1
|
Mahadik SS, Lundquist EA. TOM-1/tomosyn acts with the UNC-6/netrin receptor UNC-5 to inhibit growth cone protrusion in Caenorhabditis elegans. Development 2023; 150:dev201031. [PMID: 37014062 PMCID: PMC10112904 DOI: 10.1242/dev.201031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 01/24/2023] [Indexed: 04/05/2023]
Abstract
In the polarity/protrusion model of growth cone repulsion from UNC-6/netrin, UNC-6 first polarizes the growth cone of the VD motor neuron axon via the UNC-5 receptor, and then regulates protrusion asymmetrically across the growth cone based on this polarity. UNC-6 stimulates protrusion dorsally through the UNC-40/DCC receptor, and inhibits protrusion ventrally through UNC-5, resulting in net dorsal growth. Previous studies showed that UNC-5 inhibits growth cone protrusion via the flavin monooxygenases and potential destabilization of F-actin, and via UNC-33/CRMP and restriction of microtubule plus-end entry into the growth cone. We show that UNC-5 inhibits protrusion through a third mechanism involving TOM-1/tomosyn. A short isoform of TOM-1 inhibited protrusion downstream of UNC-5, and a long isoform had a pro-protrusive role. TOM-1/tomosyn inhibits formation of the SNARE complex. We show that UNC-64/syntaxin is required for growth cone protrusion, consistent with a role of TOM-1 in inhibiting vesicle fusion. Our results are consistent with a model whereby UNC-5 utilizes TOM-1 to inhibit vesicle fusion, resulting in inhibited growth cone protrusion, possibly by preventing the growth cone plasma membrane addition required for protrusion.
Collapse
Affiliation(s)
- Snehal S. Mahadik
- Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Avenue, 5049 Haworth Hall, Lawrence, KS 66045, USA
| | - Erik A. Lundquist
- Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Avenue, 5049 Haworth Hall, Lawrence, KS 66045, USA
| |
Collapse
|
2
|
Tymanskyj SR, Curran BM, Ma L. Selective axonal transport through branch junctions is directed by growth cone signaling and mediated by KIF1/kinesin-3 motors. Cell Rep 2022; 39:110748. [PMID: 35476993 PMCID: PMC9097860 DOI: 10.1016/j.celrep.2022.110748] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/27/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Development and function of nerve cells rely on the orchestration of microtubule-based transport from the cell body into distal axonal terminals. Neurons often have highly elaborate branches innervating multiple targets, but how protein or membrane cargos navigate through branch junctions to specific branch targets is unknown. Here, we demonstrate that anterograde transport of membrane vesicles through axonal branch junctions is highly selective, which is influenced by branch length and more strongly by growth cone motility. Using an optogenetic tool, we demonstrate that signaling from the growth cone can rapidly direct transport through branch junctions. We further demonstrate that such transport selectivity is differentially regulated for different vesicles and mediated by the KIF1/kinesin-3 family motors. We propose that this transport regulation through branch junctions could broadly impact neuronal development, function, and regeneration.
Collapse
Affiliation(s)
- Stephen R Tymanskyj
- Department of Neuroscience, Jefferson Center for Synaptic Biology, Vickie and Jack Farber Institute for Neuroscience, Sydney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Bridget M Curran
- Department of Neuroscience, Jefferson Center for Synaptic Biology, Vickie and Jack Farber Institute for Neuroscience, Sydney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Le Ma
- Department of Neuroscience, Jefferson Center for Synaptic Biology, Vickie and Jack Farber Institute for Neuroscience, Sydney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
3
|
Lu C, Zhao Q, Wang D, Feng Y, Feng L, Li Z, Shi Q. Rab35 regulates insulin secretion via phogrin in pancreatic β cells. Clin Exp Pharmacol Physiol 2021; 49:104-112. [PMID: 34448213 DOI: 10.1111/1440-1681.13581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 11/29/2022]
Abstract
Dysfunction of pancreatic β cell insulin secretion is related to the pathogenesis of type 2 diabetes (T2D). Rab proteins have been shown to be key players in insulin secretion by pancreatic β cells, and phogrin is a marker for the processes of exocytosis and insulin secretion. The purposes of this study were to clarify the regulatory role of Rab35 in insulin secretion and analyse the Rab35/phogrin interaction mechanism in β-TC-6 cells. We studied the effects of Rab35 gene overexpression and interference on insulin secretion and phogrin expression and levels in β-TC-6 cells. The Rab35/phogrin interaction was verified by GST pulldown, co-IP and co-localisation experiments. Here, we report that Rab35 is mainly distributed in the β-TC-6-cell plasma membrane and cytoplasm. Rab35 overexpression promotes insulin secretion and decreases phogrin expression in β-TC-6 cells, whereas its silencing significantly inhibits insulin secretion, promotes phogrin expression (p < 0.05) and causes phogrin redistribution. Furthermore, Rab35 silencing suppresses exocytosis of insulin. Rab35 interacts with phogrin, and both proteins co-localise in the plasma membranes and cytoplasm of β-TC-6 cells. Our study presents novel evidence that Rab35 regulates insulin secretion by inhibiting phogrin expression and causing intracellular phogrin redistribution in pancreatic β cells.
Collapse
Affiliation(s)
- Chunting Lu
- Science and Education Office, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Qingtong Zhao
- Medical Centre of Stomatology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Dan Wang
- Science and Education Office, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yunlu Feng
- South China Normal University Hospital, Guangzhou, China
| | - Lie Feng
- Department of Endocrinology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Zejian Li
- Medical Centre of Stomatology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Qiping Shi
- Department of Endocrinology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
4
|
Klimaschewski L, Claus P. Fibroblast Growth Factor Signalling in the Diseased Nervous System. Mol Neurobiol 2021; 58:3884-3902. [PMID: 33860438 PMCID: PMC8280051 DOI: 10.1007/s12035-021-02367-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022]
Abstract
Fibroblast growth factors (FGFs) act as key signalling molecules in brain development, maintenance, and repair. They influence the intricate relationship between myelinating cells and axons as well as the association of astrocytic and microglial processes with neuronal perikarya and synapses. Advances in molecular genetics and imaging techniques have allowed novel insights into FGF signalling in recent years. Conditional mouse mutants have revealed the functional significance of neuronal and glial FGF receptors, not only in tissue protection, axon regeneration, and glial proliferation but also in instant behavioural changes. This review provides a summary of recent findings regarding the role of FGFs and their receptors in the nervous system and in the pathogenesis of major neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Lars Klimaschewski
- Department of Anatomy, Histology and Embryology, Institute of Neuroanatomy, Medical University of Innsbruck, Innsbruck, Austria.
| | - Peter Claus
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
5
|
Axonal Organelles as Molecular Platforms for Axon Growth and Regeneration after Injury. Int J Mol Sci 2021; 22:ijms22041798. [PMID: 33670312 PMCID: PMC7918155 DOI: 10.3390/ijms22041798] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Investigating the molecular mechanisms governing developmental axon growth has been a useful approach for identifying new strategies for boosting axon regeneration after injury, with the goal of treating debilitating conditions such as spinal cord injury and vision loss. The picture emerging is that various axonal organelles are important centers for organizing the molecular mechanisms and machinery required for growth cone development and axon extension, and these have recently been targeted to stimulate robust regeneration in the injured adult central nervous system (CNS). This review summarizes recent literature highlighting a central role for organelles such as recycling endosomes, the endoplasmic reticulum, mitochondria, lysosomes, autophagosomes and the proteasome in developmental axon growth, and describes how these organelles can be targeted to promote axon regeneration after injury to the adult CNS. This review also examines the connections between these organelles in developing and regenerating axons, and finally discusses the molecular mechanisms within the axon that are required for successful axon growth.
Collapse
|
6
|
Koinuma S, Negishi R, Nomura R, Sato K, Kojima T, Segi-Nishida E, Goitsuka R, Iwakura Y, Wada N, Koriyama Y, Kiryu-Seo S, Kiyama H, Nakamura T. TC10, a Rho family GTPase, is required for efficient axon regeneration in a neuron-autonomous manner. J Neurochem 2020; 157:1196-1206. [PMID: 33156548 DOI: 10.1111/jnc.15235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 10/28/2020] [Accepted: 11/01/2020] [Indexed: 12/12/2022]
Abstract
Intracellular signaling pathways that promote axon regeneration are closely linked to the mechanism of neurite outgrowth. TC10, a signaling molecule that acts on neurite outgrowth through membrane transport, is a member of the Rho family G proteins. Axon injury increases the TC10 levels in motor neurons, suggesting that TC10 may be involved in axon regeneration. In this study, we tried to understand the roles of TC10 in the nervous system using TC10 knock-out mice. In cultured hippocampal neurons, TC10 ablation significantly reduced axon elongation without affecting ordinary polarization. We determined a role of TC10 in microtubule stabilization at the growth cone neck; therefore, we assume that TC10 limits axon retraction and promotes in vitro axon outgrowth. In addition, there were no notable differences in the size and structure of brains during prenatal and postnatal development between wild-type and TC10 knock-out mice. In motor neurons, axon regeneration after injury was strongly suppressed in mice lacking TC10 (both in conventional and injured nerve specific deletion). In retinal ganglion cells, TC10 ablation suppressed the axon regeneration stimulated by intraocular inflammation and cAMP after optic nerve crush. These results show that TC10 plays an important role in axon regeneration in both the peripheral and central nervous systems, and the role of TC10 in peripheral axon regeneration is neuron-intrinsic.
Collapse
Affiliation(s)
- Shingo Koinuma
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Ryota Negishi
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan.,Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
| | - Riko Nomura
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan.,Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Kazuki Sato
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Takuya Kojima
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Eri Segi-Nishida
- Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Ryo Goitsuka
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Yoichiro Iwakura
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Naoyuki Wada
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
| | - Yoshiki Koriyama
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan
| | - Sumiko Kiryu-Seo
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Kiyama
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takeshi Nakamura
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| |
Collapse
|
7
|
Hyperactive and impulsive behaviors of LMTK1 knockout mice. Sci Rep 2020; 10:15461. [PMID: 32963255 PMCID: PMC7508861 DOI: 10.1038/s41598-020-72304-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/25/2020] [Indexed: 12/03/2022] Open
Abstract
Lemur tail kinase 1 (LMTK1), previously called Apoptosis-Associated Tyrosine Kinase (AATYK), remains an uncharacterized Ser/Thr protein kinase that is predominantly expressed in the brain. It is recently reported that LMTK1A, an isoform of LMTK1, binds to recycling endosomes through its palmitoylation and regulates endosomal trafficking by suppressing the activity of Rab11 small GTPase. In neurons, knockdown or knockout of LMTK1 results in longer axons, greater branching of dendrites and increased number of spines, suggesting that LMTK1 plays a role in neuronal circuit formation. However, its in vivo function remained to be investigated. Here, we examined the brain structures and behaviors of LMTK1 knockout (KO) mice. LMTK1 was expressed in most neurons throughout the brain. The overall brain structure appeared to be normal in LMTK1 KO mice, but the numbers of synapses were increased. LMTK1 KO mice had a slight impairment in memory formation and exhibited distinct psychiatric behaviors such as hyperactivity, impulsiveness and high motor coordination without social interaction deficits. Some of these abnormal behaviors represent core features of attention deficit hyperactive disorder (ADHD), suggesting the possible involvement of LMTK1 in the pathogenesis of ADHD.
Collapse
|
8
|
D'Alessandro R, Meldolesi J. News about non-secretory exocytosis: mechanisms, properties, and functions. J Mol Cell Biol 2020; 11:736-746. [PMID: 30605539 PMCID: PMC6821209 DOI: 10.1093/jmcb/mjy084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/14/2018] [Accepted: 01/02/2019] [Indexed: 12/22/2022] Open
Abstract
The fusion by exocytosis of many vesicles to the plasma membrane induces the discharge to the extracellular space of their abundant luminal cargoes. Other exocytic vesicles, however, do not contain cargoes, and thus, their fusion is not followed by secretion. Therefore, two distinct processes of exocytosis exist, one secretory and the other non-secretory. The present review deals with the knowledge of non-secretory exocytosis developed during recent years. Among such developments are the dual generation of the exocytic vesicles, initially released either from the trans-Golgi network or by endocytosis; their traffic with activation of receptors, channels, pumps, and transporters; the identification of their tethering and soluble N-ethylmaleimide-sensitive factor attachment protein receptor complexes that govern membrane fusions; the growth of axons and the membrane repair. Examples of potential relevance of these processes for pathology and medicine are also reported. The developments presented here offer interesting chances for future progress in the field.
Collapse
Affiliation(s)
| | - Jacopo Meldolesi
- Scientific Institute San Raffaele and Vita Salute San Raffaele University, Via Olgettina 58, Milan, Italy
| |
Collapse
|
9
|
Hisanaga SI, Wei R, Huo A, Tomomura M. LMTK1, a Novel Modulator of Endosomal Trafficking in Neurons. Front Mol Neurosci 2020; 13:112. [PMID: 32714146 PMCID: PMC7344150 DOI: 10.3389/fnmol.2020.00112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/02/2020] [Indexed: 12/16/2022] Open
Abstract
Neurons extend long processes known as axons and dendrites, through which they communicate with each other. The neuronal circuits formed by the axons and dendrites are the structural basis of higher brain functions. The formation and maintenance of these processes are essential for physiological brain activities. Membrane components, both lipids, and proteins, that are required for process formation are supplied by vesicle transport. Intracellular membrane trafficking is regulated by a family of Rab small GTPases. A group of Rabs regulating endosomal trafficking has been studied mainly in nonpolarized culture cell lines, and little is known about their regulation in polarized neurons with long processes. As shown in our recent study, lemur tail (former tyrosine) kinase 1 (LMTK1), an as yet uncharacterized Ser/Thr kinase associated with Rab11-positive recycling endosomes, modulates the formation of axons, dendrites, and spines in cultured primary neurons. LMTK1 knockdown or knockout (KO) or the expression of a kinase-negative mutant stimulates the transport of endosomal vesicles in neurons, leading to the overgrowth of axons, dendrites, and spines. More recently, we found that LMTK1 regulates TBC1D9B Rab11 GAP and proposed the Cdk5/p35-LMTK1-TBC1D9B-Rab11 pathway as a signaling cascade that regulates endosomal trafficking. Here, we summarize the biochemical, cell biological, and physiological properties of LMTK1.
Collapse
Affiliation(s)
- Shin-Ichi Hisanaga
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-Osawa Campus, Hachioji, Japan
| | - Ran Wei
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-Osawa Campus, Hachioji, Japan
| | - Anni Huo
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-Osawa Campus, Hachioji, Japan
| | - Mineko Tomomura
- Department of Oral Health Sciences, Meikai University School of Health Sciences, Urayasu, Japan
| |
Collapse
|
10
|
Carvalho CR, Oliveira JM, Reis RL. Modern Trends for Peripheral Nerve Repair and Regeneration: Beyond the Hollow Nerve Guidance Conduit. Front Bioeng Biotechnol 2019; 7:337. [PMID: 31824934 PMCID: PMC6882937 DOI: 10.3389/fbioe.2019.00337] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022] Open
Abstract
Peripheral nerve repair and regeneration remains among the greatest challenges in tissue engineering and regenerative medicine. Even though peripheral nerve injuries (PNIs) are capable of some degree of regeneration, frail recovery is seen even when the best microsurgical technique is applied. PNIs are known to be very incapacitating for the patient, due to the deprivation of motor and sensory abilities. Since there is no optimal solution for tackling this problem up to this day, the evolution in the field is constant, with innovative designs of advanced nerve guidance conduits (NGCs) being reported every day. As a basic concept, a NGC should act as a physical barrier from the external environment, concomitantly acting as physical guidance for the regenerative axons across the gap lesion. NGCs should also be able to retain the naturally released nerve growth factors secreted by the damaged nerve stumps, as well as reducing the invasion of scar tissue-forming fibroblasts to the injury site. Based on the neurobiological knowledge related to the events that succeed after a nerve injury, neuronal subsistence is subjected to the existence of an ideal environment of growth factors, hormones, cytokines, and extracellular matrix (ECM) factors. Therefore, it is known that multifunctional NGCs fabricated through combinatorial approaches are needed to improve the functional and clinical outcomes after PNIs. The present work overviews the current reports dealing with the several features that can be used to improve peripheral nerve regeneration (PNR), ranging from the simple use of hollow NGCs to tissue engineered intraluminal fillers, or to even more advanced strategies, comprising the molecular and gene therapies as well as cell-based therapies.
Collapse
Affiliation(s)
- Cristiana R. Carvalho
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Guimarães, Portugal
| | - Joaquim M. Oliveira
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Guimarães, Portugal
| |
Collapse
|
11
|
Rink S, Bendella H, Akkin SM, Manthou M, Grosheva M, Angelov DN. Experimental Studies on Facial Nerve Regeneration. Anat Rec (Hoboken) 2019; 302:1287-1303. [DOI: 10.1002/ar.24123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 10/09/2018] [Accepted: 11/02/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Svenja Rink
- Department of Prosthetic Dentistry, School of Dental and Oral MedicineUniversity of Cologne Cologne Germany
| | - Habib Bendella
- Department of NeurosurgeryUniversity of Witten/Herdecke, Cologne Merheim Medical Center (CMMC) Cologne Germany
| | - Salih Murat Akkin
- Department of Anatomy, School of MedicineSANKO University Gaziantep Turkey
| | - Marilena Manthou
- Department of Histology and EmbryologyAristotle University Thessaloniki Thessaloniki Greece
| | - Maria Grosheva
- Department of Oto‐Rhino‐LaryngologyUniversity of Cologne Cologne Germany
| | | |
Collapse
|
12
|
Membrane-Associated, Not Cytoplasmic or Nuclear, FGFR1 Induces Neuronal Differentiation. Cells 2019; 8:cells8030243. [PMID: 30875802 PMCID: PMC6468866 DOI: 10.3390/cells8030243] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/04/2019] [Accepted: 03/08/2019] [Indexed: 01/22/2023] Open
Abstract
The intracellular transport of receptor tyrosine kinases results in the differential activation of various signaling pathways. In this study, optogenetic stimulation of fibroblast growth factor receptor type 1 (FGFR1) was performed to study the effects of subcellular targeting of receptor kinases on signaling and neurite outgrowth. The catalytic domain of FGFR1 fused to the algal light-oxygen-voltage-sensing (LOV) domain was directed to different cellular compartments (plasma membrane, cytoplasm and nucleus) in human embryonic kidney (HEK293) and pheochromocytoma (PC12) cells. Blue light stimulation elevated the pERK and pPLCγ1 levels in membrane-opto-FGFR1-transfected cells similarly to ligand-induced receptor activation; however, no changes in pAKT levels were observed. PC12 cells transfected with membrane-opto-FGFR1 exhibited significantly longer neurites after light stimulation than after growth factor treatment, and significantly more neurites extended from their cell bodies. The activation of cytoplasmic FGFR1 kinase enhanced ERK signaling in HEK293 cells but not in PC12 cells and did not induce neuronal differentiation. The stimulation of FGFR1 kinase in the nucleus also did not result in signaling changes or neurite outgrowth. We conclude that FGFR1 kinase needs to be associated with membranes to induce the differentiation of PC12 cells mainly via ERK activation.
Collapse
|
13
|
Moskow J, Ferrigno B, Mistry N, Jaiswal D, Bulsara K, Rudraiah S, Kumbar SG. Review: Bioengineering approach for the repair and regeneration of peripheral nerve. Bioact Mater 2019; 4:107-113. [PMID: 30723843 PMCID: PMC6351356 DOI: 10.1016/j.bioactmat.2018.09.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/03/2018] [Accepted: 09/03/2018] [Indexed: 12/29/2022] Open
Abstract
Complex craniofacial surgeries of damaged tissues have several limitations, which present complications and challenges when trying to replicate facial function and structure. Traditional treatment techniques have shown suitable nerve function regeneration with various drawbacks. As technology continues to advance, new methods have been explored in order to regenerate damaged nerves in an effort to more efficiently and effectively regain original function and structure. This article will summarize recent bioengineering strategies involving biodegradable composite scaffolds, bioactive factors, and external stimuli alone or in combination to support peripheral nerve regeneration. Particular emphasis is made on the contributions of growth factors and electrical stimulation on the regenerative process.
Collapse
Affiliation(s)
- Joshua Moskow
- Department of Orthopaedic Surgery, University of Connecticut Health, 263Farmington Ave., Farmington, CT 06030, USA
- Department of Biomedical Engineering, University of Connecticut, 260Glenbrook Road, Unit 3247, Storrs, CT 06269, USA
| | - Bryan Ferrigno
- Department of Orthopaedic Surgery, University of Connecticut Health, 263Farmington Ave., Farmington, CT 06030, USA
| | - Nikhil Mistry
- Department of Orthopaedic Surgery, University of Connecticut Health, 263Farmington Ave., Farmington, CT 06030, USA
| | - Devina Jaiswal
- Department of Orthopaedic Surgery, University of Connecticut Health, 263Farmington Ave., Farmington, CT 06030, USA
- Department of Biomedical Engineering, University of Connecticut, 260Glenbrook Road, Unit 3247, Storrs, CT 06269, USA
| | - Ketan Bulsara
- Department of Surgery, University of Connecticut Health, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Swetha Rudraiah
- Department of Orthopaedic Surgery, University of Connecticut Health, 263Farmington Ave., Farmington, CT 06030, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Saint Joseph, 229 Trumbull St., Hartford CT 06103, USA
| | - Sangamesh G. Kumbar
- Department of Orthopaedic Surgery, University of Connecticut Health, 263Farmington Ave., Farmington, CT 06030, USA
- Department of Biomedical Engineering, University of Connecticut, 260Glenbrook Road, Unit 3247, Storrs, CT 06269, USA
| |
Collapse
|
14
|
Kim KW, Tang NH, Piggott CA, Andrusiak MG, Park S, Zhu M, Kurup N, Cherra SJ, Wu Z, Chisholm AD, Jin Y. Expanded genetic screening in Caenorhabditis elegans identifies new regulators and an inhibitory role for NAD + in axon regeneration. eLife 2018; 7:39756. [PMID: 30461420 PMCID: PMC6281318 DOI: 10.7554/elife.39756] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/19/2018] [Indexed: 12/15/2022] Open
Abstract
The mechanisms underlying axon regeneration in mature neurons are relevant to the understanding of normal nervous system maintenance and for developing therapeutic strategies for injury. Here, we report novel pathways in axon regeneration, identified by extending our previous function-based screen using the C. elegans mechanosensory neuron axotomy model. We identify an unexpected role of the nicotinamide adenine dinucleotide (NAD+) synthesizing enzyme, NMAT-2/NMNAT, in axon regeneration. NMAT-2 inhibits axon regrowth via cell-autonomous and non-autonomous mechanisms. NMAT-2 enzymatic activity is required to repress regrowth. Further, we find differential requirements for proteins in membrane contact site, components and regulators of the extracellular matrix, membrane trafficking, microtubule and actin cytoskeleton, the conserved Kelch-domain protein IVNS-1, and the orphan transporter MFSD-6 in axon regrowth. Identification of these new pathways expands our understanding of the molecular basis of axonal injury response and regeneration.
Collapse
Affiliation(s)
- Kyung Won Kim
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Ngang Heok Tang
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Christopher A Piggott
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Matthew G Andrusiak
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Seungmee Park
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Ming Zhu
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Naina Kurup
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Salvatore J Cherra
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Zilu Wu
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Andrew D Chisholm
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Yishi Jin
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States.,Department of Cellular and Molecular Medicine, University of California, San Diego, School of Medicine, La Jolla, United States
| |
Collapse
|
15
|
Boyer NP, Gupton SL. Revisiting Netrin-1: One Who Guides (Axons). Front Cell Neurosci 2018; 12:221. [PMID: 30108487 PMCID: PMC6080411 DOI: 10.3389/fncel.2018.00221] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/09/2018] [Indexed: 12/28/2022] Open
Abstract
Proper patterning of the nervous system requires that developing axons find appropriate postsynaptic partners; this entails microns to meters of extension through an extracellular milieu exhibiting a wide range of mechanical and chemical properties. Thus, the elaborate networks of fiber tracts and non-fasciculated axons evident in mature organisms are formed via complex pathfinding. The macroscopic structures of axon projections are highly stereotyped across members of the same species, indicating precise mechanisms guide their formation. The developing axon exhibits directionally biased growth toward or away from external guidance cues. One of the most studied guidance cues is netrin-1, however, its presentation in vivo remains debated. Guidance cues can be secreted to form soluble or chemotactic gradients or presented bound to cells or the extracellular matrix to form haptotactic gradients. The growth cone, a highly specialized dynamic structure at the end of the extending axon, detects these guidance cues via transmembrane receptors, such as the netrin-1 receptors deleted in colorectal cancer (DCC) and UNC5. These receptors orchestrate remodeling of the cytoskeleton and cell membrane through both chemical and mechanotransductive pathways, which result in traction forces generated by the cytoskeleton against the extracellular environment and translocation of the growth cone. Through intracellular signaling responses, netrin-1 can trigger either attraction or repulsion of the axon. Here we review the mechanisms by which the classical guidance cue netrin-1 regulates intracellular effectors to respond to the extracellular environment in the context of axon guidance during development of the central nervous system and discuss recent findings that demonstrate the critical importance of mechanical forces in this process.
Collapse
Affiliation(s)
- Nicholas P. Boyer
- Neurobiology Curriculum, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stephanie L. Gupton
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
16
|
Lee-Liu D, Sun L, Dovichi NJ, Larraín J. Quantitative Proteomics After Spinal Cord Injury (SCI) in a Regenerative and a Nonregenerative Stage in the Frog Xenopus laevis. Mol Cell Proteomics 2018; 17:592-606. [PMID: 29358338 PMCID: PMC5880103 DOI: 10.1074/mcp.ra117.000215] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/30/2017] [Indexed: 12/31/2022] Open
Abstract
The capacity to regenerate the spinal cord after an injury is a coveted trait that only a limited group of nonmammalian organisms can achieve. In Xenopus laevis, this capacity is only present during larval or tadpole stages, but is absent during postmetamorphic frog stages. This provides an excellent model for comparative studies between a regenerative and a nonregenerative stage to identify the cellular and molecular mechanisms that explain this difference in regenerative potential. Here, we used iTRAQ chemistry to obtain a quantitative proteome of the spinal cord 1 day after a transection injury in regenerative and nonregenerative stage animals, and used sham operated animals as controls. We quantified a total of 6,384 proteins, with 172 showing significant differential expression in the regenerative stage and 240 in the nonregenerative stage, with an overlap of only 14 proteins. Functional enrichment analysis revealed that although the regenerative stage downregulated synapse/vesicle and mitochondrial proteins, the nonregenerative stage upregulated lipid metabolism proteins, and downregulated ribosomal and translation control proteins. Furthermore, STRING network analysis showed that proteins belonging to these groups are highly interconnected, providing interesting candidates for future functional studies. Data are available via ProteomeXchange with identifier PXD006993.
Collapse
Affiliation(s)
- Dasfne Lee-Liu
- From the ‡Center for Aging and Regeneration, Millennium Nucleus in Regenerative Biology, Faculty of Biological Sciences, P. Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | - Liangliang Sun
- §Department of Chemistry, Michigan State University, East Lansing, Michigan 48824
| | - Norman J Dovichi
- ¶Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Juan Larraín
- From the ‡Center for Aging and Regeneration, Millennium Nucleus in Regenerative Biology, Faculty of Biological Sciences, P. Universidad Católica de Chile, Alameda 340, Santiago, Chile ;
| |
Collapse
|
17
|
Enhanced axonal transport: A novel form of "plasticity" after primate and rodent spinal cord injury. Exp Neurol 2017; 301:59-69. [PMID: 29277625 DOI: 10.1016/j.expneurol.2017.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/09/2017] [Accepted: 12/21/2017] [Indexed: 11/22/2022]
Abstract
Deficient axonal transport after injury is believed to contribute to the failure of CNS regeneration. To better elucidate neural mechanisms associated with CNS responses to injury, we transected the dominant voluntary motor system, the corticospinal tract (CST), in the dorsolateral T10 spinal cord of rhesus monkeys. Three months later, a 4.5-fold increase in the number of CST axons located in the spared ventral corticospinal tract at both the lesion site and, surprisingly, remotely in the cervical spinal cord was observed. Additional studies of increases in corticospinal axon numbers in rat and primate models demonstrated that increases were transient and attributable to enhanced axonal transport rather than axonal sprouting. Accordingly, increases in axonal transport occur after CNS injury even in the longest projecting pathways of the non-human primate, likely representing an attempted adaptive response to injury as observed in the PNS.
Collapse
|
18
|
Quiroga S, Bisbal M, Cáceres A. Regulation of plasma membrane expansion during axon formation. Dev Neurobiol 2017; 78:170-180. [PMID: 29090510 DOI: 10.1002/dneu.22553] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/28/2017] [Accepted: 10/29/2017] [Indexed: 12/14/2022]
Abstract
Here, will review current evidence regarding the signaling pathways and mechanisms underlying membrane addition at sites of active growth during axon formation. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 170-180, 2018.
Collapse
Affiliation(s)
- Santiago Quiroga
- Dpto. de Química Biológica Ranwel Caputto y Centro de Investigaciones en Química Biológica Córdoba (CIQUIBIC-CONICET) Av. Haya de la Torre s/n Ciudad Universitaria, Córdoba, Argentina.,Universidad Nacional de Córdoba (UNC) Av. Haya de la Torre s/n Ciudad Universitaria, Córdoba, Argentina
| | - Mariano Bisbal
- Universidad Nacional de Córdoba (UNC) Av. Haya de la Torre s/n Ciudad Universitaria, Córdoba, Argentina.,Instituto Mercedes y Martín Ferreyra (INIMEC-CONICET) Av. Friuli 2434, 5016, Córdoba, Argentina.,Instituto Universitario Ciencias Biomédicas de Córdoba (IUCBC), Av. Friuli 2786, 5016, Córdoba, Argentina
| | - Alfredo Cáceres
- Universidad Nacional de Córdoba (UNC) Av. Haya de la Torre s/n Ciudad Universitaria, Córdoba, Argentina.,Instituto Mercedes y Martín Ferreyra (INIMEC-CONICET) Av. Friuli 2434, 5016, Córdoba, Argentina.,Instituto Universitario Ciencias Biomédicas de Córdoba (IUCBC), Av. Friuli 2786, 5016, Córdoba, Argentina
| |
Collapse
|
19
|
Hastoy B, Clark A, Rorsman P, Lang J. Fusion pore in exocytosis: More than an exit gate? A β-cell perspective. Cell Calcium 2017; 68:45-61. [PMID: 29129207 DOI: 10.1016/j.ceca.2017.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/17/2017] [Accepted: 10/24/2017] [Indexed: 12/14/2022]
Abstract
Secretory vesicle exocytosis is a fundamental biological event and the process by which hormones (like insulin) are released into the blood. Considerable progress has been made in understanding this precisely orchestrated sequence of events from secretory vesicle docked at the cell membrane, hemifusion, to the opening of a membrane fusion pore. The exact biophysical and physiological regulation of these events implies a close interaction between membrane proteins and lipids in a confined space and constrained geometry to ensure appropriate delivery of cargo. We consider some of the still open questions such as the nature of the initiation of the fusion pore, the structure and the role of the Soluble N-ethylmaleimide-sensitive-factor Attachment protein REceptor (SNARE) transmembrane domains and their influence on the dynamics and regulation of exocytosis. We discuss how the membrane composition and protein-lipid interactions influence the likelihood of the nascent fusion pore forming. We relate these factors to the hypothesis that fusion pore expansion could be affected in type-2 diabetes via changes in disease-related gene transcription and alterations in the circulating lipid profile. Detailed characterisation of the dynamics of the fusion pore in vitro will contribute to understanding the larger issue of insulin secretory defects in diabetes.
Collapse
Affiliation(s)
- Benoit Hastoy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK.
| | - Anne Clark
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK; Metabolic Research, Institute of Neuroscience and Physiology, University of Goteborg, Medicinaregatan 11, S-41309 Göteborg, Sweden
| | - Jochen Lang
- Laboratoire de Chimie et Biologie des Membranes et Nano-objets (CBMN), CNRS UMR 5248, Université de Bordeaux, Allée de Geoffrey St Hilaire, 33600 Pessac, France.
| |
Collapse
|
20
|
Marunaka Y. Actions of quercetin, a flavonoid, on ion transporters: its physiological roles. Ann N Y Acad Sci 2017; 1398:142-151. [DOI: 10.1111/nyas.13361] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 03/18/2017] [Accepted: 03/24/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Yoshinori Marunaka
- Departments of Molecular Cell Physiology and Bio-Ionomics; Kyoto Prefectural University of Medicine; Kyoto Japan
- Japan Institute for Food Education and Health; St. Agnes’ University; Kyoto Japan
| |
Collapse
|
21
|
Yang J, Yan Y, Xiang X, Xu Y, Zhou N, Wang T. Detection of Ligand-activated G Protein-coupled Receptor Internalization by Confocal Microscopy. J Vis Exp 2017. [PMID: 28448021 DOI: 10.3791/55514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Confocal laser scanning microscopy (CLSM) is an optical imaging technique for high-contrast imaging. It is a powerful approach to visualize fluorescent fusion proteins, such as green fluorescent protein (GFP), to determine their expression, localization, and function. The subcellular localization of target proteins is important for identification, characterization, and functional analyses. Internalization is one of the predominant mechanisms controlling G protein-coupled receptor (GPCR) signaling to ensure the appropriate cellular responses to stimuli. Here, we describe an experimental method to detect the subcellular localization and internalization of GPCR in HEK293 cells with confocal microscopy. In addition, this experiment provides some details about cell culture and transfection. This protocol is compatible with a variety of widely available fluorescent markers and is applicable to the visualization of the subcellular localization of a majority of proteins, as well as of the internalization of GPCR. This technique should enable researchers to efficiently manipulate GPCR gene expression in mammalian cell lines and should facilitate studies on GPCR subcellular localization and internalization.
Collapse
Affiliation(s)
- Jingwen Yang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science College, Zhejiang Ocean University
| | - Yunjun Yan
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science College, Zhejiang Ocean University
| | - Xiaowei Xiang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science College, Zhejiang Ocean University
| | - Yuchao Xu
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science College, Zhejiang Ocean University
| | - Naiming Zhou
- Institute of Biochemistry, College of Life Sciences, Zhejiang University;
| | - Tianming Wang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science College, Zhejiang Ocean University;
| |
Collapse
|
22
|
Hastie EL, Sherwood DR. A new front in cell invasion: The invadopodial membrane. Eur J Cell Biol 2016; 95:441-448. [PMID: 27402208 DOI: 10.1016/j.ejcb.2016.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 06/18/2016] [Accepted: 06/20/2016] [Indexed: 01/16/2023] Open
Abstract
Invadopodia are F-actin-rich membrane protrusions that breach basement membrane barriers during cell invasion. Since their discovery more than 30 years ago, invadopodia have been extensively investigated in cancer cells in vitro, where great advances in understanding their composition, formation, cytoskeletal regulation, and control of the matrix metalloproteinase MT1-MMP trafficking have been made. In contrast, few studies examining invadopodia have been conducted in vivo, leaving their physiological regulation unclear. Recent live-cell imaging and gene perturbation studies in C. elegans have revealed that invadopodia are formed with a unique invadopodial membrane, defined by its specialized lipid and associated protein composition, which is rapidly recycled through the endolysosome. Here, we provide evidence that the invadopodial membrane is conserved and discuss its possible functions in traversing basement membrane barriers. Discovery and examination of the invadopodial membrane has important implications in understanding the regulation, assembly, and function of invadopodia in both normal and disease settings.
Collapse
Affiliation(s)
- Eric L Hastie
- Department of Biology, Duke University, 124 Science Drive, Box 90388, Durham, NC 27708, USA
| | - David R Sherwood
- Department of Biology, Duke University, 124 Science Drive, Box 90388, Durham, NC 27708, USA.
| |
Collapse
|
23
|
Audette DS, Scheiblin DA, Duncan MK. The molecular mechanisms underlying lens fiber elongation. Exp Eye Res 2016; 156:41-49. [PMID: 27015931 DOI: 10.1016/j.exer.2016.03.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 12/28/2022]
Abstract
Lens fiber cells are highly elongated cells with complex membrane morphologies that are critical for the transparency of the ocular lens. Investigations into the molecular mechanisms underlying lens fiber cell elongation were first reported in the 1960s, however, our understanding of the process is still poor nearly 50 years later. This review summarizes what is currently hypothesized about the regulation of lens fiber cell elongation along with the available experimental evidence, and how this information relates to what is known about the regulation of cell shape/elongation in other cell types, particularly neurons.
Collapse
Affiliation(s)
- Dylan S Audette
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - David A Scheiblin
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Melinda K Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
24
|
Li N, Tang EI, Cheng CY. Regulation of blood-testis barrier by actin binding proteins and protein kinases. Reproduction 2015; 151:R29-41. [PMID: 26628556 DOI: 10.1530/rep-15-0463] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/01/2015] [Indexed: 12/13/2022]
Abstract
The blood-testis barrier (BTB) is an important ultrastructure in the testis, since the onset of meiosis and spermiogenesis coincides with the establishment of a functional barrier in rodents and humans. It is also noted that a delay in the assembly of a functional BTB following treatment of neonatal rats with drugs such as diethylstilbestrol or adjudin also delays the first wave of spermiation. While the BTB is one of the tightest blood-tissue barriers, it undergoes extensive remodeling, in particular, at stage VIII of the epithelial cycle to facilitate the transport of preleptotene spermatocytes connected in clones across the immunological barrier. Without this timely transport of preleptotene spermatocytes derived from type B spermatogonia, meiosis will be arrested, causing aspermatogenesis. Yet the biology and regulation of the BTB remains largely unexplored since the morphological studies in the 1970s. Recent studies, however, have shed new light on the biology of the BTB. Herein, we critically evaluate some of these findings, illustrating that the Sertoli cell BTB is regulated by actin-binding proteins (ABPs), likely supported by non-receptor protein kinases, to modulate the organization of actin microfilament bundles at the site. Furthermore, microtubule-based cytoskeleton is also working in concert with the actin-based cytoskeleton to confer BTB dynamics. This timely review provides an update on the unique biology and regulation of the BTB based on the latest findings in the field, focusing on the role of ABPs and non-receptor protein kinases.
Collapse
Affiliation(s)
- Nan Li
- The Mary M. Wohlford Laboratory for Male Contraceptive ResearchCenter for Biomedical Research, Population Council, 1230 York Avenue, New York, New York 10065, USA
| | - Elizabeth I Tang
- The Mary M. Wohlford Laboratory for Male Contraceptive ResearchCenter for Biomedical Research, Population Council, 1230 York Avenue, New York, New York 10065, USA
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive ResearchCenter for Biomedical Research, Population Council, 1230 York Avenue, New York, New York 10065, USA
| |
Collapse
|