1
|
Zucchini E, Borzelli D, Casile A. Representational momentum of biological motion in full-body, point-light and single-dot displays. Sci Rep 2023; 13:10488. [PMID: 37380666 DOI: 10.1038/s41598-023-36870-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 06/12/2023] [Indexed: 06/30/2023] Open
Abstract
Observing the actions of others triggers, in our brain, an internal and automatic simulation of its unfolding in time. Here, we investigated whether the instantaneous internal representation of an observed action is modulated by the point of view under which an action is observed and the stimulus type. To this end, we motion captured the elliptical arm movement of a human actor and used these trajectories to animate a photorealistic avatar, a point-light stimulus or a single dot rendered either from an egocentric or an allocentric point of view. Crucially, the underlying physical characteristics of the movement were the same in all conditions. In a representational momentum paradigm, we then asked subjects to report the perceived last position of an observed movement at the moment in which the stimulus was randomly stopped. In all conditions, subjects tended to misremember the last configuration of the observed stimulus as being further forward than the veridical last showed position. This misrepresentation was however significantly smaller for full-body stimuli compared to point-light and single dot displays and it was not modulated by the point of view. It was also smaller when first-person full body stimuli were compared with a stimulus consisting of a solid shape moving with the same physical motion. We interpret these findings as evidence that full-body stimuli elicit a simulation process that is closer to the instantaneous veridical configuration of the observed movements while impoverished displays (both point-light and single-dot) elicit a prediction that is further forward in time. This simulation process seems to be independent from the point of view under which the actions are observed.
Collapse
Affiliation(s)
- Elena Zucchini
- Center for Translational Neurophysiology of Speech and Communication (CTNSC), Istituto Italiano di Tecnologia (IIT), Ferrara, Italy
| | - Daniele Borzelli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Antonino Casile
- Center for Translational Neurophysiology of Speech and Communication (CTNSC), Istituto Italiano di Tecnologia (IIT), Ferrara, Italy.
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy.
| |
Collapse
|
2
|
Dreyer AM, Michalke L, Perry A, Chang EF, Lin JJ, Knight RT, Rieger JW. Grasp-specific high-frequency broadband mirror neuron activity during reach-and-grasp movements in humans. Cereb Cortex 2023; 33:6291-6298. [PMID: 36562997 PMCID: PMC10183732 DOI: 10.1093/cercor/bhac504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
Broadly congruent mirror neurons, responding to any grasp movement, and strictly congruent mirror neurons, responding only to specific grasp movements, have been reported in single-cell studies with primates. Delineating grasp properties in humans is essential to understand the human mirror neuron system with implications for behavior and social cognition. We analyzed electrocorticography data from a natural reach-and-grasp movement observation and delayed imitation task with 3 different natural grasp types of everyday objects. We focused on the classification of grasp types from high-frequency broadband mirror activation patterns found in classic mirror system areas, including sensorimotor, supplementary motor, inferior frontal, and parietal cortices. Classification of grasp types was successful during movement observation and execution intervals but not during movement retention. Our grasp type classification from combined and single mirror electrodes provides evidence for grasp-congruent activity in the human mirror neuron system potentially arising from strictly congruent mirror neurons.
Collapse
Affiliation(s)
- Alexander M Dreyer
- Department of Psychology, Carl von Ossietzky University Oldenburg, Oldenburg 26129, Germany
| | - Leo Michalke
- Department of Psychology, Carl von Ossietzky University Oldenburg, Oldenburg 26129, Germany
| | - Anat Perry
- Department of Psychology, Hebrew University of Jerusalem, Jerusalem 91905, Israel
| | - Edward F Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, United States
| | - Jack J Lin
- Department of Biomedical Engineering and the Comprehensive Epilepsy Program, Department of Neurology, University of California, Irvine, CA 92868, United States
| | - Robert T Knight
- Department of Psychology and the Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States
| | - Jochem W Rieger
- Department of Psychology, Carl von Ossietzky University Oldenburg, Oldenburg 26129, Germany
| |
Collapse
|
3
|
Seidel A, Weber C, Ghio M, Bellebaum C. My view on your actions: Dynamic changes in viewpoint-dependent auditory ERP attenuation during action observation. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023:10.3758/s13415-023-01083-7. [PMID: 36949276 PMCID: PMC10400693 DOI: 10.3758/s13415-023-01083-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/23/2023] [Indexed: 03/24/2023]
Abstract
It has been suggested that during action observation, a sensory representation of the observed action is mapped onto one's own motor system. However, it is largely unexplored what this may imply for the early processing of the action's sensory consequences, whether the observational viewpoint exerts influence on this and how such a modulatory effect might change over time. We tested whether the event-related potential of auditory effects of actions observed from a first- versus third-person perspective show amplitude reductions compared with externally generated sounds, as revealed for self-generated sounds. Multilevel modeling on trial-level data showed distinct dynamic patterns for the two viewpoints on reductions of the N1, P2, and N2 components. For both viewpoints, an N1 reduction for sounds generated by observed actions versus externally generated sounds was observed. However, only during first-person observation, we found a temporal dynamic within experimental runs (i.e., the N1 reduction only emerged with increasing trial number), indicating time-variant, viewpoint-dependent processes involved in sensorimotor prediction during action observation. For the P2, only a viewpoint-independent reduction was found for sounds elicited by observed actions, which disappeared in the second half of the experiment. The opposite pattern was found in an exploratory analysis concerning the N2, revealing a reduction that increased in the second half of the experiment, and, moreover, a temporal dynamic within experimental runs for the first-person perspective, possibly reflecting an agency-related process. Overall, these results suggested that the processing of auditory outcomes of observed actions is dynamically modulated by the viewpoint over time.
Collapse
Affiliation(s)
- Alexander Seidel
- Institute of Experimental Psychology, Department of Biological Psychology, Heinrich Heine University, Universitätstrasse, 1, 40255, Düsseldorf, Germany
| | - Constanze Weber
- Institute of Experimental Psychology, Department of Biological Psychology, Heinrich Heine University, Universitätstrasse, 1, 40255, Düsseldorf, Germany.
| | - Marta Ghio
- Institute of Experimental Psychology, Department of Biological Psychology, Heinrich Heine University, Universitätstrasse, 1, 40255, Düsseldorf, Germany
| | - Christian Bellebaum
- Institute of Experimental Psychology, Department of Biological Psychology, Heinrich Heine University, Universitätstrasse, 1, 40255, Düsseldorf, Germany
| |
Collapse
|
4
|
Marini M, Casile A. I can see my virtual body in a mirror: The role of visual perspective in changing implicit racial attitudes using virtual reality. Front Psychol 2022; 13:989582. [PMID: 36518959 PMCID: PMC9742480 DOI: 10.3389/fpsyg.2022.989582] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/04/2022] [Indexed: 09/29/2023] Open
Abstract
INTRODUCTION Recent studies showed that VR is a valid tool to change implicit attitudes toward outgroup members. Here, we extended this work by investigating conditions under which virtual reality (VR) is effective in changing implicit racial attitudes. METHODS To this end, participants were embodied in a Black or White avatar and we manipulated the perspective through which they could see their virtual body. Participants in one condition, could see their virtual body both from a first-person perspective (i.e., by looking down toward themselves) and reflected in a mirror placed in front of them in the VR environment. Participants in another condition could instead see their virtual body only from a first-person perspective (i.e., by looking down toward themselves) as no mirror was placed in the VR environment. Implicit racial attitudes were assessed using the Implicit Association Test (IAT) before and immediately after the VR intervention. RESULTS Results showed that when White participants were embodied in a Black avatar compared to a White avatar, they showed a decrease in their implicit pro-White attitudes but only when they could see their virtual body both from a first-person perspective and in a mirror. DISCUSSION These results suggest that, in immersive virtual reality interventions, the possibility for participants to see their body also reflected in a mirror, might be a critical factor in changing their implicit racial attitudes.
Collapse
Affiliation(s)
- Maddalena Marini
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
- Department of Psychology, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Antonino Casile
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
- Department of Mathematics and Computer Science, University of Ferrara, Ferrara, Italy
| |
Collapse
|
5
|
Ninomiya T, Noritake A, Tatsumoto S, Go Y, Isoda M. Cognitive genomics of learning delay and low level of social performance monitoring in macaque. Sci Rep 2022; 12:16539. [PMID: 36192455 PMCID: PMC9529886 DOI: 10.1038/s41598-022-20948-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
Cognitive skills and the underlying neural architecture are under the influence of genetics. Cognitive genomics research explores the triadic relationship between genes, brain, and cognition, with its major strategy being genotype-driven. Here we show that an inverse strategy is feasible to identify novel candidate genes for particular neuro-cognitive phenotypes in macaques. Two monkeys, originally involved in separate psychological studies, exhibited learning delay and low levels of social performance monitoring. In one monkey, mirror neurons were fewer compared to controls and mu suppression was absent in the frontal cortex. The other monkey showed heightened visual responsiveness in both frontal cortex and dopamine-rich midbrain, with a lack of inter-areal synchronization. Exome analyses revealed that the two monkeys were most likely cousins and shared variants in MAP2, APOC1, and potentially HTR2C. This phenotype-driven strategy in cognitive genomics provides a useful means to clarify the genetic basis of phenotypic variation and develop macaque models of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Taihei Ninomiya
- Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan.,Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, 240-0193, Japan
| | - Atsushi Noritake
- Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan.,Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, 240-0193, Japan
| | - Shoji Tatsumoto
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
| | - Yasuhiro Go
- Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan.,Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, 240-0193, Japan.,Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
| | - Masaki Isoda
- Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan. .,Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, 240-0193, Japan.
| |
Collapse
|
6
|
Fregna G, Schincaglia N, Baroni A, Straudi S, Casile A. A novel immersive virtual reality environment for the motor rehabilitation of stroke patients: A feasibility study. Front Robot AI 2022; 9:906424. [PMID: 36105763 PMCID: PMC9465047 DOI: 10.3389/frobt.2022.906424] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
We designed and implemented an immersive virtual reality (VR) environment for upper limb rehabilitation, which possesses several notable features. First, by exploiting modern computer graphics its can present a variety of scenarios that make the rehabilitation routines challenging yet enjoyable for patients, thus enhancing their adherence to the therapy. Second, immersion in a virtual 3D space allows the patients to execute tasks that are closely related to everyday gestures, thus enhancing the transfer of the acquired motor skills to real-life routines. Third, in addition to the VR environment, we also developed a client app running on a PC that allows to monitor in real-time and remotely the patients’ routines thus paving the way for telerehabilitation scenarios. Here, we report the results of a feasibility study in a cohort of 16 stroke patients. All our patients showed a high degree of comfort in our immersive VR system and they reported very high scores of ownership and agency in embodiment and satisfaction questionnaires. Furthermore, and notably, we found that behavioral performances in our VR tasks correlated with the patients’ clinical scores (Fugl-Meyer scale) and they could thus be used to assess improvements during the rehabilitation program. While further studies are needed, our results clearly support the feasibility and effectiveness of VR-based motor rehabilitation processes.
Collapse
Affiliation(s)
- Giulia Fregna
- Doctoral Program in Translational Neurosciences and Neurotechnologies, University of Ferrara, Ferrara, Italy
| | - Nicola Schincaglia
- Department of Neuroscience and Rehabilitation, Ferrara University Hospital, Ferrara, Italy
| | - Andrea Baroni
- Department of Neuroscience and Rehabilitation, Ferrara University Hospital, Ferrara, Italy
| | - Sofia Straudi
- Department of Neuroscience and Rehabilitation, Ferrara University Hospital, Ferrara, Italy
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Antonino Casile
- Istituto Italiano di Tecnologia, Center for Translational Neurophysiology of Speech and Communication, Ferrara, Italy
- *Correspondence: Antonino Casile, ,
| |
Collapse
|
7
|
Giannakopoulos I, Karanika P, Papaxanthis C, Tsaklis P. The Effects of Action Observation Therapy as a Rehabilitation Tool in Parkinson’s Disease Patients: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063311. [PMID: 35329000 PMCID: PMC8949895 DOI: 10.3390/ijerph19063311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 11/16/2022]
Abstract
During Action Observation (AO), patients observe human movements that they then try to imitate physically. Until now, few studies have investigated the effectiveness of it in Parkinson’s disease (PD). However, due to the diversity of interventions, it is unclear how the dose and characteristics can affect its efficiency. We investigated the AO protocols used in PD, by discussing the intervention features and the outcome measures in relation to their efficacy. A search was conducted through MEDLINE, Scopus, Cochrane, and WoS until November 2021, for RCTs with AO interventions. Participant’s characteristics, treatment features, outcome measures, and main results were extracted from each study. Results were gathered into a quantitative synthesis (MD and 95% CI) for each time point. Seven studies were included in the review, with 227 participants and a mean PEDro score of 6.7. These studies reported positive effects of AO in PD patients, mainly on walking ability and typical motor signs of PD like freezing of gait. However, disagreements among authors exist, mainly due to the heterogeneity of the intervention features. In overall, AO improves functional abilities and motor control in PD patients, with the intervention dose and the characteristics of the stimulus playing a decisive role in its efficacy.
Collapse
Affiliation(s)
- Ioannis Giannakopoulos
- Biomechanics and Ergonomics Laboratory, Department of Physical Education and Sports Science (DPESS), University of Thessaly, 42100 Trikala, Greece; (I.G.); (P.K.); (C.P.)
| | - Panagiota Karanika
- Biomechanics and Ergonomics Laboratory, Department of Physical Education and Sports Science (DPESS), University of Thessaly, 42100 Trikala, Greece; (I.G.); (P.K.); (C.P.)
| | - Charalambos Papaxanthis
- Biomechanics and Ergonomics Laboratory, Department of Physical Education and Sports Science (DPESS), University of Thessaly, 42100 Trikala, Greece; (I.G.); (P.K.); (C.P.)
- L’Unité Mixte de Recherche (UMR) INSERM 1093 CAPS (Cognition, Action et Plasticité Sensorimotrice), Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000 Dijon, France
- Pôle Recherche et Santé Publique, CHU Dijon Bourgogne, F-21000 Dijon, France
| | - Panagiotis Tsaklis
- Biomechanics and Ergonomics Laboratory, Department of Physical Education and Sports Science (DPESS), University of Thessaly, 42100 Trikala, Greece; (I.G.); (P.K.); (C.P.)
- Department of Molecular Medicine and Surgery, Growth and Metabolism, Karolinska Institute, 17164 Solna, Sweden
- Correspondence: ; Tel.: +30-24310-47006
| |
Collapse
|
8
|
Kemmerer D. What modulates the Mirror Neuron System during action observation?: Multiple factors involving the action, the actor, the observer, the relationship between actor and observer, and the context. Prog Neurobiol 2021; 205:102128. [PMID: 34343630 DOI: 10.1016/j.pneurobio.2021.102128] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/23/2021] [Accepted: 07/29/2021] [Indexed: 01/03/2023]
Abstract
Seeing an agent perform an action typically triggers a motor simulation of that action in the observer's Mirror Neuron System (MNS). Over the past few years, it has become increasingly clear that during action observation the patterns and strengths of responses in the MNS are modulated by multiple factors. The first aim of this paper is therefore to provide the most comprehensive survey to date of these factors. To that end, 22 distinct factors are described, broken down into the following sets: six involving the action; two involving the actor; nine involving the observer; four involving the relationship between actor and observer; and one involving the context. The second aim is to consider the implications of these findings for four prominent theoretical models of the MNS: the Direct Matching Model; the Predictive Coding Model; the Value-Driven Model; and the Associative Model. These assessments suggest that although each model is supported by a wide range of findings, each one is also challenged by other findings and relatively unaffected by still others. Hence, there is now a pressing need for a richer, more inclusive model that is better able to account for all of the modulatory factors that have been identified so far.
Collapse
Affiliation(s)
- David Kemmerer
- Department of Psychological Sciences, Department of Speech, Language, and Hearing Sciences, Lyles-Porter Hall, Purdue University, 715 Clinic Drive, United States.
| |
Collapse
|
9
|
Isoda M. The Role of the Medial Prefrontal Cortex in Moderating Neural Representations of Self and Other in Primates. Annu Rev Neurosci 2021; 44:295-313. [PMID: 33752448 DOI: 10.1146/annurev-neuro-101420-011820] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
As a frontal node in the primate social brain, the medial prefrontal cortex (MPFC) plays a critical role in coordinating one's own behavior with respect to that of others. Current literature demonstrates that single neurons in the MPFC encode behavior-related variables such as intentions, actions, and rewards, specifically for self and other, and that the MPFC comes into play when reflecting upon oneself and others. The social moderator account of MPFC function can explain maladaptive social cognition in people with autism spectrum disorder, which tips the balance in favor of self-centered perspectives rather than taking into consideration the perspective of others. Several strands of evidence suggest a hypothesis that the MPFC represents different other mental models, depending on the context at hand, to better predict others' emotions and behaviors. This hypothesis also accounts for aberrant MPFC activity in autistic individuals while they are mentalizing others.
Collapse
Affiliation(s)
- Masaki Isoda
- Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan; .,Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa 240-0193, Japan
| |
Collapse
|
10
|
A causal role for frontal cortico-cortical coordination in social action monitoring. Nat Commun 2020; 11:5233. [PMID: 33067461 PMCID: PMC7568569 DOI: 10.1038/s41467-020-19026-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/25/2020] [Indexed: 12/05/2022] Open
Abstract
Decision-making via monitoring others’ actions is a cornerstone of interpersonal exchanges. Although the ventral premotor cortex (PMv) and the medial prefrontal cortex (MPFC) are cortical nodes in social brain networks, the two areas are rarely concurrently active in neuroimaging, inviting the hypothesis that they are functionally independent. Here we show in macaques that the ability of the MPFC to monitor others’ actions depends on input from the PMv. We found that delta-band coherence between the two areas emerged during action execution and action observation. Information flow especially in the delta band increased from the PMv to the MPFC as the biological nature of observed actions increased. Furthermore, selective blockade of the PMv-to-MPFC pathway using a double viral vector infection technique impaired the processing of observed, but not executed, actions. These findings demonstrate that coordinated activity in the PMv-to-MPFC pathway has a causal role in social action monitoring. Social interactions require monitoring others’ actions to optimally organise one’s own actions. Here, the authors show that the pathway from the ventral premotor cortex (PMv) to the medial prefrontal cortex (MPFC) is causally involved in monitoring observed, but not executed, actions.
Collapse
|
11
|
Motor resonance in monkey parietal and premotor cortex during action observation: Influence of viewing perspective and effector identity. Neuroimage 2020; 224:117398. [PMID: 32971263 DOI: 10.1016/j.neuroimage.2020.117398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/24/2020] [Accepted: 09/16/2020] [Indexed: 11/22/2022] Open
Abstract
Observing others performing motor acts like grasping has been shown to elicit neural responses in the observer`s parieto-frontal motor network, which typically becomes active when the observer would perform these actions him/herself. While some human studies suggested strongest motor resonance during observation of first person or egocentric perspectives compared to third person or allocentric perspectives, other research either report the opposite or did not find any viewpoint-related preferences in parieto-premotor cortices. Furthermore, it has been suggested that these motor resonance effects are lateralized in the parietal cortex depending on the viewpoint and identity of the observed effector (left vs right hand). Other studies, however, do not find such straightforward hand identity dependent motor resonance effects. In addition to these conflicting findings in human studies, to date, little is known about the modulatory role of viewing perspective and effector identity (left or right hand) on motor resonance effects in monkey parieto-premotor cortices. Here, we investigated the extent to which different viewpoints of observed conspecific hand actions yield motor resonance in rhesus monkeys using fMRI. Observing first person, lateral and third person viewpoints of conspecific hand actions yielded significant activations throughout the so-called action observation network, including STS, parietal and frontal cortices. Although region-of-interest analysis of parietal and premotor motor/mirror neuron regions AIP, PFG and F5, showed robust responses in these regions during action observation in general, a clear preference for egocentric or allocentric perspectives was not evident. Moreover, except for lateralized effects due to visual field biases, motor resonance in the monkey brain during grasping observation did not reflect hand identity dependent coding.
Collapse
|
12
|
Oh H, Braun AR, Reggia JA, Gentili RJ. Fronto-parietal mirror neuron system modeling: Visuospatial transformations support imitation learning independently of imitator perspective. Hum Mov Sci 2019; 65:S0167-9457(17)30942-9. [DOI: 10.1016/j.humov.2018.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/15/2018] [Accepted: 05/25/2018] [Indexed: 11/16/2022]
|
13
|
Angelini M, Fabbri-Destro M, Lopomo NF, Gobbo M, Rizzolatti G, Avanzini P. Perspective-dependent reactivity of sensorimotor mu rhythm in alpha and beta ranges during action observation: an EEG study. Sci Rep 2018; 8:12429. [PMID: 30127390 PMCID: PMC6102263 DOI: 10.1038/s41598-018-30912-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/01/2018] [Indexed: 11/24/2022] Open
Abstract
During action observation, several visual features of observed actions can modulate the level of sensorimotor reactivity in the onlooker. Among possibly relevant parameters, one of the less investigated in humans is the visual perspective from which actions are observed. In the present EEG study, we assessed the reactivity of alpha and beta mu rhythm subcomponents to four different visual perspectives, defined by the position of the observer relative to the moving agent (identifying first-person, third-person and lateral viewpoints) and by the anatomical compatibility of observed effectors with self- or other individual’s body (identifying ego- and allo-centric viewpoints, respectively). Overall, the strongest sensorimotor responsiveness emerged for first-person perspective. Furthermore, we found different patterns of perspective-dependent reactivity in rolandic alpha and beta ranges, with the former tuned to visuospatial details of observed actions and the latter tuned to action-related parameters (such as the direction of actions relative to the observer), suggesting a higher recruitment of beta motor rhythm in face-to-face interactions. The impact of these findings on the selection of most effective action stimuli for “Action Observation Treatment” neurorehabilitative protocols is discussed.
Collapse
Affiliation(s)
- Monica Angelini
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Neuroscienze, Sede di Parma, Italy. .,Dipartimento di Ingegneria dell'Informazione, Università degli Studi di Brescia, Brescia, Italy. .,Dipartimento di Scienze Cliniche e Sperimentali, Università degli Studi di Brescia, Brescia, Italy.
| | | | - Nicola Francesco Lopomo
- Dipartimento di Ingegneria dell'Informazione, Università degli Studi di Brescia, Brescia, Italy
| | - Massimiliano Gobbo
- Dipartimento di Scienze Cliniche e Sperimentali, Università degli Studi di Brescia, Brescia, Italy
| | - Giacomo Rizzolatti
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Neuroscienze, Sede di Parma, Italy
| | - Pietro Avanzini
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Neuroscienze, Sede di Parma, Italy
| |
Collapse
|
14
|
Reorganization of the Action Observation Network and Sensory-Motor System in Children with Unilateral Cerebral Palsy: An fMRI Study. Neural Plast 2018; 2018:6950547. [PMID: 30147718 PMCID: PMC6083552 DOI: 10.1155/2018/6950547] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/14/2018] [Accepted: 05/22/2018] [Indexed: 12/02/2022] Open
Abstract
Little is known about the action observation network (AON) in children with unilateral cerebral palsy (UCP). Using fMRI, we aimed to explore AON and sensory-motor network (SMN) in UCP children and compare them to typically developed (TD) children and analyse the relationship between AON (re-)organization and several neurophysiological and clinical measures. Twelve UCP children were assessed with clinical scales and transcranial magnetic stimulation (TMS). For the fMRI study, they underwent a paradigm based on observation of complex and simple object-manipulation tasks executed by dominant and nondominant hand. Moreover, UCP and TD children carried out a further fMRI session to explore SMN in both an active motor and passive sensory task. AON in the UCP group showed higher lateralization, negatively related to performances on clinical scales, and had greater activation of unaffected hemisphere as compared to the bilateral representation in the TD group. In addition, a good congruence was found between bilateral or contralateral activation of AON and activation of SMN and TMS data. These findings indicate that our paradigm might be useful in exploring AON and the response to therapy in UCP subjects.
Collapse
|
15
|
Simultaneous scalp recorded EEG and local field potentials from monkey ventral premotor cortex during action observation and execution reveals the contribution of mirror and motor neurons to the mu-rhythm. Neuroimage 2018; 175:22-31. [PMID: 29571717 DOI: 10.1016/j.neuroimage.2018.03.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/31/2018] [Accepted: 03/17/2018] [Indexed: 11/21/2022] Open
Abstract
The desynchronization of alpha and beta oscillations (mu rhythm) in the central scalp EEG during action observation and action execution is thought to reflect neural mirroring processes. However, the extent to which mirror neurons (MNs) or other populations of neurons contribute to such EEG desynchronization is still unknown. Here, we provide the first evidence that, in the monkey, the neuronal activity recorded from the ventral premotor cortex (PMv) strongly contributes to the EEG changes occurring in the beta band over central scalp electrodes, during executed and observed actions. We simultaneously recorded scalp EEG and extracellular activity, Multi Unit Activity (MUA) and Local Field Potentials (LFP), from area F5 of two macaques executing and observing grasping actions. We found that MUA highly correlates with an increase in high gamma LFP power and, interestingly, such LFP power increase also correlates to EEG beta - and in part also to alpha - desynchronization. In terms of timing of signal changes, the increase in high gamma LFP power precedes the EEG desynchronization, during both action observation and execution, thus suggesting a causal role of PMv neuronal activity in the modulation of the alpha and beta mu-rhythm. Lastly, neuronal signals from deeper layers of PMv exert a greater contribution than superficial layers to the EEG beta rhythm modulation, especially during the motor task. Our findings have clear implications for EEG studies in that they demonstrate that the activity of different populations of neurons in PMv contribute to the generation of the mu-rhythm.
Collapse
|
16
|
ISODA M, NORITAKE A, NINOMIYA T. Development of social systems neuroscience using macaques. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2018; 94:305-323. [PMID: 30078829 PMCID: PMC6117490 DOI: 10.2183/pjab.94.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/25/2018] [Indexed: 06/08/2023]
Abstract
This paper reviews the literature on social neuroscience studies using macaques in the hope of encouraging as many researchers as possible to participate in this field of research and thereby accelerate the system-level understanding of social cognition and behavior. We describe how different parts of the primate brain are engaged in different aspects of social information processing, with particular emphasis on the use of experimental paradigms involving more than one monkey in laboratory settings. The description begins with how individual neurons are used for evaluating socially relevant information, such as the identity, face, and focus of attention of others in various social contexts. A description of the neural bases of social reward processing and social action monitoring follows. Finally, we provide several perspectives on novel experimental strategies to help clarify the nature of interacting brains under more socially and ecologically plausible conditions.
Collapse
Affiliation(s)
- Masaki ISODA
- Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Japan
| | - Atsushi NORITAKE
- Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Japan
| | - Taihei NINOMIYA
- Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Japan
| |
Collapse
|
17
|
Spatial and viewpoint selectivity for others' observed actions in monkey ventral premotor mirror neurons. Sci Rep 2017; 7:8231. [PMID: 28811605 PMCID: PMC5557915 DOI: 10.1038/s41598-017-08956-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 07/17/2017] [Indexed: 01/09/2023] Open
Abstract
The spatial location and viewpoint of observed actions are closely linked in natural social settings. For example, actions observed from a subjective viewpoint necessarily occur within the observer’s peripersonal space. Neurophysiological studies have shown that mirror neurons (MNs) of the monkey ventral premotor area F5 can code the spatial location of live observed actions. Furthermore, F5 MN discharge can also be modulated by the viewpoint from which filmed actions are seen. Nonetheless, whether and to what extent MNs can integrate viewpoint and spatial location of live observed actions remains unknown. We addressed this issue by comparing the activity of 148 F5 MNs while macaque monkeys observed an experimenter grasping in three different combinations of viewpoint and spatial location, namely, lateral view in the (1) extrapersonal and (2) peripersonal space and (3) subjective view in the peripersonal space. We found that the majority of MNs were space-selective (60.8%): those selective for the peripersonal space exhibited a preference for the subjective viewpoint both at the single-neuron and population level, whereas space-unselective neurons were view invariant. These findings reveal the existence of a previously neglected link between spatial and viewpoint selectivity in MN activity during live-action observation.
Collapse
|
18
|
MEG Multivariate Analysis Reveals Early Abstract Action Representations in the Lateral Occipitotemporal Cortex. J Neurosci 2016; 35:16034-45. [PMID: 26658857 DOI: 10.1523/jneurosci.1422-15.2015] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
UNLABELLED Understanding other people's actions is a fundamental prerequisite for social interactions. Whether action understanding relies on simulating the actions of others in the observers' motor system or on the access to conceptual knowledge stored in nonmotor areas is strongly debated. It has been argued previously that areas that play a crucial role in action understanding should (1) distinguish between different actions, (2) generalize across the ways in which actions are performed (Dinstein et al., 2008; Oosterhof et al., 2013; Caramazza et al., 2014), and (3) have access to action information around the time of action recognition (Hauk et al., 2008). Whereas previous studies focused on the first two criteria, little is known about the dynamics underlying action understanding. We examined which human brain regions are able to distinguish between pointing and grasping, regardless of reach direction (left or right) and effector (left or right hand), using multivariate pattern analysis of magnetoencephalography data. We show that the lateral occipitotemporal cortex (LOTC) has the earliest access to abstract action representations, which coincides with the time point from which there was enough information to allow discriminating between the two actions. By contrast, precentral regions, though recruited early, have access to such abstract representations substantially later. Our results demonstrate that in contrast to the LOTC, the early recruitment of precentral regions does not contain the detailed information that is required to recognize an action. We discuss previous theoretical claims of motor theories and how they are incompatible with our data. SIGNIFICANCE STATEMENT It is debated whether our ability to understand other people's actions relies on the simulation of actions in the observers' motor system, or is based on access to conceptual knowledge stored in nonmotor areas. Here, using magnetoencephalography in combination with machine learning, we examined where in the brain and at which point in time it is possible to distinguish between pointing and grasping actions regardless of the way in which they are performed (effector, reach direction). We show that, in contrast to the predictions of motor theories of action understanding, the lateral occipitotemporal cortex has access to abstract action representations substantially earlier than precentral regions.
Collapse
|
19
|
Babiloni C, Del Percio C, Vecchio F, Sebastiano F, Di Gennaro G, Quarato PP, Morace R, Pavone L, Soricelli A, Noce G, Esposito V, Rossini PM, Gallese V, Mirabella G. Alpha, beta and gamma electrocorticographic rhythms in somatosensory, motor, premotor and prefrontal cortical areas differ in movement execution and observation in humans. Clin Neurophysiol 2016; 127:641-654. [DOI: 10.1016/j.clinph.2015.04.068] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 04/21/2015] [Accepted: 04/25/2015] [Indexed: 12/30/2022]
|
20
|
Processing of Own Hand Visual Feedback during Object Grasping in Ventral Premotor Mirror Neurons. J Neurosci 2015; 35:11824-9. [PMID: 26311766 DOI: 10.1523/jneurosci.0301-15.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Mirror neurons (MNs) discharge during action execution as well as during observation of others' actions. Our own actions are those that we have the opportunity to observe more frequently, but no study thus far to our knowledge has addressed the issue of whether, and to what extent, MNs can code own hand visual feedback (HVF) during object grasping. Here, we show that MNs of the ventral premotor area F5 of macaque monkeys are particularly sensitive to HVF relative to non-MNs simultaneously recorded in the same penetrations. Importantly, the HVF effect is more evident on MN activity during hand-object interaction than during the hand-shaping phase. Furthermore, the increase of MN activity induced by HVF and others' actions observed from a subjective perspective were positively correlated. These findings indicate that at least part of ventral premotor MNs can process the visual information coming from own hand interacting with objects, likely playing a role in self-action monitoring. SIGNIFICANCE STATEMENT We show that mirror neurons (MNs) of area F5 of the macaque, in addition to encoding others' observed actions, are particularly sensitive, relative to simultaneously recorded non-MNs, to the sight of the monkey's own hand during object grasping, likely playing a role in self-action monitoring.
Collapse
|
21
|
Ferri S, Peeters R, Nelissen K, Vanduffel W, Rizzolatti G, Orban GA. A human homologue of monkey F5c. Neuroimage 2015; 111:251-66. [PMID: 25711137 PMCID: PMC4401441 DOI: 10.1016/j.neuroimage.2015.02.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/15/2015] [Accepted: 02/16/2015] [Indexed: 02/04/2023] Open
Abstract
Area F5c is a monkey premotor area housing mirror neurons which responds more strongly to grasping observation when the actor is visible than when only the actor's hand is visible. Here we used this characteristic fMRI signature of F5c in seven imaging experiments – one in macaque monkeys and six in humans – to identify the human homologue of monkey F5c. By presenting the two grasping actions (actor, hand) and varying the low level visual characteristics, we localized a putative human homologue of area F5c (phF5c) in the inferior part of precentral sulcus, bilaterally. In contrast to monkey F5c, phF5c is asymmetric, with a right-sided bias, and is activated more strongly during the observation of the later stages of grasping when the hand is close to the object. The latter characteristic might be related to the emergence, in humans, of the capacity to precisely copy motor acts performed by others, and thus imitation. We use parallel fMRI to identify the human homologue of macaque F5c. In premotor cortex only F5c reacts more to observing grasping with the actor visible. Two bilateral inferior precentral sulcus sites respond similarly for many stimuli. The human homologues of F5c are asymmetric and require fixation near the target.
Collapse
Affiliation(s)
- S Ferri
- Department of Neuroscience, University of Parma, Parma, Italy
| | - R Peeters
- Division of Radiology, KU Leuven University Hospital, Leuven, Belgium
| | - K Nelissen
- Laboratorium voor Neuro-en Psychofysiologie, KU Leuven Medical School, Leuven, Belgium
| | - W Vanduffel
- Laboratorium voor Neuro-en Psychofysiologie, KU Leuven Medical School, Leuven, Belgium
| | - G Rizzolatti
- Department of Neuroscience, University of Parma, Parma, Italy; Brain Center for Social and Motor Cognition, Italian Institute of Technology, Parma, Italy
| | - G A Orban
- Department of Neuroscience, University of Parma, Parma, Italy; Laboratorium voor Neuro-en Psychofysiologie, KU Leuven Medical School, Leuven, Belgium.
| |
Collapse
|