1
|
McKiernan EC, Herrera-Valdez MA, Marrone DF. A biophysical minimal model to investigate age-related changes in CA1 pyramidal cell electrical activity. PLoS One 2024; 19:e0308809. [PMID: 39231135 PMCID: PMC11373847 DOI: 10.1371/journal.pone.0308809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024] Open
Abstract
Aging is a physiological process that is still poorly understood, especially with respect to effects on the brain. There are open questions about aging that are difficult to answer with an experimental approach. Underlying challenges include the difficulty of recording in vivo single cell and network activity simultaneously with submillisecond resolution, and brain compensatory mechanisms triggered by genetic, pharmacologic, or behavioral manipulations. Mathematical modeling can help address some of these questions by allowing us to fix parameters that cannot be controlled experimentally and investigate neural activity under different conditions. We present a biophysical minimal model of CA1 pyramidal cells (PCs) based on general expressions for transmembrane ion transport derived from thermodynamical principles. The model allows directly varying the contribution of ion channels by changing their number. By analyzing the dynamics of the model, we find parameter ranges that reproduce the variability in electrical activity seen in PCs. In addition, increasing the L-type Ca2+ channel expression in the model reproduces age-related changes in electrical activity that are qualitatively and quantitatively similar to those observed in PCs from aged animals. We also make predictions about age-related changes in PC bursting activity that, to our knowledge, have not been reported previously. We conclude that the model's biophysical nature, flexibility, and computational simplicity make it a potentially powerful complement to experimental studies of aging.
Collapse
Affiliation(s)
- Erin C McKiernan
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, CDMX, México
| | - Marco A Herrera-Valdez
- Laboratorio de Dinámica, Biofísica y Fisiología de Sistemas, Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, CDMX, México
| | - Diano F Marrone
- Department of Psychology, Wilfrid Laurier University, Waterloo, ON, Canada
- McKnight Brain Institute, University of Arizona, Tucson, AZ, United States of America
| |
Collapse
|
2
|
Copenhaver AE, LeGates TA. Sex-Specific Mechanisms Underlie Long-Term Potentiation at Hippocampus→Medium Spiny Neuron Synapses in the Medial Shell of the Nucleus Accumbens. J Neurosci 2024; 44:e0100242024. [PMID: 38806250 PMCID: PMC11223474 DOI: 10.1523/jneurosci.0100-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024] Open
Abstract
Sex differences have complicated our understanding of the neurobiological basis of many behaviors that are key for survival. As such, continued elucidation of the similarities and differences between sexes is necessary to gain insight into brain function and vulnerability. The connection between the hippocampus (Hipp) and nucleus accumbens (NAc) is a crucial site where modulation of neuronal activity mediates reward-related behavior. Our previous work demonstrated that long-term potentiation (LTP) of Hipp→NAc synapses is rewarding, and mice can establish learned associations between LTP of these synapses and the contextual environment in which LTP occurred. Here, we investigated sex differences in the mechanisms underlying Hipp→NAc LTP using whole-cell electrophysiology and pharmacology. We observed similarities in basal synaptic strength between males and females and found that LTP occurs postsynaptically with similar magnitudes in both sexes. However, key sex differences emerged as LTP in males required NMDA receptors (NMDAR), whereas LTP in females utilized an NMDAR-independent mechanism involving L-type voltage-gated Ca2+ channels (VGCCs) and estrogen receptor α (ERα). We also uncovered sex-similar features as LTP in both sexes depended on CaMKII activity and occurred independently of dopamine-1 receptor (D1R) activation. Our results have elucidated sex-specific molecular mechanisms for LTP in an integral pathway that mediates reward-related behaviors, emphasizing the importance of considering sex as a variable in mechanistic studies. Continued characterization of sex-specific mechanisms underlying plasticity will offer novel insight into the neurophysiological basis of behavior, with significant implications for understanding how diverse processes mediate behavior and contribute to vulnerability to developing psychiatric disorders.
Collapse
Affiliation(s)
- Ashley E Copenhaver
- Department of Biological Sciences, University of Maryland, Baltimore County (UMBC), Baltimore, Maryland 21250
| | - Tara A LeGates
- Department of Biological Sciences, University of Maryland, Baltimore County (UMBC), Baltimore, Maryland 21250
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland 21201
| |
Collapse
|
3
|
Dickerson MR, Reed J. Pharmacogenetic testing may benefit people receiving low-dose lithium in clinical practice. J Am Assoc Nurse Pract 2024; 36:320-328. [PMID: 37882688 DOI: 10.1097/jxx.0000000000000968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/03/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Mental illnesses are leading causes of disability in the United States. Some evidence supports that pharmacogenetic testing may be beneficial in select populations and that lithium is beneficial for treating mood disorders and anxiety in some populations. PURPOSE This research aimed to determine whether low-dose lithium effectively decreases depression and anxiety in adults with a risk allele for CACNA1C genotypes. METHODOLOGY The study design was correlational. Fifty patients were treated at a nurse practitioner-owned clinic in Prairie Village, Kansas. Chart review was used. Adults older than 18 years diagnosed with major depressive disorder, bipolar disorder, or generalized anxiety disorder presenting with an abnormality in the CACNA1C gene single-nucleotide polymorphism rs1006737 were included in this research. Assessment tools used were the Patient Health Questionnaire-9 for depression and GAD-7 for anxiety. RESULTS Low-dose lithium significantly decreased depression by 66% ( p < .001) and anxiety by 65% ( p = <.001). There was a significant difference in pretest depression levels based on CACNA1C genotype ( p = .033). The A allele frequency was 60% higher (48%) in this population than found in general population (30%). CONCLUSIONS Low-dose lithium significantly decreased anxiety and depression compared with baseline. People with different versions of the CACNA1C genotype had responses that differed significantly. The A risk allele was 60% more common than in the general population. IMPLICATIONS This study could aid in establishing genetic testing as an effective clinical tool for treating depression and anxiety using lithium, an inexpensive and widely available medication.
Collapse
Affiliation(s)
- Michael Ray Dickerson
- University of Missouri-Kansas City, Kansas City, Missouri
- Southwest Baptist University, Springfield, Missouri
| | | |
Collapse
|
4
|
Copenhaver AE, LeGates TA. Sex-specific mechanisms underlie long-term potentiation at hippocampus-nucleus accumbens synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575709. [PMID: 38293132 PMCID: PMC10827060 DOI: 10.1101/2024.01.15.575709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Sex differences have complicated our understanding of the neurobiological basis of many behaviors that are key for survival. As such, continued elucidation of the similarities and differences between sexes is necessary in order to gain insight into brain function and vulnerability. The connection between the hippocampus (Hipp) and nucleus accumbens (NAc) is a crucial site where modulation of neuronal activity mediates reward-related behavior. Our previous work demonstrated that long-term potentiation (LTP) of Hipp-NAc synapses is rewarding, and that mice can make learned associations between LTP of these synapses and the contextual environment in which LTP occurred. Here, we investigate sex differences in the mechanisms underlying Hipp-NAc LTP using whole-cell electrophysiology and pharmacology. We found that males and females display similar magnitudes of Hipp-NAc LTP which occurs postsynaptically. However, LTP in females requires L-type voltage-gated Ca 2+ channels (VGCC) for postsynaptic Ca 2+ influx, while males rely on NMDA receptors (NMDAR). Additionally, females require estrogen receptor α (ERα) activity for LTP while males do not. These differential mechanisms converge as LTP in both sexes depends on CAMKII activity and occurs independently of dopamine-1 receptor (D1R) activation. Our results have elucidated sex-specific molecular mechanisms for LTP in an integral excitatory pathway that mediates reward-related behaviors, emphasizing the importance of considering sex as a variable in mechanistic studies. Continued characterization of sex-specific mechanisms underlying plasticity will offer novel insight into the neurophysiological basis of behavior, with significant implications for understanding how diverse processes mediate behavior and contribute to vulnerability to developing psychiatric disorders. SIGNIFICANCE STATEMENT Strengthening of Hipp-NAc synapses drives reward-related behaviors. Male and female mice have similar magnitudes of long-term potentiation (LTP) and both sexes have a predicted postsynaptic locus of plasticity. Despite these similarities, we illustrate here that sex-specific molecular mechanisms are used to elicit LTP. Given the bidirectional relationship between Hipp-NAc synaptic strength in mediating reward-related behaviors, the use of distinct molecular mechanisms may explain sex differences observed in stress susceptibility or response to rewarding stimuli. Discovery and characterization of convergent sex differences provides mechanistic insight into the sex-specific function of Hipp-NAc circuitry and has widespread implications for circuits mediating learning and reward-related behavior.
Collapse
|
5
|
Maziar A, Critch TNRHY, Ghosh S, Rajani V, Flynn CM, Qin T, Reinhardt C, Man KNM, Lee A, Hell JW, Yuan Q. Aging differentially affects LTCC function in hippocampal CA1 and piriform cortex pyramidal neurons. Cereb Cortex 2023; 33:1489-1503. [PMID: 35437602 PMCID: PMC9930631 DOI: 10.1093/cercor/bhac152] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 11/14/2022] Open
Abstract
Aging is associated with cognitive decline and memory loss in humans. In rats, aging-associated neuronal excitability changes and impairments in learning have been extensively studied in the hippocampus. Here, we investigated the roles of L-type calcium channels (LTCCs) in the rat piriform cortex (PC), in comparison with those of the hippocampus. We employed spatial and olfactory tasks that involve the hippocampus and PC. LTCC blocker nimodipine administration impaired spontaneous location recognition in adult rats (6-9 months). However, the same blocker rescued the spatial learning deficiency in aged rats (19-23 months). In an odor-associative learning task, infusions of nimodipine into either the PC or dorsal CA1 impaired the ability of adult rats to learn a positive odor association. Again, in contrast, nimodipine rescued odor associative learning in aged rats. Aged CA1 neurons had higher somatic expression of LTCC Cav1.2 subunits, exhibited larger afterhyperpolarization (AHP) and lower excitability compared with adult neurons. In contrast, PC neurons from aged rats showed higher excitability and no difference in AHP. Cav1.2 expression was similar in adult and aged PC somata, but relatively higher in PSD95- puncta in aged dendrites. Our data suggest unique features of aging-associated changes in LTCCs in the PC and hippocampus.
Collapse
Affiliation(s)
- Aida Maziar
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL A1B 3V6, Canada
| | - Tristian N R H Y Critch
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL A1B 3V6, Canada
| | - Sourav Ghosh
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL A1B 3V6, Canada
| | - Vishaal Rajani
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL A1B 3V6, Canada
| | - Cassandra M Flynn
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL A1B 3V6, Canada
| | - Tian Qin
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL A1B 3V6, Canada
| | - Camila Reinhardt
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL A1B 3V6, Canada
| | - Kwun Nok Mimi Man
- Department of Pharmacology, School of Medicine, University of California-Davis, Sacramento, CA 95817, United States
| | - Amy Lee
- Department of Neuroscience, University of Texas-Austin, Austin, TX 78712, United States
| | - Johannes W Hell
- Department of Pharmacology, School of Medicine, University of California-Davis, Sacramento, CA 95817, United States
| | - Qi Yuan
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL A1B 3V6, Canada
| |
Collapse
|
6
|
Klomp AJ, Plumb A, Mehr JB, Madencioglu DA, Wen H, Williams AJ. Neuronal deletion of Ca V1.2 is associated with sex-specific behavioral phenotypes in mice. Sci Rep 2022; 12:22152. [PMID: 36550186 PMCID: PMC9780340 DOI: 10.1038/s41598-022-26504-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The gene CACNA1C, which encodes the pore forming subunit of the L-type calcium channel CaV1.2, is associated with increased risk for neuropsychiatric disorders including schizophrenia, autism spectrum disorder, major depression, and bipolar disorder. Previous rodent work identified that loss or reduction of CaV1.2 results in cognitive, affective, and motor deficits. Most previous work has either included non-neuronal cell populations (haploinsufficient and Nestin-Cre) or investigated a discrete neuronal cell population (e.g. CaMKII-Cre, Drd1-Cre), but few studies have examined the effects of more broad neuron-specific deletion of CaV1.2. Additionally, most of these studies did not evaluate for sex-specific effects or used only male animals. Here, we sought to clarify whether there are sex-specific behavioral consequences of neuron-specific deletion of CaV1.2 (neuronal CaV1.2 cKO) using Syn1-Cre-mediated conditional deletion. We found that neuronal CaV1.2 cKO mice have normal baseline locomotor function but female cKO mice display impaired motor performance learning. Male neuronal CaV1.2 cKO display impaired startle response with intact pre-pulse inhibition. Male neuronal CaV1.2 cKO mice did not display normal social preference, whereas female neuronal CaV1.2 cKO mice did. Neuronal CaV1.2 cKO mice displayed impaired associative learning in both sexes, as well as normal anxiety-like behavior and hedonic capacity. We conclude that deletion of neuronal CaV1.2 alters motor performance, acoustic startle reflex, and social behaviors in a sex-specific manner, while associative learning deficits generalize across sexes. Our data provide evidence for both sex-specific and sex-independent phenotypes related to neuronal expression of CaV1.2.
Collapse
Affiliation(s)
- Annette J Klomp
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Ashley Plumb
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Jacqueline B Mehr
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
- Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - Deniz A Madencioglu
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Hsiang Wen
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Aislinn J Williams
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA.
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
7
|
Sex-dependent effects of chronic exercise on cognitive flexibility but not hippocampal Bdnf in aging mice. Neuronal Signal 2022; 6:NS20210053. [PMID: 35036000 PMCID: PMC8734434 DOI: 10.1042/ns20210053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/22/2021] [Accepted: 12/08/2021] [Indexed: 01/02/2023] Open
Abstract
Cognitive impairments associated with advanced age involve alterations in the hippocampus that changes with experience throughout life. The hippocampus is critical for cognitive flexibility involved with extinction and reinstatement of conditioned fear. It is widely accepted that regular exercise can be beneficial for hippocampal function. Therefore, we asked whether chronic voluntary exercise in middle-aged mice can improve extinction and/or reinstatement of conditioned fear compared with standard-housing. Eight-month-old male and female C57Bl/6J mice had access to a running wheel or remained in standard-housing until 11 months of age. Alongside control standard-housed young adult (3-month-old) mice, they received tone-footshock pairings, which were subsequently extinguished with tone-alone presentations the next day. Half of the mice then received a reminder in the form of a single footshock. Male and female 11-month-old mice housed in standard conditions exhibited impaired reinstatement compared with young adult mice. However, for males that had access to a running wheel from 8 months of age, the reminder treatment rescued reinstatement ability. This was not observed in females. Additionally, exercise during middle age in both sexes increased expression of brain-derived neurotrophic factor (Bdnf) mRNA in the hippocampus, specifically exon 4 mRNA. These results show that, at least for males, physical exercise is beneficial for reducing age-related decline in cognitive abilities. Despite not affecting reinstatement, exercise also increased Bdnf gene expression in the female hippocampus, which could potentially benefit other forms of hippocampus-dependent cognition.
Collapse
|
8
|
Hill M, Třískala Z, Honců P, Krejčí M, Kajzar J, Bičíková M, Ondřejíková L, Jandová D, Sterzl I. Aging, hormones and receptors. Physiol Res 2021; 69:S255-S272. [PMID: 33094624 DOI: 10.33549/physiolres.934523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ageing is accompanied by deterioration in physical condition and a number of physiological processes and thus a higher risk of a range of diseases and disorders. In particular, we focused on the changes associated with aging, especially the role of small molecules, their role in physiological and pathophysiological processes and potential treatment options. Our previously published results and data from other authors lead to the conclusion that these unwanted changes are mainly linked to the hypothalamic-pituitary-adrenal axis can be slowed down, stopped, or in some cases even reversed by an appropriate treatment, but especially by a life-management adjustment.
Collapse
Affiliation(s)
- M Hill
- Department of Steroids and Proteohormones, Institute of Endocrinology, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Meseguer Henarejos AB, Popović N, Bokonjić D, Morales-Delgado N, Alonso A, Caballero Bleda M, Popović M. Sex and Time-of-Day Impact on Anxiety and Passive Avoidance Memory Strategies in Mice. Front Behav Neurosci 2020; 14:68. [PMID: 32523516 PMCID: PMC7261894 DOI: 10.3389/fnbeh.2020.00068] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/17/2020] [Indexed: 12/13/2022] Open
Abstract
In humans, anxiety and cognitive processes are age, gender, and time of day dependent. The purpose of the present study was to assess whether the time of day and sex have an influence on anxiety and emotional memory in adult mice. Light-dark and passive avoidance (PA) tests were performed at the beginning and at the end of the light cycle, defined as Zeitgeber time (ZT) ZT0–2.5 and ZT9.5–12, respectively. A baseline difference in anxiety was not found, but on the 24 h retention trial of the PA test, females presented longer latencies to enter into the dark compartment at the ZT0–2.5 time point of the day. The data from the second test day (PA reversal trial) indicated that some animals associated the dark compartment with an aversive stimulus (shock), while others associated the aversive stimulus with crossing from one compartment to another. At the ZT9.5–12, female mice mainly related the aversive stimulus to transferring from one compartment to another, while male mice associated darkness with the aversive stimulus. There was a negative correlation between the frequency of light-dark transitions in the light-dark test and the PA latency on the 24 h retention trial in males tested at ZT0–2.5. The PA latency on the reversal and 24 h retention trials negatively correlated with a risk assessment behavior in male mice tested on ZT0–2.5 and ZT9.5–12, respectively. In conclusion, our data reveal that the impact of motor activity and risk assessment behavior on PA memory formation and applied behavioral strategies are time of day and sex dependent.
Collapse
Affiliation(s)
| | - Natalija Popović
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain.,Institute of Biomedical Research of Murcia (IMIB), Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Dubravko Bokonjić
- Medical Faculty of the Military Medical Academy, University of Defense in Belgrade, Belgrade, Serbia
| | - Nicanor Morales-Delgado
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain.,Institute of Biomedical Research of Murcia (IMIB), Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain.,Department of Histology and Anatomy, Faculty of Medicine, University of Miguel Hernández, Sant Joan Alacant, Spain
| | - Antonia Alonso
- Department of Physiotherapy, Faculty of Medicine, University of Murcia, Murcia, Spain.,Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - María Caballero Bleda
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain.,Institute of Biomedical Research of Murcia (IMIB), Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Miroljub Popović
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain.,Institute of Biomedical Research of Murcia (IMIB), Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| |
Collapse
|
10
|
Du X, Wei C, Hejazi Pastor DP, Rao ER, Li Y, Grasselli G, Godfrey J, Palmenberg AC, Andrade J, Hansel C, Gomez CM. α1ACT Is Essential for Survival and Early Cerebellar Programming in a Critical Neonatal Window. Neuron 2019; 102:770-785.e7. [PMID: 30922876 DOI: 10.1016/j.neuron.2019.02.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 12/17/2018] [Accepted: 02/20/2019] [Indexed: 10/27/2022]
Abstract
Postnatal cerebellar development is a precisely regulated process involving well-orchestrated expression of neural genes. Neurological phenotypes associated with CACNA1A gene defects have been increasingly recognized, yet the molecular principles underlying this association remain elusive. By characterizing a dose-dependent CACNA1A gene deficiency mouse model, we discovered that α1ACT, as a transcription factor and secondary protein of CACNA1A mRNA, drives dynamic gene expression networks within cerebellar Purkinje cells and is indispensable for neonatal survival. Perinatal loss of α1ACT leads to motor dysfunction through disruption of neurogenesis and synaptic regulatory networks. However, its elimination in adulthood has minimal effect on the cerebellum. These findings shed light on the critical role of α1ACT in facilitating neuronal development in both mice and humans and support a rationale for gene therapies for calcium-channel-associated cerebellar disorders. Finally, we show that bicistronic expression may be common to the voltage-gated calcium channel (VGCC) gene family and may help explain complex genetic syndromes.
Collapse
Affiliation(s)
- Xiaofei Du
- Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Cenfu Wei
- Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | | | - Eshaan R Rao
- Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Yan Li
- Center for Research Informatics, University of Chicago, Chicago, IL 60637, USA
| | - Giorgio Grasselli
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA; Center for Synaptic Neuroscience and Technology, Italian Institute of Technology (IIT), L.go R. Benzi 10, 16132 Genova, Italy
| | - Jack Godfrey
- Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Ann C Palmenberg
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jorge Andrade
- Center for Research Informatics, University of Chicago, Chicago, IL 60637, USA; Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA
| | - Christian Hansel
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
11
|
Li S, Li W, Wu X, Li J, Yang J, Tu C, Ye X, Ling S. Olfactory deficit is associated with mitral cell dysfunction in the olfactory bulb of P301S tau transgenic mice. Brain Res Bull 2019; 148:34-45. [PMID: 30902575 DOI: 10.1016/j.brainresbull.2019.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/09/2019] [Accepted: 03/14/2019] [Indexed: 01/24/2023]
Abstract
Neurofibrillary tangles consisting of hyperphosphorylated tau (P-tau) are the neuropathological hallmark of Alzheimer's disease (AD), and olfaction disorder is an early symptom of AD. However, the link between P-tau aggregation and olfaction disorder remains unclear. In this study, the expression of P-tau in the olfactory bulb (OB), particularly in the mitral cell layer (MCL), external plexiform layer (EPL), and granule cell layer (GCL), of AD patients was found to be significantly higher than that in the OB of normal aging subjects, which suggested that these layers in the OB were susceptible to P-tau. The P301S tau transgenic mice (P301S mice) exhibit AD-like features, which can be characterized by olfactory dysfunction that precedes cognitive disorder. Importantly, the excessive P-tau expression in the OB of P301S mice, particularly in MCs, was associated with MC loss at 9 months of age, and decreased MC firing activities started to be observed at 2 months of age. Our results revealed that MCs might contribute to olfactory dysfunction in P301S mice. Furthermore, we described an aberrant dendro-dendritic synaptic structure between granule cells (GCs) and MCs and abnormal gamma oscillations in the EPL of the OB, and these findings indicated that P-tau might disrupt the regulation of MCs by GCs in P301S mice starting at 5 months of age. These data showed that the reduction in the MC firing frequency at 2 months of age might not be caused by GC suppression. Based on these findings, we speculated that MCs are a putative target for the treatment of P-tau-induced early olfactory dysfunction, and thus, an exploration of the specific causes and mechanisms of MC functional changes in P301S mice is crucial.
Collapse
Affiliation(s)
- Shanshan Li
- Institute of Neuroscience and Anatomy, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weiyun Li
- Institute of Neuroscience and Anatomy, School of Medicine, Zhejiang University, Hangzhou, China; Department of Clinical Medicine, Zhejiang University City College, Hangzhou, China
| | - Xuewei Wu
- Institute of Neuroscience and Anatomy, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Li
- Institute of Neuroscience and Anatomy, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Yang
- Institute of Neuroscience and Anatomy, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chunlong Tu
- Biosensor National Special Laboratory, Key Laboratory of BME of the Ministry of Education, Zhejiang University, Hangzhou, China
| | - Xuesong Ye
- Biosensor National Special Laboratory, Key Laboratory of BME of the Ministry of Education, Zhejiang University, Hangzhou, China.
| | - Shucai Ling
- Institute of Neuroscience and Anatomy, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
12
|
Kisko TM, Braun MD, Michels S, Witt SH, Rietschel M, Culmsee C, Schwarting RKW, Wöhr M. Sex‐dependent effects of
Cacna1c
haploinsufficiency on juvenile social play behavior and pro‐social 50‐kHz ultrasonic communication in rats. GENES BRAIN AND BEHAVIOR 2019; 19:e12552. [DOI: 10.1111/gbb.12552] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/22/2018] [Accepted: 12/26/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Theresa M. Kisko
- Behavioral Neuroscience, Experimental and Biological Psychology, Department of PsychologyPhilipps‐Universität Marburg Marburg Germany
| | - Moria D. Braun
- Behavioral Neuroscience, Experimental and Biological Psychology, Department of PsychologyPhilipps‐Universität Marburg Marburg Germany
| | - Susanne Michels
- Institute of Pharmacology and Clinical PharmacyPhilipps‐Universität Marburg Marburg Germany
| | - Stephanie H. Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Faculty of Medicine MannheimRuprecht‐Karls‐Universität Heidelberg Mannheim Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Faculty of Medicine MannheimRuprecht‐Karls‐Universität Heidelberg Mannheim Germany
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical PharmacyPhilipps‐Universität Marburg Marburg Germany
- Center for Mind, Brain, and Behavior (CMBB)Philipps‐Universität Marburg Marburg Germany
| | - Rainer K. W. Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Department of PsychologyPhilipps‐Universität Marburg Marburg Germany
- Center for Mind, Brain, and Behavior (CMBB)Philipps‐Universität Marburg Marburg Germany
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Department of PsychologyPhilipps‐Universität Marburg Marburg Germany
- Center for Mind, Brain, and Behavior (CMBB)Philipps‐Universität Marburg Marburg Germany
| |
Collapse
|
13
|
Georgiou P, Zanos P, Jenne CE, Gould TD. Sex-Specific Involvement of Estrogen Receptors in Behavioral Responses to Stress and Psychomotor Activation. Front Psychiatry 2019; 10:81. [PMID: 30863326 PMCID: PMC6399411 DOI: 10.3389/fpsyt.2019.00081] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 02/06/2019] [Indexed: 12/25/2022] Open
Abstract
Fluctuating hormone levels, such as estradiol might underlie the difference in the prevalence of psychiatric disorders observed in women vs. men. Estradiol exert its effects primarily through binding on the two classical estrogen receptor subtypes, alpha (ERα) and beta (ERβ). Both receptors have been suggested to a have role in the development of psychiatric disorders, however, most of the current literature is limited to their role in females. We investigated the role of estrogen receptors on cognition (novel-object recognition), anxiety (open-field test, elevated-plus maze, and light/dark box), stress-responsive behaviors (forced-swim test, learned helplessness following inescapable shock, and sucrose preference), pre-pulse inhibition (PPI) and amphetamine-induced hyperlocomotion in both male and female mice either lacking the ERα or ERβ receptor. We found that female Esr1 -/- mice have attenuated pre-pulse inhibition, whereas female Esr2 -/- mice manifested enhanced pre-pulse inhibition. No pre-pulse inhibition difference was observed in male Esr1 -/- and Esr2 -/- mice. Moreover, amphetamine-induced hyperlocomotion was decreased in male Esr1 -/-, but not Esr2 -/- mice, while female Esr1 -/- and Esr2 -/- mice showed an enhanced response. Genetic absence of ERα did not alter the escape capability or sucrose preference following inescapable shock in both male and female mice. In contrast, female, but not male Esr2 -/- mice, manifested decreased escape failures compared with controls. Lack of Esr2 gene in male mice was associated with decreased sucrose preference following inescapable shock, suggesting susceptibility for development of anhedonia following stress. No sucrose preference differences were found in female Esr2 -/- mice following inescapable shock stress. Lastly, we demonstrated that lack of Esr1 or Esr2 genes had no effect on memory and anxiety-like behaviors in both male and female mice. Our findings indicate a differential sex-specific involvement of estrogen receptors in the development of stress-mediated maladaptive behaviors as well as psychomotor activation responses suggesting that these receptors might act as potential treatment targets in a sex-specific manner.
Collapse
Affiliation(s)
- Polymnia Georgiou
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Panos Zanos
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Carleigh E Jenne
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Todd D Gould
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, United States.,Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD, United States.,Department of Anatomy & Neurobiology, School of Medicine, University of Maryland, Baltimore, MD, United States.,Veterans Affairs Maryland Health Care System, Baltimore, MD, United States
| |
Collapse
|
14
|
Jarvela TS, Womack T, Georgiou P, Gould TD, Eriksen JL, Lindberg I. 7B2 chaperone knockout in APP model mice results in reduced plaque burden. Sci Rep 2018; 8:9813. [PMID: 29955078 PMCID: PMC6023903 DOI: 10.1038/s41598-018-28031-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/08/2018] [Indexed: 01/18/2023] Open
Abstract
Impairment of neuronal proteostasis is a hallmark of Alzheimer's and other neurodegenerative diseases. However, the underlying molecular mechanisms leading to pathogenic protein aggregation, and the role of secretory chaperone proteins in this process, are poorly understood. We have previously shown that the neural-and endocrine-specific secretory chaperone 7B2 potently blocks in vitro fibrillation of Aβ42. To determine whether 7B2 can function as a chaperone in vivo, we measured plaque formation and performed behavioral assays in 7B2-deficient mice in an hAPPswe/PS1dE9 Alzheimer's model mouse background. Surprisingly, immunocytochemical analysis of cortical levels of thioflavin S- and Aβ-reactive plaques showed that APP mice with a partial or complete lack of 7B2 expression exhibited a significantly lower number and burden of thioflavin S-reactive, as well as Aβ-immunoreactive, plaques. However, 7B2 knockout did not affect total brain levels of either soluble or insoluble Aβ. While hAPP model mice performed poorly in the Morris water maze, their brain 7B2 levels did not impact performance. Since 7B2 loss reduced amyloid plaque burden, we conclude that brain 7B2 can impact Aβ disposition in a manner that facilitates plaque formation. These results are reminiscent of prior findings in hAPP model mice lacking the ubiquitous secretory chaperone clusterin.
Collapse
Affiliation(s)
- Timothy S Jarvela
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tasha Womack
- Department of Pharmacology, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Polymnia Georgiou
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jason L Eriksen
- Department of Pharmacology, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
15
|
Braun MD, Kisko TM, Vecchia DD, Andreatini R, Schwarting RKW, Wöhr M. Sex-specific effects of Cacna1c haploinsufficiency on object recognition, spatial memory, and reversal learning capabilities in rats. Neurobiol Learn Mem 2018; 155:543-555. [PMID: 29800644 DOI: 10.1016/j.nlm.2018.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/03/2018] [Accepted: 05/17/2018] [Indexed: 10/16/2022]
Abstract
The CACNA1C gene is strongly implicated in the etiology of multiple major neuropsychiatric disorders, such as bipolar disorder, major depression, and schizophrenia, with cognitive deficits being a common feature. It is unclear, however, by which mechanisms CACNA1C variants advance the risk of developing neuropsychiatric disorders. This study set out to investigate cognitive functioning in a newly developed genetic Cacna1c rat model. Specifically, spatial and reversal learning, as well as object recognition memory were assessed in heterozygous Cacna1c+/- rats and compared to wildtype Cacna1c+/+ littermate controls in both sexes. Our results show that both Cacna1c+/+ and Cacna1c+/- animals were able to learn the rewarded arm configuration of a radial maze over the course of seven days. Both groups also showed reversal learning patterns indicative of intact abilities. In females, genotype differences were evident in the initial spatial learning phase, with Cacna1c+/- females showing hypo-activity and fewer mixed errors. In males, a difference was found during probe trials for both learning phases, with Cacna1c+/- rats displaying better distinction between previously baited and non-baited arms; and regarding cognitive flexibility in favor of the Cacna1c+/+ animals. All experimental groups proved to be sensitive to reward magnitude and fully able to distinguish between novel and familiar objects in the novel object recognition task. Taken together, these results indicate that Cacna1c haploinsufficiency has a minor, but positive impact on (spatial) memory functions in rats.
Collapse
Affiliation(s)
- Moria D Braun
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Gutenberg-Str. 18, D-35032 Marburg, Germany
| | - Theresa M Kisko
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Gutenberg-Str. 18, D-35032 Marburg, Germany
| | - Débora Dalla Vecchia
- Laboratory of Physiology and Pharmacology of the Central Nervous System, Department of Pharmacology, Federal University of Paraná, Centro Politécnico, 81540-990 Curitiba, PR, Brazil
| | - Roberto Andreatini
- Laboratory of Physiology and Pharmacology of the Central Nervous System, Department of Pharmacology, Federal University of Paraná, Centro Politécnico, 81540-990 Curitiba, PR, Brazil
| | - Rainer K W Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Gutenberg-Str. 18, D-35032 Marburg, Germany; Center for Mind, Brain and Behavior, Philipps-University of Marburg, Hans-Meerwein-Str. 6, D-35032 Marburg, Germany
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Gutenberg-Str. 18, D-35032 Marburg, Germany; Center for Mind, Brain and Behavior, Philipps-University of Marburg, Hans-Meerwein-Str. 6, D-35032 Marburg, Germany.
| |
Collapse
|
16
|
Abstract
Traditional pharmacological treatments for depression have a delayed therapeutic onset, ranging from several weeks to months, and there is a high percentage of individuals who never respond to treatment. In contrast, ketamine produces rapid-onset antidepressant, anti-suicidal, and anti-anhedonic actions following a single administration to patients with depression. Proposed mechanisms of the antidepressant action of ketamine include N-methyl-D-aspartate receptor (NMDAR) modulation, gamma aminobutyric acid (GABA)-ergic interneuron disinhibition, and direct actions of its hydroxynorketamine (HNK) metabolites. Downstream actions include activation of the mechanistic target of rapamycin (mTOR), deactivation of glycogen synthase kinase-3 and eukaryotic elongation factor 2 (eEF2), enhanced brain-derived neurotrophic factor (BDNF) signaling, and activation of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors (AMPARs). These putative mechanisms of ketamine action are not mutually exclusive and may complement each other to induce potentiation of excitatory synapses in affective-regulating brain circuits, which results in amelioration of depression symptoms. We review these proposed mechanisms of ketamine action in the context of how such mechanisms are informing the development of novel putative rapid-acting antidepressant drugs. Such drugs that have undergone pre-clinical, and in some cases clinical, testing include the muscarinic acetylcholine receptor antagonist scopolamine, GluN2B-NMDAR antagonists (i.e., CP-101,606, MK-0657), (2R,6R)-HNK, NMDAR glycine site modulators (i.e., 4-chlorokynurenine, pro-drug of the glycineB NMDAR antagonist 7-chlorokynurenic acid), NMDAR agonists [i.e., GLYX-13 (rapastinel)], metabotropic glutamate receptor 2/3 (mGluR2/3) antagonists, GABAA receptor modulators, and drugs acting on various serotonin receptor subtypes. These ongoing studies suggest that the future acute treatment of depression will typically occur within hours, rather than months, of treatment initiation.
Collapse
Affiliation(s)
- Panos Zanos
- Department of Psychiatry, University of Maryland School of Medicine, Rm. 934F MSTF, 685 W. Baltimore St., Baltimore, MD, 21201, USA.
| | - Scott M Thompson
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Physiology, University of Maryland School of Medicine, St. BRB 5-007, 655 W. Baltimore St., Baltimore, MD, 21201, USA, Baltimore, MD, 21201, USA
| | - Ronald S Duman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Todd D Gould
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Psychiatry, University of Maryland School of Medicine, Rm. 936 MSTF, 685 W. Baltimore St., Baltimore, MD, 21201, USA
| |
Collapse
|
17
|
Dedic N, Pöhlmann ML, Richter JS, Mehta D, Czamara D, Metzger MW, Dine J, Bedenk BT, Hartmann J, Wagner KV, Jurik A, Almli LM, Lori A, Moosmang S, Hofmann F, Wotjak CT, Rammes G, Eder M, Chen A, Ressler KJ, Wurst W, Schmidt MV, Binder EB, Deussing JM. Cross-disorder risk gene CACNA1C differentially modulates susceptibility to psychiatric disorders during development and adulthood. Mol Psychiatry 2018; 23:533-543. [PMID: 28696432 PMCID: PMC5822460 DOI: 10.1038/mp.2017.133] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/25/2017] [Accepted: 05/04/2017] [Indexed: 12/17/2022]
Abstract
Single-nucleotide polymorphisms (SNPs) in CACNA1C, the α1C subunit of the voltage-gated L-type calcium channel Cav1.2, rank among the most consistent and replicable genetics findings in psychiatry and have been associated with schizophrenia, bipolar disorder and major depression. However, genetic variants of complex diseases often only confer a marginal increase in disease risk, which is additionally influenced by the environment. Here we show that embryonic deletion of Cacna1c in forebrain glutamatergic neurons promotes the manifestation of endophenotypes related to psychiatric disorders including cognitive decline, impaired synaptic plasticity, reduced sociability, hyperactivity and increased anxiety. Additional analyses revealed that depletion of Cacna1c during embryonic development also increases the susceptibility to chronic stress, which suggest that Cav1.2 interacts with the environment to shape disease vulnerability. Remarkably, this was not observed when Cacna1c was deleted in glutamatergic neurons during adulthood, where the later deletion even improved cognitive flexibility, strengthened synaptic plasticity and induced stress resilience. In a parallel gene × environment design in humans, we additionally demonstrate that SNPs in CACNA1C significantly interact with adverse life events to alter the risk to develop symptoms of psychiatric disorders. Overall, our results further validate Cacna1c as a cross-disorder risk gene in mice and humans, and additionally suggest a differential role for Cav1.2 during development and adulthood in shaping cognition, sociability, emotional behavior and stress susceptibility. This may prompt the consideration for pharmacological manipulation of Cav1.2 in neuropsychiatric disorders with developmental and/or stress-related origins.
Collapse
Affiliation(s)
- N Dedic
- Molecular Neurogenetics, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - M L Pöhlmann
- Molecular Neurogenetics, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - J S Richter
- Molecular Neurogenetics, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - D Mehta
- Queensland Brain Institute, University of Queensland, St. Lucia, QLD, Australia
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - D Czamara
- Queensland Brain Institute, University of Queensland, St. Lucia, QLD, Australia
| | - M W Metzger
- Molecular Neurogenetics, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - J Dine
- Molecular Neurogenetics, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - B T Bedenk
- Molecular Neurogenetics, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - J Hartmann
- Molecular Neurogenetics, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA, USA
| | - K V Wagner
- Molecular Neurogenetics, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - A Jurik
- Institute of Pharmacology and Toxicology, Technische Universität München, Munich, Germany
| | - L M Almli
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - A Lori
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - S Moosmang
- Institute of Pharmacology and Toxicology, Technische Universität München, Munich, Germany
| | - F Hofmann
- Institute of Pharmacology and Toxicology, Technische Universität München, Munich, Germany
| | - C T Wotjak
- Molecular Neurogenetics, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - G Rammes
- Clinic of Anaesthesiology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - M Eder
- Molecular Neurogenetics, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - A Chen
- Molecular Neurogenetics, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
- The Ruhman Family Laboratory for Research on the Neurobiology of Stress, Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - K J Ressler
- Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - W Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - M V Schmidt
- Molecular Neurogenetics, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - E B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - J M Deussing
- Molecular Neurogenetics, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
18
|
Sheng Y, Tang L, Kang L, Xiao R. Membrane ion Channels and Receptors in Animal lifespan Modulation. J Cell Physiol 2017; 232:2946-2956. [PMID: 28121014 PMCID: PMC7008462 DOI: 10.1002/jcp.25824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 01/01/2023]
Abstract
Acting in the interfaces between environment and membrane compartments, membrane ion channels, and receptors transduce various physical and chemical cues into downstream signaling events. Not surprisingly, these membrane proteins play essential roles in a wide range of cellular processes such as sensory perception, synaptic transmission, cellular growth and development, fate determination, and apoptosis. However, except insulin and insulin-like growth factor receptors, the functions of membrane receptors in animal lifespan modulation have not been well appreciated. On the other hand, although ion channels are popular therapeutic targets for many age-related diseases, their potential roles in aging itself are largely neglected. In this review, we will discuss our current understanding of the conserved functions and mechanisms of membrane ion channels and receptors in the modulation of lifespan across multiple species including Caenorhabditis elegans, Drosophila, mouse, and human.
Collapse
Affiliation(s)
- Yi Sheng
- Division of Biology of Aging, Department of Aging and Geriatric Research, Institute on Aging, College of Medicine, University of Florida, Gainesville, Florida
| | - Lanlan Tang
- Division of Biology of Aging, Department of Aging and Geriatric Research, Institute on Aging, College of Medicine, University of Florida, Gainesville, Florida
| | - Lijun Kang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Xiao
- Division of Biology of Aging, Department of Aging and Geriatric Research, Institute on Aging, College of Medicine, University of Florida, Gainesville, Florida
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, Florida
- Center for Smell and Taste, University of Florida, Gainesville, Florida
- Genetics Institute, University of Florida, Gainesville, Florida
| |
Collapse
|
19
|
Berridge MJ. Vitamin D, reactive oxygen species and calcium signalling in ageing and disease. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0434. [PMID: 27377727 DOI: 10.1098/rstb.2015.0434] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2016] [Indexed: 12/13/2022] Open
Abstract
Vitamin D is a hormone that maintains healthy cells. It functions by regulating the low resting levels of cell signalling components such as Ca(2+) and reactive oxygen species (ROS). Its role in maintaining phenotypic stability of these signalling pathways depends on the ability of vitamin D to control the expression of those components that act to reduce the levels of both Ca(2+) and ROS. This regulatory role of vitamin D is supported by both Klotho and Nrf2. A decline in the vitamin D/Klotho/Nrf2 regulatory network may enhance the ageing process, and this is well illustrated by the age-related decline in cognition in rats that can be reversed by administering vitamin D. A deficiency in vitamin D has also been linked to two of the major diseases in man: heart disease and Alzheimer's disease (AD). In cardiac cells, this deficiency alters the Ca(2+) transients to activate the gene transcriptional events leading to cardiac hypertrophy and the failing heart. In the case of AD, it is argued that vitamin D deficiency results in the Ca(2+) landscape that initiates amyloid formation, which then elevates the resting level of Ca(2+) to drive the memory loss that progresses to neuronal cell death and dementia.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'.
Collapse
|
20
|
Giménez De Béjar V, Caballero Bleda M, Popović N, Popović M. Verapamil Blocks Scopolamine Enhancement Effect on Memory Consolidation in Passive Avoidance Task in Rats. Front Pharmacol 2017; 8:566. [PMID: 28878678 PMCID: PMC5572412 DOI: 10.3389/fphar.2017.00566] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/09/2017] [Indexed: 12/20/2022] Open
Abstract
Our recent data have indicated that scopolamine, a non-selective muscarinic receptor antagonist, improves memory consolidation, in a passive avoidance task, tested in rats. It has been found that verapamil, a phenylalkylamine class of the L-type voltage-dependent calcium channel antagonist, inhibits [3H] N-methyl scopolamine binding to M1 muscarinic receptors. However, there are no data about the effect of verapamil on memory consolidation in the passive avoidance task, in rats. The purpose of the present study was to examine the effects of verapamil (0.5, 1.0, 2.5, 5.0, 10, or 20 mg/kg i.p.) as well as the interaction between scopolamine and verapamil on memory consolidation in the step-through passive avoidance task, in Wistar rats. Our results showed that verapamil (1.0 and 2.5 mg/kg) administered immediately after the acquisition task significantly increased the latency of the passive avoidance response, on the 48 h retested trial, improving memory consolidation. On the other hand, verapamil in a dose of 5 mg/kg, that per se does not affect memory consolidation, significantly reversed the memory consolidation improvement induced by scopolamine (1 mg/kg, i.p., administered immediately after verapamil treatment) but did not change the passive avoidance response in rats treated by an ineffective dose of scopolamine (30 mg/kg). In conclusion, the present data suggest that (1) the post-training administration of verapamil, dose-dependently, improves the passive avoidance response; (2) verapamil, in ineffective dose, abolished the improvement of memory consolidation effect of scopolamine; and (3) exists interaction between cholinergic muscarinic receptors and calcium homeostasis-related mechanisms in the consolidation of emotional memory.
Collapse
Affiliation(s)
- Verónica Giménez De Béjar
- Department of Neurology, Hospital Quirónsalud MurciaMurcia, Spain.,Instituto Murciano de Investigación Biosanitaria Virgen de la ArrixacaMurcia, Spain
| | - María Caballero Bleda
- Instituto Murciano de Investigación Biosanitaria Virgen de la ArrixacaMurcia, Spain.,Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of MurciaMurcia, Spain
| | - Natalija Popović
- Instituto Murciano de Investigación Biosanitaria Virgen de la ArrixacaMurcia, Spain.,Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of MurciaMurcia, Spain
| | - Miroljub Popović
- Instituto Murciano de Investigación Biosanitaria Virgen de la ArrixacaMurcia, Spain.,Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of MurciaMurcia, Spain
| |
Collapse
|
21
|
Terrillion CE, Dao DT, Cachope R, Lobo MK, Puche AC, Cheer JF, Gould TD. Reduced levels of Cacna1c attenuate mesolimbic dopamine system function. GENES, BRAIN, AND BEHAVIOR 2017; 16:495-505. [PMID: 28186690 PMCID: PMC5457318 DOI: 10.1111/gbb.12371] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/22/2017] [Accepted: 02/02/2017] [Indexed: 12/25/2022]
Abstract
Genetic variation in CACNA1C, which codes for the L-type calcium channel (LTCC) Cav 1.2, is associated with clinical diagnoses of bipolar disorder, depression and schizophrenia. Dysregulation of the mesolimbic-dopamine (ML-DA) system is linked to these syndromes and LTCCs are required for normal DAergic neurotransmission between the ventral tegmental area (VTA) and nucleus accumbens (NAc). It is unclear, however, how variations in CACNA1C genotype, and potential subsequent changes in expression levels in these regions, modify risk. Using constitutive and conditional knockout mice, and treatment with the LTCC antagonist nimodipine, we examined the role of Cacna1c in DA-mediated behaviors elicited by psychomotor stimulants. Using fast-scan cyclic voltammetry, DA release and reuptake in the NAc were measured. We find that subsecond DA release in Cacna1c haploinsufficient mice lacks normal sensitivity to inhibition of the DA transporter (DAT). Constitutive haploinsufficiency of Cacna1c led to attenuation of hyperlocomotion following acute administration of stimulants specific to DAT, and locomotor sensitization of these mice to the DAT antagonist GBR12909 did not reach the same level as wild-type mice. The maintenance of sensitization to GBR12909 was attenuated by administration of nimodipine. Sensitization to GBR12909 was attenuated in mice with reduced Cacna1c selectively in the VTA but not in the NAc. Our findings show that Cacna1c is crucial for normal behavioral responses to DA stimulants and that its activity in the VTA is required for behavioral sensitization. Cacna1c likely exerts these effects through modifications to presynaptic ML-DA system function.
Collapse
Affiliation(s)
- Chantelle E. Terrillion
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - David T. Dao
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Roger Cachope
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mary Kay Lobo
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Adam C. Puche
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Joseph F. Cheer
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Todd D. Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
22
|
Proft J, Weiss N. Looking for answers to L-type calcium channels in the ageing brain (Commentary on Zanoset al.). Eur J Neurosci 2015; 42:2496-8. [DOI: 10.1111/ejn.13017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Juliane Proft
- Institute of Organic Chemistry and Biochemistry; Academy of Sciences of the Czech Republic; Prague Czech Republic
| | - Norbert Weiss
- Institute of Organic Chemistry and Biochemistry; Academy of Sciences of the Czech Republic; Prague Czech Republic
| |
Collapse
|