1
|
Ratchatasunthorn A, Sakagami H, Kondo H, Hipkaeo W, Chomphoo S. Temporal involvement of phosphatidylinositol 4-phosphate 5-kinase γ in differentiation of Z-bands and myofilament bundles as well as intercalated discs in mouse heart at mid-gestation. J Anat 2024; 244:1030-1039. [PMID: 38275211 PMCID: PMC11095301 DOI: 10.1111/joa.14008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/25/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024] Open
Abstract
Considering the occurrence of serious heart failure in a gene knockout mouse of PIP5Kγ and in congenital abnormal cases in humans in which the gene was defective as reported by others, the present study attempted to localize PIP5Kγ in the heart during prenatal stages. It was done on the basis of the supposition that phenotypes caused by gene mutation of a given molecule are owed to the functional deterioration of selective cellular sites normally expressing it at significantly higher levels in wild mice. PIP5Kγ-immunoreactivity was the highest in the heart at E10 in contrast to almost non-significant levels of the immunoreactivity in surrounding organs and tissues such as liver. The immunoreactivity gradually weakened in the heart with the prenatal age, and it was at non-significant levels at newborn and postnatal stages. Six patterns in localization of distinct immunoreactivity for PIP5Kγ were recognized in cardiomyocytes: (1) its localization on the plasma membranes and subjacent cytoplasm without association with short myofibrils and (2) its localization on them as well as short myofibrils in association with them in cardiomyocytes of early differentiation at E10; (3) its spot-like localization along long myofibrils in cardiomyocytes of advanced differentiation at E10; (4) rare occurrences of such spot-like localization along long myofibrils in cardiomyocytes of advanced differentiation at E14; (5) its localization at Z-bands of long myofibrils; and (6) its localization at intercellular junctions including the intercalated discs in cardiomyocytes of advanced differentiation at E10 and E14, especially dominant at the latter stage. No distinct localization of PIP5Kγ-immunoreactivity of any patterns was seen in the heart at E18 and P1D. The present finding suggests that sites of PIP5Kγ-appearance and probably of its high activity in cardiomyocytes are shifted from the plasma membranes through short myofibrils subjacent to the plasma membranes and long myofibrils, to Z-bands as well as to the intercalated discs during the mid-term gestation. It is further suggested that PIP5Kγ is involved in the differentiation of myofibrils as well as intercellular junctions including the intercalated discs at later stages of the mid-term gestation. Failures in its involvement in the differentiation of these structural components are thus likely to cause the mid-term gestation lethality of the mutant mice for PIP5Kγ.
Collapse
Affiliation(s)
- A Ratchatasunthorn
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - H Sakagami
- Department of Anatomy, School of Medicine, Kitasato University, Sagamihara, Japan
| | - H Kondo
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - W Hipkaeo
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - S Chomphoo
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
2
|
Fukaya M, Ibuchi K, Sugawara T, Itakura M, Ito A, Shiroshima T, Hara Y, Okamoto H, Luton F, Sakagami H. EFA6A, an Exchange Factor for Arf6, Regulates NGF-Dependent TrkA Recycling From Early Endosomes and Neurite Outgrowth in PC12 Cells. Traffic 2024; 25:e12936. [PMID: 38725127 DOI: 10.1111/tra.12936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 06/03/2024]
Abstract
Endosomal trafficking of TrkA is a critical process for nerve growth factor (NGF)-dependent neuronal cell survival and differentiation. The small GTPase ADP-ribosylation factor 6 (Arf6) is implicated in NGF-dependent processes in PC12 cells through endosomal trafficking and actin cytoskeleton reorganization. However, the regulatory mechanism for Arf6 in NGF signaling is largely unknown. In this study, we demonstrated that EFA6A, an Arf6-specific guanine nucleotide exchange factor, was abundantly expressed in PC12 cells and that knockdown of EFA6A significantly inhibited NGF-dependent Arf6 activation, TrkA recycling from early endosomes to the cell surface, prolonged ERK1/2 phosphorylation, and neurite outgrowth. We also demonstrated that EFA6A forms a protein complex with TrkA through its N-terminal region, thereby enhancing its catalytic activity for Arf6. Similarly, we demonstrated that EFA6A forms a protein complex with TrkA in cultured dorsal root ganglion (DRG) neurons. Furthermore, cultured DRG neurons from EFA6A knockout mice exhibited disturbed NGF-dependent TrkA trafficking compared with wild-type neurons. These findings provide the first evidence for EFA6A as a key regulator of NGF-dependent TrkA trafficking and signaling.
Collapse
Affiliation(s)
- Masahiro Fukaya
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kanta Ibuchi
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Japan
| | - Takeyuki Sugawara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Japan
| | - Makoto Itakura
- Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, Japan
| | - Akiko Ito
- Department of Anesthesiology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Tomoko Shiroshima
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yoshinobu Hara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Japan
| | - Hirotsugu Okamoto
- Department of Anesthesiology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Frédéric Luton
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Université Côte d'Azur, Valbonne, France
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Japan
| |
Collapse
|
3
|
Hara Y, Katsuyama T, Fukaya M, Sugawara T, Shiroshima T, Sadakata T, Osumi N, Sakagami H. ADP Ribosylation Factor 4 (Arf4) Regulates Radial Migration through N-Cadherin Trafficking during Cerebral Cortical Development. eNeuro 2023; 10:ENEURO.0125-23.2023. [PMID: 37848288 PMCID: PMC10630928 DOI: 10.1523/eneuro.0125-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023] Open
Abstract
During the development of the cerebral cortex, N-cadherin plays a crucial role in facilitating radial migration by enabling cell-to-cell adhesion between migrating neurons and radial glial fibers or Cajar-Reztius cells. ADP ribosylation factor 4 (Arf4) and Arf5, which belong to the Class II Arf small GTPase subfamily, control membrane trafficking in the endocytic and secretory pathways. However, their specific contribution to cerebral cortex development remains unclear. In this study, we sought to investigate the functional involvement of Class II Arfs in radial migration during the layer formation of the cerebral cortex using mouse embryos and pups. Our findings indicate that knock-down of Arf4, but not Arf5, resulted in the stalling of transfected neurons with disorientation of the Golgi in the upper intermediate zone (IZ) and reduction in the migration speed in both the IZ and cortical plate (CP). Migrating neurons with Arf4 knock-down exhibited cytoplasmic accumulation of N-cadherin, along with disturbed organelle morphology and distribution. Furthermore, supplementation of exogenous N-cadherin partially rescued the migration defect caused by Arf4 knock-down. In conclusion, our results suggest that Arf4 plays a crucial role in regulating radial migration via N-cadherin trafficking during cerebral cortical development.
Collapse
Affiliation(s)
- Yoshinobu Hara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Takehiko Katsuyama
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Masahiro Fukaya
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Takeyuki Sugawara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Tomoko Shiroshima
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Tetsushi Sadakata
- Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| |
Collapse
|
4
|
Morleo M, Venditti R, Theodorou E, Briere LC, Rosello M, Tirozzi A, Tammaro R, Al-Badri N, High FA, Shi J, Putti E, Ferrante L, Cetrangolo V, Torella A, Walker MA, Tenconi R, Iascone M, Mei D, Guerrini R, van der Smagt J, Kroes HY, van Gassen KLI, Bilal M, Umair M, Pingault V, Attie-Bitach T, Amiel J, Ejaz R, Rodan L, Zollino M, Agrawal PB, Del Bene F, Nigro V, Sweetser DA, Franco B. De novo missense variants in phosphatidylinositol kinase PIP5KIγ underlie a neurodevelopmental syndrome associated with altered phosphoinositide signaling. Am J Hum Genet 2023; 110:1377-1393. [PMID: 37451268 PMCID: PMC10432144 DOI: 10.1016/j.ajhg.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023] Open
Abstract
Phosphoinositides (PIs) are membrane phospholipids produced through the local activity of PI kinases and phosphatases that selectively add or remove phosphate groups from the inositol head group. PIs control membrane composition and play key roles in many cellular processes including actin dynamics, endosomal trafficking, autophagy, and nuclear functions. Mutations in phosphatidylinositol 4,5 bisphosphate [PI(4,5)P2] phosphatases cause a broad spectrum of neurodevelopmental disorders such as Lowe and Joubert syndromes and congenital muscular dystrophy with cataracts and intellectual disability, which are thus associated with increased levels of PI(4,5)P2. Here, we describe a neurodevelopmental disorder associated with an increase in the production of PI(4,5)P2 and with PI-signaling dysfunction. We identified three de novo heterozygous missense variants in PIP5K1C, which encodes an isoform of the phosphatidylinositol 4-phosphate 5-kinase (PIP5KIγ), in nine unrelated children exhibiting intellectual disability, developmental delay, acquired microcephaly, seizures, visual abnormalities, and dysmorphic features. We provide evidence that the PIP5K1C variants result in an increase of the endosomal PI(4,5)P2 pool, giving rise to ectopic recruitment of filamentous actin at early endosomes (EEs) that in turn causes dysfunction in EE trafficking. In addition, we generated an in vivo zebrafish model that recapitulates the disorder we describe with developmental defects affecting the forebrain, including the eyes, as well as craniofacial abnormalities, further demonstrating the pathogenic effect of the PIP5K1C variants.
Collapse
Affiliation(s)
- Manuela Morleo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy; Department of Precision Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy.
| | - Rossella Venditti
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II," Medical School, Naples, Italy
| | - Evangelos Theodorou
- Center for Genomic Medicine, Divisions of Pediatric Hematology/Oncology and Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lauren C Briere
- Center for Genomic Medicine, Divisions of Pediatric Hematology/Oncology and Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marion Rosello
- Sorbonne Université, INSERM U968, CNRS UMR 7210, Institut de la Vision, Paris, France
| | - Alfonsina Tirozzi
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy; Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | - Roberta Tammaro
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Nour Al-Badri
- Sorbonne Université, INSERM U968, CNRS UMR 7210, Institut de la Vision, Paris, France
| | - Frances A High
- Division of Medical Genetics & Metabolism, Massachusetts General Hospital for Children, Boston, MA 02114, USA
| | - Jiahai Shi
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Elena Putti
- Sorbonne Université, INSERM U968, CNRS UMR 7210, Institut de la Vision, Paris, France
| | - Luigi Ferrante
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Viviana Cetrangolo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Annalaura Torella
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy; Department of Precision Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Melissa A Walker
- Department of Neurology, Division of Neurogenetics, Child Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Romano Tenconi
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova, Padova, Italy
| | - Maria Iascone
- Medical Genetics, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Davide Mei
- Meyer Children's Hospital IRCCS, Neuroscience Department, Florence, Italy
| | - Renzo Guerrini
- Meyer Children's Hospital IRCCS, Neuroscience Department, Florence, Italy
| | - Jasper van der Smagt
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Hester Y Kroes
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Koen L I van Gassen
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Muhammad Bilal
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center & King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Veronica Pingault
- Service de Médecine Génomique des Maladies Rares, et Institut Imagine, Hôpital Necker-Enfants Malades, Paris, France
| | - Tania Attie-Bitach
- Service de Médecine Génomique des Maladies Rares, et Institut Imagine, Hôpital Necker-Enfants Malades, Paris, France
| | - Jeannine Amiel
- Service de Médecine Génomique des Maladies Rares, et Institut Imagine, Hôpital Necker-Enfants Malades, Paris, France
| | - Resham Ejaz
- Division of Genetics, Department of Pediatrics, McMaster Children's Hospital, Hamilton, ON, Canada
| | - Lance Rodan
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Marcella Zollino
- Institute of Medical Genetics, A. Gemelli School of Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Pankaj B Agrawal
- Divisions of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA; Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Filippo Del Bene
- Sorbonne Université, INSERM U968, CNRS UMR 7210, Institut de la Vision, Paris, France
| | - Vincenzo Nigro
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy; Department of Precision Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - David A Sweetser
- Center for Genomic Medicine, Divisions of Pediatric Hematology/Oncology and Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy; Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, Naples, Italy; Medical Genetics, Department of Translational Medicine, University of Naples "Federico II," Via Sergio Pansini, 80131 Naples, Italy
| |
Collapse
|
5
|
Pakkarato S, Sakagami H, Watanabe M, Kondo H, Hipkaeo W, Chomphoo S. Discrete localization patterns of PIP5Kγ and PLCβ3 working sequentially in phosphoinositide-cycle within mouse sensory neuron somata. Microsc Res Tech 2023; 86:351-358. [PMID: 36579633 DOI: 10.1002/jemt.24276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 11/11/2022] [Accepted: 12/11/2022] [Indexed: 12/30/2022]
Abstract
It is known that phosphatidylinositol phosphate 5 kinase (PIP5K) γ and phospholipase C (PLC) β3, working sequentially in the phosphoinositide cycle, are localized in dorsal root ganglion (DRG) somata and are involved in the regulation of pain and related sensations. However, the sites of their involvement have remained to be clarified. In the present study, immunoreactivity for PLCβ3 was distinct only in the central process of mouse DRG, but not in its peripheral process, in contrast to distinct PIP5Kγ-immunoreactivity in both peripheral and central DRG processes. No nerve terminals showing immunoreactivity for PLCβ3 were detected in any peripheral sensory fields, similar to PIP5Kγ-immunoreactivity. In DRG somata, PIP5Kγ-immunoreactivity was rather confined to the neurolemma in which dots and threads were discerned in 3D bright field light microscopy. This feature well corresponded to its discontinuous localization along the plasma membranes in immuno-electron microscopy. In contrast, PLCβ3-immunoreactivity occurred diffusely throughout the somata, but did not take distinct appearance of immunoreaction on neurolemma or plasma membranes, unlike PIP5Kγ-immunoreactivity. In addition, satellite glial cells were immunonegative for PLCβ3, but immunopositive for PIP5Kγ. The involvement of PLCβ3 in regulation of pain and related sensations is thus suggested to be mainly exerted at levels of the DRG soma and its upstream, but to be less significant in the peripheral sensory fields, similar to PIP5Kγ. The possibility is also suggested that PIP, PIP5Kγ-target, is localized heterogeneously, but PIP2, PLCβ3-target, is localized homogenously over the plane of the neuronal plasma membranes. RESEARCH HIGHLIGHTS: PIP5Kγ, different from PLCβ3, was localized heterogeneously on neuronal membranes, and this difference was demonstrated in 3D-bright field immuno-light and electron microscopy. Either PIP5Kγ or PLCβ3 was not detected in peripheral nerve terminals.
Collapse
Affiliation(s)
- Sawetree Pakkarato
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Department of Sports and Health Sciences, Faculty of Science and Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima, Thailand
| | - Hiroyuki Sakagami
- Department of Anatomy, School of Medicine, Kitasato University, Sagamihara, Japan
| | - Masahiko Watanabe
- Department of Anatomy, School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hisatake Kondo
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Department of Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Wiphawi Hipkaeo
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Surang Chomphoo
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
6
|
Llorente A, Arora GK, Grenier SF, Emerling BM. PIP kinases: A versatile family that demands further therapeutic attention. Adv Biol Regul 2023; 87:100939. [PMID: 36517396 PMCID: PMC9992244 DOI: 10.1016/j.jbior.2022.100939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Phosphoinositides are membrane-localized phospholipids that regulate a plethora of essential cellular processes. These lipid signaling molecules are critical for cell homeostasis and therefore their levels are strictly regulated by the coordinated action of several families of lipid kinases and phosphatases. In this review, we provide a focused perspective on the phosphatidylinositol phosphate kinase (PIPK) family and the three subfamilies that compose it: Type I PIPKs or phosphatidylinositol-4-phosphate 5-kinases (PI4P5Ks), Type II PIPKs or phosphatidylinositol-5-phosphate 4-kinases (PI5P4Ks), and Type III PIPKs or phosphatidylinositol-3-phosphate 5-kinases (PIKfyve). Each subfamily is responsible for catalyzing a hydroxyl phosphorylation on specific phosphoinositide species to generate a double phosphorylated lipid, therefore regulating the levels of both substrate and product. Here, we summarize our current knowledge about the functions and regulation of each PIPK subfamily. Further, we highlight the roles of these kinases in various in vivo genetic models and give an overview of their involvement in multiple pathological conditions. The phosphoinositide field has been long focused on targeting PI3K signaling, but growing evidence suggests that it is time to draw attention to the other phosphoinositide kinases. The discovery of the involvement of PIPKs in the pathogenesis of multiple diseases has prompted substantial efforts to turn these enzymes into pharmacological targets. An increasingly refined knowledge of the biology of PIPKs in a variety of in vitro and in vivo models will facilitate the development of effective approaches for therapeutic intervention with the potential to translate into meaningful clinical benefits for patients suffering from cancer, immunological and infectious diseases, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Alicia Llorente
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys, La Jolla, CA, 92037, USA
| | - Gurpreet K Arora
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys, La Jolla, CA, 92037, USA
| | - Shea F Grenier
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys, La Jolla, CA, 92037, USA
| | - Brooke M Emerling
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys, La Jolla, CA, 92037, USA.
| |
Collapse
|
7
|
Chomphoo S, Sakagami H, Kondo H, Hipkaeo W. Localization of PIP5Kγ selectively in proprioceptive peripheral fields and also in sensory ganglionic satellite cells as well as neuronal cell membranes and their central terminals. J Anat 2021; 239:1196-1206. [PMID: 34151437 PMCID: PMC8546504 DOI: 10.1111/joa.13491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/10/2021] [Accepted: 06/04/2021] [Indexed: 12/14/2022] Open
Abstract
Based on a previous study by others reporting that PIP5Kγ (phosphatidylinositol 4-phosphate 5-kinase γ) and its product, phosphatidylinositol 4,5 bisphosphate (PIP2 ), are involved in the regulation of nociception, the present immunohistochemical study examined the localization of PIP5Kγ-immunoreactivity in dorsal root ganglia (DRG) and their peripheral and central terminal fields. PIP5Kγ-immunoreactivity was localized for the first time in the muscle spindles, in which it was found in I-bands of polar regions of intrafusal muscle fibers and also in sensory nerve terminals abutting on equatorial regions of the muscle fibers. This finding indicates the involvement of PIP5Kγ in the proprioception and suggests somehow complicated mechanisms of its involvement because of its heterogeneous localization in intra-I-band structures. In DRG, on the other hand, PIP5Kγ-immunoreactivity was shown to be localized heterogeneously, but not evenly, over apposed plasma membranes of both neurons and ganglionic satellite cells in immune electron microscopy. In addition, no peripheral nerve terminals of DRG showing its distinct immunoreactivity were found in most peripheral fields of nociception and any other sensory perception except for the proprioception through muscle spindles. In contrast, numerous central terminals of DRG in the spinal posterior horn were immunoreactive for it. This finding leads us to consider the possibility that the regulation by PIP5Kγ of nociception is dominantly exerted in DRG and sensory neural tracts central, rather than peripheral, to DRG.
Collapse
Affiliation(s)
- Surang Chomphoo
- Electron Microscopy UnitDepartment of AnatomyFaculty of MedicineKhon Kaen UniversityKhon KaenThailand
| | - Hiroyuki Sakagami
- Department of AnatomySchool of MedicineKitasato UniversitySagamiharaJapan
| | - Hisatake Kondo
- Electron Microscopy UnitDepartment of AnatomyFaculty of MedicineKhon Kaen UniversityKhon KaenThailand
- Department of AnatomyGraduate School of MedicineTohoku UniversitySendaiJapan
| | - Wiphawi Hipkaeo
- Electron Microscopy UnitDepartment of AnatomyFaculty of MedicineKhon Kaen UniversityKhon KaenThailand
| |
Collapse
|
8
|
Sirisin J, Kamnate A, Polsan Y, Somintara S, Chomphoo S, Sakagami H, Kondo H, Hipkaeo W. Localization of phosphatidylinositol 4-phosphate 5-kinase (PIP5K) α confined to the surface of lipid droplets and adjacent narrow cytoplasm in progesterone-producing cells of in situ ovaries of adult mice. Acta Histochem 2021; 123:151794. [PMID: 34624591 DOI: 10.1016/j.acthis.2021.151794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/15/2022]
Abstract
Phosphatidylinositol(4,5)bisphosphate (PI(4,5)P2) produced by phosphatidylinositol phosphate 5 kinase (PIP5K) plays not only as a precursor of second messengers in the phosphoinositide signal transduction, but also multiple roles influencing a variety of cellular activities. From this viewpoint, the present study attempted to localize PIP5Kα in the ovaries in situ of adult mice. PIP5Kα-immunoreactivity was confined to the surfaces of lipid droplets (LDs) and their adjacent cytoplasm in progesterone-producing cells of the interstitial glands, corpora lutea and theca interna. The LDs often contained membranous tubules/lamellae along their surfaces and within their interior whose membranes were continuous with those delineating LDs composed of a monolayer of phospholipids and were partially PIP5Kα-immunoreactive. Although granulosa cells of healthy-looking follicles were immunonegative, as the atresia progressed, PIP5Kα-immunoreactivity first appeared in sparsely dispersed dot forms in mural cells of the follicular epithelia, and then were dominant in almost all mural cells that remained after desquamation of the antral cells. The present study provides evidence suggesting that PI(4,5)P2 locally synthesized by PIP5K in LDs is involved in the lipid transfer between lipid droplets (LDs) and the endoplasmic reticulum, which eventually regulates ovarian progesterone production through control of multiple dynamic activities of LDs. It is also suggested that PIP5Kα and PI(4,5)P2 are implicated in the modulation of programmed cell death and/or acquiring the ability of progesterone production in some follicular cells surviving atresia.
Collapse
Affiliation(s)
- Juthathip Sirisin
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Anussara Kamnate
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Yada Polsan
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Somsuda Somintara
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Surang Chomphoo
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Hiroyuki Sakagami
- Department of Anatomy, School of Medicine, Kitasato University, Sagamihara, Japan
| | - Hisatake Kondo
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Department of Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Wiphawi Hipkaeo
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
9
|
Cytohesin-2 mediates group I metabotropic glutamate receptor-dependent mechanical allodynia through the activation of ADP ribosylation factor 6 in the spinal cord. Neurobiol Dis 2021; 159:105466. [PMID: 34390832 DOI: 10.1016/j.nbd.2021.105466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 07/20/2021] [Accepted: 08/02/2021] [Indexed: 01/15/2023] Open
Abstract
Group I metabotropic glutamate receptors (mGluRs), mGluR1 and mGluR5, in the spinal cord are implicated in nociceptive transmission and plasticity through G protein-mediated second messenger cascades leading to the activation of various protein kinases such as extracellular signal-regulated kinase (ERK). In this study, we demonstrated that cytohesin-2, a guanine nucleotide exchange factor for ADP ribosylation factors (Arfs), is abundantly expressed in subsets of excitatory interneurons and projection neurons in the superficial dorsal horn. Cytohesin-2 is enriched in the perisynapse on the postsynaptic membrane of dorsal horn neurons and forms a protein complex with mGluR5 in the spinal cord. Central nervous system-specific cytohesin-2 conditional knockout mice exhibited reduced mechanical allodynia in inflammatory and neuropathic pain models. Pharmacological blockade of cytohesin catalytic activity with SecinH3 similarly reduced mechanical allodynia and inhibited the spinal activation of Arf6, but not Arf1, in both pain models. Furthermore, cytohesin-2 conditional knockout mice exhibited reduced mechanical allodynia and ERK1/2 activation following the pharmacological activation of spinal mGluR1/5 with 3,5-dihydroxylphenylglycine (DHPG). The present study suggests that cytothesin-2 is functionally associated with mGluR5 during the development of mechanical allodynia through the activation of Arf6 in spinal dorsal horn neurons.
Collapse
|
10
|
Zhao X, Cui P, Hu G, Wang C, Jiang L, Zhao J, Xu J, Zhang X. PIP5k1β controls bone homeostasis through modulating both osteoclast and osteoblast differentiation. J Mol Cell Biol 2021; 12:55-70. [PMID: 30986855 PMCID: PMC7052985 DOI: 10.1093/jmcb/mjz028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/16/2018] [Accepted: 12/21/2018] [Indexed: 02/07/2023] Open
Abstract
PIP5k1β is crucial to the generation of phosphotidylinosotol (4, 5)P2. PIP5k1β participates in numerous cellular activities, such as B cell and platelet activation, cell phagocytosis and endocytosis, cell apoptosis, and cytoskeletal organization. In the present work, we aimed to examine the function of PIP5k1β in osteoclastogenesis and osteogenesis to provide promising strategies for osteoporosis prevention and treatment. We discovered that PIP5k1β deletion in mice resulted in obvious bone loss and that PIP5k1β was highly expressed during both osteoclast and osteoblast differentiation. Deletion of the gene was found to enhance the proliferation and migration of bone marrow-derived macrophage-like cells to promote osteoclast differentiation. PIP5k1β-/- osteoclasts exhibited normal cytoskeleton architecture but stronger resorption activity. PIP5k1β deficiency also promoted activation of mitogen-activated kinase and Akt signaling, enhanced TRAF6 and c-Fos expression, facilitated the expression and nuclear translocation of NFATC1, and upregulated Grb2 expression, thereby accelerating osteoclast differentiation and function. Finally, PIP5k1β enhanced osteoblast differentiation by upregulating master gene expression through triggering smad1/5/8 signaling. Therefore, PIP5k1β modulates bone homeostasis and remodeling.
Collapse
Affiliation(s)
- Xiaoying Zhao
- Department of Orthopedic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.,The Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, China
| | - Penglei Cui
- Department of Orthopedic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Guoli Hu
- Department of Orthopedic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.,The Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, China
| | - Chuandong Wang
- Department of Orthopedic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Lei Jiang
- Key Laboratory of Tibetan Medicine Research, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining 810001, China
| | - Jingyu Zhao
- Department of Orthopedic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.,The Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, China
| | - Jiake Xu
- School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Xiaoling Zhang
- Department of Orthopedic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.,The Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, China
| |
Collapse
|
11
|
Ibuchi K, Fukaya M, Shinohara T, Hara Y, Shiroshima T, Sugawara T, Sakagami H. The Vps52 subunit of the GARP and EARP complexes is a novel Arf6-interacting protein that negatively regulates neurite outgrowth of hippocampal neurons. Brain Res 2020; 1745:146905. [PMID: 32473257 DOI: 10.1016/j.brainres.2020.146905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/18/2020] [Accepted: 05/24/2020] [Indexed: 01/05/2023]
Abstract
ADP ribosylation factor 6 (Arf6) is a small GTP-binding protein implicated in neuronal morphogenesis through endosomal trafficking and actin remodeling. In this study, we identified Vps52, a core subunit of the Golgi-associated retrograde protein (GARP) and endosome-associated recycling protein (EARP) complexes, as a novel Arf6-binding protein by yeast two-hybrid screening. Vps52 interacted specifically with GTP-bound Arf6 among the Arf family. Immunohistochemical analyses of hippocampal pyramidal cells revealed that fine punctate immunolabeling for Vps52 was distributed throughout neuronal compartments, most densely in the cell body and dendritic shafts, and was largely associated with trans-Golgi network and vesicular endomembranes. In cultured hippocampal neurons, knockdown of Vps52 increased total length of axons and dendrites; these phenotypes were completely restored by co-expression of shRNA-resistant full-length Vps52. However, co-expression of a Vps52 mutant lacking the ability to interact with Arf6 restored only the Vps52-knockdown phenotype of the dendritic length. The present findings suggest that Vps52 is a novel Arf6-interacting protein that regulates neurite outgrowth in hippocampal neurons.
Collapse
Affiliation(s)
- Kanta Ibuchi
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Masahiro Fukaya
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Tetsuro Shinohara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Yoshinobu Hara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Tomoko Shiroshima
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Takeyuki Sugawara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan.
| |
Collapse
|
12
|
BRAG2a Mediates mGluR-Dependent AMPA Receptor Internalization at Excitatory Postsynapses through the Interaction with PSD-95 and Endophilin 3. J Neurosci 2020; 40:4277-4296. [PMID: 32341099 DOI: 10.1523/jneurosci.1645-19.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/06/2019] [Accepted: 04/17/2020] [Indexed: 11/21/2022] Open
Abstract
Brefeldin A-resistant ArfGEF 2 (BRAG2) [or Iqsec1 (IQ motif and Sec7 domain-containing protein 1)] is a guanine nucleotide exchange factor for ADP ribosylation factor 6 (Arf6), a small GTPase implicated in the membrane trafficking between the plasma membrane and endosomes. BRAG2 regulates Arf6-dependent endocytosis of AMPA receptors (AMPARs) through the direct interaction during the hippocampal long-term depression. However, the molecular mechanism by which the BRAG2-Arf6 pathway links AMPARs to the endocytic machinery remains elusive. Herein, using mouse brains of both sexes, we demonstrated that BRAG2a, an alternative isoform with a long C-terminal insert containing a proline-rich domain and type I PDZ-binding motif, was selectively localized to the excitatory postsynaptic density (PSD). Using yeast two-hybrid screening, we identified PSD-95 and endophilin 1/3 as BRAG2a-binding partners in the brain. The interaction with PSD-95 was required for synaptic targeting of BRAG2a. In cultured hippocampal neurons, stimulation of group I metabotropic glutamate receptors (mGluRs) increased the interaction of BRAG2a with endophilin 3 and concomitant Arf6 activation in a time-dependent manner. Knockdown of BRAG2 in cultured hippocampal neurons blocked the mGluR-dependent decrease in surface AMPAR levels, which was rescued by introducing wild-type BRAG2a, but not wild-type BRAG2b or BRAG2a mutants lacking the ability to activate Arf6 or to interact with endophilin 3 or PSD-95. Further postembedding immunoelectron microscopic analysis revealed the preorganized lateral distribution of BRAG2a, Arf6, and endophilin 3 for efficient endocytosis at the postsynaptic membrane. Together, the present findings unveiled a novel molecular mechanism by which BRAG2a links AMPARs to the clathrin-dependent endocytic pathway through its interaction with PSD-95 and endophilin 3.SIGNIFICANCE STATEMENT BRAG2/Iqsec1 is a GDP/GTP exchange factor for ADP ribosylation factor 6 (Arf6), a small GTPase implicated in the membrane trafficking between the plasma membrane and endosomes, and regulates Arf6-dependent endocytosis of AMPARs through direct interaction during hippocampal long-term depression, one of the mechanisms of synaptic plasticity related to learning and memory. However, the molecular mechanism by which the BRAG2-Arf6 pathway links AMPARs to the endocytic machinery remains elusive. Here, we identified isoform-specific mechanisms of BRAG2-mediated AMPAR internalization. We demonstrated that the interaction of BRAG2a isoform with PSD-95 and endophilin 3 was required for the mGluR-dependent decrease in surface AMPARs in hippocampal neurons. These results unveiled a novel molecular mechanism by which BRAG2 links AMPARs to the clathrin-mediated endocytic machinery at postsynaptic sites.
Collapse
|
13
|
Chomphoo S, Sakagami H, Kondo H, Hipkaeo W. Discrete localization patterns of Arf6, and its activators EFA6A and BRAG2, and its effector PIP5kinaseγ on myofibrils of myotubes and plasma membranes of myoblasts in developing skeletal muscles of mice. Acta Histochem 2020; 122:151513. [PMID: 32059926 DOI: 10.1016/j.acthis.2020.151513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/27/2022]
Abstract
Arf6 (ADP ribosylation factor 6), activated by Arf-GEF (guanine nucleoside exchange factor), is involved in the membrane trafficking and actin-remodeling which are critical for maintenance of cell organization and activity and for fusion of myoblasts to form myotubes/myofibers. EFA6A (exchange factor for Arf6 type A) and BRAG2 (brefeldin A-resistant Arf-GEF 2) represent members of discrete subfamilies of Arf-GEF, while PIP5Kγ (phosphatidylinositol4-phosphate5-kinase γ) produces PI 4,5-bisphosphate (PIP2) and it is target for Arf6. In the present study, immunoreactive bands for Arf6, EFA6A, BRAG2 and PIP5Kγ were detected in immunoblots of skeletal muscle homogenates of mice at E18D (embryonic day 18), while the bands for Arf6, EFA6A and PIP5Kγ were reduced in density and no significant bands for BRAG2 were discerned at P1D (postnatal 1 day). No immunoblot bands for any of the molecules were eventually detected in skeletal fibers of adult mice. Immunoreactivities for endogenous Arf6, EFA6A and PIP5Kγ were visualized using immuno-light microscopy localized as periodic striations running perpendicular to the longitudinal axes of skeletal muscle fibers of mice at E18D and P1D. All the striations were co-immunoreactive for β-actin in double immunofluorescence microscopy, and the immunoreactivities were confined to thin myofilaments at sarcomeric I-domains in immuno-electron microscopy. On the other hand, immunoreactivities for Arf6, BRAG2 and PIP5Kγ were conspicuous on plasmalemma of myoblasts at E14D, while immunoreactivity for EFA6A was already distinct in striations perpendicular to myofibrils in myotubes at E14D. The present findings suggest three possibilities: involvement of EFA6A-activated Arf6 together with PIP5Kγ in maturation of myofibrils, movement of Arf6 and PIP5Kγ from the plasmalemma of myoblasts to myofibrils of myotubes, and that of BRAG2 to the cytoplasm of myotubes; and further a function of EFA6A independent of the activation of Arf6 in immature myofibrils. In addition, the involvement of Arf6, BRAG2 and PIP5Kγ in the fusion of myoblasts into myotubes was supported by the present finding.
Collapse
Affiliation(s)
- Surang Chomphoo
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| | - Hiroyuki Sakagami
- Department of Anatomy, School of Medicine, Kitasato University, Sagamihara, Japan
| | - Hisatake Kondo
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Department of Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Wiphawi Hipkaeo
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
14
|
Khrongyut S, Rawangwong A, Pidsaya A, Sakagami H, Kondo H, Hipkaeo W. Localization of phosphatidylinositol 4-phosphate 5-kinase (PIP5K) α, β, γ in the three major salivary glands in situ of mice and their response to β-adrenoceptor stimulation. J Anat 2019; 234:502-514. [PMID: 30734271 DOI: 10.1111/joa.12944] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2019] [Indexed: 12/15/2022] Open
Abstract
Phosphatidylinositol 4-phosphate 5-kinase (PIP5K), which is composed of three isozymes (α, β and γ), catalyzes the production of phosphatidylinositol bisphosphate (PIP2). This phospholipid functions in membrane trafficking, as an anchor for actin cytoskeletons and as a regulator of intramembranous channels/transporters. It is also a precursor of such second messengers as diacylglycerol, inositol triphosphate and phosphatidylinositol (3,4,5)-triphosphate. In the present study, the expression and localization of endogenous PIP5Ks were examined in the three major salivary glands of young adult mice in situ. In western blotting of normal control glands, immunoreactive bands for individual PIP5Ks were detectable, with the highest density in the parotid gland and the weakest density in the submandibular gland. In immuno-light microscopy under non-stimulated condition, weak immunoreactivity for PIP5Kα was confined to the apical plasmalemma in parotid, but not sublingual or submandibular, acinar cells. Immunoreactivity for PIP5Kβ was weak to moderate and confined to ductal cells but not acinar cells, whereas that for PIP5Kγ was selectively and intensely detected in myoepithelial cells but not acinar cells, and it was weak in ductal cells in the three glands. In western blot of the parotid gland stimulated by isoproterenol, a β-adrenoceptor agonist, no changes were seen in the intensity of immunoreactive bands for any of the PIP5Ks. In contrast, in immuno-light microscopy, the apical immunoreactivity for PIP5Kα in parotid acinar cells was transiently and distinctly increased after the stimulation. The increased immunoreactivity was ultrastructurally localized on most apical microvilli and along contiguous plasma membrane, where membranous invaginations of various shapes and small vesicles were frequently found. It was thus suggested that PIP5Kα is involved in post-exocytotic membrane dynamics via microvillous membranes. The present finding further suggests that each of the three isoforms of PIP5K functions through its product PIP2 discretely in different cells of the glands to regulate saliva secretion.
Collapse
Affiliation(s)
- Suthankamon Khrongyut
- Faculty of Medicine, Department of Anatomy, Electron Microscopy Unit, Khon Kaen University, Khon Kaen, Thailand
| | - Atsara Rawangwong
- Faculty of Medicine, Department of Anatomy, Electron Microscopy Unit, Khon Kaen University, Khon Kaen, Thailand
| | - Atthapon Pidsaya
- Faculty of Medicine, Department of Anatomy, Electron Microscopy Unit, Khon Kaen University, Khon Kaen, Thailand
| | - Hiroyuki Sakagami
- Department of Anatomy, School of Medicine, Kitasato University, Sagamihara, Japan
| | - Hisatake Kondo
- Faculty of Medicine, Department of Anatomy, Electron Microscopy Unit, Khon Kaen University, Khon Kaen, Thailand.,Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Wiphawi Hipkaeo
- Faculty of Medicine, Department of Anatomy, Electron Microscopy Unit, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
15
|
Ito A, Fukaya M, Saegusa S, Kobayashi E, Sugawara T, Hara Y, Yamauchi J, Okamoto H, Sakagami H. Pallidin is a novel interacting protein for cytohesin-2 and regulates the early endosomal pathway and dendritic formation in neurons. J Neurochem 2018; 147:153-177. [PMID: 30151872 DOI: 10.1111/jnc.14579] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/25/2018] [Accepted: 08/21/2018] [Indexed: 12/29/2022]
Abstract
Cytohesin-2 is a member of the guanine nucleotide exchange factors for ADP ribosylation factor 1 (Arf1) and Arf6, which are small GTPases that regulate membrane traffic and actin dynamics. In this study, we first demonstrated that cytohesin-2 localized to the plasma membrane and vesicles in various subcellular compartment in hippocampal neurons by immunoelectron microscopy. Next, to understand the molecular network of cytohesin-2 in neurons, we conducted yeast two-hybrid screening of brain cDNA libraries using cytohesin-2 as bait and isolated pallidin, a component of the biogenesis of lysosome-related organelles complex 1 (BLOC-1) involved in endosomal trafficking. Pallidin interacted specifically with cytohesin-2 among cytohesin family members. Glutathione S-transferase pull-down and immunoprecipitation assays further confirmed the formation of a protein complex between cytohesin-2 and pallidin. Immunofluorescence demonstrated that cytohesin-2 and pallidin partially colocalized in various subsets of endosomes immunopositive for EEA1, syntaxin 12, and LAMP2 in hippocampal neurons. Knockdown of pallidin or cytohesin-2 reduced cytoplasmic EEA1-positive early endosomes. Furthermore, knockdown of pallidin increased the total dendritic length of cultured hippocampal neurons, which was rescued by co-expression of wild-type pallidin but not a mutant lacking the ability to interact with cytohesin-2. In contrast, knockdown of cytohesin-2 had the opposite effect on total dendritic length. The present results suggested that the interaction between pallidin and cytohesin-2 may participate in various neuronal functions such as endosomal trafficking and dendritic formation in hippocampal neurons. Cover Image for this issue: doi: 10.1111/jnc.14197.
Collapse
Affiliation(s)
- Akiko Ito
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan.,Department of Anesthesiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Masahiro Fukaya
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Shintaro Saegusa
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Emi Kobayashi
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Takeyuki Sugawara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yoshinobu Hara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neuroscience and Neurology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Hirotsugu Okamoto
- Department of Anesthesiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| |
Collapse
|
16
|
Hara Y, Fukaya M, Sugawara T, Sakagami H. FIP4/Arfophilin-2 plays overlapping but distinct roles from FIP3/Arfophilin-1 in neuronal migration during cortical layer formation. Eur J Neurosci 2018; 48:3082-3096. [PMID: 30295969 DOI: 10.1111/ejn.14199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 09/10/2018] [Accepted: 09/20/2018] [Indexed: 11/29/2022]
Abstract
The class II Rab11 family-interacting proteins, FIP3 and FIP4, also termed Arfophilin-1 and Arfophilin-2, respectively, are endosomal proteins that function as dual effector proteins for Rab11 and ADP ribosylation factor (Arf) small GTPases. In the present study, we examined the expression and role of FIP4 in neuronal migration during cerebral layer formation. FIP4 mRNA was first weakly detected in post-mitotic migrating neurons in the upper intermediate zone, and expression was markedly increased in the cortical layer. Exogenously expressed FIP4 protein was localized to subpopulations of EEA1- and syntaxin 12-positive endosomes in migrating neurons, and was partially colocalized with FIP3. Knockdown of FIP4 by in utero electroporation significantly stalled transfected neurons in the lower cortical layer and decreased the speed of neuronal migration in the upper intermediate zone and in the cortical plate compared with control small hairpin RNA (shRNA)-transfected neurons. Furthermore, co-transfection of shRNA-resistant wild-type FIP4, but not wild type FIP3 or FIP4 mutants lacking the binding region for Rab11 or Arf, significantly improved the disturbed cortical layer formation caused by FIP4 knockdown. Collectively, our findings suggest that FIP4 and FIP3 play overlapping but distinct roles in neuronal migration downstream of Arf and Rab11 during cortical layer formation.
Collapse
Affiliation(s)
- Yoshinobu Hara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Masahiro Fukaya
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Takeyuki Sugawara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| |
Collapse
|
17
|
Loo L, Zylka M. Conditional deletion of Pip5k1c in sensory ganglia and effects on nociception and inflammatory sensitization. Mol Pain 2018; 13:1744806917737907. [PMID: 29020859 PMCID: PMC5656109 DOI: 10.1177/1744806917737907] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Abstract Phosphatidylinositol 4-phosphate 5-kinase type 1 gamma (Pip5k1c) generates phosphatidylinositol 4,5-bisphosphate, also
known as PI(4,5)P2 or PIP2. Many pronociceptive signaling pathways and receptor tyrosine kinases signal via PIP2 hydrolysis.
Previously, we found that pain signaling and pain sensitization were reduced in Pip5k1cþ/ global heterozygous knockout
mice. Here, we sought to evaluate the extent to which dorsal root ganglia selective deletion of Pip5k1c affected nociception
in mice. Initially, we crossed sensory neuron-selective Advillin-Cre mice with a conditional Pip5k1c knockout (cKO) allele
(Pip5k1cfl/fl). However, these mice displayed an early onset proprioceptive deficit. To bypass this early onset phenotype,
we used two different tamoxifen-inducible Cre lines (Brn3a-Cre-ERT2 and Advillin-Cre-ERT2) to conditionally delete Pip5k1c in
adults. Tamoxifen induced high efficiency deletion of PIP5K1C in dorsal root ganglia and slightly reduced PIP5K1C in spinal
cord and brain in Brn3a-Cre-ERT2 Pip5k1cfl/fl (Brn3a cKO) mice while PIP5K1C was selectively deleted in dorsal root ganglia
with no changes in spinal cord or brain in Advillin-Cre-ERT2 Pip5k1cfl/fl (Advil cKO) mice. Acute thermosensation and
mechanosensation were not altered in either line relative to wild-type mice. However, thermal hypersensitivity and mechanical
allodynia recovered more rapidly in Brn3a cKO mice, but not Advil cKO mice, following hind paw inflammation.
These data collectively suggest that PIP5K1C regulates nociceptive sensitization in more regions of the nervous system
than dorsal root ganglia alone.
Collapse
Affiliation(s)
- Lipin Loo
- Department of Cell Biology and Physiology and UNC Neuroscience Center, The University of North Carolina, Chapel Hill, USA
| | | |
Collapse
|
18
|
ACAP3, the GTPase-activating protein specific to the small GTPase Arf6, regulates neuronal migration in the developing cerebral cortex. Biochem Biophys Res Commun 2017; 493:1089-1094. [PMID: 28919417 DOI: 10.1016/j.bbrc.2017.09.076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 09/14/2017] [Indexed: 11/22/2022]
Abstract
The GTPase-activating protein (GAP) specific to the small GTPase Arf6, ACAP3, is known to regulate morphogenesis of neurons in vitro. However, physiological significance of ACAP3 in the brain development in vivo remains unclear. Here, we show that ACAP3 is involved in neuronal migration in the developing cerebral cortex of mice. Knockdown of ACAP3 in the developing cortical neurons of mice in utero significantly abrogated neuronal migration in the cortical layer, which was restored by ectopic expression of wild type of ACAP3, but not by its GAP-inactive mutant. Furthermore, morphological changes of neurons during migration in the cortical layer were impeded in ACAP3-knocked-down cortical neurons. These results provide evidence that ACAP3 plays a crucial role in migration of cortical neurons by regulating their morphological change during development of cerebral cortex.
Collapse
|
19
|
Sakagami H, Hara Y, Fukaya M. Interaction of serologically defined colon cancer antigen-3 with Arf6 and its predominant expression in the mouse testis. Biochem Biophys Res Commun 2016; 477:868-873. [DOI: 10.1016/j.bbrc.2016.06.150] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 06/29/2016] [Indexed: 11/28/2022]
|
20
|
ADP Ribosylation Factor 6 Regulates Neuronal Migration in the Developing Cerebral Cortex through FIP3/Arfophilin-1-dependent Endosomal Trafficking of N-cadherin. eNeuro 2016; 3:eN-NWR-0148-16. [PMID: 27622210 PMCID: PMC5002984 DOI: 10.1523/eneuro.0148-16.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/29/2016] [Accepted: 08/02/2016] [Indexed: 12/15/2022] Open
Abstract
During neural development, endosomal trafficking controls cell shape and motility through the polarized transport of membrane proteins related to cell–cell and cell–extracellular matrix interactions. ADP ribosylation factor 6 (Arf6) is a critical small GTPase that regulates membrane trafficking between the plasma membrane and endosomes. We herein demonstrated that the knockdown of endogenous Arf6 in mouse cerebral cortices led to impaired neuronal migration in the intermediate zone and cytoplasmic retention of N-cadherin and syntaxin12 in migrating neurons. Rescue experiments with separation-of-function Arf6 mutants identified Rab11 family-interacting protein 3 (FIP3)/Arfophilin-1, a dual effector for Arf6 and Rab11, as a downstream effector of Arf6 in migrating neurons. The knockdown of FIP3 led to impaired neuronal migration in the intermediate zone and cytoplasmic retention of N-cadherin in migrating neurons, similar to that of Arf6, which could be rescued by the coexpression of wild-type FIP3 but not FIP3 mutants lacking the binding site for Arf6 or Rab11. These results suggest that Arf6 regulates cortical neuronal migration in the intermediate zone through the FIP3-dependent endosomal trafficking.
Collapse
|
21
|
Fukaya M, Ohta S, Hara Y, Tamaki H, Sakagami H. Distinct subcellular localization of alternative splicing variants of EFA6D, a guanine nucleotide exchange factor for Arf6, in the mouse brain. J Comp Neurol 2016; 524:2531-52. [PMID: 27241101 DOI: 10.1002/cne.24048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 03/31/2016] [Accepted: 05/24/2016] [Indexed: 11/07/2022]
Abstract
EFA6D (guanine nucleotide exchange factor for ADP-ribosylation factor 6 [Arf6]D) is also known as EFA6R, Psd3, and HCA67. It is the fourth member of the EFA6 family with guanine nucleotide exchange activity for Arf6, a small guanosine triphosphatase (GTPase) that regulates endosomal trafficking and actin cytoskeleton remodeling. We propose a classification and nomenclature of 10 EFA6D variants deposited in the GenBank database as EFA6D1a, 1b, 1c, 1d, 1s, 2a, 2b, 2c, 2d, and 2s based on the combination of N-terminal and C-terminal insertions. Polymerase chain reaction analysis showed the expression of all EFA6D variants except for variants a and d in the adult mouse brain. Immunoblotting analysis with novel variant-specific antibodies showed the endogenous expression of EFA6D1b, EFA6D1c, and EFA6D1s at the protein level, with the highest expression being EFA6D1s, in the brain. Immunoblotting analysis of forebrain subcellular fractions showed the distinct subcellular distribution of EFA6D1b/c and EFA6D1s. The immunohistochemical analysis revealed distinct but overlapping immunoreactive patterns between EFA6D1b/c and EFA6D1s in the mouse brain. In immunoelectron microscopic analyses of the hippocampal CA3 region, EFA6D1b/c was present predominantly in the mossy fiber axons of dentate granule cells, whereas EFA6D1s was present abundantly in the cell bodies, dendritic shafts, and spines of hippocampal pyramidal cells. These results provide the first anatomical evidence suggesting the functional diversity of EFA6D variants, particularly EFA6D1b/c and EFA6D1s, in neurons. J. Comp. Neurol. 524:2531-2552, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Masahiro Fukaya
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan
| | - Shingo Ohta
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan
| | - Yoshinobu Hara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan
| | - Hideaki Tamaki
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan
| |
Collapse
|
22
|
Sakagami H, Katsumata O, Hara Y, Tamaki H, Fukaya M. Preferential localization of type I phosphatidylinositol 4-phosphate 5-kinase γ at the periactive zone of mouse photoreceptor ribbon synapses. Brain Res 2014; 1586:23-33. [PMID: 25152467 DOI: 10.1016/j.brainres.2014.08.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/12/2014] [Accepted: 08/16/2014] [Indexed: 01/22/2023]
Abstract
Type I phosphatidylinositol 4-phosphate 5 kinase γ (PIP5KIγ) constitutes a major pathway for the generation of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) that regulates a variety of neuronal functions at both presynaptic and postsynaptic compartments. In this study, we examined the expression and localization of PIP5KIγ in the adult mouse retina. RT-PCR analysis revealed that PIP5KIγ_v2 was predominantly expressed in the retina while PIP5KIγ_v3 was also expressed faintly. Immunostaining of the adult mouse retina revealed intense PIP5KIγ-immunoreactivity in the inner and outer plexiform layers in a punctate manner. In the photoreceptor ribbon synapse, PIP5KIγ was highly concentrated at the periactive zone. These findings suggest that PIP5KIγ, especially PIP5KIγ_i2, is localized at the periactive zone, a functionally suitable compartment for the endocytosis of synaptic vesicles in photoreceptor ribbon synapses.
Collapse
Affiliation(s)
- Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan.
| | - Osamu Katsumata
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Yoshinobu Hara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Hideaki Tamaki
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Masahiro Fukaya
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| |
Collapse
|
23
|
Wright BD, Loo L, Street SE, Ma A, Taylor-Blake B, Stashko MA, Jin J, Janzen WP, Frye SV, Zylka MJ. The lipid kinase PIP5K1C regulates pain signaling and sensitization. Neuron 2014; 82:836-47. [PMID: 24853942 DOI: 10.1016/j.neuron.2014.04.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2014] [Indexed: 02/07/2023]
Abstract
Numerous pain-producing (pronociceptive) receptors signal via phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis. However, it is currently unknown which lipid kinases generate PIP2 in nociceptive dorsal root ganglia (DRG) neurons and if these kinases regulate pronociceptive receptor signaling. Here, we found that phosphatidylinositol 4-phosphate 5 kinase type 1C (PIP5K1C) is expressed at higher levels than any other PIP5K and, based on experiments with Pip5k1c(+/-) mice, generates at least half of all PIP2 in DRG neurons. Additionally, Pip5k1c haploinsufficiency reduces pronociceptive receptor signaling and TRPV1 sensitization in DRG neurons as well as thermal and mechanical hypersensitivity in mouse models of chronic pain. We identified a small molecule inhibitor of PIP5K1C (UNC3230) in a high-throughput screen. UNC3230 lowered PIP2 levels in DRG neurons and attenuated hypersensitivity when administered intrathecally or into the hindpaw. Our studies reveal that PIP5K1C regulates PIP2-dependent nociceptive signaling and suggest that PIP5K1C is a therapeutic target for chronic pain.
Collapse
Affiliation(s)
- Brittany D Wright
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lipin Loo
- Department of Cell Biology and Physiology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sarah E Street
- Department of Cell Biology and Physiology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Anqi Ma
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bonnie Taylor-Blake
- Department of Cell Biology and Physiology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael A Stashko
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jian Jin
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - William P Janzen
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephen V Frye
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark J Zylka
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
24
|
Yazaki Y, Hara Y, Tamaki H, Fukaya M, Sakagami H. Endosomal localization of FIP3/Arfophilin-1 and its involvement in dendritic formation of mouse hippocampal neurons. Brain Res 2014; 1557:55-65. [PMID: 24576489 DOI: 10.1016/j.brainres.2014.02.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 02/06/2014] [Accepted: 02/08/2014] [Indexed: 11/26/2022]
Abstract
Endosomal trafficking mediated by Rab11 and Arf6 small GTPases is essential for various neuronal functions. Family of Rab11-interacting protein 3 (FIP3)/Arfophilin-1, also termed Eferin, is a dual effector for Rab11 and Arf6 and implicated in endosomal trafficking during cytokinesis. To understand the neuronal functions of FIP3, we first showed the widespread neuronal expression of FIP3 mRNA in adult mouse brain by in situ hybridization. Immunohistochemical analysis showed the association of FIP3 with a subpopulation of endosomes labeled with EEA1 and syntaxin 12 in hippocampal neurons. Immunoblot analysis showed the progressive increase of FIP3 with a peak around postnatal day 15 during hippocampal development. Furthermore, knockdown of endogenous FIP3 decreased the total dendritic length of cultured hippocampal neurons with a concomitant increase in the number of short (<40μm) primary dendrites. Together, FIP3 is suggested to regulate dendritic formation possibly through Rab11- and Arf6-mediated endosomal trafficking.
Collapse
Affiliation(s)
- Yuuki Yazaki
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0329, Japan
| | - Yoshinobu Hara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0329, Japan
| | - Hideaki Tamaki
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0329, Japan
| | - Masahiro Fukaya
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0329, Japan
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0329, Japan.
| |
Collapse
|
25
|
Fukaya M, Fukushima D, Hara Y, Sakagami H. EFA6A, a guanine nucleotide exchange factor for Arf6, interacts with sorting nexin-1 and regulates neurite outgrowth. J Neurochem 2013; 129:21-36. [PMID: 24261326 DOI: 10.1111/jnc.12524] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/09/2013] [Accepted: 11/04/2013] [Indexed: 01/11/2023]
Abstract
The membrane trafficking and actin cytoskeleton remodeling mediated by ADP ribosylation factor 6 (Arf6) are functionally linked to various neuronal processes including neurite formation and maintenance, neurotransmitter release, and receptor internalization. EFA6A is an Arf6-specific guanine nucleotide exchange factor that is abundantly expressed in the brain. In this study, we identified sorting nexin-1 (SNX1), a retromer component that is implicated in endosomal sorting and trafficking, as a novel interacting partner for EFA6A by yeast two-hybrid screening. The interaction was mediated by the C-terminal region of EFA6A and a BAR domain of SNX1, and further confirmed by pull-down assay and immunoprecipitation from mouse brain lysates. In situ hybridization analysis demonstrated the widespread expression of SNX1 in the mouse brain, which overlapped with the expression of EFA6A in the forebrain. Immunofluorescent analysis revealed the partial colocalization of EFA6A and SNX1 in the dendritic fields of the hippocampus. Immunoelectron microscopic analysis revealed the overlapping subcellular localization of EFA6A and SNX1 at the post-synaptic density and endosomes in dendritic spines. In Neuro-2a neuroblastoma cells, expression of either EFA6A or SNX1 induced neurite outgrowth, which was further enhanced by co-expression of EFA6A and SNX1. The present findings suggest a novel mechanism by which EFA6A regulates Arf6-mediated neurite formation through the interaction with SNX1.
Collapse
Affiliation(s)
- Masahiro Fukaya
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | | | | | | |
Collapse
|