1
|
Liu M, Wang C, Huo L, Cao J, Mao X, He Z, Hu C, Sun H, Deng W, He W, Chen Y, Gu M, Liao J, Guo N, He X, Wu Q, Chen J, Zhang L, Wang X, Shang C, Dong J. Complexin-1 enhances ultrasound neurotransmission in the mammalian auditory pathway. Nat Genet 2024; 56:1503-1515. [PMID: 38834904 DOI: 10.1038/s41588-024-01781-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 04/25/2024] [Indexed: 06/06/2024]
Abstract
Unlike megabats, which rely on well-developed vision, microbats use ultrasonic echolocation to navigate and locate prey. To study ultrasound perception, here we compared the auditory cortices of microbats and megabats by constructing reference genomes and single-nucleus atlases for four species. We found that parvalbumin (PV)+ neurons exhibited evident cross-species differences and could respond to ultrasound signals, whereas their silencing severely affected ultrasound perception in the mouse auditory cortex. Moreover, megabat PV+ neurons expressed low levels of complexins (CPLX1-CPLX4), which can facilitate neurotransmitter release, while microbat PV+ neurons highly expressed CPLX1, which improves neurotransmission efficiency. Further perturbation of Cplx1 in PV+ neurons impaired ultrasound perception in the mouse auditory cortex. In addition, CPLX1 functioned in other parts of the auditory pathway in microbats but not megabats and exhibited convergent evolution between echolocating microbats and whales. Altogether, we conclude that CPLX1 expression throughout the entire auditory pathway can enhance mammalian ultrasound neurotransmission.
Collapse
Affiliation(s)
- Meiling Liu
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Changliang Wang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Lifang Huo
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Jie Cao
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Xiuguang Mao
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Ziqing He
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Chuanxia Hu
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Haijian Sun
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Wenjun Deng
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Weiya He
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Yifu Chen
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Meifeng Gu
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Jiayu Liao
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Ning Guo
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Xiangyang He
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qian Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Jiekai Chen
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Libiao Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China.
| | - Xiaoqun Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
| | - Congping Shang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.
| | - Ji Dong
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.
| |
Collapse
|
2
|
Abstract
Fine audiovocal control is a hallmark of human speech production and depends on precisely coordinated muscle activity guided by sensory feedback. Little is known about shared audiovocal mechanisms between humans and other mammals. We hypothesized that real-time audiovocal control in bat echolocation uses the same computational principles as human speech. To test the prediction of this hypothesis, we applied state feedback control (SFC) theory to the analysis of call frequency adjustments in the echolocating bat, Hipposideros armiger. This model organism exhibits well-developed audiovocal control to sense its surroundings via echolocation. Our experimental paradigm was analogous to one implemented in human subjects. We measured the bats' vocal responses to spectrally altered echolocation calls. Individual bats exhibited highly distinct patterns of vocal compensation to these altered calls. Our findings mirror typical observations of speech control in humans listening to spectrally altered speech. Using mathematical modeling, we determined that the same computational principles of SFC apply to bat echolocation and human speech, confirming the prediction of our hypothesis.
Collapse
|
3
|
Beetz MJ, Hechavarría JC. Neural Processing of Naturalistic Echolocation Signals in Bats. Front Neural Circuits 2022; 16:899370. [PMID: 35664459 PMCID: PMC9157489 DOI: 10.3389/fncir.2022.899370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/21/2022] [Indexed: 11/18/2022] Open
Abstract
Echolocation behavior, a navigation strategy based on acoustic signals, allows scientists to explore neural processing of behaviorally relevant stimuli. For the purpose of orientation, bats broadcast echolocation calls and extract spatial information from the echoes. Because bats control call emission and thus the availability of spatial information, the behavioral relevance of these signals is undiscussable. While most neurophysiological studies, conducted in the past, used synthesized acoustic stimuli that mimic portions of the echolocation signals, recent progress has been made to understand how naturalistic echolocation signals are encoded in the bat brain. Here, we review how does stimulus history affect neural processing, how spatial information from multiple objects and how echolocation signals embedded in a naturalistic, noisy environment are processed in the bat brain. We end our review by discussing the huge potential that state-of-the-art recording techniques provide to gain a more complete picture on the neuroethology of echolocation behavior.
Collapse
Affiliation(s)
- M. Jerome Beetz
- Zoology II, Biocenter, University of Würzburg, Würzburg, Germany
| | - Julio C. Hechavarría
- Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
4
|
Rose MC, Styr B, Schmid TA, Elie JE, Yartsev MM. Cortical representation of group social communication in bats. Science 2021; 374:eaba9584. [PMID: 34672724 PMCID: PMC8775406 DOI: 10.1126/science.aba9584] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Social interactions occur in group settings and are mediated by communication signals that are exchanged between individuals, often using vocalizations. The neural representation of group social communication remains largely unexplored. We conducted simultaneous wireless electrophysiological recordings from the frontal cortices of groups of Egyptian fruit bats engaged in both spontaneous and task-induced vocal interactions. We found that the activity of single neurons distinguished between vocalizations produced by self and by others, as well as among specific individuals. Coordinated neural activity among group members exhibited stable bidirectional interbrain correlation patterns specific to spontaneous communicative interactions. Tracking social and spatial arrangements within a group revealed a relationship between social preferences and intra- and interbrain activity patterns. Combined, these findings reveal a dedicated neural repertoire for group social communication within and across the brains of freely communicating groups of bats.
Collapse
Affiliation(s)
- Maimon C. Rose
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Boaz Styr
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
| | - Tobias A. Schmid
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Julie E. Elie
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
| | - Michael M. Yartsev
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
5
|
Taub M, Yovel Y. Adaptive learning and recall of motor-sensory sequences in adult echolocating bats. BMC Biol 2021; 19:164. [PMID: 34412628 PMCID: PMC8377959 DOI: 10.1186/s12915-021-01099-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Learning to adapt to changes in the environment is highly beneficial. This is especially true for echolocating bats that forage in diverse environments, moving between open spaces to highly complex ones. Bats are known for their ability to rapidly adjust their sensing according to auditory information gathered from the environment within milliseconds but can they also benefit from longer adaptive processes? In this study, we examined adult bats' ability to slowly adapt their sensing strategy to a new type of environment they have never experienced for such long durations, and to then maintain this learned echolocation strategy over time. RESULTS We show that over a period of weeks, Pipistrellus kuhlii bats gradually adapt their pre-takeoff echolocation sequence when moved to a constantly cluttered environment. After adopting this improved strategy, the bats retained an ability to instantaneously use it when placed back in a similarly cluttered environment, even after spending many months in a significantly less cluttered environment. CONCLUSIONS We demonstrate long-term adaptive flexibility in sensory acquisition in adult animals. Our study also gives further insight into the importance of sensory planning in the initiation of a precise sensorimotor behavior such as approaching for landing.
Collapse
Affiliation(s)
- Mor Taub
- Department of Zoology, Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel.
| | - Yossi Yovel
- Department of Zoology, Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, 6997801, Tel Aviv, Israel.
| |
Collapse
|
6
|
Chitradurga Achutha A, Peremans H, Firzlaff U, Vanderelst D. Efficient encoding of spectrotemporal information for bat echolocation. PLoS Comput Biol 2021; 17:e1009052. [PMID: 34181643 PMCID: PMC8270447 DOI: 10.1371/journal.pcbi.1009052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 07/09/2021] [Accepted: 05/07/2021] [Indexed: 12/04/2022] Open
Abstract
In most animals, natural stimuli are characterized by a high degree of redundancy, limiting the ensemble of ecologically valid stimuli to a significantly reduced subspace of the representation space. Neural encodings can exploit this redundancy and increase sensing efficiency by generating low-dimensional representations that retain all information essential to support behavior. In this study, we investigate whether such an efficient encoding can be found to support a broad range of echolocation tasks in bats. Starting from an ensemble of echo signals collected with a biomimetic sonar system in natural indoor and outdoor environments, we use independent component analysis to derive a low-dimensional encoding of the output of a cochlear model. We show that this compressive encoding retains all essential information. To this end, we simulate a range of psycho-acoustic experiments with bats. In these simulations, we train a set of neural networks to use the encoded echoes as input while performing the experiments. The results show that the neural networks’ performance is at least as good as that of the bats. We conclude that our results indicate that efficient encoding of echo information is feasible and, given its many advantages, very likely to be employed by bats. Previous studies have demonstrated that low-dimensional encodings allow for task resolution at a relatively high level. In contrast to previous work in this area, we show that high performance can also be achieved when low-dimensional filters are derived from a data set of realistic echo signals, not tailored to specific experimental conditions. We show that complex (and simple) echoes from real environments can be efficiently and effectively represented using a small set of filters. Critically, we show that high performance across a range of tasks can be achieved when low-dimensional filters are derived from a data set of realistic echo signals, not tailored to specific experimental conditions. The redundancy in echoic information opens up the opportunity for efficient encoding, reducing the computational load of echo processing as well as the memory load for storing the information. Therefore, we predict the auditory system of bats to capitalize on this opportunity for efficient coding by implementing filters with spectrotemporal properties akin to those hypothesized here. Indeed, the filters we obtain here are similar to those found in other animals and other sensing capabilities. Our results indicate that bats could exploit the redundancy in sonar signals to implement an efficient neural encoding of the relevant information.
Collapse
Affiliation(s)
- Adarsh Chitradurga Achutha
- Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Herbert Peremans
- Department of Engineering Management, University of Antwerp, Antwerp, Belgium
| | - Uwe Firzlaff
- Chair of Zoology, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Dieter Vanderelst
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
7
|
Asilador A, Llano DA. Top-Down Inference in the Auditory System: Potential Roles for Corticofugal Projections. Front Neural Circuits 2021; 14:615259. [PMID: 33551756 PMCID: PMC7862336 DOI: 10.3389/fncir.2020.615259] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/17/2020] [Indexed: 01/28/2023] Open
Abstract
It has become widely accepted that humans use contextual information to infer the meaning of ambiguous acoustic signals. In speech, for example, high-level semantic, syntactic, or lexical information shape our understanding of a phoneme buried in noise. Most current theories to explain this phenomenon rely on hierarchical predictive coding models involving a set of Bayesian priors emanating from high-level brain regions (e.g., prefrontal cortex) that are used to influence processing at lower-levels of the cortical sensory hierarchy (e.g., auditory cortex). As such, virtually all proposed models to explain top-down facilitation are focused on intracortical connections, and consequently, subcortical nuclei have scarcely been discussed in this context. However, subcortical auditory nuclei receive massive, heterogeneous, and cascading descending projections at every level of the sensory hierarchy, and activation of these systems has been shown to improve speech recognition. It is not yet clear whether or how top-down modulation to resolve ambiguous sounds calls upon these corticofugal projections. Here, we review the literature on top-down modulation in the auditory system, primarily focused on humans and cortical imaging/recording methods, and attempt to relate these findings to a growing animal literature, which has primarily been focused on corticofugal projections. We argue that corticofugal pathways contain the requisite circuitry to implement predictive coding mechanisms to facilitate perception of complex sounds and that top-down modulation at early (i.e., subcortical) stages of processing complement modulation at later (i.e., cortical) stages of processing. Finally, we suggest experimental approaches for future studies on this topic.
Collapse
Affiliation(s)
- Alexander Asilador
- Neuroscience Program, The University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Beckman Institute for Advanced Science and Technology, Urbana, IL, United States
| | - Daniel A. Llano
- Neuroscience Program, The University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Beckman Institute for Advanced Science and Technology, Urbana, IL, United States
- Molecular and Integrative Physiology, The University of Illinois at Urbana-Champaign, Champaign, IL, United States
| |
Collapse
|
8
|
Enhanced representation of natural sound sequences in the ventral auditory midbrain. Brain Struct Funct 2020; 226:207-223. [PMID: 33315120 PMCID: PMC7817570 DOI: 10.1007/s00429-020-02188-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 11/24/2020] [Indexed: 11/30/2022]
Abstract
The auditory midbrain (inferior colliculus, IC) plays an important role in sound processing, acting as hub for acoustic information extraction and for the implementation of fast audio-motor behaviors. IC neurons are topographically organized according to their sound frequency preference: dorsal IC regions encode low frequencies while ventral areas respond best to high frequencies, a type of sensory map defined as tonotopy. Tonotopic maps have been studied extensively using artificial stimuli (pure tones) but our knowledge of how these maps represent information about sequences of natural, spectro-temporally rich sounds is sparse. We studied this question by conducting simultaneous extracellular recordings across IC depths in awake bats (Carollia perspicillata) that listened to sequences of natural communication and echolocation sounds. The hypothesis was that information about these two types of sound streams is represented at different IC depths since they exhibit large differences in spectral composition, i.e., echolocation covers the high-frequency portion of the bat soundscape (> 45 kHz), while communication sounds are broadband and carry most power at low frequencies (20–25 kHz). Our results showed that mutual information between neuronal responses and acoustic stimuli, as well as response redundancy in pairs of neurons recorded simultaneously, increase exponentially with IC depth. The latter occurs regardless of the sound type presented to the bats (echolocation or communication). Taken together, our results indicate the existence of mutual information and redundancy maps at the midbrain level whose response cannot be predicted based on the frequency composition of natural sounds and classic neuronal tuning curves.
Collapse
|
9
|
Chengetanai S, Bhagwandin A, Bertelsen MF, Hård T, Hof PR, Spocter MA, Manger PR. The brain of the African wild dog. III. The auditory system. J Comp Neurol 2020; 528:3229-3244. [PMID: 32678456 DOI: 10.1002/cne.24989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 11/05/2022]
Abstract
The large external pinnae and extensive vocal repertoire of the African wild dog (Lycaon pictus) has led to the assumption that the auditory system of this unique canid may be specialized. Here, using cytoarchitecture, myeloarchitecture, and a range of immunohistochemical stains, we describe the systems-level anatomy of the auditory system of the African wild dog. We observed the cochlear nuclear complex, superior olivary nuclear complex, lateral lemniscus, inferior colliculus, medial geniculate body, and auditory cortex all being in their expected locations, and exhibiting the standard subdivisions of this system. While located in the ectosylvian gyri, the auditory cortex includes several areas, resembling the parcellation observed in cats and ferrets, although not all of the auditory areas known from these species could be identified in the African wild dog. These observations suggest that, broadly speaking, the systems-level anatomy of the auditory system, and by extension the processing of auditory information, within the brain of the African wild dog closely resembles that observed in other carnivores. Our findings indicate that it is likely that the extraction of the semantic content of the vocalizations of African wild dogs, and the behaviors generated, occurs beyond the classically defined auditory system, in limbic or association neocortical regions involved in cognitive functions. Thus, to obtain a deeper understanding of how auditory stimuli are processed, and how communication is achieved, in the African wild dog compared to other canids, cortical regions beyond the primary sensory areas will need to be examined in detail.
Collapse
Affiliation(s)
- Samson Chengetanai
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Mads F Bertelsen
- Center for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | | | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,New York Consortium in Evolutionary Primatology, New York, New York, USA
| | - Muhammad A Spocter
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa.,Department of Anatomy, Des Moines University, Des Moines, Iowa, USA
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| |
Collapse
|
10
|
Macias S, Bakshi K, Garcia-Rosales F, Hechavarria JC, Smotherman M. Temporal coding of echo spectral shape in the bat auditory cortex. PLoS Biol 2020; 18:e3000831. [PMID: 33170833 PMCID: PMC7678962 DOI: 10.1371/journal.pbio.3000831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/20/2020] [Accepted: 10/01/2020] [Indexed: 01/26/2023] Open
Abstract
Echolocating bats rely upon spectral interference patterns in echoes to reconstruct fine details of a reflecting object’s shape. However, the acoustic modulations required to do this are extremely brief, raising questions about how their auditory cortex encodes and processes such rapid and fine spectrotemporal details. Here, we tested the hypothesis that biosonar target shape representation in the primary auditory cortex (A1) is more reliably encoded by changes in spike timing (latency) than spike rates and that latency is sufficiently precise to support a synchronization-based ensemble representation of this critical auditory object feature space. To test this, we measured how the spatiotemporal activation patterns of A1 changed when naturalistic spectral notches were inserted into echo mimic stimuli. Neurons tuned to notch frequencies were predicted to exhibit longer latencies and lower mean firing rates due to lower signal amplitudes at their preferred frequencies, and both were found to occur. Comparative analyses confirmed that significantly more information was recoverable from changes in spike times relative to concurrent changes in spike rates. With this data, we reconstructed spatiotemporal activation maps of A1 and estimated the level of emerging neuronal spike synchrony between cortical neurons tuned to different frequencies. The results support existing computational models, indicating that spectral interference patterns may be efficiently encoded by a cascading tonotopic sequence of neural synchronization patterns within an ensemble of network activity that relates to the physical features of the reflecting object surface. Echolocating bats rely upon spectral interference patterns in echoes to reconstruct fine details of a reflecting object’s shape. This study shows that the latency shifts induced by spectral notch patterns can provide the foundation for an avalanche of neuronal synchrony that is sufficient to support encoding of auditory object shape features during active biosonar.
Collapse
Affiliation(s)
- Silvio Macias
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| | - Kushal Bakshi
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | | | - Julio C. Hechavarria
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt/M., Germany
| | - Michael Smotherman
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
11
|
Long-latency optical responses from the dorsal inferior colliculus of Seba's fruit bat. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:831-844. [PMID: 32776247 DOI: 10.1007/s00359-020-01441-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/20/2020] [Accepted: 07/29/2020] [Indexed: 10/23/2022]
Abstract
We used a novel microendoscope system to record simultaneously optical activity (fluorescence of a calcium indicator dye) and electrical activity (multi-unit activity and local field potentials) from the dorsal inferior colliculus of the echolocating bat, Carollia perspicillata. Optically recorded calcium responses to wide-band noise and to frequency-modulated bursts were recorded at probe depths down to 1300 µm, with the majority of active sites encountered at more shallow depths down to 800 µm. Calcium activity exhibited long latencies, within the time span of 50-100 ms after stimulus onset, significantly longer than onset latencies of either multi-unit activity or local field potentials. Latencies and amplitude/latency trading of these electrical responses were consistent with those seen in standard electrophysiological recordings, confirming that the microendoscope was able to record both neural and optical activity successfully. Optically recorded calcium responses rose and decayed slowly and were correlated in time with long-latency negative deflections in local field potentials. These data suggest that calcium-evoked responses may reflect known, sustained inhibitory interactions in the inferior colliculus.
Collapse
|
12
|
Macias S, Bakshi K, Smotherman M. Functional organization of the primary auditory cortex of the free-tailed bat Tadarida brasiliensis. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:429-440. [PMID: 32036404 DOI: 10.1007/s00359-020-01406-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 12/19/2022]
Abstract
The Mexican free-tailed bat, Tadarida brasiliensis, is a fast-flying bat that hunts by biosonar at high altitudes in open space. The auditory periphery and ascending auditory pathways have been described in great detail for this species, but nothing is yet known about its auditory cortex. Here we describe the topographical organization of response properties in the primary auditory cortex (AC) of the Mexican free-tailed bat with emphasis on the sensitivity for FM sweeps and echo-delay tuning. Responses of 716 units to pure tones and of 373 units to FM sweeps and FM-FM pairs were recorded extracellularly using multielectrode arrays in anesthetized bats. A general tonotopy was confirmed with low frequencies represented caudally and high frequencies represented rostrally. Characteristic frequencies (CF) ranged from 15 to 70 kHz, and fifty percent of CFs fell between 20 and 30 kHz, reflecting a hyper-representation of a bandwidth corresponding to search-phase echolocation pulses. Most units showed a stronger response to downward rather than upward FM sweeps and forty percent of the neurons interspersed throughout AC (150/371) showed echo-delay sensitivity to FM-FM pairs. Overall, the results illustrate that the free-tailed bat auditory cortex is organized similarly to that of other FM-type insectivorous bats.
Collapse
Affiliation(s)
- Silvio Macias
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA.
| | - Kushal Bakshi
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Michael Smotherman
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
13
|
Macias S, Bakshi K, Smotherman M. Laminar Organization of FM Direction Selectivity in the Primary Auditory Cortex of the Free-Tailed Bat. Front Neural Circuits 2019; 13:76. [PMID: 31827425 PMCID: PMC6890848 DOI: 10.3389/fncir.2019.00076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/13/2019] [Indexed: 01/18/2023] Open
Abstract
We studied the columnar and layer-specific response properties of neurons in the primary auditory cortex (A1) of six (four females, two males) anesthetized free-tailed bats, Tadarida brasiliensis, in response to pure tones and down and upward frequency modulated (FM; 50 kHz bandwidth) sweeps. In addition, we calculated current source density (CSD) to test whether lateral intracortical projections facilitate neuronal activation in response to FM echoes containing spectrally distant frequencies from the excitatory frequency response area (FRA). Auditory responses to a set of stimuli changing in frequency and level were recorded along 64 penetrations in the left A1 of six free-tailed bats. FRA shapes were consistent across the cortical depth within a column and there were no obvious differences in tuning properties. Generally, response latencies were shorter (<10 ms) for cortical depths between 500 and 600 μm, which might correspond to thalamocortical input layers IIIb-IV. Most units showed a stronger response to downward FM sweeps, and direction selectivity did not vary across cortical depth. CSD profiles calculated in response to the CF showed a current sink located at depths between 500 and 600 μm. Frequencies lower than the frequency range eliciting a spike response failed to evoke any visible current sink. Frequencies higher than the frequency range producing a spike response evoked layer IV sinks at longer latencies that increased with spectral distance. These data support the hypothesis that a progressive downward relay of spectral information spreads along the tonotopic axis of A1 via lateral connections, contributing to the neural processing of FM down sweeps used in biosonar.
Collapse
Affiliation(s)
- Silvio Macias
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Kushal Bakshi
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Michael Smotherman
- Department of Biology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
14
|
Luo J, Simmons AM, Beck QM, Macías S, Moss CF, Simmons JA. Frequency-modulated up-chirps produce larger evoked responses than down-chirps in the big brown bat auditory brainstem. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:1671. [PMID: 31590554 DOI: 10.1121/1.5126022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
In many mammals, upward-sweeping frequency-modulated (FM) sounds (up-chirps) evoke larger auditory brainstem responses than downward-sweeping sounds (down-chirps). To determine if similar effects occur in FM echolocating bats, auditory evoked responses (AERs) in big brown bats in response to up-chirps and down-chirps at different chirp durations and levels were recorded. Even though down-chirps are the biologically relevant stimulus for big brown bats, up-chirps typically evoked larger peaks in the AER, but with some exceptions at the shortest chirp durations. The up-chirp duration that produced the largest AERs and the greatest differences between up-chirps and down-chirps varied between individual bats and stimulus levels. Cross-covariance analyses using the entire AER waveform confirmed that amplitudes were typically larger to up-chirps than down-chirps at supra-threshold levels, with optimal durations around 0.5-1 ms. Changes in response latencies with stimulus levels were consistent with previous estimates of amplitude-latency trading. Latencies tended to decrease with increasing up-chirp duration and increase with increasing down-chirp duration. The effects of chirp direction on AER waveforms are generally consistent with those seen in other mammals but with small differences in response patterns that may reflect specializations for FM echolocation.
Collapse
Affiliation(s)
- Jinhong Luo
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Andrea Megela Simmons
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, Rhode Island 02912, USA
| | - Quincy M Beck
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912, USA
| | - Silvio Macías
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Cynthia F Moss
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - James A Simmons
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
15
|
Razak K. Adaptations for Substrate Gleaning in Bats: The Pallid Bat as a Case Study. BRAIN, BEHAVIOR AND EVOLUTION 2018; 91:97-108. [DOI: 10.1159/000488873] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/26/2018] [Indexed: 11/19/2022]
Abstract
Substrate gleaning is a foraging strategy in which bats use a mixture of echolocation, prey-generated sounds, and vision to localize and hunt surface-dwelling prey. Many substrate-gleaning species depend primarily on prey-generated noise to hunt. Use of echolocation is limited to general orientation and obstacle avoidance. This foraging strategy involves a different set of selective pressures on morphology, behavior, and auditory system organization of bats compared to the use of echolocation for both hunting and navigation. Gleaning likely evolved to hunt in cluttered environments and/or as a counterstrategy to reduce detection by eared prey. Gleaning bats simultaneously receive streams of echoes from obstacles and prey-generated noise, and have to segregate these acoustic streams to attend to one or both. Not only do these bats have to be exquisitely sensitive to the soft, low frequency sounds produced by walking/rustling prey, they also have to precisely localize these sounds. Gleaners typically use low intensity echolocation calls. Such stealth echolocation requires a nervous system that is attuned to low intensity sound processing. In addition, landing on the ground to hunt may bring gleaners in close proximity to venomous prey. In fact, at least 2 gleaning bat species are known to hunt highly venomous scorpions. While a number of studies have addressed adaptations for echolocation in bats that hunt in the air, very little is known about the morphological, behavioral, and neural specializations for gleaning in bats. This review highlights the novel insights gleaning bats provide into bat evolution, particularly auditory pathway organization and ion channel structure/function relationships. Gleaning bats are found in multiple families, suggesting convergent evolution of specializations for gleaning as a foraging strategy. However, most of this review is based on recent work on a single species – the pallid bat (Antrozous palli dus) – symptomatic of the fact that more comparative work is needed to identify the mechanisms that facilitate gleaning behavior.
Collapse
|
16
|
Beetz MJ, Kordes S, García-Rosales F, Kössl M, Hechavarría JC. Processing of Natural Echolocation Sequences in the Inferior Colliculus of Seba's Fruit Eating Bat, Carollia perspicillata. eNeuro 2017; 4:ENEURO.0314-17.2017. [PMID: 29242823 PMCID: PMC5729038 DOI: 10.1523/eneuro.0314-17.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/17/2017] [Accepted: 11/25/2017] [Indexed: 11/21/2022] Open
Abstract
For the purpose of orientation, echolocating bats emit highly repetitive and spatially directed sonar calls. Echoes arising from call reflections are used to create an acoustic image of the environment. The inferior colliculus (IC) represents an important auditory stage for initial processing of echolocation signals. The present study addresses the following questions: (1) how does the temporal context of an echolocation sequence mimicking an approach flight of an animal affect neuronal processing of distance information to echo delays? (2) how does the IC process complex echolocation sequences containing echo information from multiple objects (multiobject sequence)? Here, we conducted neurophysiological recordings from the IC of ketamine-anaesthetized bats of the species Carollia perspicillata and compared the results from the IC with the ones from the auditory cortex (AC). Neuronal responses to an echolocation sequence was suppressed when compared to the responses to temporally isolated and randomized segments of the sequence. The neuronal suppression was weaker in the IC than in the AC. In contrast to the cortex, the time course of the acoustic events is reflected by IC activity. In the IC, suppression sharpens the neuronal tuning to specific call-echo elements and increases the signal-to-noise ratio in the units' responses. When presenting multiple-object sequences, despite collicular suppression, the neurons responded to each object-specific echo. The latter allows parallel processing of multiple echolocation streams at the IC level. Altogether, our data suggests that temporally-precise neuronal responses in the IC could allow fast and parallel processing of multiple acoustic streams.
Collapse
Affiliation(s)
- M. Jerome Beetz
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt am Main 60438, Germany
- Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Sebastian Kordes
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt am Main 60438, Germany
| | - Francisco García-Rosales
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt am Main 60438, Germany
| | - Manfred Kössl
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt am Main 60438, Germany
| | - Julio C. Hechavarría
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt am Main 60438, Germany
| |
Collapse
|
17
|
Beetz MJ, Hechavarría JC, Kössl M. Cortical neurons of bats respond best to echoes from nearest targets when listening to natural biosonar multi-echo streams. Sci Rep 2016; 6:35991. [PMID: 27786252 PMCID: PMC5081524 DOI: 10.1038/srep35991] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/10/2016] [Indexed: 11/09/2022] Open
Abstract
Bats orientate in darkness by listening to echoes from their biosonar calls, a behaviour known as echolocation. Recent studies showed that cortical neurons respond in a highly selective manner when stimulated with natural echolocation sequences that contain echoes from single targets. However, it remains unknown how cortical neurons process echolocation sequences containing echo information from multiple objects. In the present study, we used echolocation sequences containing echoes from three, two or one object separated in the space depth as stimuli to study neuronal activity in the bat auditory cortex. Neuronal activity was recorded with multi-electrode arrays placed in the dorsal auditory cortex, where neurons tuned to target-distance are found. Our results show that target-distance encoding neurons are mostly selective to echoes coming from the closest object, and that the representation of echo information from distant objects is selectively suppressed. This suppression extends over a large part of the dorsal auditory cortex and may override possible parallel processing of multiple objects. The presented data suggest that global cortical suppression might establish a cortical "default mode" that allows selectively focusing on close obstacle even without active attention from the animals.
Collapse
Affiliation(s)
- M. Jerome Beetz
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt/M., Germany
| | - Julio C. Hechavarría
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt/M., Germany
| | - Manfred Kössl
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt/M., Germany
| |
Collapse
|
18
|
Beetz MJ, Hechavarría JC, Kössl M. Temporal tuning in the bat auditory cortex is sharper when studied with natural echolocation sequences. Sci Rep 2016; 6:29102. [PMID: 27357230 PMCID: PMC4928181 DOI: 10.1038/srep29102] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/15/2016] [Indexed: 11/09/2022] Open
Abstract
Precise temporal coding is necessary for proper acoustic analysis. However, at cortical level, forward suppression appears to limit the ability of neurons to extract temporal information from natural sound sequences. Here we studied how temporal processing can be maintained in the bats' cortex in the presence of suppression evoked by natural echolocation streams that are relevant to the bats' behavior. We show that cortical neurons tuned to target-distance actually profit from forward suppression induced by natural echolocation sequences. These neurons can more precisely extract target distance information when they are stimulated with natural echolocation sequences than during stimulation with isolated call-echo pairs. We conclude that forward suppression does for time domain tuning what lateral inhibition does for selectivity forms such as auditory frequency tuning and visual orientation tuning. When talking about cortical processing, suppression should be seen as a mechanistic tool rather than a limiting element.
Collapse
Affiliation(s)
- M Jerome Beetz
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, 60438, Frankfurt/M., Germany
| | - Julio C Hechavarría
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, 60438, Frankfurt/M., Germany
| | - Manfred Kössl
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, 60438, Frankfurt/M., Germany
| |
Collapse
|