1
|
Fernández-Arroyo B, Jurado S, Lerma J. Understanding OLM interneurons: Characterization, circuitry, and significance in memory and navigation. Neuroscience 2024:S0306-4522(24)00366-X. [PMID: 39097181 DOI: 10.1016/j.neuroscience.2024.07.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
Understanding the intricate mechanisms underlying memory formation and retention relies on unraveling how the hippocampus, a structure fundamental for memory acquisition, is organized. Within the complex hippocampal network, interneurons play a crucial role in orchestrating memory processes. Among these interneurons, Oriens-Lacunosum Moleculare (OLM) cells emerge as key regulators, governing the flow of information to CA1 pyramidal cells. In this review, we explore OLM interneurons in detail, describing their mechanisms and effects on memory processing, particularly in spatial and contextual memory tasks. Our aim is to provide a detailed understanding of how OLM interneurons contribute to the dynamic landscape of memory formation and retrieval.
Collapse
Affiliation(s)
| | - Sandra Jurado
- Instituto de Neurociencias CSIC-UMH, 03550 San Juan de Alicante, Spain
| | - Juan Lerma
- Instituto de Neurociencias CSIC-UMH, 03550 San Juan de Alicante, Spain.
| |
Collapse
|
2
|
Campbell BFN, Cruz-Ochoa N, Otomo K, Lukacsovich D, Espinosa P, Abegg A, Luo W, Bellone C, Földy C, Tyagarajan SK. Gephyrin phosphorylation facilitates sexually dimorphic development and function of parvalbumin interneurons in the mouse hippocampus. Mol Psychiatry 2024; 29:2510-2526. [PMID: 38503929 PMCID: PMC11412903 DOI: 10.1038/s41380-024-02517-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 02/25/2024] [Accepted: 03/04/2024] [Indexed: 03/21/2024]
Abstract
The precise function of specialized GABAergic interneuron subtypes is required to provide appropriate synaptic inhibition for regulating principal neuron excitability and synchronization within brain circuits. Of these, parvalbumin-type (PV neuron) dysfunction is a feature of several sex-biased psychiatric and brain disorders, although, the underlying developmental mechanisms are unclear. While the transcriptional action of sex hormones generates sexual dimorphism during brain development, whether kinase signaling contributes to sex differences in PV neuron function remains unexplored. In the hippocampus, we report that gephyrin, the main inhibitory post-synaptic scaffolding protein, is phosphorylated at serine S268 and S270 in a developmentally-dependent manner in both males and females. When examining GphnS268A/S270A mice in which site-specific phosphorylation is constitutively blocked, we found that sex differences in PV neuron density in the hippocampal CA1 present in WT mice were abolished, coincident with a female-specific increase in PV neuron-derived terminals and increased inhibitory input onto principal cells. Electrophysiological analysis of CA1 PV neurons indicated that gephyrin phosphorylation is required for sexually dimorphic function. Moreover, while male and female WT mice showed no difference in hippocampus-dependent memory tasks, GphnS268A/S270A mice exhibited sex- and task-specific deficits, indicating that gephyrin phosphorylation is differentially required by males and females for convergent cognitive function. In fate mapping experiments, we uncovered that gephyrin phosphorylation at S268 and S270 establishes sex differences in putative PV neuron density during early postnatal development. Furthermore, patch-sequencing of putative PV neurons at postnatal day 4 revealed that gephyrin phosphorylation contributes to sex differences in the transcriptomic profile of developing interneurons. Therefore, these early shifts in male-female interneuron development may drive adult sex differences in PV neuron function and connectivity. Our results identify gephyrin phosphorylation as a new substrate organizing PV neuron development at the anatomical, functional, and transcriptional levels in a sex-dependent manner, thus implicating kinase signaling disruption as a new mechanism contributing to the sex-dependent etiology of brain disorders.
Collapse
Affiliation(s)
- Benjamin F N Campbell
- Institute of Pharmacology and Toxicology, University of Zürich, 8057, Zürich, Switzerland
| | - Natalia Cruz-Ochoa
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, 8057, Zürich, Switzerland
- Adaptive Brain Circuits in Development and Learning (AdaBD), University Research Priority Program (URPP), University of Zürich, 8057, Zürich, Switzerland
| | - Kanako Otomo
- Institute of Pharmacology and Toxicology, University of Zürich, 8057, Zürich, Switzerland
| | - David Lukacsovich
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, 8057, Zürich, Switzerland
| | - Pedro Espinosa
- Department of Basic Neuroscience, University of Geneva, 1211, Geneva, Switzerland
| | - Andrin Abegg
- Institute of Pharmacology and Toxicology, University of Zürich, 8057, Zürich, Switzerland
| | - Wenshu Luo
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, 8057, Zürich, Switzerland
| | - Camilla Bellone
- Department of Basic Neuroscience, University of Geneva, 1211, Geneva, Switzerland
| | - Csaba Földy
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, 8057, Zürich, Switzerland
- Adaptive Brain Circuits in Development and Learning (AdaBD), University Research Priority Program (URPP), University of Zürich, 8057, Zürich, Switzerland
| | - Shiva K Tyagarajan
- Institute of Pharmacology and Toxicology, University of Zürich, 8057, Zürich, Switzerland.
| |
Collapse
|
3
|
Machold R, Rudy B. Genetic approaches to elucidating cortical and hippocampal GABAergic interneuron diversity. Front Cell Neurosci 2024; 18:1414955. [PMID: 39113758 PMCID: PMC11303334 DOI: 10.3389/fncel.2024.1414955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
GABAergic interneurons (INs) in the mammalian forebrain represent a diverse population of cells that provide specialized forms of local inhibition to regulate neural circuit activity. Over the last few decades, the development of a palette of genetic tools along with the generation of single-cell transcriptomic data has begun to reveal the molecular basis of IN diversity, thereby providing deep insights into how different IN subtypes function in the forebrain. In this review, we outline the emerging picture of cortical and hippocampal IN speciation as defined by transcriptomics and developmental origin and summarize the genetic strategies that have been utilized to target specific IN subtypes, along with the technical considerations inherent to each approach. Collectively, these methods have greatly facilitated our understanding of how IN subtypes regulate forebrain circuitry via cell type and compartment-specific inhibition and thus have illuminated a path toward potential therapeutic interventions for a variety of neurocognitive disorders.
Collapse
Affiliation(s)
- Robert Machold
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
| | - Bernardo Rudy
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
4
|
Grobecker P, Sakoparnig T, van Nimwegen E. Identifying cell states in single-cell RNA-seq data at statistically maximal resolution. PLoS Comput Biol 2024; 20:e1012224. [PMID: 38995959 PMCID: PMC11364423 DOI: 10.1371/journal.pcbi.1012224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 08/30/2024] [Accepted: 06/04/2024] [Indexed: 07/14/2024] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) has become a popular experimental method to study variation of gene expression within a population of cells. However, obtaining an accurate picture of the diversity of distinct gene expression states that are present in a given dataset is highly challenging because of the sparsity of the scRNA-seq data and its inhomogeneous measurement noise properties. Although a vast number of different methods is applied in the literature for clustering cells into subsets with 'similar' expression profiles, these methods generally lack rigorously specified objectives, involve multiple complex layers of normalization, filtering, feature selection, dimensionality-reduction, employ ad hoc measures of distance or similarity between cells, often ignore the known measurement noise properties of scRNA-seq measurements, and include a large number of tunable parameters. Consequently, it is virtually impossible to assign concrete biophysical meaning to the clusterings that result from these methods. Here we address the following problem: Given raw unique molecule identifier (UMI) counts of an scRNA-seq dataset, partition the cells into subsets such that the gene expression states of the cells in each subset are statistically indistinguishable, and each subset corresponds to a distinct gene expression state. That is, we aim to partition cells so as to maximally reduce the complexity of the dataset without removing any of its meaningful structure. We show that, given the known measurement noise structure of scRNA-seq data, this problem is mathematically well-defined and derive its unique solution from first principles. We have implemented this solution in a tool called Cellstates which operates directly on the raw data and automatically determines the optimal partition and cluster number, with zero tunable parameters. We show that, on synthetic datasets, Cellstates almost perfectly recovers optimal partitions. On real data, Cellstates robustly identifies subtle substructure within groups of cells that are traditionally annotated as a common cell type. Moreover, we show that the diversity of gene expression states that Cellstates identifies systematically depends on the tissue of origin and not on technical features of the experiments such as the total number of cells and total UMI count per cell. In addition to the Cellstates tool we also provide a small toolbox of software to place the identified cellstates into a hierarchical tree of higher-order clusters, to identify the most important differentially expressed genes at each branch of this hierarchy, and to visualize these results.
Collapse
Affiliation(s)
- Pascal Grobecker
- Biozentrum, University of Basel and Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Thomas Sakoparnig
- Biozentrum, University of Basel and Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Erik van Nimwegen
- Biozentrum, University of Basel and Swiss Institute of Bioinformatics, Basel, Switzerland
| |
Collapse
|
5
|
Ye Q, Nunez J, Zhang X. Multiple cholinergic receptor subtypes coordinate dual modulation of acetylcholine on anterior and posterior paraventricular thalamic neurons. J Neurochem 2024; 168:995-1018. [PMID: 38664195 PMCID: PMC11136594 DOI: 10.1111/jnc.16115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/31/2024] [Accepted: 04/05/2024] [Indexed: 05/31/2024]
Abstract
Paraventricular thalamus (PVT) plays important roles in the regulation of emotion and motivation through connecting many brain structures including the midbrain and the limbic system. Although acetylcholine (ACh) neurons of the midbrain were reported to send projections to PVT, little is known about how cholinergic signaling regulates PVT neurons. Here, we used both RNAscope and slice patch-clamp recordings to characterize cholinergic receptor expression and ACh modulation of PVT neurons in mice. We found ACh excited a majority of anterior PVT (aPVT) neurons but predominantly inhibited posterior PVT (pPVT) neurons. Compared to pPVT with more inhibitory M2 receptors, aPVT expressed higher levels of all excitatory receptor subtypes including nicotinic α4, α7, and muscarinic M1 and M3. The ACh-induced excitation was mimicked by nicotine and antagonized by selective blockers for α4β2 and α7 nicotinic ACh receptor (nAChR) subtypes as well as selective antagonists for M1 and M3 muscarinic ACh receptors (mAChR). The ACh-induced inhibition was attenuated by selective M2 and M4 mAChR receptor antagonists. Furthermore, we found ACh increased the frequency of excitatory postsynaptic currents (EPSCs) on a majority of aPVT neurons but decreased EPSC frequency on a larger number of pPVT neurons. In addition, ACh caused an acute increase followed by a lasting reduction in inhibitory postsynaptic currents (IPSCs) on PVT neurons of both subregions. Together, these data suggest that multiple AChR subtypes coordinate a differential modulation of ACh on aPVT and pPVT neurons.
Collapse
Affiliation(s)
- Qiying Ye
- Department of Psychology, Florida State University, Tallahassee, Florida, USA
| | - Jeremiah Nunez
- Department of Psychology, Florida State University, Tallahassee, Florida, USA
| | - Xiaobing Zhang
- Department of Psychology, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
6
|
Chamberland S, Grant G, Machold R, Nebet ER, Tian G, Stich J, Hanani M, Kullander K, Tsien RW. Functional specialization of hippocampal somatostatin-expressing interneurons. Proc Natl Acad Sci U S A 2024; 121:e2306382121. [PMID: 38640347 PMCID: PMC11047068 DOI: 10.1073/pnas.2306382121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 02/27/2024] [Indexed: 04/21/2024] Open
Abstract
Hippocampal somatostatin-expressing (Sst) GABAergic interneurons (INs) exhibit considerable anatomical and functional heterogeneity. Recent single-cell transcriptome analyses have provided a comprehensive Sst-IN subpopulations census, a plausible molecular ground truth of neuronal identity whose links to specific functionality remain incomplete. Here, we designed an approach to identify and access subpopulations of Sst-INs based on transcriptomic features. Four mouse models based on single or combinatorial Cre- and Flp- expression differentiated functionally distinct subpopulations of CA1 hippocampal Sst-INs that largely tiled the morpho-functional parameter space of the Sst-INs superfamily. Notably, the Sst;;Tac1 intersection revealed a population of bistratified INs that preferentially synapsed onto fast-spiking interneurons (FS-INs) and were sufficient to interrupt their firing. In contrast, the Ndnf;;Nkx2-1 intersection identified a population of oriens lacunosum-moleculare INs that predominantly targeted CA1 pyramidal neurons, avoiding FS-INs. Overall, our results provide a framework to translate neuronal transcriptomic identity into discrete functional subtypes that capture the diverse specializations of hippocampal Sst-INs.
Collapse
Affiliation(s)
- Simon Chamberland
- New York University Neuroscience Institute, New York University Grossman School of Medicine, New York University, New York, NY10016
- Department of Neuroscience and Physiology, New York University, New York, NY10016
| | - Gariel Grant
- New York University Neuroscience Institute, New York University Grossman School of Medicine, New York University, New York, NY10016
- Department of Neuroscience and Physiology, New York University, New York, NY10016
| | - Robert Machold
- New York University Neuroscience Institute, New York University Grossman School of Medicine, New York University, New York, NY10016
- Department of Neuroscience and Physiology, New York University, New York, NY10016
| | - Erica R. Nebet
- New York University Neuroscience Institute, New York University Grossman School of Medicine, New York University, New York, NY10016
- Department of Neuroscience and Physiology, New York University, New York, NY10016
| | - Guoling Tian
- New York University Neuroscience Institute, New York University Grossman School of Medicine, New York University, New York, NY10016
- Department of Neuroscience and Physiology, New York University, New York, NY10016
| | - Joshua Stich
- New York University Neuroscience Institute, New York University Grossman School of Medicine, New York University, New York, NY10016
- Department of Neuroscience and Physiology, New York University, New York, NY10016
| | - Monica Hanani
- New York University Neuroscience Institute, New York University Grossman School of Medicine, New York University, New York, NY10016
- Department of Neuroscience and Physiology, New York University, New York, NY10016
| | - Klas Kullander
- Developmental Genetics, Department of Neuroscience, Uppsala University, Uppsala, Uppsala län752 37, Sweden
| | - Richard W. Tsien
- New York University Neuroscience Institute, New York University Grossman School of Medicine, New York University, New York, NY10016
- Center for Neural Science, New York University, New York, NY10003
| |
Collapse
|
7
|
Takács V, Bardóczi Z, Orosz Á, Major A, Tar L, Berki P, Papp P, Mayer MI, Sebők H, Zsolt L, Sos KE, Káli S, Freund TF, Nyiri G. Synaptic and dendritic architecture of different types of hippocampal somatostatin interneurons. PLoS Biol 2024; 22:e3002539. [PMID: 38470935 PMCID: PMC10959371 DOI: 10.1371/journal.pbio.3002539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 03/22/2024] [Accepted: 02/06/2024] [Indexed: 03/14/2024] Open
Abstract
GABAergic inhibitory neurons fundamentally shape the activity and plasticity of cortical circuits. A major subset of these neurons contains somatostatin (SOM); these cells play crucial roles in neuroplasticity, learning, and memory in many brain areas including the hippocampus, and are implicated in several neuropsychiatric diseases and neurodegenerative disorders. Two main types of SOM-containing cells in area CA1 of the hippocampus are oriens-lacunosum-moleculare (OLM) cells and hippocampo-septal (HS) cells. These cell types show many similarities in their soma-dendritic architecture, but they have different axonal targets, display different activity patterns in vivo, and are thought to have distinct network functions. However, a complete understanding of the functional roles of these interneurons requires a precise description of their intrinsic computational properties and their synaptic interactions. In the current study we generated, analyzed, and make available several key data sets that enable a quantitative comparison of various anatomical and physiological properties of OLM and HS cells in mouse. The data set includes detailed scanning electron microscopy (SEM)-based 3D reconstructions of OLM and HS cells along with their excitatory and inhibitory synaptic inputs. Combining this core data set with other anatomical data, patch-clamp electrophysiology, and compartmental modeling, we examined the precise morphological structure, inputs, outputs, and basic physiological properties of these cells. Our results highlight key differences between OLM and HS cells, particularly regarding the density and distribution of their synaptic inputs and mitochondria. For example, we estimated that an OLM cell receives about 8,400, whereas an HS cell about 15,600 synaptic inputs, about 16% of which are GABAergic. Our data and models provide insight into the possible basis of the different functionality of OLM and HS cell types and supply essential information for more detailed functional models of these neurons and the hippocampal network.
Collapse
Affiliation(s)
- Virág Takács
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Zsuzsanna Bardóczi
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Áron Orosz
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Abel Major
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Luca Tar
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
- Roska Tamás Doctoral School of Sciences and Technology, Pázmány Péter Catholic University, Budapest, Hungary
| | - Péter Berki
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Péter Papp
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Márton I. Mayer
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Hunor Sebők
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Luca Zsolt
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Katalin E. Sos
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Szabolcs Káli
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Tamás F. Freund
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Gábor Nyiri
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
8
|
Shao M, Zhang W, Li Y, Tang L, Hao ZZ, Liu S. Patch-seq: Advances and Biological Applications. Cell Mol Neurobiol 2023; 44:8. [PMID: 38123823 DOI: 10.1007/s10571-023-01436-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
Multimodal analysis of gene-expression patterns, electrophysiological properties, and morphological phenotypes at the single-cell/single-nucleus level has been arduous because of the diversity and complexity of neurons. The emergence of Patch-sequencing (Patch-seq) directly links transcriptomics, morphology, and electrophysiology, taking neuroscience research to a multimodal era. In this review, we summarized the development of Patch-seq and recent applications in the cortex, hippocampus, and other nervous systems. Through generating multimodal cell type atlases, targeting specific cell populations, and correlating transcriptomic data with phenotypic information, Patch-seq has provided new insight into outstanding questions in neuroscience. We highlight the challenges and opportunities of Patch-seq in neuroscience and hope to shed new light on future neuroscience research.
Collapse
Affiliation(s)
- Mingting Shao
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Wei Zhang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Ye Li
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Lei Tang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Zhao-Zhe Hao
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Sheng Liu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, 510080, China.
| |
Collapse
|
9
|
Hilscher MM, Mikulovic S, Perry S, Lundberg S, Kullander K. The alpha2 nicotinic acetylcholine receptor, a subunit with unique and selective expression in inhibitory interneurons associated with principal cells. Pharmacol Res 2023; 196:106895. [PMID: 37652281 DOI: 10.1016/j.phrs.2023.106895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) play crucial roles in various human disorders, with the α7, α4, α6, and α3-containing nAChR subtypes extensively studied in relation to conditions such as Alzheimer's disease, Parkinson's disease, nicotine dependence, mood disorders, and stress disorders. In contrast, the α2-nAChR subunit has received less attention due to its more restricted expression and the scarcity of specific agonists and antagonists for studying its function. Nevertheless, recent research has shed light on the unique expression pattern of the Chrna2 gene, which encodes the α2-nAChR subunit, and its involvement in distinct populations of inhibitory interneurons. This review highlights the structure, pharmacology, localization, function, and disease associations of α2-containing nAChRs and points to the unique expression pattern of the Chrna2 gene and its role in different inhibitory interneuron populations. These populations, including the oriens lacunosum moleculare (OLM) cells in the hippocampus, Martinotti cells in the neocortex, and Renshaw cells in the spinal cord, share common features and contribute to recurrent inhibitory microcircuits. Thus, the α2-nAChR subunit's unique expression pattern in specific interneuron populations and its role in recurrent inhibitory microcircuits highlight its importance in various physiological processes. Further research is necessary to uncover the comprehensive functionality of α2-containing nAChRs, delineate their specific contributions to neuronal circuits, and investigate their potential as therapeutic targets for related disorders.
Collapse
Affiliation(s)
- Markus M Hilscher
- Department of Immunology, Genetics and Pathology, Uppsala University, IGP/BMC, Box 815, 751 08 Uppsala, Sweden; Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Sanja Mikulovic
- Department of Immunology, Genetics and Pathology, Uppsala University, IGP/BMC, Box 815, 751 08 Uppsala, Sweden; Leibniz Institute for Neurobiology, Cognition & Emotion Laboratory, Magdeburg, Germany; German Center for Mental Health(DZPG), Germany
| | - Sharn Perry
- Department of Immunology, Genetics and Pathology, Uppsala University, IGP/BMC, Box 815, 751 08 Uppsala, Sweden; Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Australia
| | - Stina Lundberg
- Department of Immunology, Genetics and Pathology, Uppsala University, IGP/BMC, Box 815, 751 08 Uppsala, Sweden
| | - Klas Kullander
- Department of Immunology, Genetics and Pathology, Uppsala University, IGP/BMC, Box 815, 751 08 Uppsala, Sweden.
| |
Collapse
|
10
|
Bonanno SL, Krantz DE. Transcriptional changes in specific subsets of Drosophila neurons following inhibition of the serotonin transporter. Transl Psychiatry 2023; 13:226. [PMID: 37355701 DOI: 10.1038/s41398-023-02521-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023] Open
Abstract
The transcriptional effects of SSRIs and other serotonergic drugs remain unclear, in part due to the heterogeneity of postsynaptic cells, which may respond differently to changes in serotonergic signaling. Relatively simple model systems such as Drosophila afford more tractable microcircuits in which to investigate these changes in specific cell types. Here, we focus on the mushroom body, an insect brain structure heavily innervated by serotonin and comprised of multiple different but related subtypes of Kenyon cells. We use fluorescence-activated cell sorting of Kenyon cells, followed by either bulk or single-cell RNA sequencing to explore the transcriptomic response of these cells to SERT inhibition. We compared the effects of two different Drosophila Serotonin Transporter (dSERT) mutant alleles as well as feeding the SSRI citalopram to adult flies. We find that the genetic architecture associated with one of the mutants contributed to significant artefactual changes in expression. Comparison of differential expression caused by loss of SERT during development versus aged, adult flies, suggests that changes in serotonergic signaling may have relatively stronger effects during development, consistent with behavioral studies in mice. Overall, our experiments revealed limited transcriptomic changes in Kenyon cells, but suggest that different subtypes may respond differently to SERT loss-of-function. Further work exploring the effects of SERT loss-of-function in other circuits may be used help to elucidate how SSRIs differentially affect a variety of different neuronal subtypes both during development and in adults.
Collapse
Affiliation(s)
- Shivan L Bonanno
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - David E Krantz
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
11
|
Chamberland S, Grant G, Machold R, Nebet ER, Tian G, Hanani M, Kullander K, Tsien RW. Functional specialization of hippocampal somatostatin-expressing interneurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.27.538511. [PMID: 37162922 PMCID: PMC10168348 DOI: 10.1101/2023.04.27.538511] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Hippocampal somatostatin-expressing (Sst) GABAergic interneurons (INs) exhibit considerable anatomical and functional heterogeneity. Recent single cell transcriptome analyses have provided a comprehensive Sst-IN subtype census, a plausible molecular ground truth of neuronal identity whose links to specific functionality remain incomplete. Here, we designed an approach to identify and access subpopulations of Sst-INs based on transcriptomic features. Four mouse models based on single or combinatorial Cre- and Flp- expression differentiated functionally distinct subpopulations of CA1 hippocampal Sst-INs that largely tiled the morpho-functional parameter space of the Sst-INs superfamily. Notably, the Sst;;Tac1 intersection revealed a population of bistratified INs that preferentially synapsed onto fast-spiking interneurons (FS-INs) and were both necessary and sufficient to interrupt their firing. In contrast, the Ndnf;;Nkx2-1 intersection identified a population of oriens lacunosum-moleculare (OLM) INs that predominantly targeted CA1 pyramidal neurons, avoiding FS-INs. Overall, our results provide a framework to translate neuronal transcriptomic identity into discrete functional subtypes that capture the diverse specializations of hippocampal Sst-INs.
Collapse
Affiliation(s)
- Simon Chamberland
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Gariel Grant
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Robert Machold
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Erica R. Nebet
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Guoling Tian
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Monica Hanani
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Klas Kullander
- Developmental Genetics, Department of Neuroscience, Uppsala University, Uppsala 752 37, Uppsala län, Sweden
| | - Richard W. Tsien
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
- Center for Neural Science, New York University, New York, NY, 10003, USA
| |
Collapse
|
12
|
Bonanno SL, Krantz DE. Transcriptional changes in specific subsets of Drosophila neurons following inhibition of the serotonin transporter. RESEARCH SQUARE 2023:rs.3.rs-2626506. [PMID: 36993644 PMCID: PMC10055553 DOI: 10.21203/rs.3.rs-2626506/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The transcriptional effects of SSRIs and other serotonergic drugs remain unclear, in part due to the heterogeneity of postsynaptic cells, which may respond differently to changes in serotonergic signaling. Relatively simple model systems such as Drosophila afford more tractable microcircuits in which to investigate these changes in specific cell types. Here, we focus on the mushroom body, an insect brain structure heavily innervated by serotonin and comprised of multiple different but related subtypes of Kenyon cells. We use fluorescence activated cell sorting of Kenyon cells, followed by either or bulk or single cell RNA sequencing to explore the transcriptomic response of these cells to SERT inhibition. We compared the effects of two different Drosophila Serotonin Transporter (dSERT) mutant alleles as well as feeding the SSRI citalapram to adult flies. We find that the genetic architecture associated with one of the mutants contributed to significant artefactual changes in expression. Comparison of differential expression caused by loss of SERT during development versus aged, adult flies, suggests that changes in serotonergic signaling may have relatively stronger effects during development, consistent with behavioral studies in mice. Overall, our experiments revealed limited transcriptomic changes in Kenyon cells, but suggest that different subtypes may respond differently to SERT loss-of-function. Further work exploring the effects of SERT loss-of-function in other Drosophila circuits may be used help to elucidate how SSRIs differentially affect a variety of different neuronal subtypes both during development and in adults.
Collapse
Affiliation(s)
- Shivan L. Bonanno
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - David E. Krantz
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
13
|
Pharmacological Signature and Target Specificity of Inhibitory Circuits Formed by Martinotti Cells in the Mouse Barrel Cortex. J Neurosci 2023; 43:14-27. [PMID: 36384682 PMCID: PMC9838699 DOI: 10.1523/jneurosci.1661-21.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/13/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022] Open
Abstract
In the neocortex, fast synaptic inhibition orchestrates both spontaneous and sensory-evoked activity. GABAergic interneurons (INs) inhibit pyramidal neurons (PNs) directly, modulating their output activity and thus contributing to balance cortical networks. Moreover, several IN subtypes also inhibit other INs, forming specific disinhibitory circuits, which play crucial roles in several cognitive functions. Here, we studied a subpopulation of somatostatin-positive INs, the Martinotti cells (MCs) in layer 2/3 of the mouse barrel cortex (both sexes). MCs inhibit the distal portion of PN apical dendrites, thus controlling dendrite electrogenesis and synaptic integration. Yet, it is poorly understood whether MCs inhibit other elements of the cortical circuits, and the connectivity properties with non-PN targets are unknown. We found that MCs have a strong preference for PN dendrites, but they also considerably connect with parvalbumin-positive, vasoactive intestinal peptide-expressing, and layer 1 (L1) INs. Remarkably, GABAergic synapses from MCs exhibited clear cell type-specific short-term plasticity. Moreover, whereas the biophysical properties of MC-PN synapses were consistent with distal dendritic inhibition, MC-IN synapses exhibited characteristics of fast perisomatic inhibition. Finally, MC-PN connections used α5-containing GABAA receptors (GABAARs), but this subunit was not expressed by the other INs targeted by MCs. We reveal a specialized connectivity blueprint of MCs within different elements of superficial cortical layers. In addition, our results identify α5-GABAARs as the molecular fingerprint of MC-PN dendritic inhibition. This is of critical importance, given the role of α5-GABAARs in cognitive performance and their involvement in several brain diseases.SIGNIFICANCE STATEMENT Martinotti cells (MCs) are a prominent, broad subclass of somatostatin-expressing GABAergic interneurons, specialized in controlling distal dendrites of pyramidal neurons (PNs) and taking part in several cognitive functions. Here we characterize the connectivity pattern of MCs with other interneurons in the superficial layers (L1 and L2/3) of the mouse barrel cortex. We found that the connectivity pattern of MCs with PNs as well as parvalbumin, vasoactive intestinal peptide, and L1 interneurons exhibit target-specific plasticity and biophysical properties. The specificity of α5-GABAARs at MC-PN synapses and the lack or functional expression of this subunit by other cell types define the molecular identity of MC-PN connections and the exclusive involvement of this inhibitory circuits in α5-dependent cognitive tasks.
Collapse
|
14
|
Boxer EE, Aoto J. Neurexins and their ligands at inhibitory synapses. Front Synaptic Neurosci 2022; 14:1087238. [PMID: 36618530 PMCID: PMC9812575 DOI: 10.3389/fnsyn.2022.1087238] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Since the discovery of neurexins (Nrxns) as essential and evolutionarily conserved synaptic adhesion molecules, focus has largely centered on their functional contributions to glutamatergic synapses. Recently, significant advances to our understanding of neurexin function at GABAergic synapses have revealed that neurexins can play pleiotropic roles in regulating inhibitory synapse maintenance and function in a brain-region and synapse-specific manner. GABAergic neurons are incredibly diverse, exhibiting distinct synaptic properties, sites of innervation, neuromodulation, and plasticity. Different classes of GABAergic neurons often express distinct repertoires of Nrxn isoforms that exhibit differential alternative exon usage. Further, Nrxn ligands can be differentially expressed and can display synapse-specific localization patterns, which may contribute to the formation of a complex trans-synaptic molecular code that establishes the properties of inhibitory synapse function and properties of local circuitry. In this review, we will discuss how Nrxns and their ligands sculpt synaptic inhibition in a brain-region, cell-type and synapse-specific manner.
Collapse
Affiliation(s)
| | - Jason Aoto
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Denver, CO, United States
| |
Collapse
|
15
|
Huang W, Xu Q, Su J, Tang L, Hao ZZ, Xu C, Liu R, Shen Y, Sang X, Xu N, Tie X, Miao Z, Liu X, Xu Y, Liu F, Liu Y, Liu S. Linking transcriptomes with morphological and functional phenotypes in mammalian retinal ganglion cells. Cell Rep 2022; 40:111322. [PMID: 36103830 DOI: 10.1016/j.celrep.2022.111322] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/19/2022] [Accepted: 08/17/2022] [Indexed: 11/03/2022] Open
Abstract
Retinal ganglion cells (RGCs) are the brain's gateway to the visual world. They can be classified into different types on the basis of their electrophysiological, transcriptomic, or morphological characteristics. Here, we characterize the transcriptomic, morphological, and functional features of 472 high-quality RGCs using Patch sequencing (Patch-seq), providing functional and morphological annotation of many transcriptomic-defined cell types of a previously established RGC atlas. We show a convergence of different modalities in defining the RGC identity and reveal the degree of correspondence for well-characterized cell types across multimodal data. Moreover, we complement some RGC types with detailed morphological and functional properties. We also identify differentially expressed genes among ON, OFF, and ON-OFF RGCs such as Vat1l, Slitrk6, and Lmo7, providing candidate marker genes for functional studies. Our research suggests that the molecularly distinct clusters may also differ in their roles of encoding visual information.
Collapse
Affiliation(s)
- Wanjing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Qiang Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jing Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Lei Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Zhao-Zhe Hao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Chuan Xu
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Ruifeng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yuhui Shen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xuan Sang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Nana Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xiaoxiu Tie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Zhichao Miao
- European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Genome Campus, Cambridge CB10 1SD, UK
| | - Xialin Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Ying Xu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China; Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education, Guangzhou, 510632, China
| | - Feng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing 100085, China.
| | - Sheng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou 510080, China.
| |
Collapse
|
16
|
Huygens synchronization of medial septal pacemaker neurons generates hippocampal theta oscillation. Cell Rep 2022; 40:111149. [PMID: 35926456 DOI: 10.1016/j.celrep.2022.111149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/06/2022] [Accepted: 07/07/2022] [Indexed: 11/21/2022] Open
Abstract
Episodic learning and memory retrieval are dependent on hippocampal theta oscillation, thought to rely on the GABAergic network of the medial septum (MS). To test how this network achieves theta synchrony, we recorded MS neurons and hippocampal local field potential simultaneously in anesthetized and awake mice and rats. We show that MS pacemakers synchronize their individual rhythmicity frequencies, akin to coupled pendulum clocks as observed by Huygens. We optogenetically identified them as parvalbumin-expressing GABAergic neurons, while MS glutamatergic neurons provide tonic excitation sufficient to induce theta. In accordance, waxing and waning tonic excitation is sufficient to toggle between theta and non-theta states in a network model of single-compartment inhibitory pacemaker neurons. These results provide experimental and theoretical support to a frequency-synchronization mechanism for pacing hippocampal theta, which may serve as an inspirational prototype for synchronization processes in the central nervous system from Nematoda to Arthropoda to Chordate and Vertebrate phyla.
Collapse
|
17
|
The role of inhibitory circuits in hippocampal memory processing. Nat Rev Neurosci 2022; 23:476-492. [DOI: 10.1038/s41583-022-00599-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2022] [Indexed: 11/08/2022]
|
18
|
Tokarska A, Silberberg G. GABAergic interneurons expressing the α2 nicotinic receptor subunit are functionally integrated in the striatal microcircuit. Cell Rep 2022; 39:110842. [PMID: 35613598 DOI: 10.1016/j.celrep.2022.110842] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/08/2022] [Accepted: 04/28/2022] [Indexed: 11/29/2022] Open
Abstract
The interactions between the striatal cholinergic and GABAergic systems are crucial in shaping reward-related behavior and reinforcement learning; however, the synaptic pathways mediating them are largely unknown. Here, we use Chrna2-Cre mice to characterize striatal interneurons (INs) expressing the nicotinic α2 receptor subunit. Using triple patch-clamp recordings combined with optogenetic stimulations, we characterize the electrophysiological, morphological, and synaptic properties of striatal Chrna2-INs. Striatal Chrna2-INs have diverse electrophysiological properties, distinct from their counterparts in other brain regions, including the hippocampus and neocortex. Unlike in other regions, most striatal Chrna2-INs are fast-spiking INs expressing parvalbumin. Striatal Chrna2-INs are intricately integrated in the striatal microcircuit, forming inhibitory synaptic connections with striatal projection neurons and INs, including other Chrna2-INs. They receive excitatory inputs from primary motor cortex mediated by both AMPA and NMDA receptors. A subpopulation of Chrna2-INs responds to nicotinic input, suggesting reciprocal interactions between this GABAergic interneuron population and striatal cholinergic synapses.
Collapse
Affiliation(s)
- Anna Tokarska
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Gilad Silberberg
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|
19
|
Almog Y, Mavashov A, Brusel M, Rubinstein M. Functional Investigation of a Neuronal Microcircuit in the CA1 Area of the Hippocampus Reveals Synaptic Dysfunction in Dravet Syndrome Mice. Front Mol Neurosci 2022; 15:823640. [PMID: 35370551 PMCID: PMC8966673 DOI: 10.3389/fnmol.2022.823640] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/21/2022] [Indexed: 02/05/2023] Open
Abstract
Dravet syndrome is severe childhood-onset epilepsy, caused by loss of function mutations in the SCN1A gene, encoding for the voltage-gated sodium channel NaV1.1. The leading hypothesis is that Dravet is caused by selective reduction in the excitability of inhibitory neurons, due to hampered activity of NaV1.1 channels in these cells. However, these initial neuronal changes can lead to further network alterations. Here, focusing on the CA1 microcircuit in hippocampal brain slices of Dravet syndrome (DS, Scn1aA1783V/WT) and wild-type (WT) mice, we examined the functional response to the application of Hm1a, a specific NaV1.1 activator, in CA1 stratum-oriens (SO) interneurons and CA1 pyramidal excitatory neurons. DS SO interneurons demonstrated reduced firing and depolarized threshold for action potential (AP), indicating impaired activity. Nevertheless, Hm1a induced a similar AP threshold hyperpolarization in WT and DS interneurons. Conversely, a smaller effect of Hm1a was observed in CA1 pyramidal neurons of DS mice. In these excitatory cells, Hm1a application resulted in WT-specific AP threshold hyperpolarization and increased firing probability, with no effect on DS neurons. Additionally, when the firing of SO interneurons was triggered by CA3 stimulation and relayed via activation of CA1 excitatory neurons, the firing probability was similar in WT and DS interneurons, also featuring a comparable increase in the firing probability following Hm1a application. Interestingly, a similar functional response to Hm1a was observed in a second DS mouse model, harboring the nonsense Scn1aR613X mutation. Furthermore, we show homeostatic synaptic alterations in both CA1 pyramidal neurons and SO interneurons, consistent with reduced excitation and inhibition onto CA1 pyramidal neurons and increased release probability in the CA1-SO synapse. Together, these results suggest global neuronal alterations within the CA1 microcircuit extending beyond the direct impact of NaV1.1 dysfunction.
Collapse
Affiliation(s)
- Yael Almog
- Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anat Mavashov
- Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Marina Brusel
- Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Moran Rubinstein
- Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- *Correspondence: Moran Rubinstein,
| |
Collapse
|
20
|
Daswani R, Gilardi C, Soutschek M, Nanda P, Weiss K, Bicker S, Fiore R, Dieterich C, Germain PL, Winterer J, Schratt G. microRNA-138 controls hippocampal interneuron function and short-term memory in mice. eLife 2022; 11:74056. [PMID: 35290180 PMCID: PMC8963876 DOI: 10.7554/elife.74056] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/13/2022] [Indexed: 11/21/2022] Open
Abstract
The proper development and function of neuronal circuits rely on a tightly regulated balance between excitatory and inhibitory (E/I) synaptic transmission, and disrupting this balance can cause neurodevelopmental disorders, for example, schizophrenia. MicroRNA-dependent gene regulation in pyramidal neurons is important for excitatory synaptic function and cognition, but its role in inhibitory interneurons is poorly understood. Here, we identify miR138-5p as a regulator of short-term memory and inhibitory synaptic transmission in the mouse hippocampus. Sponge-mediated miR138-5p inactivation specifically in mouse parvalbumin (PV)-expressing interneurons impairs spatial recognition memory and enhances GABAergic synaptic input onto pyramidal neurons. Cellular and behavioral phenotypes associated with miR138-5p inactivation are paralleled by an upregulation of the schizophrenia (SCZ)-associated Erbb4, which we validated as a direct miR138-5p target gene. Our findings suggest that miR138-5p is a critical regulator of PV interneuron function in mice, with implications for cognition and SCZ. More generally, they provide evidence that microRNAs orchestrate neural circuit development by fine-tuning both excitatory and inhibitory synaptic transmission.
Collapse
Affiliation(s)
- Reetu Daswani
- Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
| | - Carlotta Gilardi
- Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
| | - Michael Soutschek
- Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
| | - Pakruti Nanda
- Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
| | - Kerstin Weiss
- Institute for Physiological Chemistry, Philipp University of Marburg, Marberg, Germany
| | - Silvia Bicker
- Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
| | - Roberto Fiore
- Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
| | - Christoph Dieterich
- Department of Internal Medicine III, Heidelberg University, Heidelberg, Germany
| | - Pierre-Luc Germain
- Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
| | - Jochen Winterer
- Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
| | - Gerhard Schratt
- Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
Transcriptomically-Guided Pharmacological Experiments in Neocortical and Hippocampal NPY-Positive GABAergic Interneurons. eNeuro 2022; 9:ENEURO.0005-22.2022. [PMID: 35437266 PMCID: PMC9045474 DOI: 10.1523/eneuro.0005-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 12/13/2022] Open
Abstract
Cortical GABAergic interneurons have been shown to fulfil important roles by inhibiting excitatory principal neurons. Recent transcriptomic studies have confirmed seminal discoveries that used anatomic and electrophysiological methods highlighting the existence of multiple different classes of GABAergic interneurons. Although some of these studies have emphasized that inter-regional differences may exist for a given class, the extent of such differences remains unknown. To address this problem, we used single-cell Patch-RNAseq to characterize neuropeptide Y (NPY)-positive GABAergic interneurons in superficial layers of the primary auditory cortex (AC) and in distal layers of area CA3 in mice. We found that more than 300 genes are differentially expressed in NPY-positive neurons between these two brain regions. For example, the AMPA receptor (AMPAR) auxiliary subunit Shisa9/CKAMP44 and the 5HT2a receptor (5HT2aR) are significantly higher expressed in auditory NPY-positive neurons. These findings guided us to perform pharmacological experiments that revealed a role for 5HT2aRs in auditory NPY-positive neurons. Specifically, although the application of 5HT led to a depolarization of both auditory and CA3 NPY-positive neurons, the 5HT2aR antagonist ketanserin only reversed membrane potential changes in auditory NPY-positive neurons. Our study demonstrates the potential of single-cell transcriptomic studies in guiding directed pharmacological experiments.
Collapse
|
22
|
Mahadevan V, Mitra A, Zhang Y, Yuan X, Peltekian A, Chittajallu R, Esnault C, Maric D, Rhodes C, Pelkey KA, Dale R, Petros TJ, McBain CJ. NMDARs Drive the Expression of Neuropsychiatric Disorder Risk Genes Within GABAergic Interneuron Subtypes in the Juvenile Brain. Front Mol Neurosci 2021; 14:712609. [PMID: 34630033 PMCID: PMC8500094 DOI: 10.3389/fnmol.2021.712609] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Medial ganglionic eminence (MGE)-derived parvalbumin (PV)+, somatostatin (SST)+and Neurogliaform (NGFC)-type cortical and hippocampal interneurons, have distinct molecular, anatomical, and physiological properties. However, the molecular mechanisms regulating their maturation remain poorly understood. Here, via single-cell transcriptomics, we show that the obligate NMDA-type glutamate receptor (NMDAR) subunit gene Grin1 mediates transcriptional regulation of gene expression in specific subtypes of MGE-derived interneurons, leading to altered subtype abundances. Notably, MGE-specific early developmental Grin1 loss results in a broad downregulation of diverse transcriptional, synaptogenic and membrane excitability regulatory programs in the juvenile brain. These widespread gene expression abnormalities mirror aberrations that are typically associated with neurodevelopmental disorders. Our study hence provides a road map for the systematic examination of NMDAR signaling in interneuron subtypes, revealing potential MGE-specific genetic targets that could instruct future therapies of psychiatric disorders.
Collapse
Affiliation(s)
- Vivek Mahadevan
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| | - Apratim Mitra
- Bioinformatics and Scientific Programming Core, NICHD, Bethesda, MD, United States
| | - Yajun Zhang
- Unit on Cellular and Molecular Neurodevelopment, NICHD, Bethesda, MD, United States
| | - Xiaoqing Yuan
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| | - Areg Peltekian
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| | - Ramesh Chittajallu
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| | - Caroline Esnault
- Bioinformatics and Scientific Programming Core, NICHD, Bethesda, MD, United States
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, United States
| | - Christopher Rhodes
- Unit on Cellular and Molecular Neurodevelopment, NICHD, Bethesda, MD, United States
| | - Kenneth A Pelkey
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| | - Ryan Dale
- Bioinformatics and Scientific Programming Core, NICHD, Bethesda, MD, United States
| | - Timothy J Petros
- Unit on Cellular and Molecular Neurodevelopment, NICHD, Bethesda, MD, United States
| | - Chris J McBain
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| |
Collapse
|
23
|
Recurrent rewiring of the adult hippocampal mossy fiber system by a single transcriptional regulator, Id2. Proc Natl Acad Sci U S A 2021; 118:2108239118. [PMID: 34599103 PMCID: PMC8501755 DOI: 10.1073/pnas.2108239118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 12/03/2022] Open
Abstract
Neurons have an exceptional capacity to grow axons and form synaptic circuits during development but not later life. In adults, the lack of circuit formation may support retention of skilled actions and memories but also limits regeneration and repair after injuries and in disorders. Research on developing and damaged neurons has revealed many molecules that help circuit formation and regeneration, and yet factors that could induce axon growth and synapse formation in adult brain neurons remain elusive. Here, we searched for such key molecules and find one that alone can induce complete circuit formation. After engineering a new circuit in adult mice, we also looked into its function and relevance for memories. Circuit formation in the central nervous system has been historically studied during development, after which cell-autonomous and nonautonomous wiring factors inactivate. In principle, balanced reactivation of such factors could enable further wiring in adults, but their relative contributions may be circuit dependent and are largely unknown. Here, we investigated hippocampal mossy fiber sprouting to gain insight into wiring mechanisms in mature circuits. We found that sole ectopic expression of Id2 in granule cells is capable of driving mossy fiber sprouting in healthy adult mouse and rat. Mice with the new mossy fiber circuit solved spatial problems equally well as controls but appeared to rely on local rather than global spatial cues. Our results demonstrate reprogrammed connectivity in mature neurons by one defined factor and an assembly of a new synaptic circuit in adult brain.
Collapse
|
24
|
Zhu J, Chen F, Luo L, Wu W, Dai J, Zhong J, Lin X, Chai C, Ding P, Liang L, Wang S, Ding X, Chen Y, Wang H, Qiu J, Wang F, Sun C, Zeng Y, Fang J, Jiang X, Liu P, Tang G, Qiu X, Zhang X, Ruan Y, Jiang S, Li J, Zhu S, Xu X, Li F, Liu Z, Cao G, Chen D. Single-cell atlas of domestic pig cerebral cortex and hypothalamus. Sci Bull (Beijing) 2021; 66:1448-1461. [PMID: 36654371 DOI: 10.1016/j.scib.2021.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/07/2020] [Accepted: 03/12/2021] [Indexed: 01/20/2023]
Abstract
The brain of the domestic pig (Sus scrofa domesticus) has drawn considerable attention due to its high similarities to that of humans. However, the cellular compositions of the pig brain (PB) remain elusive. Here we investigated the single-nucleus transcriptomic profiles of five regions of the PB (frontal lobe, parietal lobe, temporal lobe, occipital lobe, and hypothalamus) and identified 21 cell subpopulations. The cross-species comparison of mouse and pig hypothalamus revealed the shared and specific gene expression patterns at the single-cell resolution. Furthermore, we identified cell types and molecular pathways closely associated with neurological disorders, bridging the gap between gene mutations and pathogenesis. We reported, to our knowledge, the first single-cell atlas of domestic pig cerebral cortex and hypothalamus combined with a comprehensive analysis across species, providing extensive resources for future research regarding neural science, evolutionary developmental biology, and regenerative medicine.
Collapse
Affiliation(s)
- Jiacheng Zhu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Fang Chen
- BGI-Shenzhen, Shenzhen 518083, China; MGI, BGI-Shenzhen, Shenzhen 518083, China
| | - Lihua Luo
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Weiying Wu
- BGI-Shenzhen, Shenzhen 518083, China; Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and the MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou 310031, China
| | - Jinxia Dai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jixing Zhong
- School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiumei Lin
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Chaochao Chai
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Peiwen Ding
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Langchao Liang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Shiyou Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Xiangning Ding
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Yin Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Haoyu Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Jiaying Qiu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI-Shenzhen, Shenzhen 518083, China
| | | | - Chengcheng Sun
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI-Shenzhen, Shenzhen 518083, China; School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Yuying Zeng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI-Shenzhen, Shenzhen 518083, China; College of Life Science, South China Agricultural University, Guangzhou 510642, China
| | - Jian Fang
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xiaosen Jiang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Ping Liu
- BGI-Shenzhen, Shenzhen 518083, China; MGI, BGI-Shenzhen, Shenzhen 518083, China
| | - Gen Tang
- Shenzhen Children's Hospital, Shenzhen 518083, China
| | - Xin Qiu
- Shenzhen Children's Hospital, Shenzhen 518083, China
| | | | - Yetian Ruan
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | | | | | - Shida Zhu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Fang Li
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zhongmin Liu
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China.
| | | |
Collapse
|
25
|
Kempf J, Knelles K, Hersbach BA, Petrik D, Riedemann T, Bednarova V, Janjic A, Simon-Ebert T, Enard W, Smialowski P, Götz M, Masserdotti G. Heterogeneity of neurons reprogrammed from spinal cord astrocytes by the proneural factors Ascl1 and Neurogenin2. Cell Rep 2021; 36:109409. [PMID: 34289357 PMCID: PMC8316252 DOI: 10.1016/j.celrep.2021.109409] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/14/2021] [Accepted: 06/24/2021] [Indexed: 01/21/2023] Open
Abstract
Astrocytes are a viable source for generating new neurons via direct conversion. However, little is known about the neurogenic cascades triggered in astrocytes from different regions of the CNS. Here, we examine the transcriptome induced by the proneural factors Ascl1 and Neurog2 in spinal cord-derived astrocytes in vitro. Each factor initially elicits different neurogenic programs that later converge to a V2 interneuron-like state. Intriguingly, patch sequencing (patch-seq) shows no overall correlation between functional properties and the transcriptome of the heterogenous induced neurons, except for K-channels. For example, some neurons with fully mature electrophysiological properties still express astrocyte genes, thus calling for careful molecular and functional analysis. Comparing the transcriptomes of spinal cord- and cerebral-cortex-derived astrocytes reveals profound differences, including developmental patterning cues maintained in vitro. These relate to the distinct neuronal identity elicited by Ascl1 and Neurog2 reflecting their developmental functions in subtype specification of the respective CNS region.
Collapse
Affiliation(s)
- J Kempf
- Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany
| | - K Knelles
- Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany
| | - B A Hersbach
- Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Graduate School of Systemic Neurosciences, LMU Munich, Planegg-Martinsried 82152, Germany
| | - D Petrik
- Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; School of Biosciences, The Sir Martin Evans Building, Cardiff University, CF10 3AX Cardiff, UK
| | - T Riedemann
- Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany
| | - V Bednarova
- Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany
| | - A Janjic
- Anthropology and Human Genomics, Faculty of Biology, LMU Munich, Planegg-Martinsried 82152, Germany
| | - T Simon-Ebert
- Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany
| | - W Enard
- Biomedical Center Munich, Bioinformatic Core Facility, LMU Munich, Planegg-Martinsried 82152, Germany
| | - P Smialowski
- Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; School of Biosciences, The Sir Martin Evans Building, Cardiff University, CF10 3AX Cardiff, UK
| | - M Götz
- Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Excellence Cluster of Systems Neurology (SYNERGY), Munich, Germany.
| | - G Masserdotti
- Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany.
| |
Collapse
|
26
|
Pancotti L, Topolnik L. Cholinergic Modulation of Dendritic Signaling in Hippocampal GABAergic Inhibitory Interneurons. Neuroscience 2021; 489:44-56. [PMID: 34129910 DOI: 10.1016/j.neuroscience.2021.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022]
Abstract
Dendrites represent the "reception hub" of the neuron as they collect thousands of different inputs and send a coherent response to the cell body. A considerable portion of these signals, especially in vivo, arises from neuromodulatory sources, which affect dendritic computations and cellular activity. In this context, acetylcholine (ACh) exerts a coordinating role of different brain structures, contributing to goal-driven behaviors and sleep-wake cycles. Specifically, cholinergic neurons from the medial septum-diagonal band of Broca complex send numerous projections to glutamatergic principal cells and GABAergic inhibitory neurons in the hippocampus, differentially entraining them during network oscillations. Interneurons display abundant expression of cholinergic receptors and marked responses to stimulation by ACh. Nonetheless, the precise localization of ACh inputs is largely unknown, and evidence for cholinergic modulation of interneuronal dendritic signaling remains elusive. In this article, we review evidence that suggests modulatory effects of ACh on dendritic computations in three hippocampal interneuron subtypes: fast-spiking parvalbumin-positive (PV+) cells, somatostatin-expressing (SOM+) oriens lacunosum moleculare cells and vasoactive intestinal polypeptide-expressing (VIP+) interneuron-selective interneurons. We consider the distribution of cholinergic receptors on these interneurons, including information about their specific somatodendritic location, and discuss how the action of these receptors can modulate dendritic Ca2+ signaling and activity of interneurons. The implications of ACh-dependent Ca2+ signaling for dendritic plasticity are also discussed. We propose that cholinergic modulation can shape the dendritic integration and plasticity in interneurons in a cell type-specific manner, and the elucidation of these mechanisms will be required to understand the contribution of each cell type to large-scale network activity.
Collapse
Affiliation(s)
- Luca Pancotti
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Canada; Neuroscience Axis, CRCHUQ, Laval University, Canada
| | - Lisa Topolnik
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Canada; Neuroscience Axis, CRCHUQ, Laval University, Canada.
| |
Collapse
|
27
|
Kullander K, Topolnik L. Cortical disinhibitory circuits: cell types, connectivity and function. Trends Neurosci 2021; 44:643-657. [PMID: 34006387 DOI: 10.1016/j.tins.2021.04.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 12/16/2022]
Abstract
The concept of a dynamic excitation/inhibition balance tuned by circuit disinhibition, which can shape information flow during complex behavioral tasks, has arisen as an important and conserved information-processing motif. In cortical circuits, different subtypes of GABAergic inhibitory interneurons are connected to each other, offering an anatomical foundation for disinhibitory processes. Moreover, a subpopulation of GABAergic cells that express vasoactive intestinal polypeptide (VIP) preferentially innervates inhibitory interneurons, highlighting their central role in disinhibitory modulation. We discuss inhibitory neuron subtypes involved in disinhibition, with a focus on local circuits and long-range synaptic connections that drive disinhibitory function. We highlight multiple layers of disinhibition across cortical circuits that regulate behavior and serve to maintain an excitation/inhibition balance.
Collapse
Affiliation(s)
- Klas Kullander
- Department of Neuroscience, Uppsala University, Uppsala, Sweden.
| | - Lisa Topolnik
- Department of Biochemistry, Microbiology, and Bioinformatics, Laval University, Québec, QC, Canada; Neuroscience Axis, Centre de Recherche du Centre Hospitalier Universitaire de Québec (CRCHUQ), Laval University, Québec, QC, Canada.
| |
Collapse
|
28
|
Hewitt LT, Ordemann GJ, Brager DH. High and low expression of the hyperpolarization activated current (I h ) in mouse CA1 stratum oriens interneurons. Physiol Rep 2021; 9:e14848. [PMID: 33991454 PMCID: PMC8123538 DOI: 10.14814/phy2.14848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 11/24/2022] Open
Abstract
Inhibitory interneurons are among the most diverse cell types in the brain; the hippocampus itself contains more than 28 different inhibitory interneurons. Interneurons are typically classified using a combination of physiological, morphological, and biochemical observations. One broad separator is action potential firing: low threshold, regular spiking versus higher threshold, fast spiking. We found that spike frequency adaptation (SFA) was highly heterogeneous in low threshold interneurons in the mouse stratum oriens region of area CA1. Analysis with a k-means clustering algorithm parsed the data set into two distinct clusters based on a constellation of physiological parameters and reliably sorted strong and weak SFA cells into different groups. Interneurons with strong SFA fired fewer action potentials across a range of current inputs and had lower input resistance compared to cells with weak SFA. Strong SFA cells also had higher sag and rebound in response to hyperpolarizing current injections. Morphological analysis shows no difference between the two cell types and the cell types did not segregate along the dorsal-ventral axis of the hippocampus. Strong and weak SFA cells were labeled in hippocampal slices from SST:cre Ai14 mice suggesting both cells express somatostatin. Voltage-clamp recordings showed hyperpolarization activated current Ih was significantly larger in strong SFA cells compared to weak SFA cells. We suggest that the strong SFA cell represents a previously uncharacterized type of CA1 stratum oriens interneuron. Due to the combination of physiological parameters of these cells, we will refer to them as Low Threshold High Ih (LTH) cells.
Collapse
Affiliation(s)
- Lauren T. Hewitt
- Department of NeuroscienceInstitute for NeuroscienceUniversity of Texas at AustinAustinTXUSA
| | - Gregory J. Ordemann
- Department of NeuroscienceInstitute for NeuroscienceUniversity of Texas at AustinAustinTXUSA
| | - Darrin H. Brager
- Department of NeuroscienceInstitute for NeuroscienceUniversity of Texas at AustinAustinTXUSA
| |
Collapse
|
29
|
Abstract
The function of neuronal circuits relies on the properties of individual neuronal cells and their synapses. We propose that a substantial degree of synapse formation and function is instructed by molecular codes resulting from transcriptional programmes. Recent studies on the Neurexin protein family and its ligands provide fundamental insight into how synapses are assembled and remodelled, how synaptic properties are specified and how single gene mutations associated with neurodevelopmental and psychiatric disorders might modify the operation of neuronal circuits and behaviour. In this Review, we first summarize insights into Neurexin function obtained from various model organisms. We then discuss the mechanisms and logic of the cell type-specific regulation of Neurexin isoforms, in particular at the level of alternative mRNA splicing. Finally, we propose a conceptual framework for how combinations of synaptic protein isoforms act as 'senders' and 'readers' to instruct synapse formation and the acquisition of cell type-specific and synapse-specific functional properties.
Collapse
|
30
|
Lipovsek M, Bardy C, Cadwell CR, Hadley K, Kobak D, Tripathy SJ. Patch-seq: Past, Present, and Future. J Neurosci 2021; 41:937-946. [PMID: 33431632 PMCID: PMC7880286 DOI: 10.1523/jneurosci.1653-20.2020] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/11/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
Single-cell transcriptomic approaches are revolutionizing neuroscience. Integrating this wealth of data with morphology and physiology, for the comprehensive study of neuronal biology, requires multiplexing gene expression data with complementary techniques. To meet this need, multiple groups in parallel have developed "Patch-seq," a modification of whole-cell patch-clamp protocols that enables mRNA sequencing of cell contents after electrophysiological recordings from individual neurons and morphologic reconstruction of the same cells. In this review, we first outline the critical technical developments that enabled robust Patch-seq experimental efforts and analytical solutions to interpret the rich multimodal data generated. We then review recent applications of Patch-seq that address novel and long-standing questions in neuroscience. These include the following: (1) targeted study of specific neuronal populations based on their anatomic location, functional properties, lineage, or a combination of these factors; (2) the compilation and integration of multimodal cell type atlases; and (3) the investigation of the molecular basis of morphologic and functional diversity. Finally, we highlight potential opportunities for further technical development and lines of research that may benefit from implementing the Patch-seq technique. As a multimodal approach at the intersection of molecular neurobiology and physiology, Patch-seq is uniquely positioned to directly link gene expression to brain function.
Collapse
Affiliation(s)
- Marcela Lipovsek
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE1 1UL, United Kingdom
| | - Cedric Bardy
- Laboratory for Human Neurophysiology and Genetics, South Australian Health and Medical Research Institute (SAHMRI), Adelaide 5000, SA, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park 5042, SA, Australia
| | - Cathryn R Cadwell
- Department of Pathology, University of California San Francisco, San Francisco, California 94143
| | - Kristen Hadley
- Allen Institute for Brain Science, Seattle, Washington 98109
| | - Dmitry Kobak
- Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany
| | - Shreejoy J Tripathy
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Ontario M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
31
|
Que L, Lukacsovich D, Luo W, Földy C. Transcriptional and morphological profiling of parvalbumin interneuron subpopulations in the mouse hippocampus. Nat Commun 2021; 12:108. [PMID: 33398060 PMCID: PMC7782706 DOI: 10.1038/s41467-020-20328-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 11/27/2020] [Indexed: 12/21/2022] Open
Abstract
The diversity reflected by >100 different neural cell types fundamentally contributes to brain function and a central idea is that neuronal identity can be inferred from genetic information. Recent large-scale transcriptomic assays seem to confirm this hypothesis, but a lack of morphological information has limited the identification of several known cell types. In this study, we used single-cell RNA-seq in morphologically identified parvalbumin interneurons (PV-INs), and studied their transcriptomic states in the morphological, physiological, and developmental domains. Overall, we find high transcriptomic similarity among PV-INs, with few genes showing divergent expression between morphologically different types. Furthermore, PV-INs show a uniform synaptic cell adhesion molecule (CAM) profile, suggesting that CAM expression in mature PV cells does not reflect wiring specificity after development. Together, our results suggest that while PV-INs differ in anatomy and in vivo activity, their continuous transcriptomic and homogenous biophysical landscapes are not predictive of these distinct identities.
Collapse
Affiliation(s)
- Lin Que
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich, Switzerland
| | - David Lukacsovich
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich, Switzerland
| | - Wenshu Luo
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich, Switzerland
| | - Csaba Földy
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
32
|
Nicholson E, Kullmann DM. Nicotinic receptor activation induces NMDA receptor independent long-term potentiation of glutamatergic signalling in hippocampal oriens interneurons. J Physiol 2021; 599:667-676. [PMID: 33251594 PMCID: PMC7839446 DOI: 10.1113/jp280397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/23/2020] [Indexed: 12/19/2022] Open
Abstract
KEY POINTS Long-term potentiation of glutamatergic transmission to hippocampal interneurons in stratum oriens does not require NMDA receptors and the induction mechanisms are incompletely understood. Extracellular stimulation, conventionally used to monitor synaptic strength and induce long-term potentiation (LTP), does not exclusively recruit glutamatergic axons. We used optogenetic stimulation of either glutamatergic or cholinergic afferents to probe the relative roles of different signalling mechanisms in LTP induction. Selective stimulation of cholinergic axons was sufficient to induce LTP, which was prevented by chelating postsynaptic Ca2+ or blocking nicotinic receptors. The present study adds nicotinic receptors to the list of sources of Ca2+ that induce NMDA receptor independent LTP in hippocampal oriens interneurons. ABSTRACT Many interneurons located in stratum oriens of the rodent hippocampus exhibit a form of long-term potentiation (LTP) of glutamatergic transmission that does not depend on NMDA receptors for its induction but, instead, requires Ca2+ -permeable AMPA receptors and group I metabotropic glutamate receptors. A role for cholinergic signalling has also been reported. However, electrical stimulation of presynaptic axons, conventionally used to evoke synaptic responses, does not allow the relative roles of glutamatergic and cholinergic synapses in the induction of LTP to be distinguished. Here, we show that repetitive optogenetic stimulation confined to cholinergic axons is sufficient to trigger a lasting potentiation of glutamatergic signalling. This phenomenon shows partial occlusion with LTP induced by electrical stimulation, and is sensitive to postsynaptic Ca2+ chelation and blockers of nicotinic receptors. ACh release from cholinergic axons is thus sufficient to trigger heterosynaptic potentiation of glutamatergic signalling to oriens interneurons in the hippocampus.
Collapse
|
33
|
Geiller T, Vancura B, Terada S, Troullinou E, Chavlis S, Tsagkatakis G, Tsakalides P, Ócsai K, Poirazi P, Rózsa BJ, Losonczy A. Large-Scale 3D Two-Photon Imaging of Molecularly Identified CA1 Interneuron Dynamics in Behaving Mice. Neuron 2020; 108:968-983.e9. [PMID: 33022227 PMCID: PMC7736348 DOI: 10.1016/j.neuron.2020.09.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/16/2020] [Accepted: 09/08/2020] [Indexed: 01/26/2023]
Abstract
Cortical computations are critically reliant on their local circuit, GABAergic cells. In the hippocampus, a large body of work has identified an unprecedented diversity of GABAergic interneurons with pronounced anatomical, molecular, and physiological differences. Yet little is known about the functional properties and activity dynamics of the major hippocampal interneuron classes in behaving animals. Here we use fast, targeted, three-dimensional (3D) two-photon calcium imaging coupled with immunohistochemistry-based molecular identification to retrospectively map in vivo activity onto multiple classes of interneurons in the mouse hippocampal area CA1 during head-fixed exploration and goal-directed learning. We find examples of preferential subtype recruitment with quantitative differences in response properties and feature selectivity during key behavioral tasks and states. These results provide new insights into the collective organization of local inhibitory circuits supporting navigational and mnemonic functions of the hippocampus.
Collapse
Affiliation(s)
- Tristan Geiller
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Bert Vancura
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Satoshi Terada
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Eirini Troullinou
- Institute of Computer Science, Foundation for Research and Technology Hellas, Heraklion, 70013, Greece
- Department of Computer Science, University of Crete, Heraklion, 70013, Greece
| | - Spyridon Chavlis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Crete, 700 13, Greece
| | | | - Panagiotis Tsakalides
- Institute of Computer Science, Foundation for Research and Technology Hellas, Heraklion, 70013, Greece
- Department of Computer Science, University of Crete, Heraklion, 70013, Greece
| | - Katalin Ócsai
- Faculty of Information Technology, Pázmány Péter University, Budapest
| | - Panayiota Poirazi
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Crete, 700 13, Greece
| | - Balázs J Rózsa
- Faculty of Information Technology, Pázmány Péter University, Budapest
- Laboratory of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, Hungarian Academy of Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- The Kavli Institute for Brain Science, Columbia University, New York, NY, USA
| |
Collapse
|
34
|
Almog Y, Fadila S, Brusel M, Mavashov A, Anderson K, Rubinstein M. Developmental alterations in firing properties of hippocampal CA1 inhibitory and excitatory neurons in a mouse model of Dravet syndrome. Neurobiol Dis 2020; 148:105209. [PMID: 33271326 DOI: 10.1016/j.nbd.2020.105209] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/07/2020] [Accepted: 11/24/2020] [Indexed: 11/17/2022] Open
Abstract
Dravet syndrome (Dravet) is a rare, severe childhood-onset epilepsy, caused by heterozygous de novo mutations in the SCN1A gene, encoding for the alpha subunit of the voltage-gated sodium channel, NaV1.1. The neuronal basis of Dravet is debated, with evidence favoring reduced function of inhibitory neurons, that might be transient, or enhanced activity of excitatory cells. Here, we utilized Dravet mice to trace developmental changes in the hippocampal CA1 circuit, examining the properties of CA1 horizontal stratum-oriens (SO) interneurons and pyramidal neurons, through the pre-epileptic, severe and stabilization stages of Dravet. Our data indicate that reduced function of SO interneurons persists from the pre-epileptic through the stabilization stages, with the greatest functional impairment observed during the severe stage. In contrast, opposing changes were detected in CA1 excitatory neurons, with a transient increase in their excitability during the pre-epileptic stage, followed by reduced excitability at the severe stage. Interestingly, alterations in the function of both inhibitory and excitatory neurons were more pronounced when the firing was evoked by synaptic stimulation, implying that loss of function of NaV1.1 may also affect somatodendritic functions. These results suggest a complex pathophysiological mechanism and indicate that the developmental trajectory of this disease is governed by reciprocal functional changes in both excitatory and inhibitory neurons.
Collapse
Affiliation(s)
- Yael Almog
- Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; The Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Saja Fadila
- Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; The Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Marina Brusel
- Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Anat Mavashov
- Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Karen Anderson
- Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Moran Rubinstein
- Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; The Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
35
|
Winterer J, Lukacsovich D, Que L, Sartori AM, Luo W, Földy C. Single-cell RNA-Seq characterization of anatomically identified OLM interneurons in different transgenic mouse lines. Eur J Neurosci 2019; 50:3750-3771. [PMID: 31420995 PMCID: PMC6973274 DOI: 10.1111/ejn.14549] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 07/30/2019] [Accepted: 08/09/2019] [Indexed: 01/18/2023]
Abstract
Inhibitory GABAergic interneurons create different brain activity patterns that correlate with behavioural states. In this characterizing study, we used single-cell RNA-Seq to analyse anatomically- and electrophysiologically identified hippocampal oriens-lacunosum moleculare (OLM) interneurons. OLMs express somatostatin (Sst), generate feedback inhibition and play important roles in theta oscillations and fear encoding. Although an anatomically- and biophysically homogenous population, OLMs presumably comprise of two functionally distinct types with different developmental origins, inferred from the expression pattern of serotonin type-3a (5-HT3a, or Htr3a) receptor subunit and 5-HT excitability in a set of OLMs. To broadly characterize OLM cells, we used the Sst-Cre and the BAC transgenic Htr3a-Cre mouse lines and separately analysed SstCre-OLM and Htr3aCre-OLM types. We found a surprisingly consistent expression of Npy in OLMs, which was previously not associated with the identity of this type. Our analyses furthermore revealed uniform expression of developmental origin-related genes, including transcription factors and neurexin isoforms, without providing support for the current view that OLMs may originate from multiple neurogenic zones. Together, we found that OLMs constitute a highly homogenous transcriptomic population. Finally, our results revealed surprisingly infrequent expression of Htr3a in only ~10% of OLMs and an apparently specific expression of the 5-HT3b subunit-coding gene Htr3b in Htr3aCre-OLMs, but not in SstCre-OLMs. However, additional in situ hybridization experiments suggested that the differential expression of Htr3b may represent an unexpected consequence arising from the design of the Htr3a-Cre BAC transgenic line.
Collapse
Affiliation(s)
- Jochen Winterer
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Natural Sciences, University of Zürich, Zürich, Switzerland
| | - David Lukacsovich
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Natural Sciences, University of Zürich, Zürich, Switzerland
| | - Lin Que
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Natural Sciences, University of Zürich, Zürich, Switzerland
| | - Andrea M Sartori
- Institute for Regenerative Medicine, Department of Health Sciences and Technology, ETH Zürich, University of Zürich, Zürich, Switzerland
| | - Wenshu Luo
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Natural Sciences, University of Zürich, Zürich, Switzerland
| | - Csaba Földy
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Natural Sciences, University of Zürich, Zürich, Switzerland
| |
Collapse
|