1
|
Ishihara Y, Miyamoto Y, Esumi S, Fukuda T. Structural diversity inside the mouse subiculum revealed by a new marker protein fibronectin 1. Anat Sci Int 2025; 100:207-227. [PMID: 39365413 DOI: 10.1007/s12565-024-00803-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024]
Abstract
The subiculum is one of the major output structures of the hippocampal formation and is an important brain region for memory. We have previously reported that the subiculum of rodents can be morphologically divided into its temporal (ventral) two-thirds and the septal (dorsal) third and that the former can be further subdivided into the distal (Sub1) and proximal (Sub2) regions, on a basis of immunohistochemical localizations of several Sub2-specific proteins. However, it remains unclear whether detailed structural organization found in the temporal subiculum is applicable to the septal subiculum. In this study, we found that the distribution of fibronectin (FN1)-positive non-GABAergic, presumptive pyramidal cells exactly coincided with the extent of the Sub1 region of male mice. Using FN1 immunohistochemistry, the Sub1 was found to keep relatively constant size throughout the septotemporal axis of the subiculum. In contrast, the size of the Sub2 became smaller as it approached the septal side, and the Sub2 finally disappeared at the most septal level of the subiculum. Retrograde tracer experiments confirmed that FN1-positive Sub1 neurons projected to the retrosplenial cortex, which is thought to be associated with spatial memory, whereas FN1-negative Sub2 neurons projected to the nucleus accumbens associated with emotional memory. Considering both the functional segregation of these two subicular targets and the relative abundance of the Sub2 on the temporal side, the subiculum can be one of the neural substrates for functional differences between the septal and temporal hippocampal formation associated with the spatial and emotional memory, respectively.
Collapse
Affiliation(s)
- Yoshihisa Ishihara
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
- Department of Molecular Anatomy, School of Medicine, University of the Ryukyus, Uehara, Nishihara Cho, Nakagami Gun, Okinawa Ken, 903-0125, Japan
| | - Yuta Miyamoto
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Shigeyuki Esumi
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Takaichi Fukuda
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|
2
|
Jin B, W Gongwer M, A DeNardo L. Developmental changes in brain-wide fear memory networks. Neurobiol Learn Mem 2025:108037. [PMID: 40032133 DOI: 10.1016/j.nlm.2025.108037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/15/2025] [Accepted: 02/25/2025] [Indexed: 03/05/2025]
Abstract
Memory retrieval involves coordinated activity across multiple brain regions. Yet how the organization of memory networks evolves throughout development remains poorly understood. In this study, we compared whole-brain functional networks that are active during contextual fear memory recall in infant, juvenile, and adult mice. Our analyses revealed that long-term memory networks change significantly across postnatal development. Infant fear memory networks are dense and heterogeneous, whereas adult networks are sparse and have a small-world topology. While hippocampal subregions were highly connected nodes at all ages, the cortex gained many functional connections across development. Different functional connections matured at different rates, but their developmental timing fell into three major categories: stepwise change between two ages, linear change across all ages, or inverted-U, with elevated functional connectivity in juveniles. Our work highlights how a subset of brain regions likely maintain important roles in fear memory encoding, but the functional connectivity of fear memory networks undergoes significant reorganization across development. Together, these results provide a blueprint for studying how correlated cellular activity in key areas distinctly regulates memory storage and retrieval across development.
Collapse
Affiliation(s)
- Benita Jin
- Department of Physiology, University of California, Los Angeles, 650 Charles E Young Dr S, Los Angeles, CA 90095, USA; Program in Molecular, Cellular and Integrative Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael W Gongwer
- Department of Physiology, University of California, Los Angeles, 650 Charles E Young Dr S, Los Angeles, CA 90095, USA; Interdepartmental Program in Neurosciences, University of California, Los Angeles, Los Angeles, CA, USA; Medical Scientist Training Program, University of California, Los Angeles, Los Angeles, CA, USA
| | - Laura A DeNardo
- Department of Physiology, University of California, Los Angeles, 650 Charles E Young Dr S, Los Angeles, CA 90095, USA.
| |
Collapse
|
3
|
Jin B, Gongwer MW, Kearney BP, Ohanian L, Holden-Wingate L, Le B, Darmawan A, Nakayama Y, Mora SAR, DeNardo LA. A developmental brain-wide screen identifies retrosplenial cortex as a key player in the emergence of persistent memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.07.574554. [PMID: 38260633 PMCID: PMC10802387 DOI: 10.1101/2024.01.07.574554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Memories formed early in life are short-lived while those formed later persist. Recent work revealed that infant memories are stored in a latent state. But why they fail to be retrieved is poorly understood. Here we investigated brain-wide circuit mechanisms underlying infantile amnesia. We performed a screen that combined contextual fear conditioning, activity-dependent neuronal tagging at different postnatal ages, tissue clearing and light sheet microscopy. We observed striking developmental changes in regional activity patterns between infant, juvenile, and adult mice, including changes in the retrosplenial cortex (RSP) that aligned with the emergence of persistent memory. We then performed a series of targeted investigations of RSP structure and function across development. Chronic chemogenetic reactivation of tagged RSP ensembles during the week after learning enhanced memory in adults and juveniles, but not in infants. However, after 33 days, reactivating infant-tagged RSP ensembles recovered forgotten memories. Changes in the developmental functions of RSP memory ensembles were accompanied by changes in dendritic spine density and the likelihood that those ensembles could be reactivated by contextual cues. These studies show that RSP ensembles store latent infant memories, reveal the time course of RSP functional maturation, and suggest that immature RSP functional networks contribute to infantile amnesia.
Collapse
|
4
|
Gianatti M, Garvert AC, Lenkey N, Ebbesen NC, Hennestad E, Vervaeke K. Multiple long-range projections convey position information to the agranular retrosplenial cortex. Cell Rep 2023; 42:113109. [PMID: 37682706 DOI: 10.1016/j.celrep.2023.113109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 06/13/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Neuronal signals encoding the animal's position widely modulate neocortical processing. While these signals are assumed to depend on hippocampal output, their origin has not been investigated directly. Here, we asked which brain region sends position information to the retrosplenial cortex (RSC), a key circuit for memory and navigation. We comprehensively characterized the long-range inputs to agranular RSC using two-photon axonal imaging in head-fixed mice performing a spatial task in darkness. Surprisingly, most long-range pathways convey position information, but with notable differences. Axons from the secondary motor and posterior parietal cortex transmit the most position information. By contrast, axons from the anterior cingulate and orbitofrontal cortex and thalamus convey substantially less position information. Axons from the primary and secondary visual cortex contribute negligibly. This demonstrates that the hippocampus is not the only source of position information. Instead, the RSC is a hub in a distributed brain network that shares position information.
Collapse
Affiliation(s)
- Michele Gianatti
- Institute of Basic Medical Sciences, Section of Physiology, University of Oslo, Oslo, Norway
| | - Anna Christina Garvert
- Institute of Basic Medical Sciences, Section of Physiology, University of Oslo, Oslo, Norway
| | - Nora Lenkey
- Institute of Basic Medical Sciences, Section of Physiology, University of Oslo, Oslo, Norway
| | - Nora Cecilie Ebbesen
- Institute of Basic Medical Sciences, Section of Physiology, University of Oslo, Oslo, Norway
| | - Eivind Hennestad
- Institute of Basic Medical Sciences, Section of Physiology, University of Oslo, Oslo, Norway
| | - Koen Vervaeke
- Institute of Basic Medical Sciences, Section of Physiology, University of Oslo, Oslo, Norway.
| |
Collapse
|
5
|
Simonsen ØW, Czajkowski R, Witter MP. Retrosplenial and subicular inputs converge on superficially projecting layer V neurons of medial entorhinal cortex. Brain Struct Funct 2022; 227:2821-2837. [PMID: 36229654 PMCID: PMC9618507 DOI: 10.1007/s00429-022-02578-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/05/2022] [Indexed: 11/23/2022]
Abstract
The medial entorhinal cortex (MEC) plays a pivotal role in spatial processing together with hippocampal formation. The retrosplenial cortex (RSC) is also implicated in this process, and it is thus relevant to understand how these structures interact. This requires precise knowledge of their connectivity. Projections from neurons in RSC synapse onto principal neurons in layer V of MEC and some of these neurons send axons into superficial layers of MEC. Layer V of MEC is also the main target for hippocampal efferents from the subiculum and CA1 field. The aim of this study was to assess whether the population of cells targeted by RSC projections also receives input from the hippocampal formation and to compare the distribution of synaptic contacts on target dendrites. We labeled the cells in layer V of MEC by injecting a retrograde tracer into superficial layers. At the same time, we labeled RSC and subicular projections with different anterograde tracers. 3D-reconstruction of the labeled cells and axons revealed likely synaptic contacts between presynaptic boutons of both origins and postsynaptic MEC layer V basal dendrites. Moreover, these contacts overlapped on the same dendritic segments without targeting specific domains. Our results support the notion that MEC layer V neurons that project to the superficial layers receive convergent input from both RSC and subiculum. These data thus suggest that convergent subicular and RSC information contributes to the signal that neurons in superficial layers of EC send to the hippocampal formation.
Collapse
Affiliation(s)
- Øyvind Wilsgård Simonsen
- Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Faculty of Medicine and Health Sciences, Kavli Institute for Systems Neuroscience NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Menno P Witter
- Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Faculty of Medicine and Health Sciences, Kavli Institute for Systems Neuroscience NTNU Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
6
|
Saucedo-Alvarado PE, Velasco AL, Aguado-Carrillo G, Cuellar-Herrera M, Trejo-Martínez D, Márquez-Franco R, Velasco-Campos F. Optimizing deep brain stimulation for the treatment of drug-resistant temporal lobe epilepsy: a pilot study. J Neurosurg 2022; 137:768-775. [PMID: 35171814 DOI: 10.3171/2021.10.jns211380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/06/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The authors sought to determine the antiseizure effects of deep brain stimulation (DBS) of the parahippocampal cortex (PHC) for treatment of drug-resistant mesial temporal lobe epilepsy (MTLE). METHODS After a 3-month baseline period, 6 adult patients with drug-resistant MTLE and hippocampal sclerosis (HS) had stereoelectroencephalography (SEEG)-DBS electrodes implanted at the PHC for identification of the seizure onset zone (SOZ). Patients entered an 8-month, randomized, double-blind protocol for DBS, followed by a 12-month open-phase study. Monthly reports of seizure frequency were collected, with separate counting of focal seizures with or without awareness impairment (focal impaired awareness seizures [FIAS] or focal aware seizures [FAS], respectively) and focal evolving to bilateral generalized tonic clonic seizures (GTCS). Stimulation parameters were 130 Hz, 450 μsec, 2.5-3 V, and cyclic stimulation 1 minute on/4 minutes off. RESULTS The total seizure rate decrement during follow-up was 41% (CI 25%-56%), with better seizure control for GTCS (IQR 19%-20%) and FIAS (IQR 0%-16%), with FAS being less responsive (IQR 67%-236%). No neuropsychological deterioration was observed. CONCLUSIONS PHC DBS induced important antiseizure effects in patients with incapacitating FIAS and GTCS, most likely through blocking the propagation of hippocampal-onset seizures. The PHC target can be easily and safely approached due to positioning away from vascular structures, and there was no evidence of DBS-induced cognitive deterioration.
Collapse
Affiliation(s)
- Pablo E Saucedo-Alvarado
- 1Epilepsy Clinic and Unit for Stereotactic and Functional Neurosurgery, Mexico General Hospital "Dr. Eduardo Liceaga," Mexico City; and
- 2Programa de Doctorado en Ciencias Biomédicas, División de Estudios de Posgrado, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Ana Luisa Velasco
- 1Epilepsy Clinic and Unit for Stereotactic and Functional Neurosurgery, Mexico General Hospital "Dr. Eduardo Liceaga," Mexico City; and
| | - Gustavo Aguado-Carrillo
- 1Epilepsy Clinic and Unit for Stereotactic and Functional Neurosurgery, Mexico General Hospital "Dr. Eduardo Liceaga," Mexico City; and
| | - Manola Cuellar-Herrera
- 1Epilepsy Clinic and Unit for Stereotactic and Functional Neurosurgery, Mexico General Hospital "Dr. Eduardo Liceaga," Mexico City; and
| | - David Trejo-Martínez
- 1Epilepsy Clinic and Unit for Stereotactic and Functional Neurosurgery, Mexico General Hospital "Dr. Eduardo Liceaga," Mexico City; and
| | - Rene Márquez-Franco
- 1Epilepsy Clinic and Unit for Stereotactic and Functional Neurosurgery, Mexico General Hospital "Dr. Eduardo Liceaga," Mexico City; and
- 2Programa de Doctorado en Ciencias Biomédicas, División de Estudios de Posgrado, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Francisco Velasco-Campos
- 1Epilepsy Clinic and Unit for Stereotactic and Functional Neurosurgery, Mexico General Hospital "Dr. Eduardo Liceaga," Mexico City; and
| |
Collapse
|
7
|
Lagartos-Donate MJ, Doan TP, Girão PJB, Witter MP. Postnatal development of projections of the postrhinal cortex to the entorhinal cortex in the rat. eNeuro 2022; 9:ENEURO.0057-22.2022. [PMID: 35715208 PMCID: PMC9239852 DOI: 10.1523/eneuro.0057-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/24/2022] [Accepted: 06/01/2022] [Indexed: 11/23/2022] Open
Abstract
The ability to encode and retrieve contextual information is an inherent feature of episodic memory that starts to develop during childhood. The postrhinal cortex, an area of the parahippocampal region, has a crucial role in encoding object-space information and translating egocentric to allocentric representation of local space. The strong connectivity of POR with the adjacent entorhinal cortex, and consequently the hippocampus, suggests that the development of these connections could support the postnatal development of contextual memory. Here, we report that postrhinal cortex projections of the rat develop progressively from the first to the third postnatal week starting in the medial entorhinal cortex before spreading to the lateral entorhinal cortex. The increased spread and complexity of postrhinal axonal distributions is accompanied by an increased complexity of entorhinal dendritic trees and an increase of postrhinal - entorhinal synapses, which supports a gradual maturation in functional activity.SIGNIFICANCE STATEMENTPostrhinal-entorhinal cortical interplay mediates important aspects of encoding and retrieval of contextual information that is important for episodic memory. To better understand the function of the postrhinal interactions with the entorhinal cortex we studied the postnatal development of the connection between the two cortical areas. Our study describes the postnatal development of the postrhinal-to-entorhinal projections as established with neuroanatomical and electrophysiological methods. The projections gradually reach functionally different areas of the entorhinal cortex, reaching the area involved in spatial functions first, followed by the part involved in representing information about objects and sequences of events.
Collapse
Affiliation(s)
- Maria Jose Lagartos-Donate
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, and Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
| | - Thanh Pierre Doan
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, and Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, St. Olav's University Hospital, 7030 Trondheim, Norway
- Department of Neuromedicine and Movement Science, NTNU, N-7491 Trondheim, Norway
| | - Paulo J B Girão
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, and Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, and Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
8
|
Balcerek E, Włodkowska U, Czajkowski R. Retrosplenial cortex in spatial memory: focus on immediate early genes mapping. Mol Brain 2021; 14:172. [PMID: 34863215 PMCID: PMC8642902 DOI: 10.1186/s13041-021-00880-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/10/2021] [Indexed: 11/10/2022] Open
Abstract
The ability to form, retrieve and update autobiographical memories is one of the most fascinating features of human behavior. Spatial memory, the ability to remember the layout of the external environment and to navigate within its boundaries, is closely related to the autobiographical memory domain. It is served by an overlapping brain circuit, centered around the hippocampus (HPC) where the cognitive map index is stored. Apart from the hippocampus, several cortical structures participate in this process. Their relative contribution is a subject of intense research in both humans and animal models. One of the most widely studied regions is the retrosplenial cortex (RSC), an area in the parietal lobe densely interconnected with the hippocampal formation. Several methodological approaches have been established over decades in order to investigate the cortical aspects of memory. One of the most successful techniques is based on the analysis of brain expression patterns of the immediate early genes (IEGs). The common feature of this diverse group of genes is fast upregulation of their mRNA translation upon physiologically relevant stimulus. In the central nervous system they are rapidly triggered by neuronal activity and plasticity during learning. There is a widely accepted consensus that their expression level corresponds to the engagement of individual neurons in the formation of memory trace. Imaging of the IEGs might therefore provide a picture of an emerging memory engram. In this review we present the overview of IEG mapping studies of retrosplenial cortex in rodent models. We begin with classical techniques, immunohistochemical detection of protein and fluorescent in situ hybridization of mRNA. We then proceed to advanced methods where fluorescent genetically encoded IEG reporters are chronically followed in vivo during memory formation. We end with a combination of genetic IEG labelling and optogenetic approach, where the activity of the entire engram is manipulated. We finally present a hypothesis that attempts to unify our current state of knowledge about the function of RSC.
Collapse
Affiliation(s)
- Edyta Balcerek
- Laboratory of Spatial Memory, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093, Warsaw, Poland
| | - Urszula Włodkowska
- Laboratory of Spatial Memory, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093, Warsaw, Poland
| | - Rafał Czajkowski
- Laboratory of Spatial Memory, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093, Warsaw, Poland.
| |
Collapse
|
9
|
Lomi E, Mathiasen ML, Cheng HY, Zhang N, Aggleton JP, Mitchell AS, Jeffery KJ. Evidence for two distinct thalamocortical circuits in retrosplenial cortex. Neurobiol Learn Mem 2021; 185:107525. [PMID: 34555510 DOI: 10.1016/j.nlm.2021.107525] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/20/2021] [Accepted: 09/15/2021] [Indexed: 01/04/2023]
Abstract
Retrosplenial cortex (RSC) lies at the interface between sensory and cognitive networks in the brain and mediates between these, although it is not yet known how. It has two distinct subregions, granular (gRSC) and dysgranular (dRSC). The present study investigated how these subregions differ with respect to their electrophysiology and thalamic connectivity, as a step towards understanding their functions. The gRSC is more closely connected to the hippocampal formation, in which theta-band local field potential oscillations are prominent. We, therefore, compared theta-rhythmic single-unit activity between the two RSC subregions and found, mostly in gRSC, a subpopulation of non-directional cells with spiking activity strongly entrained by theta oscillations, suggesting a stronger coupling of gRSC to the hippocampal system. We then used retrograde tracers to test for differential inputs to RSC from the anteroventral thalamus (AV). We found that gRSC and dRSC differ in their afferents from two AV subfields: dorsomedial (AVDM) and ventrolateral (AVVL). Specifically: (1) as a whole AV projects more strongly to gRSC; (2) AVVL targets both gRSC and dRSC, while AVDM provides a selective projection to gRSC, (3) the gRSC projection is layer-specific: AVDM targets specifically gRSC superficial layers. These same AV projections are topographically organized with ventral AV neurons innervating rostral RSC and dorsal AV neurons innervating caudal RSC. These combined results suggest the existence of two distinct but interacting RSC subcircuits: one connecting AVDM to gRSC that may comprise part of the cognitive hippocampal system, and the other connecting AVVL to both RSC regions that may link hippocampal and perceptual regions. We suggest that these subcircuits are distinct to allow for differential weighting during integration of converging sensory and cognitive computations: an integration that may take place in thalamus, RSC, or both.
Collapse
Affiliation(s)
- Eleonora Lomi
- Department of Experimental Psychology, University of Oxford, The Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK.
| | | | - Han Y Cheng
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Ningyu Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Anna S Mitchell
- Department of Experimental Psychology, University of Oxford, The Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Kate J Jeffery
- Institute of Behavioural Neuroscience, Division of Psychology and Language Sciences, University College London, London WC1E 6BT, UK
| |
Collapse
|
10
|
Huang CC, Rolls ET, Hsu CCH, Feng J, Lin CP. Extensive Cortical Connectivity of the Human Hippocampal Memory System: Beyond the "What" and "Where" Dual Stream Model. Cereb Cortex 2021; 31:4652-4669. [PMID: 34013342 PMCID: PMC8866812 DOI: 10.1093/cercor/bhab113] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 10/06/2023] Open
Abstract
The human hippocampus is involved in forming new memories: damage impairs memory. The dual stream model suggests that object "what" representations from ventral stream temporal cortex project to the hippocampus via the perirhinal and then lateral entorhinal cortex, and spatial "where" representations from the dorsal parietal stream via the parahippocampal gyrus and then medial entorhinal cortex. The hippocampus can then associate these inputs to form episodic memories of what happened where. Diffusion tractography was used to reveal the direct connections of hippocampal system areas in humans. This provides evidence that the human hippocampus has extensive direct cortical connections, with connections that bypass the entorhinal cortex to connect with the perirhinal and parahippocampal cortex, with the temporal pole, with the posterior and retrosplenial cingulate cortex, and even with early sensory cortical areas. The connections are less hierarchical and segregated than in the dual stream model. This provides a foundation for a conceptualization for how the hippocampal memory system connects with the cerebral cortex and operates in humans. One implication is that prehippocampal cortical areas such as the parahippocampal TF and TH subregions and perirhinal cortices may implement specialized computations that can benefit from inputs from the dorsal and ventral streams.
Collapse
Affiliation(s)
- Chu-Chung Huang
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
- Shanghai Changning Mental Health Center, Shanghai 200335, China
| | - Edmund T Rolls
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200433, China
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
- Oxford Centre for Computational Neuroscience, Oxford, UK
| | - Chih-Chin Heather Hsu
- Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Institute of Neuroscience, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Jianfeng Feng
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200433, China
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
| | - Ching-Po Lin
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200433, China
- Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Brain Research Center, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| |
Collapse
|
11
|
Frost BE, Martin SK, Cafalchio M, Islam MN, Aggleton JP, O'Mara SM. Anterior Thalamic Inputs Are Required for Subiculum Spatial Coding, with Associated Consequences for Hippocampal Spatial Memory. J Neurosci 2021; 41:6511-6525. [PMID: 34131030 PMCID: PMC8318085 DOI: 10.1523/jneurosci.2868-20.2021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 11/21/2022] Open
Abstract
Just as hippocampal lesions are principally responsible for "temporal lobe" amnesia, lesions affecting the anterior thalamic nuclei seem principally responsible for a similar loss of memory, "diencephalic" amnesia. Compared with the former, the causes of diencephalic amnesia have remained elusive. A potential clue comes from how the two sites are interconnected, as within the hippocampal formation, only the subiculum has direct, reciprocal connections with the anterior thalamic nuclei. We found that both permanent and reversible anterior thalamic nuclei lesions in male rats cause a cessation of subicular spatial signaling, reduce spatial memory performance to chance, but leave hippocampal CA1 place cells largely unaffected. We suggest that a core element of diencephalic amnesia stems from the information loss in hippocampal output regions following anterior thalamic pathology.SIGNIFICANCE STATEMENT At present, we know little about interactions between temporal lobe and diencephalic memory systems. Here, we focused on the subiculum, as the sole hippocampal formation region directly interconnected with the anterior thalamic nuclei. We combined reversible and permanent lesions of the anterior thalamic nuclei, electrophysiological recordings of the subiculum, and behavioral analyses. Our results were striking and clear: following permanent thalamic lesions, the diverse spatial signals normally found in the subiculum (including place cells, grid cells, and head-direction cells) all disappeared. Anterior thalamic lesions had no discernible impact on hippocampal CA1 place fields. Thus, spatial firing activity within the subiculum requires anterior thalamic function, as does successful spatial memory performance. Our findings provide a key missing part of the much bigger puzzle concerning why anterior thalamic damage is so catastrophic for spatial memory in rodents and episodic memory in humans.
Collapse
Affiliation(s)
- Bethany E Frost
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Sean K Martin
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Matheus Cafalchio
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Md Nurul Islam
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - John P Aggleton
- School of Psychology, Cardiff University, Cardiff, CF10 3AS, United Kingdom
| | - Shane M O'Mara
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, Dublin, D02 PN40, Ireland
| |
Collapse
|
12
|
Opalka AN, Huang WQ, Liu J, Liang H, Wang DV. Hippocampal Ripple Coordinates Retrosplenial Inhibitory Neurons during Slow-Wave Sleep. Cell Rep 2021; 30:432-441.e3. [PMID: 31940487 PMCID: PMC7007963 DOI: 10.1016/j.celrep.2019.12.038] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/01/2019] [Accepted: 12/12/2019] [Indexed: 12/20/2022] Open
Abstract
The hippocampus and retrosplenial cortex (RSC) play indispensable roles in memory formation, and importantly, a hippocampal oscillation known as ripple is key to consolidation of new memories. However, it remains unclear how the hippocampus and RSC communicate and the role of ripple oscillation in coordinating the activity between these two brain regions. Here, we record from the dorsal hippocampus and RSC simultaneously in freely behaving mice during sleep and reveal that the RSC displays a pre-ripple activation associated with slow and fast oscillations. Immediately after ripples, a subpopulation of RSC putative inhibitory neurons increases firing activity, while most RSC putative excitatory neurons decrease activity. Consistently, optogenetic stimulation of this hippocampus-RSC pathway activates and suppresses RSC putative inhibitory and excitatory neurons, respectively. These results suggest that the dorsal hippocampus mainly inhibits RSC activity via its direct innervation of RSC inhibitory neurons, which overshadows the RSC in supporting learning and memory functions. Converging evidence suggests that hippocampal ripple oscillations and their interaction with the neocortex are critical for memory consolidation. By combining electrophysiology and optogenetic techniques in freely behaving mice, Opalka et al. provide direct evidence that hippocampal ripples communicate with retrosplenial cortex (RSC) interneurons and inhibit RSC population activity during sleep-associated memory consolidation.
Collapse
Affiliation(s)
- Ashley N Opalka
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Wen-Qiang Huang
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Jun Liu
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Hualou Liang
- School of Biomedical Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Dong V Wang
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| |
Collapse
|
13
|
Tsamis KI, Lagartos Donato MJ, Dahl AG, O'Reilly KC, Witter MP. Development and topographic organization of subicular projections to lateral septum in the rat brain. Eur J Neurosci 2020; 52:3140-3159. [PMID: 32027422 DOI: 10.1111/ejn.14696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/22/2020] [Accepted: 02/03/2020] [Indexed: 11/27/2022]
Abstract
One of the main subcortical targets of hippocampal formation efferents is the lateral septum. Previous studies on the subicular projections, as a main output structure of the hippocampus, have shown a clear topographic organization of septal innervation, related to the origin of the fibres along the dorsoventral axis of the subiculum in the adult brain. In contrast, studies on the developing brain depict an extensive rearrangement of subicular projections during the prenatal period, shifting from the medial septum to the lateral septum. Our study aimed to describe the postnatal development of subicular projections to the septum. We injected anterograde tracers into the subiculum of 57 pups of different postnatal ages. Injections covered the proximodistal and dorsoventral axis of the subiculum. The age of the pups at day of tracer injection ranged from the day of birth to postnatal day 30. Analyses revealed that from the first postnatal day projections from subiculum preferentially target the lateral septum. Sparse innervation in the lateral septum was already present in the first few postnatal days, and during the following 3 weeks, the axonal distribution gradually expanded. Subicular projections to the lateral septum are topographically organized depending on the origin along the dorsoventral axis of the subiculum, in line with the adult innervation pattern. Different origins along the proximodistal axis of the subiculum are reflected in changes in the strength of septal innervation. The findings demonstrate that in case of the development of subicular projections, axonal expansion is more prominent than axonal pruning.
Collapse
Affiliation(s)
- Konstantinos I Tsamis
- Kavli institute for Systems Neuroscience, Centre for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Maria J Lagartos Donato
- Kavli institute for Systems Neuroscience, Centre for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Annelene G Dahl
- Kavli institute for Systems Neuroscience, Centre for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Kally C O'Reilly
- Kavli institute for Systems Neuroscience, Centre for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Menno P Witter
- Kavli institute for Systems Neuroscience, Centre for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
14
|
Haugland KG, Sugar J, Witter MP. Development and topographical organization of projections from the hippocampus and parahippocampus to the retrosplenial cortex. Eur J Neurosci 2019; 50:1799-1819. [PMID: 30803071 PMCID: PMC6767700 DOI: 10.1111/ejn.14395] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/30/2019] [Accepted: 02/15/2019] [Indexed: 12/26/2022]
Abstract
The rat hippocampal formation (HF), parahippocampal region (PHR), and retrosplenial cortex (RSC) play critical roles in spatial processing. These regions are interconnected, and functionally dependent. The neuronal networks mediating this reciprocal dependency are largely unknown. Establishing the developmental timing of network formation will help to understand the emergence of this dependency. We questioned whether the long-range outputs from HF-PHR to RSC in Long Evans rats develop during the same time periods as previously reported for the intrinsic HF-PHR connectivity and the projections from RSC to HF-PHR. The results of a series of retrograde and anterograde tracing experiments in rats of different postnatal ages show that the postnatal projections from HF-PHR to RSC display low densities around birth, but develop during the first postnatal week, reaching adult-like densities around the time of eye-opening. Developing projections display a topographical organization similar to adult projections. We conclude that the long-range projections from HF-PHR to RSC develop in parallel with the intrinsic circuitry of HF-PHR and the projections of RSC to HF-PHR.
Collapse
Affiliation(s)
- Kamilla G. Haugland
- Kavli Institute for Systems NeuroscienceCentre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Center for Cortical MicrocircuitsNTNU Norwegian University for Science and TechnologyTrondheimNorway
- Present address:
Department of Clinical MedicineUniversity of Tromsø—The Arctic University of NorwayTromsøNorway
| | - Jørgen Sugar
- Kavli Institute for Systems NeuroscienceCentre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Center for Cortical MicrocircuitsNTNU Norwegian University for Science and TechnologyTrondheimNorway
| | - Menno P. Witter
- Kavli Institute for Systems NeuroscienceCentre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Center for Cortical MicrocircuitsNTNU Norwegian University for Science and TechnologyTrondheimNorway
| |
Collapse
|