1
|
Terauchi A, Johnson-Venkatesh EM, Umemori H. Establishing functionally segregated dopaminergic circuits. Trends Neurosci 2025; 48:156-170. [PMID: 39863490 DOI: 10.1016/j.tins.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/04/2024] [Accepted: 12/09/2024] [Indexed: 01/27/2025]
Abstract
Despite accounting for only ~0.001% of all neurons in the human brain, midbrain dopaminergic neurons control numerous behaviors and are associated with many neuropsychiatric disorders that affect our physical and mental health. Dopaminergic neurons form various anatomically and functionally segregated pathways. Having such defined dopaminergic pathways is key to controlling varied sets of brain functions; therefore, segregated dopaminergic pathways must be properly and uniquely formed during development. How are these segregated pathways established? The three key developmental stages that dopaminergic neurons go through are cell migration, axon guidance, and synapse formation. In each stage, dopaminergic neurons and their processes receive unique molecular cues to guide the formation of specific dopaminergic pathways. Here, we outline the molecular mechanisms underlying the establishment of segregated dopaminergic pathways during each developmental stage in the mouse brain, focusing on the formation of the three major dopaminergic pathways: the nigrostriatal, mesolimbic, and mesocortical pathways. We propose that multiple stage-specific molecular gradients cooperate to establish functionally segregated dopaminergic circuits.
Collapse
Affiliation(s)
- Akiko Terauchi
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Erin M Johnson-Venkatesh
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hisashi Umemori
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Hoops D, Kyne R, Salameh S, MacGowan D, Avramescu RG, Ewing E, He AT, Orsini T, Durand A, Popescu C, Zhao JM, Shatz K, Li L, Carroll Q, Liu G, Paul MJ, Flores C. The scheduling of adolescence with Netrin-1 and UNC5C. eLife 2024; 12:RP88261. [PMID: 39056276 PMCID: PMC11281785 DOI: 10.7554/elife.88261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
Dopamine axons are the only axons known to grow during adolescence. Here, using rodent models, we examined how two proteins, Netrin-1 and its receptor, UNC5C, guide dopamine axons toward the prefrontal cortex and shape behaviour. We demonstrate in mice (Mus musculus) that dopamine axons reach the cortex through a transient gradient of Netrin-1-expressing cells - disrupting this gradient reroutes axons away from their target. Using a seasonal model (Siberian hamsters; Phodopus sungorus) we find that mesocortical dopamine development can be regulated by a natural environmental cue (daylength) in a sexually dimorphic manner - delayed in males, but advanced in females. The timings of dopamine axon growth and UNC5C expression are always phase-locked. Adolescence is an ill-defined, transitional period; we pinpoint neurodevelopmental markers underlying this period.
Collapse
Affiliation(s)
- Daniel Hoops
- Department of Psychiatry, McGill UniversityMontréalCanada
- Douglas Mental Health University InstituteMontréalCanada
| | - Robert Kyne
- Neuroscience Program, University at BuffaloSUNYUnited States
| | - Samer Salameh
- Douglas Mental Health University InstituteMontréalCanada
- Integrated Program in Neuroscience, McGill UniversityMontrealCanada
| | - Del MacGowan
- Douglas Mental Health University InstituteMontréalCanada
- Integrated Program in Neuroscience, McGill UniversityMontrealCanada
| | - Radu Gabriel Avramescu
- Department of Psychiatry, McGill UniversityMontréalCanada
- Douglas Mental Health University InstituteMontréalCanada
| | - Elise Ewing
- Douglas Mental Health University InstituteMontréalCanada
- Integrated Program in Neuroscience, McGill UniversityMontrealCanada
| | - Alina Tao He
- Douglas Mental Health University InstituteMontréalCanada
- Integrated Program in Neuroscience, McGill UniversityMontrealCanada
| | - Taylor Orsini
- Douglas Mental Health University InstituteMontréalCanada
- Integrated Program in Neuroscience, McGill UniversityMontrealCanada
| | - Anais Durand
- Douglas Mental Health University InstituteMontréalCanada
- Integrated Program in Neuroscience, McGill UniversityMontrealCanada
| | - Christina Popescu
- Douglas Mental Health University InstituteMontréalCanada
- Integrated Program in Neuroscience, McGill UniversityMontrealCanada
| | - Janet Mengyi Zhao
- Douglas Mental Health University InstituteMontréalCanada
- Integrated Program in Neuroscience, McGill UniversityMontrealCanada
| | - Kelcie Shatz
- Department of Psychology, University at BuffaloSUNYUnited States
| | - LiPing Li
- Department of Psychology, University at BuffaloSUNYUnited States
| | - Quinn Carroll
- Department of Psychology, University at BuffaloSUNYUnited States
| | - Guofa Liu
- Department of Biological Sciences, University of ToledoToledoUnited States
| | - Matthew J Paul
- Neuroscience Program, University at BuffaloSUNYUnited States
- Department of Psychology, University at BuffaloSUNYUnited States
| | - Cecilia Flores
- Department of Psychiatry, McGill UniversityMontréalCanada
- Douglas Mental Health University InstituteMontréalCanada
- Department of Neurology and Neurosurgery, McGill UniversityMontréalCanada
- Ludmer Centre for Neuroinformatics & Mental Health, McGill UniversityMontréalCanada
| |
Collapse
|
3
|
Treccarichi S, Failla P, Vinci M, Musumeci A, Gloria A, Vasta A, Calabrese G, Papa C, Federico C, Saccone S, Calì F. UNC5C: Novel Gene Associated with Psychiatric Disorders Impacts Dysregulation of Axon Guidance Pathways. Genes (Basel) 2024; 15:306. [PMID: 38540364 PMCID: PMC10970690 DOI: 10.3390/genes15030306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 06/14/2024] Open
Abstract
The UNC-5 family of netrin receptor genes, predominantly expressed in brain tissues, plays a pivotal role in various neuronal processes. Mutations in genes involved in axon development contribute to a wide spectrum of human diseases, including developmental, neuropsychiatric, and neurodegenerative disorders. The NTN1/DCC signaling pathway, interacting with UNC5C, plays a crucial role in central nervous system axon guidance and has been associated with psychiatric disorders during adolescence in humans. Whole-exome sequencing analysis unveiled two compound heterozygous causative mutations within the UNC5C gene in a patient diagnosed with psychiatric disorders. In silico analysis demonstrated that neither of the observed variants affected the allosteric linkage between UNC5C and NTN1. In fact, these mutations are located within crucial cytoplasmic domains, specifically ZU5 and the region required for the netrin-mediated axon repulsion of neuronal growth cones. These domains play a critical role in forming the supramodular protein structure and directly interact with microtubules, thereby ensuring the functionality of the axon repulsion process. We emphasize that these mutations disrupt the aforementioned processes, thereby associating the UNC5C gene with psychiatric disorders for the first time and expanding the number of genes related to psychiatric disorders. Further research is required to validate the correlation of the UNC5C gene with psychiatric disorders, but we suggest including it in the genetic analysis of patients with psychiatric disorders.
Collapse
Affiliation(s)
- Simone Treccarichi
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (P.F.); (M.V.); (A.M.); (A.G.); (A.V.); (G.C.); (C.P.); (F.C.)
| | - Pinella Failla
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (P.F.); (M.V.); (A.M.); (A.G.); (A.V.); (G.C.); (C.P.); (F.C.)
| | - Mirella Vinci
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (P.F.); (M.V.); (A.M.); (A.G.); (A.V.); (G.C.); (C.P.); (F.C.)
| | - Antonino Musumeci
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (P.F.); (M.V.); (A.M.); (A.G.); (A.V.); (G.C.); (C.P.); (F.C.)
| | - Angelo Gloria
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (P.F.); (M.V.); (A.M.); (A.G.); (A.V.); (G.C.); (C.P.); (F.C.)
| | - Anna Vasta
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (P.F.); (M.V.); (A.M.); (A.G.); (A.V.); (G.C.); (C.P.); (F.C.)
| | - Giuseppe Calabrese
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (P.F.); (M.V.); (A.M.); (A.G.); (A.V.); (G.C.); (C.P.); (F.C.)
| | - Carla Papa
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (P.F.); (M.V.); (A.M.); (A.G.); (A.V.); (G.C.); (C.P.); (F.C.)
| | - Concetta Federico
- Department Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy;
| | - Salvatore Saccone
- Department Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy;
| | - Francesco Calì
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (P.F.); (M.V.); (A.M.); (A.G.); (A.V.); (G.C.); (C.P.); (F.C.)
| |
Collapse
|
4
|
Chen G, Ahn EH, Kang SS, Xia Y, Liu X, Zhang Z, Ye K. UNC5C Receptor Proteolytic Cleavage by Active AEP Promotes Dopaminergic Neuronal Degeneration in Parkinson's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103396. [PMID: 35023303 PMCID: PMC8895126 DOI: 10.1002/advs.202103396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Netrin-1 is a chemotropic cue mediating axon growth and neural migration in neuronal development, and its receptors deletion in colorectal cancer and UNC5s act as dependence receptors regulating neuronal apoptosis. Asparagine endopeptidase (AEP) is an age-dependent protease that cuts human alpha-synuclein (α-Syn) at N103 and triggers its aggregation and neurotoxicity. In the current study, it is reported that UNC5C receptor is cleaved by AEP in Parkinson's disease (PD) and facilitates dopaminergic neuronal loss. UNC5C is truncated by active AEP in human α-SNCA transgenic mice in an age-dependent manner or induced by neurotoxin rotenone. Moreover, UNC5C is fragmented by AEP in PD brains, inversely correlated with reduced netrin-1 levels. Netrin-1 deprivation in primary cultures induces AEP and caspase-3 activation, triggering UNC5C proteolytic fragmentation and enhancing neuronal loss. Noticeably, blocking UNC5C cleavage by AEP attenuates netrin-1 deprivation-elicited neuronal death and motor disorders in netrin flox/flox mice. Overexpression of AEP-truncated UNC5C intracellular fragment strongly elicits α-Syn aggregation and dopaminergic loss, locomotor deficits in α-SNCA transgenic mice. Hence, the findings demonstrate that netrin-1 reduction and UNC5C truncation by AEP contribute to PD pathogenesis.
Collapse
Affiliation(s)
- Guiqin Chen
- Department of Pathology and Laboratory MedicineEmory University School of MedicineAtlantaGA30322USA
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanHubei Province430060China
| | - Eun Hee Ahn
- Department of Pathology and Laboratory MedicineEmory University School of MedicineAtlantaGA30322USA
| | - Seong Su Kang
- Department of Pathology and Laboratory MedicineEmory University School of MedicineAtlantaGA30322USA
| | - Yiyuan Xia
- Department of Pathology and Laboratory MedicineEmory University School of MedicineAtlantaGA30322USA
| | - Xia Liu
- Department of Pathology and Laboratory MedicineEmory University School of MedicineAtlantaGA30322USA
| | - Zhaohui Zhang
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanHubei Province430060China
| | - Keqiang Ye
- Department of Pathology and Laboratory MedicineEmory University School of MedicineAtlantaGA30322USA
- Faculty of Life and Health SciencesShenzhen Institute of Advanced TechnologyChinese Academy of ScienceShenzhenGuangdong518035China
- The Brain Cognition and Brain Disease Institute (BCBDI)Shenzhen Institute of Advanced TechnologyChinese Academy of ScienceShenzhenGuangdong518035China
| |
Collapse
|
5
|
Brignani S, Pasterkamp RJ. Neuronal Subset-Specific Migration and Axonal Wiring Mechanisms in the Developing Midbrain Dopamine System. Front Neuroanat 2017; 11:55. [PMID: 28740464 PMCID: PMC5502286 DOI: 10.3389/fnana.2017.00055] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 06/20/2017] [Indexed: 01/01/2023] Open
Abstract
The midbrain dopamine (mDA) system is involved in the control of cognitive and motor behaviors, and is associated with several psychiatric and neurodegenerative diseases. mDA neurons receive diverse afferent inputs and establish efferent connections with many brain areas. Recent studies have unveiled a high level of molecular and cellular heterogeneity within the mDA system with specific subsets of mDA neurons displaying select molecular profiles and connectivity patterns. During mDA neuron development, molecular differences between mDA neuron subsets allow the establishment of subset-specific afferent and efferent connections and functional roles. In this review, we summarize and discuss recent work defining novel mDA neuron subsets based on specific molecular signatures. Then, molecular cues are highlighted that control mDA neuron migration during embryonic development and that facilitate the formation of selective patterns of efferent connections. The review focuses largely on studies that show differences in these mechanisms between different subsets of mDA neurons and for which in vivo data is available, and is concluded by a section that discusses open questions and provides directions for further research.
Collapse
Affiliation(s)
- Sara Brignani
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center UtrechtUtrecht, Netherlands
| | - R J Pasterkamp
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center UtrechtUtrecht, Netherlands
| |
Collapse
|
6
|
Pokinko M, Moquin L, Torres-Berrío A, Gratton A, Flores C. Resilience to amphetamine in mouse models of netrin-1 haploinsufficiency: role of mesocortical dopamine. Psychopharmacology (Berl) 2015; 232:3719-29. [PMID: 26264903 DOI: 10.1007/s00213-015-4032-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/13/2015] [Indexed: 11/25/2022]
Abstract
RATIONALE Signaling through the netrin-1 receptor, deleted in colorectal cancer (DCC), in dopamine neurons controls the extent of their innervation to the medial prefrontal cortex (mPFC) during adolescence. In mice, dcc haploinsufficiency results in increased mPFC dopamine innervation and concentrations in adulthood. In turn, dcc haploinsufficiency leads to resilience to the effects of stimulant drugs of abuse on dopamine release in the nucleus accumbens and behavior. OBJECTIVES First, we set out to determine whether increased mPFC dopamine innervation causes blunted behavioral responses to amphetamine in adult dcc haploinsufficient mice. Second, we investigated whether unc5c, another netrin-1 receptor expressed by dopamine neurons, is involved in these effects. Third, we assessed whether haploinsufficiency of netrin-1 itself leads to blunted behavioral responding to amphetamine, whether this phenotype emerges before or after adolescence and whether increased mPFC dopamine input is the underlying mechanism. RESULTS Adult, but not adolescent, dcc, unc5c and netrin-1 haploinsufficient mice exhibit blunted behavioral responses to amphetamine. Furthermore, adult dcc, unc5c, and netrin-1 haploinsufficient mice have exaggerated mPFC dopamine concentrations in comparison to their wild-type littermates. Importantly, resilience to amphetamine-induced behavioral activation in all the three mouse models is abolished by selective dopamine depletion in the medial prefrontal cortex. CONCLUSIONS dcc, unc5c, or netrin-1 haploinsufficiency leads to increased dopamine content in the mPFC and to resilience against amphetamine-induced behavioral activation. Our findings raise the hypothesis that DCC, UNC5C, and netrin-1 act in concert to organize the adolescent development of mesocortical dopamine innervation and, in turn, determine behavioral responses to drugs of abuse.
Collapse
Affiliation(s)
- Matthew Pokinko
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
7
|
Yuan M, Cross SJ, Loughlin SE, Leslie FM. Nicotine and the adolescent brain. J Physiol 2015; 593:3397-412. [PMID: 26018031 PMCID: PMC4560573 DOI: 10.1113/jp270492] [Citation(s) in RCA: 355] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/14/2015] [Indexed: 12/11/2022] Open
Abstract
Adolescence encompasses a sensitive developmental period of enhanced clinical vulnerability to nicotine, tobacco, and e-cigarettes. While there are sociocultural influences, data at preclinical and clinical levels indicate that this adolescent sensitivity has strong neurobiological underpinnings. Although definitions of adolescence vary, the hallmark of this period is a profound reorganization of brain regions necessary for mature cognitive and executive function, working memory, reward processing, emotional regulation, and motivated behavior. Regulating critical facets of brain maturation are nicotinic acetylcholine receptors (nAChRs). However, perturbations of cholinergic systems during this time with nicotine, via tobacco or e-cigarettes, have unique consequences on adolescent development. In this review, we highlight recent clinical and preclinical data examining the adolescent brain's distinct neurobiology and unique sensitivity to nicotine. First, we discuss what defines adolescence before reviewing normative structural and neurochemical alterations that persist until early adulthood, with an emphasis on dopaminergic systems. We review how acute exposure to nicotine impacts brain development and how drug responses differ from those seen in adults. Finally, we discuss the persistent alterations in neuronal signaling and cognitive function that result from chronic nicotine exposure, while highlighting a low dose, semi-chronic exposure paradigm that may better model adolescent tobacco use. We argue that nicotine exposure, increasingly occurring as a result of e-cigarette use, may induce epigenetic changes that sensitize the brain to other drugs and prime it for future substance abuse.
Collapse
Affiliation(s)
| | - Sarah J Cross
- Anatomy & Neurobiology, School of Medicine, University of California, Irvine, CA, USA
| | | | - Frances M Leslie
- Departments of Pharmacology
- Anatomy & Neurobiology, School of Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
8
|
dcc orchestrates the development of the prefrontal cortex during adolescence and is altered in psychiatric patients. Transl Psychiatry 2013; 3:e338. [PMID: 24346136 PMCID: PMC4030324 DOI: 10.1038/tp.2013.105] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 10/21/2013] [Indexed: 01/19/2023] Open
Abstract
Adolescence is a period of heightened susceptibility to psychiatric disorders of medial prefrontal cortex (mPFC) dysfunction and cognitive impairment. mPFC dopamine (DA) projections reach maturity only in early adulthood, when their control over cognition becomes fully functional. The mechanisms governing this protracted and unique development are unknown. Here we identify dcc as the first DA neuron gene to regulate mPFC connectivity during adolescence and dissect the mechanisms involved. Reduction or loss of dcc from DA neurons by Cre-lox recombination increased mPFC DA innervation. Underlying this was the presence of ectopic DA fibers that normally innervate non-cortical targets. Altered DA input changed the anatomy and electrophysiology of mPFC circuits, leading to enhanced cognitive flexibility. All phenotypes only emerged in adulthood. Using viral Cre, we demonstrated that dcc organizes mPFC wiring specifically during adolescence. Variations in DCC may determine differential predisposition to mPFC disorders in humans. Indeed, DCC expression is elevated in brains of antidepressant-free subjects who committed suicide.
Collapse
|