1
|
Fekrvand S, Abolhassani H, Esfahani ZH, Fard NNG, Amiri M, Salehi H, Almasi-Hashiani A, Saeedi-Boroujeni A, Fathi N, Mohtashami M, Razavi A, Heidari A, Azizi G, Khanmohammadi S, Ahangarzadeh M, Saleki K, Hassanpour G, Rezaei N, Yazdani R. Cancer Trends in Inborn Errors of Immunity: A Systematic Review and Meta-Analysis. J Clin Immunol 2024; 45:34. [PMID: 39466473 DOI: 10.1007/s10875-024-01810-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/16/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Patients with inborn errors of immunity (IEI) are susceptible to developing cancer due to defects in the immune system. The prevalence of cancer is higher in IEI patients compared to the immunocompetent population and cancers are considered as an important and common cause of death in IEI patients. OBJECTIVES To systematically review demographic, genetic and cancer-related data of IEI patients with a history of malignancy. Moreover, we performed a meta-analysis aiming to determine the frequency of cancer in patients with different types of IEI. METHODS We conducted electronic searches on Embase, Web of Science, PubMed, and Scopus (until September 2023) introducing terms related to IEI and cancer. Studies with human subjects with confirmed IEI who had developed at least one malignancy during their lifetime were included. RESULTS A total number of 4607 IEI patients with a cancer history were included in the present study. Common variable immunodeficiency (CVID) had the highest number of reported cases (1284 cases), mainly due to a higher relative proportion of patients with predominantly antibody deficiencies (PAD) and their increased life expectancy contributing to the higher detection and reporting of cancers among these patients. The most common malignancy was hematologic/blood cancers (3026 cases, mainly diffuse large B cell lymphoma). A total number of 1173 cases (55.6%) succumbed to cancer, with the highest rate of bone marrow failure (64.9%). Among the patients with monogenic defects in IEI-associated genes, the majority of cases had ATM deficiency (926 cases), but the highest cancer frequency rate belonged to NBS1 deficiency (50.5%). 1928 cases out of total 4607 eligible cases had detailed data to allow further statistical analysis that revealed BRCA2 deficiency had the earliest cancer development (~ 38 months), lowest cure frequency, and highest fatality rate (85%), while ATM deficiency had the lowest cure frequency and highest fatality rate (72%) among total cases reviewed with exclusion of Fanconi anemia. CONCLUSION The overall reported cancer frequency in the cases reviewed with and without exclusion of Fanconi anemia was 11.1% (95% confidence interval: 9.8-12.5%) and 12.0% (95% confidence interval: 10.6-13.5%), respectively. Our study revealed that the incidence of cancer is significantly dependent on the molecular and pathway defects in IEI patients, and individualized early screening and appropriate treatment, might improve the prognosis of these patients.
Collapse
Affiliation(s)
- Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Karolinska University Hospital, Stockholm, Huddinge, Sweden
| | - Zahra Hamidi Esfahani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Najmeh Nameh Goshay Fard
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahboube Amiri
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Helia Salehi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Almasi-Hashiani
- Department of Epidemiology, School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Ali Saeedi-Boroujeni
- Department of Basic Medical Sciences, Faculty of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | - Nazanin Fathi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Mohtashami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Azadehsadat Razavi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Arash Heidari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gholamreza Azizi
- Noncommunicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Shaghayegh Khanmohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Milad Ahangarzadeh
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Department of E-Learning, Virtual School of Medical Education and Management, Shahid Beheshti University of MedicalSciences (SBMU), Tehran, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Gholamreza Hassanpour
- Center for Research of Endemic Parasites of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
2
|
Sharma S, Goyal T, Chawla S, Nadig PL, Bhodiakhera A, Jindal AK, Pilania RK, Dhaliwal M, Rawat A, Singh S. Cross-talk between immune cells and tumor cells in non-Hodgkin lymphomas arising in common variable immunodeficiency. Expert Rev Clin Immunol 2024:1-10. [PMID: 39206944 DOI: 10.1080/1744666x.2024.2398546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/30/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION CVID is the commonest and most symptomatic primary immune deficiency of adulthood. NHLs are the most prevalent malignancies in CVID. The cross-talk between tumor cells and immune cells may be an important risk factor in lymphomagenesis. AREAS COVERED The present review highlights immune cell, genetic and histopathological alterations in the CVID-associated NHLs. EXPERT OPINION CVID patients exhibit some notable immune defects that may predispose to lymphomas. T/NK cell defects including reduced T cells, naïve CD4+T cells, T regs, and Th17 cells, increased CD8+T cells with reduced T cell proliferative and cytokine responses and reduced iNKT and NK cell count and cytotoxicity. B cell defects include increased transitional and CD21low B cells, clonal IgH gene rearrangements, and increased BCMA levels. Increase in IL-9, sCD30 levels, and upregulation of BAFF-BAFFR signaling are associated with lymphomas in CVID. Increased expression of PFTK1, duplication of ORC4L, germline defects in TACI, NFKB1, and PIK3CD, and somatic mutations in NOTCH2 and MYD88 are reported in CVID-associated lymphomas. Upregulation of PD-L1-PD-1 pathway may also promote lymphomagenesis in CVID. These abnormalities need to be explored as prognostic or predictive markers of CVID-associated NHLs by large multicentric studies.
Collapse
Affiliation(s)
- Saniya Sharma
- Department of Pediatrics (Allergy & Immunology Unit), Postgraduate Institute of Medical Education and Research, PGIMER, Chandigarh, India
| | - Taru Goyal
- Department of Pediatrics (Allergy & Immunology Unit), Postgraduate Institute of Medical Education and Research, PGIMER, Chandigarh, India
| | - Sanchi Chawla
- Department of Pediatrics (Allergy & Immunology Unit), Postgraduate Institute of Medical Education and Research, PGIMER, Chandigarh, India
| | - Pallavi L Nadig
- Department of Pediatrics (Allergy & Immunology Unit), Postgraduate Institute of Medical Education and Research, PGIMER, Chandigarh, India
| | - Arjun Bhodiakhera
- Department of Pediatrics (Allergy & Immunology Unit), Postgraduate Institute of Medical Education and Research, PGIMER, Chandigarh, India
| | - Ankur Kumar Jindal
- Department of Pediatrics (Allergy & Immunology Unit), Postgraduate Institute of Medical Education and Research, PGIMER, Chandigarh, India
| | - Rakesh Kumar Pilania
- Department of Pediatrics (Allergy & Immunology Unit), Postgraduate Institute of Medical Education and Research, PGIMER, Chandigarh, India
| | - Manpreet Dhaliwal
- Department of Pediatrics (Allergy & Immunology Unit), Postgraduate Institute of Medical Education and Research, PGIMER, Chandigarh, India
| | - Amit Rawat
- Department of Pediatrics (Allergy & Immunology Unit), Postgraduate Institute of Medical Education and Research, PGIMER, Chandigarh, India
| | - Surjit Singh
- Department of Pediatrics (Allergy & Immunology Unit), Postgraduate Institute of Medical Education and Research, PGIMER, Chandigarh, India
| |
Collapse
|
3
|
Cheng J, Dávila Saldaña BJ, Chandrakasan S, Keller M. Pediatric lymphoproliferative disorders associated with inborn errors of immunity. Clin Immunol 2024; 266:110332. [PMID: 39069111 DOI: 10.1016/j.clim.2024.110332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Both non-malignant and malignant lymphoproliferative disorders (LPD) are commonly seen in patients with inborn errors of immunity (IEI), which may be the presenting manifestations or may develop during the IEI disease course. Here we review the clinical, histopathological, and molecular features of benign and malignant LPD associated with IEI and recognize the diagnostic challenges.
Collapse
Affiliation(s)
- Jinjun Cheng
- Department of Pathology and Laboratory Medicine, Children's National Hospital, Washington, DC, United States of America; Centers for Cancer & Blood Disorders and Cancer & Immunology Research, Children's National Hospital, Washington, DC, United States of America; The George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America.
| | - Blachy J Dávila Saldaña
- Centers for Cancer & Blood Disorders and Cancer & Immunology Research, Children's National Hospital, Washington, DC, United States of America; The George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America
| | - Shanmuganathan Chandrakasan
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, United States of America
| | - Michael Keller
- Centers for Cancer & Blood Disorders and Cancer & Immunology Research, Children's National Hospital, Washington, DC, United States of America; The George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America
| |
Collapse
|
4
|
Ochfeld E, Khojah A, Marin W, Morgan G, Pachman LM. Proof-of-concept study evaluating humoral primary immunodeficiencies via CJ:KREC ratio and serum BAFF level. Sci Rep 2024; 14:14356. [PMID: 38906917 PMCID: PMC11192915 DOI: 10.1038/s41598-024-64942-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/14/2024] [Indexed: 06/23/2024] Open
Abstract
Humoral primary immunodeficiencies are the most prevalent form of primary immunodeficiency (PID). Currently, there is no convenient method to quantify newly formed B cells. The aim of this proof-of-concept study was to quantitate the ratio of coding joints (CJs) to Kappa-deleting recombination excision circles (KRECs) and serum B cell activating factor (BAFF) in patients with humoral primary immunodeficiency and assess if they correlate with disease severity. This IRB-approved study was conducted at one academic children's hospital. Patients with humoral PIDs and healthy controls were included. CJ and KREC levels were measured via qPCR. Serum BAFF levels were measured using Mesoscale. 16 patients with humoral PID and 5 healthy controls were included. The mean CJ:KREC ratio in the CVID, antibody deficiency syndromes, and controls groups, respectively were 13.04 ± 9.5, 5.25 ± 4.1, and 4.38 ± 2.5 (p = 0.059). The mean serum BAFF levels in CVID, antibody deficiency syndromes and controls were 216.3 ± 290 pg/mL, 107.9 ± 94 pg/mL and 50.9 ± 12 pg/mL, respectively (p = 0.271). When the CVID patients were subdivided into CVID with or without lymphoproliferative features, the BAFF level was substantially higher in the CVID with lymphoproliferation cohort (mean 372.4 ± 361 pg/mL, p = 0.031). Elevated CJ:KREC ratio was observed in CVID, although statistical significance was not achieved, likely due to the small sample size. Serum BAFF levels were significantly higher in CVID patients with lymphoproliferative features. We speculate that the CJ:KREC ratio and serum BAFF levels can be utilized in patients with humoral PID, once more extensive studies confirm this exploratory investigation.
Collapse
Affiliation(s)
- Elisa Ochfeld
- Pediatric Allergy-Immunology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Pediatric Allergy-Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Amer Khojah
- Department of Pediatrics, College of Medicine, Umm Al-Qura University, Al-Abdiyyah campus, Taif road, 21955, Makkah, Saudi Arabia.
| | - Wilfredo Marin
- Division of Pediatric Rheumatology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Gabrielle Morgan
- Division of Pediatric Rheumatology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Lauren M Pachman
- Division of Pediatric Rheumatology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
5
|
Cunningham-Rundles C, Casanova JL, Boisson B. Genetics and clinical phenotypes in common variable immunodeficiency. Front Genet 2024; 14:1272912. [PMID: 38274105 PMCID: PMC10808799 DOI: 10.3389/fgene.2023.1272912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/09/2023] [Indexed: 01/27/2024] Open
Abstract
Common variable immunodeficiency (CVID) is one of the most common symptomatic groups of inborn errors of immunity. In addition to infections resulting from insufficient levels of immune globulins and antibodies, many patients develop inflammatory or autoimmune conditions, which are associated with increased mortality. This aspect of CVID has been the focus of many studies, and dissecting the clinical phenotypes of CVID, has had the goal of providing biomarkers to identify these subjects, potentially at the time of diagnosis. With the application of whole exome (WES) and whole genome analyses, an increasing number of monogenic causes of CVID have been elucidated. From the standpoint of the practicing physician, an important question is whether the clinical phenotype, particularly the occurrence of autoinflammation of autoimmunity, might suggest the likelihood of identifying a causative mutation, and if possible the gene most likely to underlie CVID. We addressed this question in a patient group of 405 subjects diagnosed with CVID from one medical center.
Collapse
Affiliation(s)
- Charlotte Cunningham-Rundles
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Division of Clinical Immunology, Departments of Medicine and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, United States
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Paris Cité Université, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY, United States
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, United States
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Paris Cité Université, Imagine Institute, Paris, France
| |
Collapse
|
6
|
Fevang B. Treatment of inflammatory complications in common variable immunodeficiency (CVID): current concepts and future perspectives. Expert Rev Clin Immunol 2023; 19:627-638. [PMID: 36996348 DOI: 10.1080/1744666x.2023.2198208] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
INTRODUCTION Patients with Common variable immunodeficiency (CVID) have a high frequency of inflammatory complications like autoimmune cytopenias, interstitial lung disease and enteropathy. These patients have poor prognosis and effective, timely and safe treatment of inflammatory complications in CVID are essential, but guidelines and consensus on therapy are often lacking. AREAS COVERED This review will focus on current medical treatment of inflammatory complications in CVID and point out some future perspectives based on literature indexed in PubMed. There are a number of good observational studies and case reports on treatment of specific complications but randomized controlled trials are scarce. EXPERT OPINION In clinical practice, the most urgent issues that need to be addressed are the preferred treatment of GLILD, enteropathy and liver disease. Treating the underlying immune dysregulation and immune exhaustion in CVID is an alternative approach that potentially could alleviate these and other organ-specific inflammatory complications. Therapies of potential interest and wider use in CVID include mTOR-inhibitors like sirolimus, JAK-inhibitors like tofacitinib, the monoclonal IL-12/23 antibody ustekinumab, the anti-BAFF antibody belimumab and abatacept. For all inflammatory complications, there is a need for prospective therapeutic trials, preferably randomized controlled trials, and multi-center collaborations with larger cohorts of patients will be essential.
Collapse
Affiliation(s)
- Børre Fevang
- Centre for Rare Disorders, Oslo University Hospital, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Oslo, Norway
- Research Institute for Internal Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
7
|
Allain V, Grandin V, Meignin V, Bertinchamp R, Boutboul D, Fieschi C, Galicier L, Gérard L, Malphettes M, Bustamante J, Fusaro M, Lambert N, Rosain J, Lenoir C, Kracker S, Rieux-Laucat F, Latour S, de Villartay JP, Picard C, Oksenhendler E. Lymphoma as an Exclusion Criteria for CVID Diagnosis Revisited. J Clin Immunol 2023; 43:181-191. [PMID: 36155879 DOI: 10.1007/s10875-022-01368-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/14/2022] [Indexed: 01/18/2023]
Abstract
PURPOSE Hypogammaglobulinemia in a context of lymphoma is usually considered as secondary and prior lymphoma remains an exclusion criterion for a common variable immunodeficiency (CVID) diagnosis. We hypothesized that lymphoma could be the revealing symptom of an underlying primary immunodeficiency (PID), challenging the distinction between primary and secondary hypogammaglobulinemia. METHODS Within a French cohort of adult patients with hypogammaglobulinemia, patients who developed a lymphoma either during follow-up or before the diagnosis of hypogammaglobulinemia were identified. These two chronology groups were then compared. For patients without previous genetic diagnosis, a targeted next-generation sequencing of 300 PID-associated genes was performed. RESULTS A total of forty-seven patients had developed 54 distinct lymphomas: non-Hodgkin B cell lymphoma (67%), Hodgkin lymphoma (26%), and T cell lymphoma (7%). In 25 patients, lymphoma developed prior to the diagnosis of hypogammaglobulinemia. In this group of patients, Hodgkin lymphoma was overrepresented compared to the group of patients in whom lymphoma occurred during follow-up (48% versus 9%), whereas MALT lymphoma was absent (0 versus 32%). Despite the histopathological differences, both groups presented with similar characteristics in terms of age at hypogammaglobulinemia diagnosis, consanguinity rate, or severe T cell defect. Overall, genetic analyses identified a molecular diagnosis in 10/47 patients (21%), distributed in both groups and without peculiar gene recurrence. Most of these patients presented with a late onset combined immunodeficiency (LOCID) phenotype. CONCLUSION Prior or concomitant lymphoma should not be used as an exclusion criteria for CVID diagnosis, and these patients should be investigated accordingly.
Collapse
Affiliation(s)
- Vincent Allain
- University of Paris, Paris, France.,Department of Clinical Immunology, Saint-Louis Hospital, AP-HP, 1 avenue Claude Vellefaux, 75010, Paris, France
| | - Virginie Grandin
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France
| | | | - Rémi Bertinchamp
- Department of Clinical Immunology, Saint-Louis Hospital, AP-HP, 1 avenue Claude Vellefaux, 75010, Paris, France
| | - David Boutboul
- University of Paris, Paris, France.,Department of Clinical Immunology, Saint-Louis Hospital, AP-HP, 1 avenue Claude Vellefaux, 75010, Paris, France.,Centre de Référence Des Déficits Immunitaires Héréditaires (CEREDIH), Paris, France
| | - Claire Fieschi
- University of Paris, Paris, France.,Department of Clinical Immunology, Saint-Louis Hospital, AP-HP, 1 avenue Claude Vellefaux, 75010, Paris, France.,Centre de Référence Des Déficits Immunitaires Héréditaires (CEREDIH), Paris, France
| | - Lionel Galicier
- Department of Clinical Immunology, Saint-Louis Hospital, AP-HP, 1 avenue Claude Vellefaux, 75010, Paris, France.,Centre de Référence Des Déficits Immunitaires Héréditaires (CEREDIH), Paris, France
| | - Laurence Gérard
- Department of Clinical Immunology, Saint-Louis Hospital, AP-HP, 1 avenue Claude Vellefaux, 75010, Paris, France.,Centre de Référence Des Déficits Immunitaires Héréditaires (CEREDIH), Paris, France
| | - Marion Malphettes
- Department of Clinical Immunology, Saint-Louis Hospital, AP-HP, 1 avenue Claude Vellefaux, 75010, Paris, France.,Centre de Référence Des Déficits Immunitaires Héréditaires (CEREDIH), Paris, France
| | - Jacinta Bustamante
- University of Paris, Paris, France.,Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France.,Centre de Référence Des Déficits Immunitaires Héréditaires (CEREDIH), Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Necker Hospital for Sick Children, Paris, France.,St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Mathieu Fusaro
- University of Paris, Paris, France.,Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Nathalie Lambert
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Jérémie Rosain
- University of Paris, Paris, France.,Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Christelle Lenoir
- University of Paris, Paris, France.,Laboratory of Lymphocyte Activation and Susceptibility to EBV, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Sven Kracker
- University of Paris, Paris, France.,Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Frédéric Rieux-Laucat
- University of Paris, Paris, France.,Imagine Institute, INSERM UMR 1163, Paris, France
| | - Sylvain Latour
- University of Paris, Paris, France.,Laboratory of Lymphocyte Activation and Susceptibility to EBV, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Jean-Pierre de Villartay
- University of Paris, Paris, France.,Laboratory "Genome Dynamics in the Immune System," INSERM UMR 1163, Imagine Institute, Paris, France
| | - Capucine Picard
- University of Paris, Paris, France.,Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France.,Centre de Référence Des Déficits Immunitaires Héréditaires (CEREDIH), Paris, France.,Laboratory of Lymphocyte Activation and Susceptibility to EBV, INSERM UMR 1163, Imagine Institute, Paris, France.,Immuno-Hematology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Eric Oksenhendler
- University of Paris, Paris, France. .,Department of Clinical Immunology, Saint-Louis Hospital, AP-HP, 1 avenue Claude Vellefaux, 75010, Paris, France. .,Centre de Référence Des Déficits Immunitaires Héréditaires (CEREDIH), Paris, France.
| |
Collapse
|
8
|
Skin Manifestations in Patients with Selective Immunoglobulin E Deficiency. J Clin Med 2022; 11:jcm11226795. [PMID: 36431272 PMCID: PMC9694019 DOI: 10.3390/jcm11226795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022] Open
Abstract
Selective immunoglobulin E deficiency (SIgED) is still an unrecognised primary immunodeficiency despite several observations supporting its existence. This study aimed to describe the skin manifestations associated with SIgED. We retrospectively assessed medical records of patients with SIgED, the diagnosis being based on serum IgE levels ≤2 Uk/L associated with normal serum levels of immunoglobulins G, M, and A. A total of 25 patients (24 female) with SIgED were included in the study. Eleven patients (44%) presented chronic spontaneous urticaria (CSU), five (20%) angioedema always associated with CSU, five erythema (20%), and six eczema (24%). Other, less frequent manifestations were lichen planus, anaphylactoid purpura, thrombocytopenic purpura, bullous pemphigoid, bullous pyoderma gangrenosum, and atypical skin lymphoproliferative infiltrate associated with reactive lymphadenopathy, chronic cholestasis, arthritis, and fibrosing mediastinitis. Fifteen patients (60%) had different types of associated autoimmune diseases, Hashimoto's thyroiditis being the most frequent (n = 5, 20%), followed by arthritis (n = 4, 16%), autoimmune hepatitis, neutropenia, vitiligo, and Sjögren's syndrome (n = 2, 8% each). Five malignancies were diagnosed in four patients (16%). An ultralow IgE serum level may be the only biomarker that reveals the presence of a dysregulated immune system in patients with a broad spectrum of skin manifestations.
Collapse
|
9
|
Ho HE, Cunningham-Rundles C. Seeking Relevant Biomarkers in Common Variable Immunodeficiency. Front Immunol 2022; 13:857050. [PMID: 35359997 PMCID: PMC8962738 DOI: 10.3389/fimmu.2022.857050] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
Common variable immunodeficiency (CVID) is the most common symptomatic form of primary immunodeficiency. More than 50% of patients in some series suffer from autoimmune or inflammatory complications (the "CVID+" phenotype), and these are not adequately addressed by current treatments. Despite major advancements in genetics, the pathogenesis of the CVID+ phenotype has remained unexplained for most patients, necessitating the need for relevant biomarkers in both the clinic and research settings. In the clinics, reduced isotype-switched memory B cells (≤ 0.55% of B cells) and reduced T cells (CD4) can be utilized to identify those with increased complication risks. Additionally, condition-specific markers have also been suggested for lymphoma (normal or elevated IgM) and progressive interstitial lung disease (increased BAFF, normal or elevated IgM). Additional biomarkers have provided insights into disease pathogenesis, demonstrating wider systemic inflammation (increased LBP, sCD14, and sCD25; expanded ILC3), mucosal defects (increased zonulin, I-FABP), and perhaps reduced anti-inflammatory capability (reduced HDL) in CVID. Most recently, efforts have revealed elevated circulating bioactive bacterial DNA levels - marking microbial translocation and potentially linking the causation of multiple inflammatory changes previously observed in CVID. The implementation of high throughput profiling techniques may accelerate the search of relevant biomarker profiles in CVID and lead to better clinical risk stratification, revealing disease insights, and identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Hsi-en Ho
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Charlotte Cunningham-Rundles
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
10
|
Krtinić D, Stojanović M. Clinical and laboratory parameter analysis in patients with common Variable Immunodeficiency. MEDICINSKI PODMLADAK 2022. [DOI: 10.5937/mp73-38819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
Introduction: Common Variable Immunodeficiency (CVID) is the most prevalent primary immunodeficiency in adult population. The diagnosis is based on low concentration of at least 2 immunoglobulin classes, mostly IgG, with low IgA and/or IgM. Beside recurrent infections, patients with CVID usually suffer from different respiratory, gastrointestinal, autoimmune and malignant diseases. Leading therapeutic approach to managing CVID is regular intravenous (IVIG) and subcutaneous (SCIG) immunoglobulin replacement therapy. Aim: The aim of the study was to analyze clinical and laboratory parameters in patients with CVID. Material and methods: The present study included 24 patients with CVID who were treated at Clinic of Allergy and Immunology, University Clinical Center of Serbia from 2012 to 2022. Demographic data, clinical and laboratory parameters were obtained from the patients' medical records. The concentrations of IgG, IgM and IgA were measured by nephelometry. Statistical analysis was performed using descriptive methods, Student t test for independent samples and Fisher exact test. Results: Respiratory manifestations were found in 70.8% of patients, gastrointestinal in 45.8%, autoimmune in 29.2% and malignancies in 20.8%. The presence of autoimmune diseases was the most common within the patients aged between 20 to 30 years, and it was statistically significantly higher comparing to other age groups (p = 0.014). Serum IgG concentration of 7.6 ± 2.7 g/l was measured. Statistically significantly higher IgG concentrations were observed in patients receiving SCIG (10.2 ± 1.6), compared to those receiving IVIG (6.7 ± 2.4) (t = -3.3, p = 0.003). Premedication was required in 44.4% of patients receiving IVIG. Conclusion: The most common complication of CVID are chronic lung diseases. Autoimmune diseases are the most frequently diagnosed in patients between the ages of 20 and 30. The use of SCIG is identified as better form of immunoglobulin replacement therapy. Total immunoglobulin serum concentration measuring in patients with recurrent infections and autoimmune diseases can contribute to timely diagnosis.
Collapse
|