1
|
Furuie H, Ukezono M, Okada T, Yamada M. Effects of neonatal N-methyl-D-aspartate receptor blockade on social facilitation of feeding behavior in adult rats. Behav Brain Res 2025; 483:115464. [PMID: 39904475 DOI: 10.1016/j.bbr.2025.115464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/21/2025] [Accepted: 01/31/2025] [Indexed: 02/06/2025]
Abstract
Glutamate and one of its ionotropic receptor subtypes, N-methyl-D-aspartate (NMDA) receptors, are essential for brain development after birth. Rats that underwent NMDA receptor blockade during the neonatal period have been validated as models of schizophrenia. Social facilitation, a phenomenon where an individual's performance is promoted in the presence of others, reflects the ability to regulate behavior depending on social situations and is likely to be disrupted in schizophrenia. This study investigated the effects of neonatal treatment with MK-801, an NMDA receptor antagonist, on the social facilitation of feeding behavior in adult rats. Under noncompetitive conditions, SAL-treated control rats showed increased food intake when feeding with another rat, whereas MK-801-treated rats did not. Under competitive conditions, SAL-treated rats tended to feed more in the presence of a competitor compared to feeding alone. In contrast, MK-801-treated rats exhibited a significant reduction in food intake in the presence of a competitor. Thus, MK-801-treated rats demonstrated a lack of social facilitation under noncompetitive conditions and social inhibition under competitive conditions. These findings suggest that neonatal NMDA receptor blockade disrupts the ability of rats to regulate their behavior depending on their social situation. Our findings may provide new insights into the social deficits associated with schizophrenia and their underlying mechanisms.
Collapse
Affiliation(s)
- Hiroki Furuie
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8553, Japan; Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | - Masatoshi Ukezono
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8553, Japan; Department of Environmental Information, University of Human Environments, 9-12 Dogohimata, Matsuyama, Ehime 790-0825, Japan
| | - Takashi Okada
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8553, Japan; Department of Psychiatry, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan
| | - Mitsuhiko Yamada
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8553, Japan; Department of Pathophysiology, Faculty of Human Nutrition, Tokyo Kasei Gakuin University, 22 Sanban-cho, Chiyoda-ku, Tokyo 102-8341, Japan
| |
Collapse
|
2
|
Chiba Y, Tsuchida K, Maekawa F, Nakamori T, Inaoka H, Ohki-Hamazaki H. Presence of sibling during the learning phase of imprinting affects escape behavior from a new object in chicks. Neurosci Res 2023; 190:60-66. [PMID: 36516887 DOI: 10.1016/j.neures.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 12/03/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Imprinting is a crucial learning behavior by the hatchlings of precocious birds. In nature, hatchlings in a group environment imprint on a hen, but the effect of siblings on the imprinting process remains largely unknown. To investigate this issue, we examined how the social context modulated visual imprinting in domestic chicks. One-day-old postnatal chicks in isolation (RS chicks) or with siblings (RD chicks), were first exposed to an imprinting stimulus, and subsequently the responses to the imprinting stimulus as well as a new stimulus were examined and compared. The experiment constituted three types of siblings: a 20-min pre-trained tutor, a 60-min pre-trained tutor, and a naïve chick. A multiple comparison test revealed that the preference score (PS) to the new stimulus of RD chicks trained with a 60-min pre-trained tutor was significantly lower than that of RS chicks. Multiple linear regression analysis revealed that the length of the tutor's pre-training significantly correlated negatively with the PS to the new stimulus, but this variable did not correlate with the PS to the imprinting stimulus. These results revealed that the presence of highly imprinted siblings could enhance the escape response to the new stimulus. We discussed the possible involvement of the chick's medial amygdala in the social aspect of imprinting.
Collapse
Affiliation(s)
- Yurino Chiba
- College of Liberal Arts and Sciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Kei Tsuchida
- College of Liberal Arts and Sciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Fumihiko Maekawa
- Health and Environmental Risk Research Division, National Institute for Environmental Studies, Tsukuba, Ibaraki 305-8506, Japan
| | - Tomoharu Nakamori
- College of Liberal Arts and Sciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Hidenori Inaoka
- Basic Medical Sciences, School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Hiroko Ohki-Hamazaki
- College of Liberal Arts and Sciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan.
| |
Collapse
|
3
|
Pendergraft LT, Marzluff JM, Cross DJ, Shimizu T, Templeton CN. American Crow Brain Activity in Response to Conspecific Vocalizations Changes When Food Is Present. Front Physiol 2021; 12:766345. [PMID: 34867472 PMCID: PMC8637333 DOI: 10.3389/fphys.2021.766345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
Social interaction among animals can occur under many contexts, such as during foraging. Our knowledge of the regions within an avian brain associated with social interaction is limited to the regions activated by a single context or sensory modality. We used 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) to examine American crow (Corvus brachyrhynchos) brain activity in response to conditions associated with communal feeding. Using a paired approach, we exposed crows to either a visual stimulus (the sight of food), an audio stimulus (the sound of conspecifics vocalizing while foraging) or both audio/visual stimuli presented simultaneously and compared to their brain activity in response to a control stimulus (an empty stage). We found two regions, the nucleus taenia of the amygdala (TnA) and a medial portion of the caudal nidopallium, that showed increased activity in response to the multimodal combination of stimuli but not in response to either stimulus when presented unimodally. We also found significantly increased activity in the lateral septum and medially within the nidopallium in response to both the audio-only and the combined audio/visual stimuli. We did not find any differences in activation in response to the visual stimulus by itself. We discuss how these regions may be involved in the processing of multimodal stimuli in the context of social interaction.
Collapse
Affiliation(s)
- LomaJohn T Pendergraft
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA, United States
| | - John M Marzluff
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA, United States
| | - Donna J Cross
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, United States
| | - Toru Shimizu
- Department of Psychology, College of Arts and Sciences, University of South Florida, Tampa, FL, United States
| | | |
Collapse
|
4
|
Liu RH, Shi W, Zhang YX, Zhuo M, Li XH. Selective inhibition of adenylyl cyclase subtype 1 reduces inflammatory pain in chicken of gouty arthritis. Mol Pain 2021; 17:17448069211047863. [PMID: 34761717 PMCID: PMC8591642 DOI: 10.1177/17448069211047863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Lack of uricase leads to the high incidence of gout in humans and poultry, which is different from rodents. Therefore, chicken is considered to be one of the ideal animal models for the study of gout. Gout-related pain caused by the accumulation of urate in joints is one type of inflammatory pain, which causes damage to joint function. Our previous studies have demonstrated the crucial role of calcium-stimulated adenylyl cyclase subtype 1 (AC1) in inflammatory pain in rodents; however, there is no study in poultry. In the present study, we injected mono-sodium urate (MSU) into the left ankle joint of the chicken to establish a gouty arthritis model, and tested the effect of AC1 inhibitor NB001 on gouty arthritis in chickens. We found that MSU successfully induced spontaneous pain behaviors including sitting, standing on one leg, and limping after 1–3 h of injection into the left ankle of chickens. In addition, edema and mechanical pain hypersensitivity also occurred in the left ankle of chickens with gouty arthritis. After peroral administration of NB001 on chickens with gouty arthritis, both the spontaneous pain behaviors and the mechanical pain hypersensitivity were effectively relieved. The MSU-induced edema in the left ankle of chickens was not affected by NB001, suggesting a central effect of NB001. Our results provide a strong evidence that AC1 is involved in the regulation of inflammatory pain in poultry. A selective AC1 inhibitor NB001 produces an analgesic effect (not anti-inflammatory effect) on gouty pain and may be used for future treatment of gouty pain in both humans and poultry.
Collapse
Affiliation(s)
- Ren-Hao Liu
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, 12480Xi'an Jiaotong University, Xi'an, China.,Institute of Brain Research, Qingdao International Academician Park, Qingdao, Shandong, China
| | - Wantong Shi
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, 12480Xi'an Jiaotong University, Xi'an, China.,Institute of Brain Research, Qingdao International Academician Park, Qingdao, Shandong, China
| | - Yu-Xiang Zhang
- Institute of Brain Research, Qingdao International Academician Park, Qingdao, Shandong, China
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, 12480Xi'an Jiaotong University, Xi'an, China.,Institute of Brain Research, Qingdao International Academician Park, Qingdao, Shandong, China.,Faculty of Medicine, Department of Physiology, 7938University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Xu-Hui Li
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, 12480Xi'an Jiaotong University, Xi'an, China.,Institute of Brain Research, Qingdao International Academician Park, Qingdao, Shandong, China
| |
Collapse
|
5
|
The dorsal arcopallium of chicks displays the expression of orthologs of mammalian fear related serotonin receptor subfamily genes. Sci Rep 2020; 10:21183. [PMID: 33273690 PMCID: PMC7712838 DOI: 10.1038/s41598-020-78247-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Fear is an adaptive emotion that elicits defensive behavioural responses against aversive threats in animals. In mammals, serotonin receptors (5-HTRs) have been shown to modulate fear-related neural circuits in the basolateral amygdala complex (BLA). To understand the phylogenetic continuity of the neural basis for fear, it is important to identify the neural circuit that processes fear in other animals. In birds, fear-related behaviours were suggested to be processed in the arcopallium/amygdala complex and modulated by the serotonin (5-HT) system. However, details about the distribution of 5-HTRs in the avian brain are very sparsely reported, and the 5-HTR that is potentially involved in fear-related behaviour has not been elucidated. In this study, we showed that orthologs of mammalian 5-HTR genes that are expressed in the BLA, namely 5-HTR1A, 5-HTR1B, 5-HTR2A, 5-HTR2C, 5-HTR3A, and 5-HTR4, are expressed in a part of the chick arcopallium/amygdala complex called the dorsal arcopallium. This suggests that serotonergic regulation in the dorsal arcopallium may play an important role in regulating fear-related behaviour in birds. Our findings can be used as a basis for comparing the processing of fear and its serotonergic modulation in the mammalian amygdala complex and avian arcopallium/amygdala complex.
Collapse
|
6
|
Belekhova MG, Kenigfest NB, Chmykhova NM. Evolutionary Formation and Functional
Significance
of the Core–Belt Pattern of Neural Organization of Rostral Auditory
Centers in Vertebrates. J EVOL BIOCHEM PHYS+ 2020. [DOI: 10.1134/s0022093020040018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
7
|
Ogura Y, Masamoto T, Kameda T. Mere presence of co-eater automatically shifts foraging tactics toward 'Fast and Easy' food in humans. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200044. [PMID: 32431897 PMCID: PMC7211848 DOI: 10.1098/rsos.200044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/10/2020] [Indexed: 06/11/2023]
Abstract
Competition for food resources is widespread in nature. The foraging behaviour of social animals should thus be adapted to potential food competition. We conjectured that in the presence of co-foragers, animals would shift their tactics to forage more frequently for smaller food. Because smaller foods are more abundant in nature and allow faster consumption, such tactics should allow animals to consume food more securely against scrounging. We experimentally tested whether such a shift would be triggered automatically in human eating behaviour, even when there was no rivalry about food consumption. To prevent subjects from having rivalry, they were instructed to engage in a 'taste test' in a laboratory, alone or in pairs. Even though the other subject was merely present and there was no real competition for food, subjects in pairs immediately exhibited a systematic behavioural shift to reaching for smaller food amounts more frequently, which was clearly distinct from their reaching patterns both when eating alone and when simply weighing the same food without eating any. These patterns suggest that behavioural shifts in the presence of others may be built-in tactics in humans (and possibly in other gregarious animals as well) to adapt to potential food competition in social foraging.
Collapse
Affiliation(s)
- Yukiko Ogura
- Department of Social Psychology, The University of Tokyo, Japan
| | - Taku Masamoto
- Department of Social Psychology, The University of Tokyo, Japan
| | - Tatsuya Kameda
- Department of Social Psychology, The University of Tokyo, Japan
- Brain Science Institute, Tamagawa University, Tokyo, Japan
- Center for Experimental Research in Social Sciences, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
8
|
Perez EC, Meurisse M, Hervé L, Georgelin M, Constantin P, Cornilleau F, Love SA, Lévy F, Calandreau L, Bertin A. Object and food novelty induce distinct patterns of c-fos immunoreactivity in amygdala and striatum in domestic male chicks (Gallus gallus domesticus). Behav Brain Res 2020; 381:112453. [DOI: 10.1016/j.bbr.2019.112453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/06/2019] [Accepted: 12/23/2019] [Indexed: 10/25/2022]
|
9
|
Fujita T, Aoki N, Fujita E, Matsushima T, Homma KJ, Yamaguchi S. The chick pallium displays divergent expression patterns of chick orthologues of mammalian neocortical deep layer-specific genes. Sci Rep 2019; 9:20400. [PMID: 31892722 PMCID: PMC6938507 DOI: 10.1038/s41598-019-56960-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
The avian pallium is organised into clusters of neurons and does not have layered structures such as those seen in the mammalian neocortex. The evolutionary relationship between sub-regions of avian pallium and layers of mammalian neocortex remains unclear. One hypothesis, based on the similarities in neural connections of the motor output neurons that project to sub-pallial targets, proposed the cell-type homology between brainstem projection neurons in neocortex layers 5 or 6 (L5/6) and those in the avian arcopallium. Recent studies have suggested that gene expression patterns are associated with neural connection patterns, which supports the cell-type homology hypothesis. However, a limited number of genes were used in these studies. Here, we showed that chick orthologues of mammalian L5/6-specific genes, nuclear receptor subfamily 4 group A member 2 and connective tissue growth factor, were strongly expressed in the arcopallium. However, other chick orthologues of L5/6-specific genes were primarily expressed in regions other than the arcopallium. Our results do not fully support the cell-type homology hypothesis. This suggests that the cell types of brainstem projection neurons are not conserved between the avian arcopallium and the mammalian neocortex L5/6. Our findings may help understand the evolution of pallium between birds and mammals.
Collapse
Affiliation(s)
- Toshiyuki Fujita
- Faculty of Pharmaceutical Sciences, Department of Life and Health Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Naoya Aoki
- Faculty of Pharmaceutical Sciences, Department of Life and Health Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Eiko Fujita
- Faculty of Pharmaceutical Sciences, Department of Life and Health Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Toshiya Matsushima
- Department of Biology, Faculty of Science, Hokkaido University, Hokkaido, 060-0810, Japan
| | - Koichi J Homma
- Faculty of Pharmaceutical Sciences, Department of Life and Health Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Shinji Yamaguchi
- Faculty of Pharmaceutical Sciences, Department of Life and Health Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan.
| |
Collapse
|
10
|
Miura M, Nishi D, Matsushima T. Combined predisposed preferences for colour and biological motion make robust development of social attachment through imprinting. Anim Cogn 2019; 23:169-188. [PMID: 31712936 DOI: 10.1007/s10071-019-01327-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/19/2019] [Accepted: 10/31/2019] [Indexed: 01/02/2023]
Abstract
To study how predisposed preferences shape the formation of social attachment through imprinting, newly hatched domestic chicks (Gallus gallus domesticus) were simultaneously exposed to two animations composed of comparable light points in different colours (red and yellow), one for a walking motion and another for a linear motion. When a walking animation in red was combined with a linear one in yellow, chicks formed a learned preference for the former that represented biological motion (BM). When the motion-colour association was swapped, chicks failed to form a preference for a walking in yellow, indicating a bias to a specific association of motion and colour. Accordingly, experiments using realistic walking chicken videos revealed a preference for a red video over a yellow one, when the whole body or the head was coloured. On the other hand, when the BM preference had been pre-induced using an artefact moving rigidly (non-BM), a clear preference for a yellow walking animation emerged after training by the swapped association. Even if the first-seen moving object was a nonbiological artefact such as the toy, the visual experience would induce a predisposed BM preference, making chicks selectively memorize the object with natural features. Imprinting causes a rapid inflow of thyroid hormone in the telencephalon leading to the induction of the BM preference, which would make the robust formation of social attachment selectively to the BM-associated object such as the mother hen.
Collapse
Affiliation(s)
- Momoko Miura
- Department of Biology, Faculty of Science, Hokkaido University, N10-W8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Daisuke Nishi
- Department of Biology, Faculty of Science, Hokkaido University, N10-W8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Toshiya Matsushima
- Department of Biology, Faculty of Science, Hokkaido University, N10-W8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan.
| |
Collapse
|
11
|
Dykes M, Porter B, Colombo M. Neurons in the pigeon nidopallium caudolaterale, but not the corticoidea dorsolateralis, display value and effort discounting activity. Sci Rep 2019; 9:15677. [PMID: 31666634 PMCID: PMC6821692 DOI: 10.1038/s41598-019-52216-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 10/10/2019] [Indexed: 11/29/2022] Open
Abstract
We recorded from single neurons in two areas of the pigeon brain while birds were required to peck a stimulus indicating either a high effort task or a low effort task would follow. Upon completion of the task the birds received the same reward. We found that activity in the nidopallium caudolaterale, an area equivalent to the mammalian prefrontal cortex, was modulated by the value of the reward that would be received based on how much effort was required to obtain it. Value coding was most prominent during the presentation of the stimulus indicating a high or low effort task, and in the delay period immediately prior to carrying out the effort task. In contrast, activity in the corticoidea dorsolateralis was not modulated by value, however, population firing patterns suggest that it may be involved in associating actions with outcomes. Our findings support the view that activity in the nidopallium caudolaterale reflects value of reward as a function of effort discounting and as such may serve functions similar to the mammalian anterior cingulate cortex.
Collapse
Affiliation(s)
- Madeline Dykes
- Department of Psychology, University of Otago, Dunedin, New Zealand.
| | - Blake Porter
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Michael Colombo
- Department of Psychology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
12
|
Medina L, Abellán A, Desfilis E. Evolution of Pallial Areas and Networks Involved in Sociality: Comparison Between Mammals and Sauropsids. Front Physiol 2019; 10:894. [PMID: 31354528 PMCID: PMC6640085 DOI: 10.3389/fphys.2019.00894] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/27/2019] [Indexed: 11/19/2022] Open
Abstract
Birds are extremely interesting animals for studying the neurobiological basis of cognition and its evolution. They include species that are highly social and show high cognitive capabilities. Moreover, birds rely more on visual and auditory cues than on olfaction for social behavior and cognition, just like primates. In primates, there are two major brain networks associated to sociality: (1) one related to perception and decision-making, involving the pallial amygdala (with the basolateral complex as a major component), the temporal and temporoparietal neocortex, and the orbitofrontal cortex; (2) another one related to affiliation, including the medial extended amygdala, the ventromedial prefrontal and anterior cingulate cortices, the ventromedial striatum (largely nucleus accumbens), and the ventromedial hypothalamus. In this account, we used an evolutionary developmental neurobiology approach, in combination with published comparative connectivity and functional data, to identify areas and functional networks in the sauropsidian brain comparable to those of mammals that are related to decision-making and affiliation. Both in mammals and sauropsids, there is an important interaction between these networks by way of cross projections between areas of both systems.
Collapse
Affiliation(s)
- Loreta Medina
- Department of Experimental Medicine, Institut de Recerca Biomèdica de Lleida - Fundació Dr. Pifarré (IRBLleida), University of Lleida, Lleida, Spain
| | - Antonio Abellán
- Department of Experimental Medicine, Institut de Recerca Biomèdica de Lleida - Fundació Dr. Pifarré (IRBLleida), University of Lleida, Lleida, Spain
| | - Ester Desfilis
- Department of Experimental Medicine, Institut de Recerca Biomèdica de Lleida - Fundació Dr. Pifarré (IRBLleida), University of Lleida, Lleida, Spain
| |
Collapse
|
13
|
Selective response of the nucleus taeniae of the amygdala to a naturalistic social stimulus in visually naive domestic chicks. Sci Rep 2019; 9:9849. [PMID: 31285532 PMCID: PMC6614359 DOI: 10.1038/s41598-019-46322-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/18/2019] [Indexed: 01/17/2023] Open
Abstract
The detection of animate beings at the onset of life is important for phylogenetically distant species, such as birds and primates. Naïve chicks preferentially approach a stimulus resembling a conspecific (a stuffed fowl) over a less naturalistic one (a scrambled version of the stuffed fowl, presenting the same low-level visual features as the fowl in an unnatural configuration). The neuronal mechanisms underlying this behavior are mostly unknown. However, it has been hypothesized that innate social predispositions may involve subpallial brain areas including the amygdala. Here we asked whether a stuffed hen would activate areas of the arcopallium/amygdala complex, in particular the nucleus taeniae of the amygdala (TnA) or septum. We measured brain activity by visualizing the immediate early gene product c-Fos. After exposure to the hen, TnA showed higher density of c-Fos expressing neurons, compared to chicks that were exposed to the scrambled stimulus. A similar trend was present in the lower portion of the arcopallium, but not in the upper portion of the arcopallium or in the septum. This demonstrates that at birth the TnA is already engaged in responses to social visual stimuli, suggesting an important role for this nucleus in the early ontogenetic development of social behavior.
Collapse
|
14
|
Mello CV, Kaser T, Buckner AA, Wirthlin M, Lovell PV. Molecular architecture of the zebra finch arcopallium. J Comp Neurol 2019; 527:2512-2556. [PMID: 30919954 DOI: 10.1002/cne.24688] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/23/2022]
Abstract
The arcopallium, a key avian forebrain region, receives inputs from numerous brain areas and is a major source of descending sensory and motor projections. While there is evidence of arcopallial subdivisions, the internal organization or the arcopallium is not well understood. The arcopallium is also considered the avian homologue of mammalian deep cortical layers and/or amygdalar subdivisions, but one-to-one correspondences are controversial. Here we present a molecular characterization of the arcopallium in the zebra finch, a passerine songbird species and a major model organism for vocal learning studies. Based on in situ hybridization for arcopallial-expressed transcripts (AQP1, C1QL3, CBLN2, CNTN4, CYP19A1, ESR1/2, FEZF2, MGP, NECAB2, PCP4, PVALB, SCN3B, SCUBE1, ZBTB20, and others) in comparison with cytoarchitectonic features, we have defined 20 distinct regions that can be grouped into six major domains (anterior, posterior, dorsal, ventral, medial, and intermediate arcopallium, respectively; AA, AP, AD, AV, AM, and AI). The data also help to establish the arcopallium as primarily pallial, support a unique topography of the arcopallium in passerines, highlight similarities between the vocal robust nucleus of the arcopallium (RA) and AI, and provide insights into the similarities and differences of cortical and amygdalar regions between birds and mammals. We also propose the use of AMV (instead of nucleus taenia/TnA), AMD, AD, and AI as initial steps toward a universal arcopallial nomenclature. Besides clarifying the internal organization of the arcopallium, the data provide a coherent basis for further functional and comparative studies of this complex avian brain region.
Collapse
Affiliation(s)
- Claudio V Mello
- Department of Behavioral Neuroscience, OHSU, Portland, Oregon
| | - Taylor Kaser
- Department of Behavioral Neuroscience, OHSU, Portland, Oregon
| | - Alexa A Buckner
- Department of Behavioral Neuroscience, OHSU, Portland, Oregon
| | - Morgan Wirthlin
- Department of Behavioral Neuroscience, OHSU, Portland, Oregon
| | - Peter V Lovell
- Department of Behavioral Neuroscience, OHSU, Portland, Oregon
| |
Collapse
|
15
|
Complex social ecology needs complex machineries of foraging. Behav Brain Sci 2019; 42:e45. [PMID: 30940259 DOI: 10.1017/s0140525x18002078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Uncertainty is caused not only by environmental changes, but also by social interference resulting from competition over food resources. Actually, foraging effort is socially facilitated, which, however, does not require incentive control by the dopamine system; Zajonc's "drive" theory is thus questionable. Instead, social adjustments may be pre-embedded in the limbic network responsible for decisions of appropriate effort-cost investment.
Collapse
|
16
|
Miura M, Aoki N, Yamaguchi S, Homma KJ, Matsushima T. Thyroid Hormone Sensitizes the Imprinting-Associated Induction of Biological Motion Preference in Domestic Chicks. Front Physiol 2018; 9:1740. [PMID: 30618782 PMCID: PMC6305540 DOI: 10.3389/fphys.2018.01740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 11/19/2018] [Indexed: 11/16/2022] Open
Abstract
Filial imprinting is associated with induction of predisposed preference to animations that bear visual features of Johansson's biological motion (BM), and the induction is limited to a few days after hatching. As thyroid hormone (3,5,3′-triiodothyronine, T3) plays a critical role in determining the sensitive period of imprinting, we examined if exogenously applied T3 (or iopanoic acid, IOP; a selective inhibitor for converting enzymes) could also sensitize (or desensitize) the BM induction. Chicks were trained by using a non-BM stimulus (rotating red toy) according to a conventional imprinting procedure. Trained chicks were tested for preference to a point-light BM animation (walking chick) over a non-BM animation (linear motion), and for the preference for the familiarized stimulus (red toy) over an unfamiliar one (yellow toy). In 1-day chicks, those injected with IOP showed significantly lower scores than controls on both BM and imprinting tests. In 4-days chicks, those injected with T3 showed higher scores than control, but the difference in BM score was not significant. Imprinting and the accompanying T3 surge may be necessary for the predisposed BM preference to appear in 1-day chicks. Even after the conventional sensitive period is over, exogenous T3 can partly re-sensitize the BM preference as it does imprinting.
Collapse
Affiliation(s)
- Momoko Miura
- Department of Biology, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Naoya Aoki
- Department of Life and Health Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Shinji Yamaguchi
- Department of Life and Health Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Koichi J Homma
- Department of Life and Health Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Toshiya Matsushima
- Department of Biology, Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
17
|
Takemura Y, Yamaguchi S, Aoki N, Miura M, Homma KJ, Matsushima T. Gene expression of Dio2 (thyroid hormone converting enzyme) in telencephalon is linked with predisposed biological motion preference in domestic chicks. Behav Brain Res 2018; 349:25-30. [PMID: 29704598 DOI: 10.1016/j.bbr.2018.04.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 01/07/2023]
Abstract
Filial imprinting leads to the formation of social attachment if training is performed during a brief sensitive period after hatching. We found that thyroid hormone (3,5,3'-triiodothyronine, T3) acts as a critical determining factor of the sensitive period in domestic chicks. Imprinting upregulates gene expression of the converting enzyme (Dio2, type 2 iodothyronine deiodinase) in the telencephalon, leading to increased brain T3 content. If systemically applied, T3 facilitates imprinting in aged chicks even after the sensitive period is over. Imprinting is also associated with the rapid development of visual perception. Exposure to motion pictures induces a predisposed preference to Johansson's biological motion (BM), and those individuals with higher BM preference are more easily imprinted. Here, we examined whether Dio2 expression is also linked with BM predisposition. Chicks were trained by a rotating red block, and tested for imprinting (experiment 1) and BM preference (experiment 2). To examine the time courses of behavioural and physiological processes, Dio2 expression in telencephalon was compared among three groups: naïve control chicks, and chicks trained for a short (0.5 h) or long period (2 h). In experiment 1, higher Dio2 expression appeared in the 2-h group than in the 0.5-h/control groups, but it was not correlated with the individual imprinting score. In experiment 2, a significant positive correlation appeared between Dio2 expression and BM preference in 2-h-trained chicks. Memory priming by T3 is therefore functionally linked to BM preference induction, leading to successful imprinting to natural objects even when they are initially exposed to artificial objects.
Collapse
Affiliation(s)
- Yuri Takemura
- Department of Biology, Faculty of Science, Hokkaido University, N10 W8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Shinji Yamaguchi
- Department of Life and Health Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Naoya Aoki
- Department of Life and Health Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Momoko Miura
- Department of Biology, Faculty of Science, Hokkaido University, N10 W8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Koichi J Homma
- Department of Life and Health Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Toshiya Matsushima
- Department of Biology, Faculty of Science, Hokkaido University, N10 W8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan.
| |
Collapse
|
18
|
Sgadò P, Rosa-Salva O, Versace E, Vallortigara G. Embryonic Exposure to Valproic Acid Impairs Social Predispositions of Newly-Hatched Chicks. Sci Rep 2018; 8:5919. [PMID: 29650996 PMCID: PMC5897402 DOI: 10.1038/s41598-018-24202-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 03/28/2018] [Indexed: 12/13/2022] Open
Abstract
Biological predispositions to attend to visual cues, such as those associated with face-like stimuli or with biological motion, guide social behavior from the first moments of life and have been documented in human neonates, infant monkeys and domestic chicks. Impairments of social predispositions have been recently reported in neonates at high familial risk of Autism Spectrum Disorder (ASD). Using embryonic exposure to valproic acid (VPA), an anticonvulsant associated to increased risk of developing ASD, we modeled ASD behavioral deficits in domestic chicks. We then assessed their spontaneous social predispositions by comparing approach responses to a stimulus containing a face configuration, a stuffed hen, vs. a scrambled version of it. We found that this social predisposition was abolished in VPA-treated chicks, whereas experience-dependent mechanisms associated with filial imprinting were not affected. Our results suggest a specific effect of VPA on the development of biologically-predisposed social orienting mechanisms, opening new perspectives to investigate the neurobiological mechanisms involved in early ASD symptoms.
Collapse
Affiliation(s)
- Paola Sgadò
- Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, Rovereto, Italy.
| | - Orsola Rosa-Salva
- Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, Rovereto, Italy
| | - Elisabetta Versace
- Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, Rovereto, Italy.,Department of Biological and Experimental Psychology, School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Giorgio Vallortigara
- Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, Rovereto, Italy
| |
Collapse
|
19
|
NMDA receptors in the avian amygdala and the premotor arcopallium mediate distinct aspects of appetitive extinction learning. Behav Brain Res 2018; 343:71-82. [PMID: 29378293 DOI: 10.1016/j.bbr.2018.01.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/07/2018] [Accepted: 01/21/2018] [Indexed: 12/22/2022]
Abstract
Extinction learning is an essential mechanism that enables constant adaptation to ever-changing environmental conditions. The underlying neural circuit is mostly studied with rodent models using auditory cued fear conditioning. In order to uncover the variant and the invariant neural properties of extinction learning, we adopted pigeons as an animal model in an appetitive sign-tracking paradigm. The animals firstly learned to respond to two conditioned stimuli in two different contexts (CS-1 in context A and CS-2 in context B), before conditioned responses to the stimuli were extinguished in the opposite contexts (CS-1 in context B and CS-2 in context A). Subsequently, responding to both stimuli was tested in both contexts. Prior to extinction training, we locally injected the N-methyl-d-aspartate receptor (NMDAR) antagonist 2-Amino-5-phosphonovaleric acid (APV) in either the amygdala or the (pre)motor arcopallium to investigate their involvement in extinction learning. Our findings suggest that the encoding of extinction memory required the activation of amygdala, as visible by an impairment of extinction acquisition by concurrent inactivation of local NMDARs. In contrast, consolidation and subsequent retrieval of extinction memory recruited the (pre)motor arcopallium. Also, the inactivation of arcopallial NMDARs induced a general motoric slowing during extinction training. Thus, our results reveal a double dissociation between arcopallium and amygdala with respect to acquisition and consolidation of extinction, respectively. Our study therefore provides new insights on the two key components of the avian extinction network and their resemblance to the data obtained from mammals, possibly indicating a shared neural mechanism underlying extinction learning shaped by evolution.
Collapse
|
20
|
Nomura T, Izawa EI. Avian brains: Insights from development, behaviors and evolution. Dev Growth Differ 2017; 59:244-257. [DOI: 10.1111/dgd.12362] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/10/2017] [Accepted: 04/16/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Tadashi Nomura
- Developmental Neurobiology; Kyoto Prefectural University of Medicine; INAMORI Memorial Building 1-5 Shimogamo-Hangi cho Sakyoku Kyoto 606-0823 Japan
| | - Ei-Ichi Izawa
- Department of Psychology; Keio University; 2-15-45 Mita Minatoku Tokyo 108-8345 Japan
| |
Collapse
|
21
|
Four eyes match better than two: Sharing of precise patch-use time among socially foraging domestic chicks. Behav Processes 2017; 140:127-132. [PMID: 28473251 DOI: 10.1016/j.beproc.2017.04.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 04/25/2017] [Accepted: 04/29/2017] [Indexed: 02/06/2023]
Abstract
To examine how resource competition contributes to patch-use behaviour, we examined domestic chicks foraging in an I-shaped maze equipped with two terminal feeders. In a variable interval schedule, one feeder supplied grains three times more frequently than the other, and the sides were reversed midway through the experiment. The maze was partitioned into two lanes by a transparent wall, so that chicks fictitiously competed without actual interference. Stay time at feeders was compared among three groups. The "single" group contained control chicks; the "pair" group comprised the pairs of chicks tested in the fictitious competition; "mirror" included single chicks accompanied by their respective mirror images. Both "pair" and "mirror" chicks showed facilitated running. In terms of the patch-use ratio, "pair" chicks showed precise matching at approximately 3:1 with significant mutual dependence, whereas "single" and "mirror" chicks showed a comparable under-matching. The facilitated running increased visits to feeders, but failed to predict the patch-use ratio of the subject. At the reversal, quick switching occurred similarly in all groups, but the "pair" chicks revealed a stronger memory-based matching. Perceived competition therefore contributes to precise matching and lasting memory of the better feeder, in a manner dissociated from socially facilitated food search.
Collapse
|