review of observational studies. Methods: An electronic search of three databases, including PubMed, Scopus, and Web of Science Core Collection, was performed up to 31 March 2022. Two independent reviewers assessed the search results according to predetermined inclusion and exclusion criteria, following PRISMA guidelines. Results: Of the 3607 titles identified, 13 studies published between 2008 and 2021 met the inclusion criteria. Most studies included a moderate number of participants and controls and used enzyme-linked immunosorbent assay (ELISA) to determine serum hepcidin levels. The principal findings: (1) serum hepcidin levels in patients with AL or undergoing HCT are increased compared to controls, regardless of the patient’s age and the phase of disease treatment; (2) AL therapy and HCT significantly influence serum hepcidin levels; (3) serum hepcidin may predict a worse outcome in patients with AL and post-HCT. Conclusions: This systematic review provides an overview of observational studies that deal with the association of hepcidin with AL and HCT. Although disturbances in iron metabolism are common in AL and HCT, and hepcidin seems to play a cardinal role in their modulation, more extensive research is needed.
Collapse
Affiliation(s)
- Artur Słomka
- Department of Pathophysiology, Collegium Medicum Nicolaus Copernicus University Torun, 85-094 Bydgoszcz, Poland
| | - Monika Łęcka
- Department of Pediatric Hematology and Oncology, Jurasz University Hospital, Collegium Medicum Nicolaus Copernicus University Torun, 85-094 Bydgoszcz, Poland
| | - Jan Styczyński
- Department of Pediatric Hematology and Oncology, Jurasz University Hospital, Collegium Medicum Nicolaus Copernicus University Torun, 85-094 Bydgoszcz, Poland
- Correspondence:
| |
Collapse
|
33
|
Li Z, Jiang W, Chu H, Ge J, Wang X, Jiang J, Xiao Q, Meng Q, Hao W, Wei X. Exploration of potential mechanism of interleukin-33 up-regulation caused by 1,4-naphthoquinone black carbon in RAW264.7 cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155357. [PMID: 35452731 DOI: 10.1016/j.scitotenv.2022.155357] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/30/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND As air pollution has been paid more attention to by public in recent years, effects and mechanism in particulate matter-triggered health problems become a focus of research. Lysosomes and mitochondria play an important role in regulation of inflammation. Interleukin-33 (IL-33) has been proved to promote inflammation in our previous studies. In this research, macrophage cell line RAW264.7 was used to explore the potential mechanism of upregulation of IL-33 induced by 1,4-naphthoquinone black carbon (1,4-NQ-BC), and to explore changes of lysosomes and mitochondria during the process. RESULTS 50 μg/mL 1,4-NQ-BC exposure for 24 h dramatically increased expression of IL-33 in RAW264.7 cells. Lysosomal membrane permeability was damaged by 1,4-NQ-BC treatment, and higher mitochondrial membrane potential and ROS level were induced by 1,4-NQ-BC. The results of proteomics suggested that expression of ferritin light chain was increased after cells were challenged with 1,4-NQ-BC, and it was verified by Western blot. Meanwhile, expressions of p62 and LC3B-II were increased by 50 μg/mL 1,4-NQ-BC in RAW264.7 cells. Ultimately, expression of IL-33 could return to same level as control in cells treated with 50 μg/mL 1,4-NQ-BC and 50 μM deferoxamine combined. CONCLUSIONS 1,4-NQ-BC induces IL-33 upregulation in RAW264.7 cells, and it is responsible for higher lysosomal membrane permeability and ROS level, lower mitochondrial membrane potential, and inhibition of autophagy. Ferritin light chain possibly plays an important role in the upregulation of IL-33 evoked by 1,4-NQ-BC.
Collapse
Affiliation(s)
- Zekang Li
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Wanyu Jiang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Hongqian Chu
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, PR China; Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, PR China
| | - Jianhong Ge
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Xiaoyun Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Jianjun Jiang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Qianqian Xiao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Qinghe Meng
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Xuetao Wei
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China.
| |
Collapse
|
34
|
Ferroptosis is involved in the benzene-induced hematotoxicity in mice via iron metabolism, oxidative stress and NRF2 signaling pathway. Chem Biol Interact 2022; 362:110004. [DOI: 10.1016/j.cbi.2022.110004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/16/2022] [Accepted: 05/30/2022] [Indexed: 12/27/2022]
|
35
|
Song X, Zheng Y, Liu Y, Meng H, Yu R, Zhang C. Conversion of recombinant human ferritin light chain inclusion bodies into uniform nanoparticles in Escherichia coli for facile production. Eng Life Sci 2022; 22:453-463. [PMID: 35663479 PMCID: PMC9162929 DOI: 10.1002/elsc.202100164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 11/09/2022] Open
Abstract
Prokaryotic expression systems are widely used to produce many types of biologics because of their extreme conveniences and unmatchable cost. However, production of recombinant human ferritin light chain (rhFTL) protein is largely restrained because its expression in Escherichia coli tends to form inclusion bodies (IBs). In this study, a prokaryotic expression vector (FTL-pBV220) harboring the rhFTL gene was constructed using a pBV220 plasmid. The tag-free rhFTL was highly expressed and almost entirely converted to soluble form, and thus the rhFTL was successfully self-assembled into uniform nanoparticles in E. coli. To establish a simplified downstream process, a precipitation procedure based on the optimized incubation temperature, pH condition, and ionic strength was developed to remove impurities from the crude lysate supernatant. The rhFTL retained in the clarified supernatant was subsequently purified in a single step using Capto Butyl column resulting in a considerable recovery and high purity. The purified rhFTL was characterized and verified by mass spectrometry and spectral and morphological analyses. The results revealed that rhFTL exhibited highly ordered and fairly compact structures and the spherical structures were preserved.
Collapse
Affiliation(s)
- Xiaotong Song
- Department of BiopharmaceuticsKey Laboratory of Drug‐Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan UniversityChengduP. R. China
| | - Yongxiang Zheng
- Department of BiopharmaceuticsKey Laboratory of Drug‐Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan UniversityChengduP. R. China
| | - Yongdong Liu
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijingBeijingP. R. China
| | - Huan Meng
- Department of BiopharmaceuticsKey Laboratory of Drug‐Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan UniversityChengduP. R. China
| | - Rong Yu
- Department of BiopharmaceuticsKey Laboratory of Drug‐Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan UniversityChengduP. R. China
| | - Chun Zhang
- Department of BiopharmaceuticsKey Laboratory of Drug‐Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan UniversityChengduP. R. China
| |
Collapse
|
36
|
Ferroptosis in hematological malignancies and its potential network with abnormal tumor metabolism. Biomed Pharmacother 2022; 148:112747. [PMID: 35240523 DOI: 10.1016/j.biopha.2022.112747] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/12/2022] [Accepted: 02/21/2022] [Indexed: 12/24/2022] Open
Abstract
Ferroptosis, a new type of regulated cell death, displays characteristics that transparently differ from apoptosis, autophagy and necroptosis. There is growing appreciation that targeting ferroptosis is potentially a novel strategy in anti-tumor therapy, especially for invasive malignancies demonstrating resistance to chemotherapy. Almost all types of cancer cells depend on abnormal metabolic activities to participate in vicious progression, giving the possibility to interfere with underlying metabolic preferences and compromise malignant cells by inducing ferroptosis. In this perspective, we give an overview of potential interactions between ferroptosis and abnormal tumor metabolism, with special focus on systematic researches in hematological malignancies.
Collapse
|
37
|
Kozłowska B, Sochanowicz B, Kraj L, Palusińska M, Kołsut P, Szymański Ł, Lewicki S, Śmigielski W, Kruszewski M, Leszek P. Expression of Iron Metabolism Proteins in Patients with Chronic Heart Failure. J Clin Med 2022; 11:jcm11030837. [PMID: 35160288 PMCID: PMC8837054 DOI: 10.3390/jcm11030837] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/28/2022] [Accepted: 02/03/2022] [Indexed: 11/25/2022] Open
Abstract
In heart failure, iron deficiency is a common comorbid disease that negatively influences exercise tolerance, number of hospitalizations and mortality rate, and this is why iron iv supplementation is recommended. Little is known about the changes in iron-related proteins in the human HF myocardium. The purpose of this study was to assess iron-related proteins in non-failing (NFH) vs. failing (FH) human myocardium. The study group consisted of 58 explanted FHs; control consisted of 31 NFHs unsuitable for transplantation. Myocardial proteins expressions: divalent metal transporter (DMT-1); L-type calcium channel (L-CH); transferrin receptors (TfR-1/TfR-2); ferritins: heavy (FT-H) or light (FT-L) chain, mitochondrial (FT-MT); ferroportin (FPN), regulatory factors and oxidative stress marker: 4-hydroxynonenal (4-HNE). In FH, the expression in almost all proteins responsible for iron transport: DMT-1, TfR-1, L-CH, except TfR-2, and storage: FT-H/-L/-MT were reduced, with no changes in FPN. Moreover, 4-HNE expression (pg/mg; NFH 10.6 ± 8.4 vs. FH 55.7 ± 33.7; p < 0.0001) in FH was increased. HNE-4 significantly correlated with DMT-1 (r = −0.377, p = 0.036), L-CH (r = −0.571, p = 0.001), FT-H (r = −0.379, p = 0.036), also FPN (r = 0.422, p = 0.018). Reducing iron-gathering proteins and elevated oxidative stress in failing hearts is very unfavorable for myocardiocytes. It should be taken into consideration before treatment with drugs or supplements that elevate free oxygen radicals in the heart.
Collapse
Affiliation(s)
- Bogna Kozłowska
- Department of Heart Failure and Transplantology, The Cardinal Stefan Wyszyński National Institute of Cardiology, Alpejska 42, 04-628 Warsaw, Poland;
| | - Barbara Sochanowicz
- Centre of Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warszawa, Poland; (B.S.); (M.K.)
| | - Leszek Kraj
- Department of Oncology, Medical University of Warsaw, 01-163 Warsaw, Poland;
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Science, Postępu 36A, 05-552 Magdalenka, Poland; (M.P.); (Ł.S.); (S.L.)
| | - Małgorzata Palusińska
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Science, Postępu 36A, 05-552 Magdalenka, Poland; (M.P.); (Ł.S.); (S.L.)
| | - Piotr Kołsut
- Department of Cardiac Surgery and Transplantology, The Cardinal Stefan Wyszyński National Institute of Cardiology, Alpejska 42, 04-628 Warsaw, Poland;
| | - Łukasz Szymański
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Science, Postępu 36A, 05-552 Magdalenka, Poland; (M.P.); (Ł.S.); (S.L.)
| | - Sławomir Lewicki
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Science, Postępu 36A, 05-552 Magdalenka, Poland; (M.P.); (Ł.S.); (S.L.)
- Faculty of Medical Sciences and Health Sciences, Kazimierz Pulaski University of Technology and Humanities, 26-600 Radom, Poland
| | - Witold Śmigielski
- Department of Epidemiology, Cardiovascular Disease Prevention and Health Promotion, The Cardinal Stefan Wyszyński National Institute of Cardiology, Alpejska 42, 04-628 Warsaw, Poland;
| | - Marcin Kruszewski
- Centre of Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warszawa, Poland; (B.S.); (M.K.)
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| | - Przemysław Leszek
- Department of Heart Failure and Transplantology, The Cardinal Stefan Wyszyński National Institute of Cardiology, Alpejska 42, 04-628 Warsaw, Poland;
- Correspondence: ; Tel.: +48-22-3434-483
| |
Collapse
|
38
|
Yan C, Li M, Ma J, Liao Y, Luo H, Wang J, Luo J. A Novel Feature Selection Method Based on MRMR and Enhanced Flower Pollination Algorithm for High Dimensional Biomedical Data. Curr Bioinform 2022. [DOI: 10.2174/1574893616666210624130124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The massive amount of biomedical data accumulated in the past decades can
be utilized for diagnosing disease.
Objective:
However, the high dimensionality, small sample sizes, and irrelevant features of data often have
a negative influence on the accuracy and speed of disease prediction. Some existing machine learning
models cannot capture the patterns on these datasets accurately without utilizing feature selection.
Methods:
Filter and wrapper are two prevailing feature selection methods. The filter method is fast but
has low prediction accuracy, while the latter can obtain high accuracy but has a formidable computation
cost. Given the drawbacks of using filter or wrapper individually, a novel feature selection method,
called MRMR-EFPATS, is proposed, which hybridizes filter method Minimum Redundancy Maximum
Relevance (MRMR) and wrapper method based on an improved Flower Pollination Algorithm (FPA).
First, MRMR is employed to rank and screen out some important features quickly. These features are
further chosen for individual populations following the wrapper method for faster convergence and less
computational time. Then, due to its efficiency and flexibility, FPA is adopted to further discover an optimal
feature subset.
Result:
FPA still has some drawbacks, such as slow convergence rate, inadequacy in terms of searching
new solutions, and tends to be trapped in local optima. In our work, an elite strategy is adopted to
improve the convergence speed of the FPA. Tabu search and Adaptive Gaussian Mutation are employed
to improve the search capability of FPA and escape from local optima. Here, the KNN classifier with
the 5-fold-CV is utilized to evaluate the classification accuracy.
Conclusion:
Extensive experimental results on six public high dimensional biomedical datasets show
that the proposed MRMR-EFPATS has achieved superior performance compared to other state-of-theart
methods.
Collapse
Affiliation(s)
- Chaokun Yan
- School of Computer and Information Engineering, Henan University, Kaifeng, China
| | - Mengyuan Li
- School of Computer and Information Engineering, Henan University, Kaifeng, China
| | | | - Yi Liao
- Academy of Arts & Design, Tsinghua University, Beijing, China
| | - Huimin Luo
- School of Computer and Information Engineering, Henan University, Kaifeng, China
| | - Jianlin Wang
- School of Computer and Information Engineering, Henan University, Kaifeng, China
| | - Junwei Luo
- College of Computer Science
and Technology, Henan Polytechnic University, Jiaozuo, China
| |
Collapse
|
39
|
Zhao Y, Huang Z, Peng H. Molecular Mechanisms of Ferroptosis and Its Roles in Hematologic Malignancies. Front Oncol 2021; 11:743006. [PMID: 34778060 PMCID: PMC8582018 DOI: 10.3389/fonc.2021.743006] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/05/2021] [Indexed: 01/08/2023] Open
Abstract
Cell death is essential for the normal metabolism of human organisms. Ferroptosis is a unique regulated cell death (RCD) mode characterized by excess accumulation of iron-dependent lipid peroxide and reactive oxygen species (ROS) compared with other well-known programmed cell death modes. It has been currently recognized that ferroptosis plays a rather important role in the occurrence, development, and treatment of traumatic brain injury, stroke, acute kidney injury, liver damage, ischemia–reperfusion injury, tumor, etc. Of note, ferroptosis may be explained by the expression of various molecules and signaling components, among which iron, lipid, and amino acid metabolism are the key regulatory mechanisms of ferroptosis. Meanwhile, tumor cells of hematological malignancies, such as leukemia, lymphoma, and multiple myeloma (MM), are identified to be sensitive to ferroptosis. Targeting potential regulatory factors in the ferroptosis pathway may promote or inhibit the disease progression of these malignancies. In this review, a systematic summary was conducted on the key molecular mechanisms of ferroptosis and the current potential relationships of ferroptosis with leukemia, lymphoma, and MM. It is expected to provide novel potential therapeutic approaches and targets for hematological malignancies.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Hematology, The Second Xiangya Hospital, Hunan Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, China.,Institute of Hematology, Central South University, Changsha, China
| | - Zineng Huang
- Department of Hematology, The Second Xiangya Hospital, Hunan Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, China.,Institute of Hematology, Central South University, Changsha, China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Hunan Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, China.,Institute of Hematology, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, Changsha, China
| |
Collapse
|
40
|
Argenziano M, Tortora C, Paola AD, Pota E, Martino MD, Pinto DD, Leva CD, Rossi F. Eltrombopag and its iron chelating properties in pediatric acute myeloid leukemia. Oncotarget 2021; 12:1377-1387. [PMID: 34262648 PMCID: PMC8274721 DOI: 10.18632/oncotarget.28000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/11/2021] [Indexed: 01/08/2023] Open
Abstract
Pediatric acute myeloid leukemia (AML) represents 20% of total childhood leukemia diagnoses and is characterized by poor prognosis with a long-term survival rate around the 50%, when patients are properly treated. The standard treatment for pediatric AML currently consists in a combination of cytarabine (Ara-C) and antracycline. Iron plays an important role in cancer development and progression. Targeting iron and its metabolism mediators could be a novel therapeutic strategy in cancer.Deferasirox (DFX) inhibits cancer cell proliferation and its use as an antiblastic drug could be suggested. Eltrombopag (ELT), a thrombopoietin receptor agonist used in immunethrombocytopenia, shows anticancer properties related to its emerging iron chelating properties. We compare the anticancer effect of classically used cytarabine with DFX and ELT effects in a pediatric AML cell line, THP-1, in order to identify innovative and more effective therapeutic strategies. ELT and DFX reduce intracellular iron concentration by inhibiting its uptake and by promoting its release. In particular, even though further investigations are needed to better understand the extact underlying action mechanisms, we demonstrated that ELT improves cytarabine antineoplastic activity in pediatric AML cell line.
Collapse
Affiliation(s)
- Maura Argenziano
- Department of Woman, Child and General and Specialist Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Chiara Tortora
- Department of Woman, Child and General and Specialist Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Alessandra Di Paola
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Elvira Pota
- Department of Woman, Child and General and Specialist Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Martina Di Martino
- Department of Woman, Child and General and Specialist Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Daniela Di Pinto
- Department of Woman, Child and General and Specialist Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Caterina Di Leva
- Department of Woman, Child and General and Specialist Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Francesca Rossi
- Department of Woman, Child and General and Specialist Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| |
Collapse
|
41
|
Cao H, Zuo C, Huang Y, Zhu L, Zhao J, Yang Y, Jiang Y, Wang F. Hippocampal proteomic analysis reveals activation of necroptosis and ferroptosis in a mouse model of chronic unpredictable mild stress-induced depression. Behav Brain Res 2021; 407:113261. [PMID: 33775778 DOI: 10.1016/j.bbr.2021.113261] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/01/2021] [Accepted: 03/21/2021] [Indexed: 02/06/2023]
Abstract
Neuronal loss has been identified in depression, but its mechanisms are not fully understood. Proteomic analyses provide a novel insight to explore the potential mechanisms of such pathological alterations. In this study, mice were treated with chronic unpredictable mild stress (CUMS) for 2 months to establish depression models. The hippocampus was analyzed for proteomic patterns by mass spectrometry followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Behavioral tests showed that mice receiving CUMS showed depression-like symptoms such as anhedonia in the sucrose preference test (SPT) and behavioral despair in the forced swimming test (FST). CUMS induced anxiety-like behaviors in the open field test (OFT), but did not impair spatial learning and memory ability in the Morris water maze (MWM) test. Out of 4046 quantified proteins, 47 differentially expressed proteins were obtained between the CUMS and control groups. These proteins were functionally enriched in a series of biological processes. Among the notably enriched pathways, necroptosis and ferroptosis were significantly activated. Western blot and biochemical assay analyses identified changes in receptor-interacting protein kinase 3 (RIP3), phosphorylated mixed lineage kinase domain-like protein (p-MLKL), ferritin light chain 1 (Ftl1) and lipid peroxidation that were related to necroptosis and ferroptosis. Further, we found reduced levels of alpha-crystallin B (Cryab) and brain-derived neurotrophic factor (BDNF), which were also associated with neuronal survival. Our study highlighted that necroptosis and ferroptosis were involved in depression and partially account for neuronal loss, thereby providing potentially novel targets for the treatment of depression.
Collapse
Affiliation(s)
- Huan Cao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, Hubei, China.
| | - Chengchao Zuo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, Hubei, China.
| | - Yaqi Huang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, Hubei, China.
| | - Liudi Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, Hubei, China.
| | - Jianling Zhao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, Hubei, China.
| | - Yuyan Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, Hubei, China.
| | - Yongsheng Jiang
- Cancer Center of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, China.
| | - Furong Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, Hubei, China.
| |
Collapse
|
42
|
Récher C. Clinical Implications of Inflammation in Acute Myeloid Leukemia. Front Oncol 2021; 11:623952. [PMID: 33692956 PMCID: PMC7937902 DOI: 10.3389/fonc.2021.623952] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Recent advances in the description of the tumor microenvironment of acute myeloid leukemia, including the comprehensive analysis of the leukemic stem cell niche and clonal evolution, indicate that inflammation may play a major role in many aspects of acute myeloid leukemia (AML) such as disease progression, chemoresistance, and myelosuppression. Studies on the mechanisms of resistance to chemotherapy or tyrosine kinase inhibitors along with high-throughput drug screening have underpinned the potential role of glucocorticoids in this disease classically described as steroid-resistant in contrast to acute lymphoblastic leukemia. Moreover, some mutated oncogenes such as RUNX1, NPM1, or SRSF2 transcriptionally modulate cell state in a manner that primes leukemic cells for glucocorticoid sensitivity. In clinical practice, inflammatory markers such as serum ferritin or IL-6 have a strong prognostic impact and may directly affect disease progression, whereas interesting preliminary data suggested that dexamethasone may improve the outcome for AML patients with a high white blood cell count, which paves the way to develop prospective clinical trials that evaluate the role of glucocorticoids in AML.
Collapse
Affiliation(s)
- Christian Récher
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| |
Collapse
|
43
|
Weber S, Parmon A, Kurrle N, Schnütgen F, Serve H. The Clinical Significance of Iron Overload and Iron Metabolism in Myelodysplastic Syndrome and Acute Myeloid Leukemia. Front Immunol 2021; 11:627662. [PMID: 33679722 PMCID: PMC7933218 DOI: 10.3389/fimmu.2020.627662] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022] Open
Abstract
Myelodysplasticsyndrome (MDS) and acute myeloid leukemia (AML) are clonal hematopoietic stem cell diseases leading to an insufficient formation of functional blood cells. Disease-immanent factors as insufficient erythropoiesis and treatment-related factors as recurrent treatment with red blood cell transfusions frequently lead to systemic iron overload in MDS and AML patients. In addition, alterations of function and expression of proteins associated with iron metabolism are increasingly recognized to be pathogenetic factors and potential vulnerabilities of these diseases. Iron is known to be involved in multiple intracellular and extracellular processes. It is essential for cell metabolism as well as for cell proliferation and closely linked to the formation of reactive oxygen species. Therefore, iron can influence the course of clonal myeloid disorders, the leukemic environment and the occurrence as well as the defense of infections. Imbalances of iron homeostasis may induce cell death of normal but also of malignant cells. New potential treatment strategies utilizing the importance of the iron homeostasis include iron chelation, modulation of proteins involved in iron metabolism, induction of leukemic cell death via ferroptosis and exploitation of iron proteins for the delivery of antileukemic drugs. Here, we provide an overview of some of the latest findings about the function, the prognostic impact and potential treatment strategies of iron in patients with MDS and AML.
Collapse
Affiliation(s)
- Sarah Weber
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anastasia Parmon
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Nina Kurrle
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Frank Schnütgen
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Hubert Serve
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
44
|
Liang W, Ferrara N. Iron Metabolism in the Tumor Microenvironment: Contributions of Innate Immune Cells. Front Immunol 2021; 11:626812. [PMID: 33679721 PMCID: PMC7928394 DOI: 10.3389/fimmu.2020.626812] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/30/2020] [Indexed: 12/21/2022] Open
Abstract
Cells of the innate immune system are a major component of the tumor microenvironment. They play complex and multifaceted roles in the regulation of cancer initiation, growth, metastasis and responses to therapeutics. Innate immune cells like neutrophils and macrophages are recruited to cancerous tissues by chemotactic molecules released by cancer cells and cancer-associated stromal cells. Once they reach the tumor, they can be instructed by a network of proteins, nucleic acids and metabolites to exert protumoral or antitumoral functions. Altered iron metabolism is a feature of cancer. Epidemiological studies suggest that increased presence of iron and/or iron binding proteins is associated with increased risks of cancer development. It has been shown that iron metabolism is involved in shaping the immune landscapes in inflammatory/infectious diseases and cancer-associated inflammation. In this article, we will dissect the contribution of macrophages and neutrophils to dysregulated iron metabolism in malignant cells and its impact on cancer growth and metastasis. The mechanisms involved in regulating the actions of macrophages and neutrophils will also be discussed. Moreover, we will examine the effects of iron metabolism on the phenotypes of innate immune cells. Both iron chelating and overloading agents are being explored in cancer treatment. This review highlights alternative strategies for management of iron content in cancer cells by targeting the iron donation and modulation properties of macrophages and neutrophils in the tumor microenvironment.
Collapse
Affiliation(s)
- Wei Liang
- Oncology, BioDuro LLC, San Diego, CA, United States
| | - Napoleone Ferrara
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
45
|
Hegazy MEF, Dawood M, Mahmoud N, Elbadawi M, Sugimoto Y, Klauck SM, Mohamed N, Efferth T. 2α-Hydroxyalantolactone from Pulicaria undulata: activity against multidrug-resistant tumor cells and modes of action. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 81:153409. [PMID: 33341310 DOI: 10.1016/j.phymed.2020.153409] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Sesquiterpene lactones having α-methylene-γ-lactone moiety are promising natural metabolites showing various biological activity. One of the major metabolites isolated from Pulicaria undulata, 2α-hydroxyalantolactone (PU-1), has not been investigated in detail yet. Multidrug resistance (MDR) represents a major obstacle for cancer chemotherapy and the capability of novel natural products to overcoming MDR is of great interest. PURPOSE Exploring the molecular modes of action for potent natural product metabolites. METHODS The resazurin reduction assay was employed to evaluate the cytotoxicity of PU-1 on sensitive and their corresponding drug-resistant cell lines (overexpressing P-glycoprotein, BCRP, ABCB5, ΔEGFR, or TP53 knockout). Gene expression profiling was performed by transcriptome-wide mRNA microarray in the human CCRF-CEM leukemic cells after treatment with PU-1. The top significantly up- or down-regulated genes were identified by Chipster program and analyzed using Ingenuity Pathway Analysis (IPA) software. Finally, flow cytometry and Western blotting were performed for cell cycle analyses and apoptosis detection. RESULTS The sesquiterpene lactone, PU-1, showed potent cytotoxicity towards the drug-sensitive and -resistant cell lines. Transcriptome-wide mRNA expression profiling and pathway analysis pointed to genes involved in DNA damage response and G2/M cell cycle arrest. G2/M arrest was verified by flow cytometry and further confirmed by the upregulation of p21 and downregulation of p-CDC25C expression in Western blotting. Moreover, the suggested DNA damage checkpoint regulation was confirmed by immunofluorescence and Western blotting by upregulation of pS345 Chk1, p-H3 and γ-H2AX. Furthermore, PU-1 inhibited PI3K/AKT pathway, which is involved in signaling DNA damage and G2/M arrest. Cells ultimately induced apoptosis upon PU-1 treatment. CONCLUSIONS PU-1 is a potent natural product inhibiting otherwise drug-resistant human tumor cell growth through DNA damage, G2/M cell cycle arrest and apoptosis.
Collapse
Affiliation(s)
- Mohamed-Elamir F Hegazy
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; Phytochemistry Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - Mona Dawood
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Nuha Mahmoud
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Mohamed Elbadawi
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Yoshikazu Sugimoto
- Division of Chemotherapy, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Sabine M Klauck
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Nagla Mohamed
- Chemistry Department, Faculty of Science, Aswan University, Egypt
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
46
|
Di Sanzo M, Quaresima B, Biamonte F, Palmieri C, Faniello MC. FTH1 Pseudogenes in Cancer and Cell Metabolism. Cells 2020; 9:E2554. [PMID: 33260500 PMCID: PMC7760355 DOI: 10.3390/cells9122554] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022] Open
Abstract
Ferritin, the principal intracellular iron-storage protein localized in the cytoplasm, nucleus, and mitochondria, plays a major role in iron metabolism. The encoding ferritin genes are members of a multigene family that includes some pseudogenes. Even though pseudogenes have been initially considered as relics of ancient genes or junk DNA devoid of function, their role in controlling gene expression in normal and transformed cells has recently been re-evaluated. Numerous studies have revealed that some pseudogenes compete with their parental gene for binding to the microRNAs (miRNAs), while others generate small interference RNAs (siRNAs) to decrease functional gene expression, and still others encode functional mutated proteins. Consequently, pseudogenes can be considered as actual master regulators of numerous biological processes. Here, we provide a detailed classification and description of the structural features of the ferritin pseudogenes known to date and review the recent evidence on their mutual interrelation within the complex regulatory network of the ferritin gene family.
Collapse
Affiliation(s)
- Maddalena Di Sanzo
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (M.D.S.); (B.Q.); (F.B.)
| | - Barbara Quaresima
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (M.D.S.); (B.Q.); (F.B.)
| | - Flavia Biamonte
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (M.D.S.); (B.Q.); (F.B.)
| | - Camillo Palmieri
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (M.D.S.); (B.Q.); (F.B.)
| | - Maria Concetta Faniello
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (M.D.S.); (B.Q.); (F.B.)
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
47
|
Gurnari C, Pagliuca S, Visconte V. Deciphering the Therapeutic Resistance in Acute Myeloid Leukemia. Int J Mol Sci 2020; 21:ijms21228505. [PMID: 33198085 PMCID: PMC7697160 DOI: 10.3390/ijms21228505] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemia (AML) is a clonal hematopoietic disorder characterized by abnormal proliferation, lack of cellular differentiation, and infiltration of bone marrow, peripheral blood, or other organs. Induction failure and in general resistance to chemotherapeutic agents represent a hindrance for improving survival outcomes in AML. Here, we review the latest insights in AML biology concerning refractoriness to therapies with a specific focus on cytarabine and daunorubicin which still represent milestones agents for inducing therapeutic response and disease eradication. However, failure to achieve complete remission in AML is still high especially in elderly patients (40-60% in patients >65 years old). Several lines of basic and clinical research have been employed to improve the achievement of complete remission. These lines of research include molecular targeted therapy and more recently immunotherapy. In terms of molecular targeted therapies, specific attention is given to DNMT3A and TP53 mutant AML by reviewing the mechanisms underlying epigenetic therapies' (e.g., hypomethylating agents) resistance and providing critical points and hints for possible future therapies overcoming AML refractoriness.
Collapse
Affiliation(s)
- Carmelo Gurnari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.G.); (S.P.)
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Simona Pagliuca
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.G.); (S.P.)
| | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.G.); (S.P.)
- Correspondence: ; Tel.: +1-216-445-6895
| |
Collapse
|
48
|
Biochemistry of mammalian ferritins in the regulation of cellular iron homeostasis and oxidative responses. SCIENCE CHINA. LIFE SCIENCES 2020; 64:352-362. [PMID: 32974854 DOI: 10.1007/s11427-020-1795-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/11/2020] [Indexed: 02/08/2023]
Abstract
Ferritin, an iron-storage protein, regulates cellular iron metabolism and oxidative stress. The ferritin structure is characterized as a spherical cage, inside which large amounts of iron are deposited in a safe, compact and bioavailable form. All ferritins readily catalyze Fe(II) oxidation by peroxides at the ferroxidase center to prevent free Fe(II) from participating in oxygen free radical formation via Fenton chemistry. Thus, ferritin is generally recognized as a cytoprotective stratagem against intracellular oxidative damage The expression of cytosolic ferritins is usually regulated by iron status and oxidative stress at both the transcriptional and post-transcriptional levels. The mechanism of ferritin-mediated iron recycling is far from clarified, though nuclear receptor co-activator 4 (NCOA4) was recently identified as a cargo receptor for ferritin-based lysosomal degradation. Cytosolic ferritins are heteropolymers assembled by H- and L-chains in different proportions. The mitochondrial ferritins are homopolymers and distributed in restricted tissues. They play protective roles in mitochondria where heme- and Fe/S-enzymes are synthesized and high levels of ROS are produced. Genetic ferritin disorders are mainly related to the L-chain mutations, which generally cause severe movement diseases. This review is focused on the biochemistry and function of mammalian intracellular ferritin as the major iron-storage and anti-oxidation protein.
Collapse
|
49
|
Wu J, Xiao Y, Sun J, Sun H, Chen H, Zhu Y, Fu H, Yu C, E W, Lai S, Ma L, Li J, Fei L, Jiang M, Wang J, Ye F, Wang R, Zhou Z, Zhang G, Zhang T, Ding Q, Wang Z, Hao S, Liu L, Zheng W, He J, Huang W, Wang Y, Xie J, Li T, Cheng T, Han X, Huang H, Guo G. A single-cell survey of cellular hierarchy in acute myeloid leukemia. J Hematol Oncol 2020; 13:128. [PMID: 32977829 PMCID: PMC7517826 DOI: 10.1186/s13045-020-00941-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
Background Acute myeloid leukemia (AML) is a fatal hematopoietic malignancy and has a prognosis that varies with its genetic complexity. However, there has been no appropriate integrative analysis on the hierarchy of different AML subtypes. Methods Using Microwell-seq, a high-throughput single-cell mRNA sequencing platform, we analyzed the cellular hierarchy of bone marrow samples from 40 patients and 3 healthy donors. We also used single-cell single-molecule real-time (SMRT) sequencing to investigate the clonal heterogeneity of AML cells. Results From the integrative analysis of 191727 AML cells, we established a single-cell AML landscape and identified an AML progenitor cell cluster with novel AML markers. Patients with ribosomal protein high progenitor cells had a low remission rate. We deduced two types of AML with diverse clinical outcomes. We traced mitochondrial mutations in the AML landscape by combining Microwell-seq with SMRT sequencing. We propose the existence of a phenotypic “cancer attractor” that might help to define a common phenotype for AML progenitor cells. Finally, we explored the potential drug targets by making comparisons between the AML landscape and the Human Cell Landscape. Conclusions We identified a key AML progenitor cell cluster. A high ribosomal protein gene level indicates the poor prognosis. We deduced two types of AML and explored the potential drug targets. Our results suggest the existence of a cancer attractor.
Collapse
Affiliation(s)
- Junqing Wu
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Yanyu Xiao
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Jie Sun
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Huiyu Sun
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Haide Chen
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Yuanyuan Zhu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Huarui Fu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chengxuan Yu
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Weigao E
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Shujing Lai
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Lifeng Ma
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Jiaqi Li
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Lijiang Fei
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Mengmeng Jiang
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Jingjing Wang
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Fang Ye
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Renying Wang
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Ziming Zhou
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Guodong Zhang
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Tingyue Zhang
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Qiong Ding
- Wuhan Biobank Co., LTD, Wuhan, 430075, China
| | - Zou Wang
- Wuhan Biobank Co., LTD, Wuhan, 430075, China
| | - Sheng Hao
- Wuhan Biobank Co., LTD, Wuhan, 430075, China
| | - Lizhen Liu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Weiyan Zheng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jingsong He
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Weijia Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yungui Wang
- Institute of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jin Xie
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
| | - Tiefeng Li
- Institute of Applied Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Tao Cheng
- Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300000, China.,Alliance for Atlas of Blood Cells, Tianjin, China
| | - Xiaoping Han
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China. .,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China. .,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 311121, China.
| | - He Huang
- Institute of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China. .,Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China. .,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China. .,Alliance for Atlas of Blood Cells, Tianjin, China. .,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 311121, China.
| | - Guoji Guo
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China. .,Institute of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China. .,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China. .,Alliance for Atlas of Blood Cells, Tianjin, China. .,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 311121, China.
| |
Collapse
|
50
|
Grignano E, Birsen R, Chapuis N, Bouscary D. From Iron Chelation to Overload as a Therapeutic Strategy to Induce Ferroptosis in Leukemic Cells. Front Oncol 2020; 10:586530. [PMID: 33042852 PMCID: PMC7530268 DOI: 10.3389/fonc.2020.586530] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/18/2020] [Indexed: 12/20/2022] Open
Abstract
Despite its crucial importance in numerous physiological processes, iron also causes oxidative stress and damage which can promote the growth and proliferation of leukemic cells. Iron metabolism is strictly regulated and the related therapeutic approaches to date have been to restrict iron availability to tumor cells. However, since a new form of iron-catalyzed cell death has been described, termed ferroptosis, and subsequently better understood, iron excess is thought to represent an opportunity to selectively kill leukemic cells and spare normal hematopoietic cells, based on their differential iron needs. This review summarizes the physiology of iron metabolism and its deregulation in leukemia, the known ferrotoposis pathways, and therapeutic strategies to target the altered iron metabolism in leukemia for the purposes of initiating ferroptosis in these cancer cells.
Collapse
Affiliation(s)
- Eric Grignano
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, Paris, France.,Assistance Publique-Hôpitaux de Paris, Centre-Université de Paris, Service d'Hématologie clinique, Hôpital Cochin, Paris, France
| | - Rudy Birsen
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, Paris, France.,Assistance Publique-Hôpitaux de Paris, Centre-Université de Paris, Service d'Hématologie clinique, Hôpital Cochin, Paris, France
| | - Nicolas Chapuis
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, Paris, France.,Assistance Publique-Hôpitaux de Paris, Centre-Université de Paris, Service d'Hématologie biologique, Hôpital Cochin, Paris, France
| | - Didier Bouscary
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, Paris, France.,Assistance Publique-Hôpitaux de Paris, Centre-Université de Paris, Service d'Hématologie clinique, Hôpital Cochin, Paris, France
| |
Collapse
|