1
|
Deng Y, Wu W, Huang X, Yang X, Yu Y, Zhang Z, Hu Z, Zhou X, Zhou K, Liu Y, Zhang L. Characterization of rhizosphere bacterial communities in oilseed rape cultivars with different susceptibility to Plasmodiophora brassicae infection. FRONTIERS IN PLANT SCIENCE 2025; 15:1496770. [PMID: 39834703 PMCID: PMC11743679 DOI: 10.3389/fpls.2024.1496770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 12/02/2024] [Indexed: 01/22/2025]
Abstract
Rhizosphere microbiomes are constantly mobilized during plant-pathogen interactions, and this, in turn, affects their interactions. However, few studies have examined the activities of rhizosphere microbiomes in plants with different susceptibilities to soil-borne pathogens, especially those that cause clubroot disease. In this study, we compared the rhizosphere bacterial community in response to infection of Plasmodiophora brassicae among the four different clubroot susceptibility cultivars of oilseed rape (Brassica napus). Our results revealed obvious differences in the responses of rhizosphere bacterial community to the P. brassicae infection between the four cultivars of oilseed rape. Several bacterial genera that are associated with the nitrogen cycle, including Limnobacter, Thiobacillus, Anaeromyxobacter, Nitrosomonas, Tumebacillus, and Halomonas, showed significantly different changes between susceptible and resistant cultivars in the presence of P. brassicae infection. Moreover, increased connectedness and robustness were exhibited in the rhizosphere bacterial community co-occurrence network in clubroot-susceptible cultivars that were infected with P. brassicae, while only slight changes were observed in clubroot-resistant cultivars. Metagenomic analysis of microbial metabolism also indicated differences in the rhizosphere bacterial community between susceptible and resistant cultivars that were infected with P. brassicae. Functional analysis of the nitrogen cycle showed that genes related to nitrification (nxrB) were upregulated in susceptible cultivars, while genes related to assimilatory nitrate reduction (nasA, narB, and nirA) were upregulated in resistant cultivars that were infected with P. brassicae. These findings indicate that the synthesis and assimilation process of NO3 - content were promoted in susceptible and resistant cultivars, respectively. Our study revealed differences in the characteristics of rhizosphere bacterial communities in response to P. brassicae infection between clubroot-susceptible and clubroot-resistant cultivars as well as the potential impact of these differences on the plant-P. brassicae interaction.
Collapse
Affiliation(s)
- Yue Deng
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Wenxian Wu
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Xiaoqing Huang
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Xiaoxiang Yang
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Yaoyin Yu
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Zhongmei Zhang
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Zijin Hu
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xiquan Zhou
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Kang Zhou
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, China
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Yong Liu
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Lei Zhang
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, China
| |
Collapse
|
2
|
Flickinger HD, Dukes JS. A Review of Theory: Comparing Invasion Ecology and Climate Change-Induced Range Shifting. GLOBAL CHANGE BIOLOGY 2024; 30:e17612. [PMID: 39676232 PMCID: PMC11647056 DOI: 10.1111/gcb.17612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/22/2024] [Accepted: 11/08/2024] [Indexed: 12/17/2024]
Abstract
Human actions have led to large-scale shifts in the distributions of species, which have accelerated over recent decades. Two contributing factors include the introduction of non-native species to new regions, and more recently, the shift of species into new ranges to track a human-altered climate. While the context of these species redistributions is different, we argue here that scientists studying the effects of either invasion or range shifting are interested in the same underlying mechanistic questions: (1) What traits make a species likely to survive in a new location? and (2) Which recipient ecosystems are likely to support a newly arrived species? A survey of the theoretical literature surrounding these topics demonstrates the usefulness of this comparison and highlights key differences between range shifting and invasion in factors including genetic diversity, climatic tolerance, local adaptation, and coevolutionary history. This review does not support the blanket application of an invasion framework to climate change-induced range shifts. However, we suggest the use of modified invasion theories, experimental designs, and risk assessments could aid in predicting outcomes and prioritizing management resources for climate-threatened species.
Collapse
Affiliation(s)
| | - Jeffrey S. Dukes
- Department of Global EcologyCarnegie Institution for ScienceStanfordCaliforniaUSA
| |
Collapse
|
3
|
Jiao Y, Sun X, Dong X, Yin J, Li Z, Zhang K, Altaf MM, Li D, Zhu Z. Enhancing mango yield and soil health with organic and slow-release fertilizers: A multifaceted evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175297. [PMID: 39127209 DOI: 10.1016/j.scitotenv.2024.175297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/04/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
Excessive utilization of chemical fertilizers in mango orchards not only hampers the attainment of sustainable harvests but also poses significant ecological detriments. This investigation proposes a promising solution by advocating the judicious replacement of chemical fertilizers with organic fertilizer (OF) and slow-release fertilizer (SRF), with potential to bolster soil health and augment crop productivity. In light of the promise held by these alternatives, it is imperative to establish detailed fertilization protocols for enhanced sustainable practices in mango farming. This two-year field study employed a comprehensive suite of seven fertilization strategies, unveiling that a 25 % chemical fertilizers substitution with OF and SRF improved mango yields by 12.5 % and 11.3 %, respectively, over standard practices. Additionally, these approaches substantially augmented the nutritional quality of mangoes, evident from Vitamin C enhancements of 53.9 % to 56.9 %, and improvements in sugar-to-acid ratio (19.2 %-30.3 %) and solid-to-acid ratio (12.1 %-25.3 %). Notably, the application of OF and SRF led to increased leaf nitrogen and phosphorus concentrations, while simultaneously reducing soil phosphorus and potassium levels. Furthermore, these fertilizers fostered the growth of beneficial soil microorganisms, namely Actinobacteria and Proteobacteria, and strengthened the synergy within the soil bacterial community, hence optimizing bacterial competition and nutrient cycling. The study proposes that the adoption of OF or SRF can effectively regulate soil nutrient balance, promote resilient and functional soil bacterial ecosystems, and ultimately improve mango yield and fruit quality. It recommends a fertilization scheme incorporating 25 % organic or slow-release nitrogen to align with ecological sustainability goals, promoting a more vigorous and resilient soil and crop system.
Collapse
Affiliation(s)
- Yangqiu Jiao
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, Hainan Province, China; Jincheng Association for Science and Technology, Jincheng 048000, Shanxi Province, China
| | - Xiaoyan Sun
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, Hainan Province, China
| | - Xuezhi Dong
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, Hainan Province, China
| | - Jing Yin
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, Hainan Province, China; Shandong Vicome Greenland Chemical Co., Ltd, Jinan 250204, Shandong Province, China
| | - Zhidong Li
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, Hainan Province, China
| | - Kailu Zhang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, Hainan Province, China; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Shenzhen 518000, Guangdong Province, China
| | - Muhammad Mohsin Altaf
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, Hainan Province, China
| | - Dong Li
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, Hainan Province, China.
| | - Zhiqiang Zhu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, Hainan Province, China.
| |
Collapse
|
4
|
Li B, Yang P, Feng Y, Du C, Qi G, Zhao X. Rhizospheric microbiota of suppressive soil protect plants against Fusarium solani infection. PEST MANAGEMENT SCIENCE 2024; 80:4186-4198. [PMID: 38578633 DOI: 10.1002/ps.8122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Fusarium infection has caused huge economic losses in many crops. The study aimed to compare the microbial community of suppressive and conducive soils and relate to the reduction of Fusarium wilt. RESULTS High-throughput sequencing and microbial network analysis were used to investigate the differences in the rhizosphere microbiota of the suppressive and conducive soils and to identify the beneficial keystone taxa. Plant pathogens were enriched in the conducive soil. Potential plant-beneficial microorganisms and antagonistic microorganisms were enriched in the suppressive soil. More positive interactions and keystone taxa existed in the suppressive soil network. Thirty-nine and 16 keystone taxa were identified in the suppressive and conducive soil networks, respectively. Sixteen fungal strains and 168 bacterial strains were isolated from suppressive soil, some of which exhibited plant growth-promotion traits. Thirty-nine bacterial strains and 10 fungal strains showed antagonistic activity against F. solani. Keystone taxa Bacillus and Trichoderma exhibited high antifungal activity. Lipopeptides produced by Bacillus sp. RB150 and chitinase from Trichoderma spp. inhibited the growth of F. solani. Microbial consortium I (Bacillus sp. RB150, Pseudomonas sp. RB70 and Trichoderma asperellum RF10) and II (Bacillus sp. RB196, Bacillus sp. RB150 and T. asperellum RF10) effectively controlled root rot disease, the spore number of F. solani was reduced by 94.2% and 83.3%. CONCLUSION Rhizospheric microbiota of suppressive soil protects plants against F. solani infection. Antagonistic microorganisms in suppressive soil inhibit pathogen growth and infection. Microbial consortia consisted of keystone taxa well control root rot disease. These findings help control Fusarium wilt. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Baolong Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ping Yang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yali Feng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chenyang Du
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Gaofu Qi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiuyun Zhao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
5
|
Shao Z, Gu S, Zhang X, Xue J, Yan T, Guo S, Pommier T, Jousset A, Yang T, Xu Y, Shen Q, Wei Z. Siderophore interactions drive the ability of Pseudomonas spp . consortia to protect tomato against Ralstonia solanacearum. HORTICULTURE RESEARCH 2024; 11:uhae186. [PMID: 39247881 PMCID: PMC11377186 DOI: 10.1093/hr/uhae186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/01/2024] [Indexed: 09/10/2024]
Abstract
The soil-borne bacterial pathogen Ralstonia solanacearum causes significant losses in Solanaceae crop production worldwide, including tomato, potato, and eggplant. To efficiently prevent outbreaks, it is essential to understand the complex interactions between pathogens and the microbiome. One promising mechanism for enhancing microbiome functionality is siderophore-mediated competition, which is shaped by the low iron availability in the rhizosphere. This study explores the critical role of iron competition in determining microbiome functionality and its potential for designing high-performance microbiome engineering strategies. We investigated the impact of siderophore-mediated interactions on the efficacy of Pseudomonas spp. consortia in suppressing R. solanacearum , both in vitro and in vivo. Our findings show that siderophore production significantly enhances the inhibitory effects of Pseudomonas strains on pathogen growth, while other metabolites are less effective under iron-limited conditions. Moreover, siderophores play a crucial role in shaping interactions within the consortia, ultimately determining the level of protection against bacterial wilt disease. This study highlights the key role of siderophores in mediating consortium interactions and their impact on tomato health. Our results also emphasize the limited efficacy of other secondary metabolites in iron-limited environments, underscoring the importance of siderophore-mediated competition in maintaining tomato health and suppressing disease.
Collapse
Affiliation(s)
- Zhengying Shao
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers,National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaohua Gu
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers,National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xiaoni Zhang
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers,National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiao Xue
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers,National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Tao Yan
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers,National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Saisai Guo
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers,National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Thomas Pommier
- Setec Energie Environnement, 97/101 bvd Vivier Merle, Lyon 69003, France
| | - Alexandre Jousset
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers,National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianjie Yang
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers,National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yangchun Xu
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers,National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers,National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers,National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
Aqueel R, Badar A, Roy N, Ijaz UZ, Malik KA. Disease Resistance Correlates with Core Microbiome Diversity in Cotton. Curr Microbiol 2024; 81:302. [PMID: 39115581 PMCID: PMC11310248 DOI: 10.1007/s00284-024-03827-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 08/01/2024] [Indexed: 08/11/2024]
Abstract
Understanding the resident microbial communities and their above and below ground interactions with plants will provide necessary information for crop disease protection and stress management. In this study, we show how diversity of core microbiome varies with disease susceptibility of a crop. To test this hypothesis, we have focused on identifying the core microbial species of cotton leaf curl disease (CLCuD) susceptible Gossypium hirsutum and CLCuD resistant Gossypium arboreum under viral infestation. Derivation of core membership is challenging as it depends on an occupancy threshold of microbial species in a sampling pool, whilst accounting for different plant compartments. We have used an abundance-occupancy distribution approach where we dynamically assess the threshold for core membership, whilst marginalizing for occupancy in four compartments of the cotton plant, namely, leaf epiphyte, leaf endophyte, rhizosphere, and root endophyte. Additionally, we also fit a neutral model to the returned core species to split them into three groups, those that are neutral, those that are selected by the plant environment, and finally those that are dispersal limited. We have found strong inverse relationship between diversity of core microbiome and disease susceptibility with the resistant variety, G. arboreum, possessing higher diversity of microbiota. A deeper understanding of this association will aid in the development of biocontrol agents for improving plant immunity against biotrophic pathogens.
Collapse
Affiliation(s)
- Rhea Aqueel
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Ferozepur Road, Lahore, 54600, Pakistan
- Water & Environment Research Group, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, G11 6EW, UK
| | - Ayesha Badar
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Ferozepur Road, Lahore, 54600, Pakistan
| | - Nazish Roy
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Ferozepur Road, Lahore, 54600, Pakistan
| | - Umer Zeeshan Ijaz
- Water & Environment Research Group, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, G11 6EW, UK.
- National University of Ireland, Galway, University Road, Galway, H91 TK33, Ireland.
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, L69 7BE, UK.
| | - Kauser Abdulla Malik
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Ferozepur Road, Lahore, 54600, Pakistan.
- Pakistan Academy of Sciences, Islamabad, Pakistan.
| |
Collapse
|
7
|
Zhou Y, Liu D, Li F, Dong Y, Jin Z, Liao Y, Li X, Peng S, Delgado-Baquerizo M, Li X. Superiority of native soil core microbiomes in supporting plant growth. Nat Commun 2024; 15:6599. [PMID: 39097606 PMCID: PMC11297980 DOI: 10.1038/s41467-024-50685-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/18/2024] [Indexed: 08/05/2024] Open
Abstract
Native core microbiomes represent a unique opportunity to support food provision and plant-based industries. Yet, these microbiomes are often neglected when developing synthetic communities (SynComs) to support plant health and growth. Here, we study the contribution of native core, native non-core and non-native microorganisms to support plant production. We construct four alternative SynComs based on the excellent growth promoting ability of individual stain and paired non-antagonistic action. One of microbiome based SynCom (SC2) shows a high niche breadth and low average variation degree in-vitro interaction. The promoting-growth effect of SC2 can be transferred to non-sterile environment, attributing to the colonization of native core microorganisms and the improvement of rhizosphere promoting-growth function including nitrogen fixation, IAA production, and dissolved phosphorus. Further, microbial fertilizer based on SC2 and composite carrier (rapeseed cake fertilizer + rice husk carbon) increase the net biomass of plant by 129%. Our results highlight the fundamental importance of native core microorganisms to boost plant production.
Collapse
Affiliation(s)
- Yanyan Zhou
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China
| | - Donghui Liu
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China
| | - Fengqiao Li
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China
| | - Yuanhua Dong
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhili Jin
- Yongzhou Company of Hunan Tobacco Company, Yongzhou, 425000, China
| | - Yangwenke Liao
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaohui Li
- Yongzhou Company of Hunan Tobacco Company, Yongzhou, 425000, China
| | - Shuguang Peng
- Hunan Province Company of China Tobacco Corporation, Changsha, 410004, China.
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
| | - Xiaogang Li
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
8
|
Cao X, Liu J, Zhang L, Mao W, Li M, Wang H, Sun W. Response of soil microbial ecological functions and biological characteristics to organic fertilizer combined with biochar in dry direct-seeded paddy fields. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174844. [PMID: 39029750 DOI: 10.1016/j.scitotenv.2024.174844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/13/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
Biochar and organic fertilizer are commonly used to maintain soil health and sustainable agroecosystems, and the alternate wet-dry management of soil moisture in dry direct-seeded paddy fields can complicate the effects of biochar and organic fertilizer on soil microhabitats. Therefore, this study used chicken manure organic fertilizer to replace some of the inorganic fertilizer and applied biochar to explore the ability of biochar and organic fertilizer to regulate the functions of the soil microhabitat in dry direct-seeded paddy fields. The coupling effect of organic fertilizer and biochar increased the diversity and richness of soil bacteria but had no significant effect on soil fungi. Biochar and organic fertilizer affected the distribution and composition of soil bacteria and fungi, and the total number of soil bacteria and fungi increased by 1365 and -71 (5 t/hm2 biochar and no organic fertilizer), 660 and 79 (10 t/hm2 biochar and no organic fertilizer), 3121 and 7 (no biochar and 20 % organic fertilizer substitution), 1873 and -72 (5 t/hm2 biochar and 20 % organic fertilizer substitution), and -544 and -65 (10 t/hm2 biochar and 20 % organic fertilizer substitution), respectively, compared with that of the control treatment. Compared with the application of biochar alone, the coupling effect of biochar and organic fertilizer increased the average degree (0.95 and 0.16), links (190 and 32), and ratio of fungal positive links (1.651 %), and decreased the modularity (0.034 and 0.052) and ratio of bacterial positive links (6.482 %) of bacterial and fungal networks. In addition, the coupling effect resulted in a more complex association between soil microbial diversity and richness and microbial ecological functions. Random forest predictions indicated that, organic fertilizer as a random factor, changes in the abundance of bacterial Bacteroidetes and Nitrospirae and fungal Monoblepharomycota were the main factors driving the differences in soil microbial ecological functions.
Collapse
Affiliation(s)
- Xiaoqiang Cao
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources, Ministry of Agriculture and Rural affairs, Northeast Agricultural University, Harbin 150030, China
| | - Jilong Liu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources, Ministry of Agriculture and Rural affairs, Northeast Agricultural University, Harbin 150030, China.
| | - Lingling Zhang
- College of Arts and Science, Northeast Agricultural University, Harbin 150030, China.
| | - Weijia Mao
- Heilongjiang Province Corporation, China National Tobacco Corporation, Harbin 150010, China
| | - Mo Li
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources, Ministry of Agriculture and Rural affairs, Northeast Agricultural University, Harbin 150030, China
| | - Hao Wang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources, Ministry of Agriculture and Rural affairs, Northeast Agricultural University, Harbin 150030, China
| | - Weili Sun
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources, Ministry of Agriculture and Rural affairs, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
9
|
Liu C, Liu Z, Cui B, Yang H, Gao C, Chang M, Liu Y. Effects of returning peach branch waste to fields on soil carbon cycle mediated by soil microbial communities. Front Microbiol 2024; 15:1406661. [PMID: 38957617 PMCID: PMC11217190 DOI: 10.3389/fmicb.2024.1406661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024] Open
Abstract
In recent years, the rise in greenhouse gas emissions from agriculture has worsened climate change. Efficiently utilizing agricultural waste can significantly mitigate these effects. This study investigated the ecological benefits of returning peach branch waste to fields (RPBF) through three innovative strategies: (1) application of peach branch organic fertilizer (OF), (2) mushroom cultivation using peach branches as a substrate (MC), and (3) surface mulching with peach branches (SM). Conducted within a peach orchard ecosystem, our research aimed to assess these resource utilization strategies' effects on soil properties, microbial community, and carbon cycle, thereby contributing to sustainable agricultural practices. Our findings indicated that all RPBF treatments enhance soil nutrient content, enriching beneficial microorganisms, such as Humicola, Rhizobiales, and Bacillus. Moreover, soil AP and AK were observed to regulate the soil carbon cycle by altering the compositions and functions of microbial communities. Notably, OF and MC treatments were found to boost autotrophic microorganism abundance, thereby augmenting the potential for soil carbon sequestration and emission reduction. Interestingly, in peach orchard soil, fungal communities were found to contribute more greatly to SOC content than bacterial communities. However, SM treatment resulted in an increase in the presence of bacterial communities, thereby enhancing carbon emissions. Overall, this study illustrated the fundamental pathways by which RPBF treatment affects the soil carbon cycle, providing novel insights into the rational resource utilization of peach branch waste and the advancement of ecological agriculture.
Collapse
Affiliation(s)
- Chenyu Liu
- College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing, China
| | - Zhiling Liu
- College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing, China
| | - Bofei Cui
- College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing, China
| | - Haiqing Yang
- Fruit Industry Serve Center of Pinggu District, Beijing, China
| | - Chengda Gao
- College of Humanities and Urban-Rural Development, Beijing University of Agriculture, Beijing, China
| | - Mingming Chang
- College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing, China
| | - Yueping Liu
- College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing, China
- Key Laboratory for Northern Urban Agriculture Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
10
|
Wang X, Wang S, Huang M, He Y, Guo S, Yang K, Wang N, Sun T, Yang H, Yang T, Xu Y, Shen Q, Friman VP, Wei Z. Phages enhance both phytopathogen density control and rhizosphere microbiome suppressiveness. mBio 2024; 15:e0301623. [PMID: 38780276 PMCID: PMC11237578 DOI: 10.1128/mbio.03016-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/21/2024] [Indexed: 05/25/2024] Open
Abstract
Bacteriophages, viruses that specifically target plant pathogenic bacteria, have emerged as a promising alternative to traditional agrochemicals. However, it remains unclear how phages should be applied to achieve efficient pathogen biocontrol and to what extent their efficacy is shaped by indirect interactions with the resident microbiota. Here, we tested if the phage biocontrol efficacy of Ralstonia solanacearum phytopathogenic bacterium can be improved by increasing the phage cocktail application frequency and if the phage efficacy is affected by pathogen-suppressing bacteria already present in the rhizosphere. We find that increasing phage application frequency improves R. solanacearum density control, leading to a clear reduction in bacterial wilt disease in both greenhouse and field experiments with tomato. The high phage application frequency also increased the diversity of resident rhizosphere microbiota and enriched several bacterial taxa that were associated with the reduction in pathogen densities. Interestingly, these taxa often belonged to Actinobacteria known for antibiotics production and soil suppressiveness. To test if they could have had secondary effects on R. solanacearum biocontrol, we isolated Actinobacteria from Nocardia and Streptomyces genera and tested their suppressiveness to the pathogen in vitro and in planta. We found that these taxa could clearly inhibit R. solanacearum growth and constrain bacterial wilt disease, especially when combined with the phage cocktail. Together, our findings unravel an undiscovered benefit of phage therapy, where phages trigger a second line of defense by the pathogen-suppressing bacteria that already exist in resident microbial communities. IMPORTANCE Ralstonia solanacearum is a highly destructive plant-pathogenic bacterium with the ability to cause bacterial wilt in several crucial crop plants. Given the limitations of conventional chemical control methods, the use of bacterial viruses (phages) has been explored as an alternative biological control strategy. In this study, we show that increasing the phage application frequency can improve the density control of R. solanacearum, leading to a significant reduction in bacterial wilt disease. Furthermore, we found that repeated phage application increased the diversity of rhizosphere microbiota and specifically enriched Actinobacterial taxa that showed synergistic pathogen suppression when combined with phages due to resource and interference competition. Together, our study unravels an undiscovered benefit of phages, where phages trigger a second line of defense by the pathogen-suppressing bacteria present in resident microbial communities. Phage therapies could, hence, potentially be tailored according to host microbiota composition to unlock the pre-existing benefits provided by resident microbiota.
Collapse
Affiliation(s)
- Xiaofang Wang
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Shuo Wang
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Mingcong Huang
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Yilin He
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Saisai Guo
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Keming Yang
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ningqi Wang
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Tianyu Sun
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Hongwu Yang
- China National Tobacco Corporation Hunan Company, Changsha, Hunan, China
| | - Tianjie Yang
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Yangchun Xu
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Qirong Shen
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Ville-Petri Friman
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Zhong Wei
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
11
|
Vandermaesen J, Daly AJ, Mawarda PC, Baetens JM, De Baets B, Boon N, Springael D. Cooperative interactions between invader and resident microbial community members weaken the negative diversity-invasion relationship. Ecol Lett 2024; 27:e14433. [PMID: 38712704 DOI: 10.1111/ele.14433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024]
Abstract
The negative diversity-invasion relationship observed in microbial invasion studies is commonly explained by competition between the invader and resident populations. However, whether this relationship is affected by invader-resident cooperative interactions is unknown. Using ecological and mathematical approaches, we examined the survival and functionality of Aminobacter niigataensis MSH1 to mineralize 2,6-dichlorobenzamide (BAM), a groundwater micropollutant affecting drinking water production, in sand microcosms when inoculated together with synthetic assemblies of resident bacteria. The assemblies varied in richness and in strains that interacted pairwise with MSH1, including cooperative and competitive interactions. While overall, the negative diversity-invasion relationship was retained, residents engaging in cooperative interactions with the invader had a positive impact on MSH1 survival and functionality, highlighting the dependency of invasion success on community composition. No correlation existed between community richness and the delay in BAM mineralization by MSH1. The findings suggest that the presence of cooperative residents can alleviate the negative diversity-invasion relationship.
Collapse
Affiliation(s)
| | - Aisling J Daly
- Department of Data Analysis and Mathematical Modelling, Ghent University, Gent, Belgium
| | - Panji Cahya Mawarda
- Division of Soil and Water Management, KU Leuven, Heverlee, Belgium
- Research Center for Applied Microbiology, National Research and Innovation Agency Republic of Indonesia (BRIN), Bandung, Indonesia
| | - Jan M Baetens
- Department of Data Analysis and Mathematical Modelling, Ghent University, Gent, Belgium
| | - Bernard De Baets
- Department of Data Analysis and Mathematical Modelling, Ghent University, Gent, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University, Gent, Belgium
| | - Dirk Springael
- Division of Soil and Water Management, KU Leuven, Heverlee, Belgium
| |
Collapse
|
12
|
Wang B, Geng Y, Lin Y, Xia Q, Wei F, Yang S, Huang X, Zhang J, Cai Z, Zhao J. Root rot destabilizes the Sanqi rhizosphere core fungal microbiome by reducing the negative connectivity of beneficial microbes. Appl Environ Microbiol 2024; 90:e0223723. [PMID: 38315008 PMCID: PMC10952445 DOI: 10.1128/aem.02237-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024] Open
Abstract
The stability of microbial communities, especially among core taxa, is essential for supporting plant health. However, the impacts of disease infection on the stability of rhizosphere fungal core microbiome remain largely unexplored. In this study, we delved into the effects of root rot infestation on the community structure, function, network complexity, and stability of Sanqi fungal core microbiomes, employing amplicon sequencing combined with co-occurrence network and cohesion analyses. Our investigation revealed that root rot disease led to a decrease in the α-diversity but an increase in the β-diversity of the Sanqi fungal core microbiomes in the rhizosphere. Notably, Ilyonectria, Plectosphaerella, and Fusarium emerged as indicator species in the rhizosphere core microbiome of root rot-infected Sanqi plants, while Mortierella predominated as the dominant biomarker taxa in healthy soils. Additionally, root rot diminished the complexity and modularity of the rhizosphere networks by reducing the metrics associated with nodes, edges, degrees, and modularity. Furthermore, root rot resulted in a reduction in the proportion of negative connections in the network and the negative/positive cohesion of the entire core fungal microbiome. Particularly noteworthy was the observation that root rot infection destabilized the rhizosphere core fungal microbiome by weakening the negative connectivity associated with beneficial agents. Collectively, these results highlight the significance of the negative connectivity of beneficial agents in ensuring the stability of core microbial community.IMPORTANCERoot rot disease has been reported as the most devastating disease in the production process of artificial cultivated Sanqi ginseng, which seriously threatens the Sanqi industry. This study provides valuable insights into how root rot influences microbial relationships within the community. These findings open up opportunities for disease prevention and the promotion of plant health by regulating microbial interactions. In summary, the research sheds light on the ecological consequences of root rot on rhizosphere fungal microbiomes and offers potential strategies for managing soil-borne diseases and enhancing plant health.
Collapse
Affiliation(s)
- Baoying Wang
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Yuhang Geng
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Yulan Lin
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Qing Xia
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Fugang Wei
- Miaoxiang Sanqi Technology Co., Ltd., Wenshan, China
| | - Shaozhou Yang
- Miaoxiang Sanqi Technology Co., Ltd., Wenshan, China
| | - Xinqi Huang
- School of Geography, Nanjing Normal University, Nanjing, China
- Jiangsu Engineering Research Center for Soil Utilization & Sustainable Agriculture, Nanjing, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China
| | - Jinbo Zhang
- School of Geography, Nanjing Normal University, Nanjing, China
- Jiangsu Engineering Research Center for Soil Utilization & Sustainable Agriculture, Nanjing, China
- Key Laboratory of Virtual Geographical Environment (Nanjing Normal University), Ministry of Education, Nanjing, China
| | - Zucong Cai
- School of Geography, Nanjing Normal University, Nanjing, China
- Jiangsu Engineering Research Center for Soil Utilization & Sustainable Agriculture, Nanjing, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China
- Key Laboratory of Virtual Geographical Environment (Nanjing Normal University), Ministry of Education, Nanjing, China
| | - Jun Zhao
- School of Geography, Nanjing Normal University, Nanjing, China
- Jiangsu Engineering Research Center for Soil Utilization & Sustainable Agriculture, Nanjing, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China
| |
Collapse
|
13
|
Arnault G, Marais C, Préveaux A, Briand M, Poisson AS, Sarniguet A, Barret M, Simonin M. Seedling microbiota engineering using bacterial synthetic community inoculation on seeds. FEMS Microbiol Ecol 2024; 100:fiae027. [PMID: 38503562 PMCID: PMC10977042 DOI: 10.1093/femsec/fiae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 03/18/2024] [Indexed: 03/21/2024] Open
Abstract
Synthetic Communities (SynComs) are being developed and tested to manipulate plant microbiota and improve plant health. To date, only few studies proposed the use of SynCom on seed despite its potential for plant microbiota engineering. We developed and presented a simple and effective seedling microbiota engineering method using SynCom inoculation on seeds. The method was successful using a wide diversity of SynCom compositions and bacterial strains that are representative of the common bean seed microbiota. First, this method enables the modulation of seed microbiota composition and community size. Then, SynComs strongly outcompeted native seed and potting soil microbiota and contributed on average to 80% of the seedling microbiota. We showed that strain abundance on seed was a main driver of an effective seedling microbiota colonization. Also, selection was partly involved in seed and seedling colonization capacities since strains affiliated to Enterobacteriaceae and Erwiniaceae were good colonizers while Bacillaceae and Microbacteriaceae were poor colonizers. Additionally, the engineered seed microbiota modified the recruitment and assembly of seedling and rhizosphere microbiota through priority effects. This study shows that SynCom inoculation on seeds represents a promising approach to study plant microbiota assembly and its consequence on plant fitness.
Collapse
Affiliation(s)
- Gontran Arnault
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Coralie Marais
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Anne Préveaux
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Martial Briand
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Anne-Sophie Poisson
- Groupe d’Étude et de Contrôle des Variétés et des Semences (GEVES), 49070, Beaucouzé, France
| | - Alain Sarniguet
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Matthieu Barret
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Marie Simonin
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| |
Collapse
|
14
|
Graham OJ, Adamczyk EM, Schenk S, Dawkins P, Burke S, Chei E, Cisz K, Dayal S, Elstner J, Hausner ALP, Hughes T, Manglani O, McDonald M, Mikles C, Poslednik A, Vinton A, Wegener Parfrey L, Harvell CD. Manipulation of the seagrass-associated microbiome reduces disease severity. Environ Microbiol 2024; 26:e16582. [PMID: 38195072 DOI: 10.1111/1462-2920.16582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024]
Abstract
Host-associated microbes influence host health and function and can be a first line of defence against infections. While research increasingly shows that terrestrial plant microbiomes contribute to bacterial, fungal, and oomycete disease resistance, no comparable experimental work has investigated marine plant microbiomes or more diverse disease agents. We test the hypothesis that the eelgrass (Zostera marina) leaf microbiome increases resistance to seagrass wasting disease. From field eelgrass with paired diseased and asymptomatic tissue, 16S rRNA gene amplicon sequencing revealed that bacterial composition and richness varied markedly between diseased and asymptomatic tissue in one of the two years. This suggests that the influence of disease on eelgrass microbial communities may vary with environmental conditions. We next experimentally reduced the eelgrass microbiome with antibiotics and bleach, then inoculated plants with Labyrinthula zosterae, the causative agent of wasting disease. We detected significantly higher disease severity in eelgrass with a native microbiome than an experimentally reduced microbiome. Our results over multiple experiments do not support a protective role of the eelgrass microbiome against L. zosterae. Further studies of these marine host-microbe-pathogen relationships may continue to show new relationships between plant microbiomes and diseases.
Collapse
Affiliation(s)
- Olivia J Graham
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Emily M Adamczyk
- Department of Zoology and Biodiversity Research Centre, Unceded xʷməθkʷəy̓əm (Musqueam) Territory, University of British Columbia, Vancouver, British Columbia, Canada
| | - Siobhan Schenk
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Phoebe Dawkins
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Samantha Burke
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Emily Chei
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Kaitlyn Cisz
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Sukanya Dayal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Jack Elstner
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | | | - Taylor Hughes
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Omisha Manglani
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Miles McDonald
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Chloe Mikles
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Anna Poslednik
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Audrey Vinton
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Laura Wegener Parfrey
- Department of Zoology and Biodiversity Research Centre, Unceded xʷməθkʷəy̓əm (Musqueam) Territory, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - C Drew Harvell
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
15
|
Liu X, Salles JF. Drivers and consequences of microbial community coalescence. THE ISME JOURNAL 2024; 18:wrae179. [PMID: 39288091 PMCID: PMC11447283 DOI: 10.1093/ismejo/wrae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/14/2024] [Accepted: 09/16/2024] [Indexed: 09/19/2024]
Abstract
Microbial communities are undergoing unprecedented dispersion and amalgamation across diverse ecosystems, thereby exerting profound and pervasive influences on microbial assemblages and ecosystem dynamics. This review delves into the phenomenon of community coalescence, offering an ecological overview that outlines its four-step process and elucidates the intrinsic interconnections in the context of community assembly. We examine pivotal mechanisms driving community coalescence, with a particular emphasis on elucidating the fates of both source and resident microbial communities and the consequential impacts on the ecosystem. Finally, we proffer recommendations to guide researchers in this rapidly evolving domain, facilitating deeper insights into the ecological ramifications of microbial community coalescence.
Collapse
Affiliation(s)
- Xipeng Liu
- Microbial Ecology cluster, Genomics Research in Ecology and Evolution in Nature (GREEN), Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
- Ecologie Microbienne Lyon, Centre National de la Recherche Scientifique (CNRS) UMR5557, Bâtiment Grégoire Mendel, 69100 Villeurbanne, France
| | - Joana Falcão Salles
- Microbial Ecology cluster, Genomics Research in Ecology and Evolution in Nature (GREEN), Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
16
|
Zhao Y, Hou X, Wang L, Wang L, Yao B, Li Y. Fe-loaded biochar thin-layer capping for the remediation of sediment polluted with nitrate and bisphenol A: Insight into interdomain microbial interactions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122478. [PMID: 37678739 DOI: 10.1016/j.envpol.2023.122478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
The information on the collaborative removal of nitrate and trace organic contaminants in the thin-layer capping system covered with Fe-loaded biochar (FeBC) is limited. The community changes of bacteria, archaea and fungi, and their co-occurrence patterns during the remediation processes are also unknown. In this study, the optimized biochar (BC) and FeBC were selected as the capping materials in a batch experiment for the remediation of overlying water and sediment polluted with nitrate and bisphenol A (BPA). The community structure and metabolic activities of bacteria, archaea and fungi were investigated. During the incubation (28 d), the nitrate in overlying water decreased from 29.6 to 11.0 mg L-1 in the FeBC group, 2.9 and 1.8 times higher than the removal efficiencies in Control and BC group. The nitrate in the sediment declined from 5.03 to 0.75 mg kg-1 in the FeBC group, 1.3 and 1.1 times higher than those in Control and BC group. The BPA content in the overlying water in BC group and FeBC group maintained below 0.4 mg L-1 during incubation, signally lower than in the Control group. After capping with FeBC, a series of species in bacteria, archaea and fungi could collaboratively contribute to the removal of nitrate and BPA. In the FeBC group, more metabolism pathways related to nitrogen metabolism (KO00910) and Bisphenol degradation (KO00363) were generated. The co-occurrence network analysis manifested a more intense interaction within bacteria communities than archaea and fungi. Proteobacteria, Firmicutes, Actinobacteria in bacteria, and Crenarchaeota in archaea are verified keystone species in co-occurrence network construction. The information demonstrated the improved pollutant attenuation by optimizing biochar properties, improving microbial diversity and upgrading microbial metabolic activities. Our results are of significance in providing theoretical guidance on the remediation of sediments polluted with nitrate and trace organic contaminants.
Collapse
Affiliation(s)
- Yiheng Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China
| | - Xing Hou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China; Institute of Water Science and Technology, Hohai University, Nanjing, 210098, PR China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China.
| | - Linqiong Wang
- College of Oceanography, Hohai University, Nanjing, 210098, PR China
| | - Bian Yao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China
| |
Collapse
|
17
|
Li C, Miao L, Adyel TM, Wu J, Hou J. Transformation of Biofilm to Carbon Sinks after Prolonged Droughts Linked with Algal Biodiversity Change. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15487-15498. [PMID: 37807898 DOI: 10.1021/acs.est.3c04631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Global climate change significantly increased the duration of droughts in intermittent rivers, impacting benthic microbial-mediated biogeochemical processes. However, the impact of prolonged droughts on the carbon contribution of intermittent rivers remains poorly understood. In this study, we investigated the potential effects of varying drought gradients (ranging from 20 to 130 days) on benthic biofilms community structure (algae, bacteria, and fungi) and their carbon metabolism functions (ecosystem metabolism and carbon dioxide (CO2) emission fluxes) using mesocosm experiments. Our findings indicate that longer drought durations lead to reduced alpha diversity and community heterogeneity, tighter interdomain networks, and an increased role of stochastic processes in community assembly, with a discernible threshold at around 60 days. Concurrently, the biofilm transforms into a carbon sink following a drought period of 60 days, as evidenced by the transformation of CO2 emission fluxes from 633.25 ± 194.69 to -349.61 ± 277.79 mg m-2 h-1. Additionally, the partial least-squares path model revealed that the resilience of algal communities and network stability may drive biofilm's transformation into a carbon sink, primarily through the heightened resilience of autotrophic metabolism. This study underscores the significance of the carbon contribution from intermittent rivers, as the shift in carbon metabolism functions with increasing droughts could lead to skewed estimations of current riverine carbon fluxes.
Collapse
Affiliation(s)
- Chaoran Li
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Tanveer M Adyel
- STEM, University of South Australia, Mawson Lakes 5095, SA, Australia
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| |
Collapse
|
18
|
Li J, Yang C, Jousset A, Yang K, Wang X, Xu Z, Yang T, Mei X, Zhong Z, Xu Y, Shen Q, Friman VP, Wei Z. Engineering multifunctional rhizosphere probiotics using consortia of Bacillus amyloliquefaciens transposon insertion mutants. eLife 2023; 12:e90726. [PMID: 37706503 PMCID: PMC10519709 DOI: 10.7554/elife.90726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/13/2023] [Indexed: 09/15/2023] Open
Abstract
While bacterial diversity is beneficial for the functioning of rhizosphere microbiomes, multi-species bioinoculants often fail to promote plant growth. One potential reason for this is that competition between different species of inoculated consortia members creates conflicts for their survival and functioning. To circumvent this, we used transposon insertion mutagenesis to increase the functional diversity within Bacillus amyloliquefaciens bacterial species and tested if we could improve plant growth promotion by assembling consortia of highly clonal but phenotypically dissimilar mutants. While most insertion mutations were harmful, some significantly improved B. amyloliquefaciens plant growth promotion traits relative to the wild-type strain. Eight phenotypically distinct mutants were selected to test if their functioning could be improved by applying them as multifunctional consortia. We found that B. amyloliquefaciens consortium richness correlated positively with plant root colonization and protection from Ralstonia solanacearum phytopathogenic bacterium. Crucially, 8-mutant consortium consisting of phenotypically dissimilar mutants performed better than randomly assembled 8-mutant consortia, suggesting that improvements were likely driven by consortia multifunctionality instead of consortia richness. Together, our results suggest that increasing intra-species phenotypic diversity could be an effective way to improve probiotic consortium functioning and plant growth promotion in agricultural systems.
Collapse
Affiliation(s)
- Jingxuan Li
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural UniversityNanjingChina
| | - Chunlan Yang
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural UniversityNanjingChina
| | - Alexandre Jousset
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural UniversityNanjingChina
| | - Keming Yang
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural UniversityNanjingChina
| | - Xiaofang Wang
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural UniversityNanjingChina
| | - Zhihui Xu
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural UniversityNanjingChina
| | - Tianjie Yang
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural UniversityNanjingChina
| | - Xinlan Mei
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural UniversityNanjingChina
| | - Zengtao Zhong
- College of Life Science, Nanjing Agricultural UniversityNanjingChina
| | - Yangchun Xu
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural UniversityNanjingChina
| | - Qirong Shen
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural UniversityNanjingChina
| | - Ville-Petri Friman
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural UniversityNanjingChina
- Department of Microbiology, University of HelsinkiHelsinkiFinland
| | - Zhong Wei
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural UniversityNanjingChina
| |
Collapse
|
19
|
Yang K, Fu R, Feng H, Jiang G, Finkel O, Sun T, Liu M, Huang B, Li S, Wang X, Yang T, Wang Y, Wang S, Xu Y, Shen Q, Friman VP, Jousset A, Wei Z. RIN enhances plant disease resistance via root exudate-mediated assembly of disease-suppressive rhizosphere microbiota. MOLECULAR PLANT 2023; 16:1379-1395. [PMID: 37563832 DOI: 10.1016/j.molp.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 05/06/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
The RIPENING-INHIBITOR (RIN) transcriptional factor is a key regulator governing fruit ripening. While RIN also affects other physiological processes, its potential roles in triggering interactions with the rhizosphere microbiome and plant health are unknown. Here we show that RIN affects microbiome-mediated disease resistance via root exudation, leading to recruitment of microbiota that suppress the soil-borne, phytopathogenic Ralstonia solanacearum bacterium. Compared with the wild-type (WT) plant, RIN mutants had different root exudate profiles, which were associated with distinct changes in microbiome composition and diversity. Specifically, the relative abundances of antibiosis-associated genes and pathogen-suppressing Actinobacteria (Streptomyces) were clearly lower in the rhizosphere of rin mutants. The composition, diversity, and suppressiveness of rin plant microbiomes could be restored by the application of 3-hydroxyflavone and riboflavin, which were exuded in much lower concentrations by the rin mutant. Interestingly, RIN-mediated effects on root exudates, Actinobacteria, and disease suppression were evident from the seedling stage, indicating that RIN plays a dual role in the early assembly of disease-suppressive microbiota and late fruit development. Collectively, our work suggests that, while plant disease resistance is a complex trait driven by interactions between the plant, rhizosphere microbiome, and the pathogen, it can be indirectly manipulated using "prebiotic" compounds that promote the recruitment of disease-suppressive microbiota.
Collapse
Affiliation(s)
- Keming Yang
- Key Lab of Organic-based Fertilizers of China, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ruixin Fu
- Key Lab of Organic-based Fertilizers of China, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; School of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China
| | - Haichao Feng
- College of Agriculture, Henan University, Zhengzhou 450046, China
| | - Gaofei Jiang
- Key Lab of Organic-based Fertilizers of China, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Omri Finkel
- Department of Plant and Environmental Sciences, Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tianyu Sun
- Key Lab of Organic-based Fertilizers of China, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Mingchun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Baowen Huang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| | - Shan Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Xiaofang Wang
- Key Lab of Organic-based Fertilizers of China, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Tianjie Yang
- Key Lab of Organic-based Fertilizers of China, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Yikui Wang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China.
| | - Shimei Wang
- Key Lab of Organic-based Fertilizers of China, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yangchun Xu
- Key Lab of Organic-based Fertilizers of China, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Qirong Shen
- Key Lab of Organic-based Fertilizers of China, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ville-Petri Friman
- Key Lab of Organic-based Fertilizers of China, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Department of Biology, University of York, York YO10 5DD, UK; Department of Microbiology, University of Helsinki, 00014 Helsinki, Finland
| | - Alexandre Jousset
- Key Lab of Organic-based Fertilizers of China, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhong Wei
- Key Lab of Organic-based Fertilizers of China, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
20
|
Li X, Chen D, Carrión VJ, Revillini D, Yin S, Dong Y, Zhang T, Wang X, Delgado-Baquerizo M. Acidification suppresses the natural capacity of soil microbiome to fight pathogenic Fusarium infections. Nat Commun 2023; 14:5090. [PMID: 37607924 PMCID: PMC10444831 DOI: 10.1038/s41467-023-40810-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/11/2023] [Indexed: 08/24/2023] Open
Abstract
Soil-borne pathogens pose a major threat to food production worldwide, particularly under global change and with growing populations. Yet, we still know very little about how the soil microbiome regulates the abundance of soil pathogens and their impact on plant health. Here we combined field surveys with experiments to investigate the relationships of soil properties and the structure and function of the soil microbiome with contrasting plant health outcomes. We find that soil acidification largely impacts bacterial communities and reduces the capacity of soils to combat fungal pathogens. In vitro assays with microbiomes from acidified soils further highlight a declined ability to suppress Fusarium, a globally important plant pathogen. Similarly, when we inoculate healthy plants with an acidified soil microbiome, we show a greatly reduced capacity to prevent pathogen invasion. Finally, metagenome sequencing of the soil microbiome and untargeted metabolomics reveals a down regulation of genes associated with the synthesis of sulfur compounds and reduction of key traits related to sulfur metabolism in acidic soils. Our findings suggest that changes in the soil microbiome and disruption of specific microbial processes induced by soil acidification can play a critical role for plant health.
Collapse
Affiliation(s)
- Xiaogang Li
- State Key Laboratory of Tree Genetics and Breeding, College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Dele Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Shanghai, China
| | - Víctor J Carrión
- Microbial Biotechnology, Institute of Biology, Leiden University, Leiden, the Netherlands
- Departamento de Microbiología, Facultad de Ciencias, Campus Universitario de Teatinos s/n, Universidad de Málaga, Málaga, Spain
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM) UMA-CSIC, 29010, Málaga, Spain
| | - Daniel Revillini
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
| | - Shan Yin
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Shanghai, China
| | - Yuanhua Dong
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Taolin Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Xingxiang Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China.
- Ecological Experimental Station of Red Soil, Chinese Academy of Sciences, Yingtan, China.
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain.
| |
Collapse
|
21
|
Liu C, Han D, Yang H, Liu Z, Gao C, Liu Y. Effects of peach branch organic fertilizer on the soil microbial community in peach orachards. Front Microbiol 2023; 14:1223420. [PMID: 37485500 PMCID: PMC10361838 DOI: 10.3389/fmicb.2023.1223420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Peach branches is a by-product of peach industry. Making peach branch waste into peach branch organic fertilizer (PBOF) is a promising strategy of ecological utilization. In this study, the effects of PBOF on the yield and quality of peach fruit, chemical properties of bulk soil, and soil bacterial communities were investigated in a peach orchard. The results showed that the yield and sugar/acid ratio of two high-level PBOF treatments (SDH.4 and SKR.4) was higher than no fertilization treatment (CK), but there was no significant difference compared to the commercial organic fertilizer treatment (SYT.4). Moreover, the three fertilizer treatments increased soil nutrients such as soil organic matter (SOM) and available potassium (AK), compared to CK. Furthermore, PBOF increased the relative abundance of beneficial bacteria, and enhanced the soil bacterial co-occurrence pattern and the potential function of bacterial communities to degrade exogenous compounds. In addition, thanks to the local policy of encouraging the use of PBOF, the use cost of PBOF is lower than commercial organic fertilizer, which is conducive to the development of ecological agriculture.
Collapse
Affiliation(s)
- Chenyu Liu
- College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, China
| | - Defeng Han
- College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, China
| | | | - Zhiling Liu
- College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, China
| | - Chengda Gao
- College of Humanities and Urban-Rural Development, Beijing University of Agriculture, Beijing, China
| | - Yueping Liu
- College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, China
- Key Laboratory for Northern Urban Agriculture Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
22
|
Li M, Wang K, Zheng W, Maddela NR, Xiao Y, Li Z, Tawfik A, Chen Y, Zhou Z. Metagenomics and network analysis decipher profiles and co-occurrence patterns of bacterial taxa in soils amended with biogas slurry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162911. [PMID: 36933736 DOI: 10.1016/j.scitotenv.2023.162911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 05/06/2023]
Abstract
Microbial community and interaction play crucial roles in ecological functions of soil including nutrient cycling carbon storage, and water maintenance etc. Numerous studies have shown that the application of fertilizers alters bacterial diversity; However, it remains unknown whether and how the continuous application of biogas slurry from anaerobic digestion affects the spatiotemporal heterogeneity of soil layers, complexity and stability of microbial networks, and functions related to C and N cycling. Here, we investigated the bacterial taxa of purple soils treated with swine biogas slurry for four different periods (0, 1, 3 and 8 years) and five different soil depths (20, 40, 60, 80 and 100 cm). The results showed that the application period of biogas slurry and soil depth were two powerful drivers of bacterial diversity and communities. Biogas slurry input resulted in marked changes in the bacterial diversity and composition at the soil depths of 0-60 cm. The relative abundances of Acidobacteriota, Myxococcot, and Nitrospirota decreased, while Actinobacteria, Chloroflexi, and Gemmatimonadota increased with repeated biogas slurry input. The decreasing complexity and stability of the bacterial network with decreasing nodes, links, robustness, and cohesions were found with increasing years of biogas slurry application, suggesting that the bacterial network of soils treated by the biogas slurry became more vulnerability compared with the control. Also, the linkages between the keystone taxa and soil properties were weakened after biogas slurry input, leading to the cooccurrence patterns being less affected by the keystones in the high level of nutrients. Metagenomic analysis confirmed that biogas slurry input increased the relative abundance of liable-C degradation and denitrification genes, which could highly impact the network properties. Overall, our study could give comprehensive understandings on the impacts of biogas slurry amendment on soils, which could be useful for maintaining sustainable agriculture and soil health with liquid fertilization.
Collapse
Affiliation(s)
- Mengjie Li
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing 400715, China
| | - Kangting Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing 400715, China
| | - Wei Zheng
- College of Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Naga Raju Maddela
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Salud, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador
| | - Yeyuan Xiao
- Department of Civil and Environmental Engineering, Shantou University, Shantou 515063, China
| | - Zhaolei Li
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Ahmed Tawfik
- National Research Centre, Water Pollution Research Department, Dokki,Giza 12622, Egypt
| | - Yucheng Chen
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing 400715, China.
| | - Zhongbo Zhou
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing 400715, China.
| |
Collapse
|
23
|
Liu X, Shi Y, Yang T, Gao G, Chu H. QCMI: A method for quantifying putative biotic associations of microbes at the community level. IMETA 2023; 2:e92. [PMID: 38868428 PMCID: PMC10989849 DOI: 10.1002/imt2.92] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/09/2023] [Accepted: 01/27/2023] [Indexed: 06/14/2024]
Abstract
A workflow has been compiled as "qcmi" R package-the quantifying community-level microbial interactions-to identify and quantify the putative biotic associations of microbes at the community level from ecological networks.
Collapse
Affiliation(s)
- Xu Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yu Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifengChina
| | - Teng Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Gui‐Feng Gao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
24
|
Tao C, Wang Z, Liu S, Lv N, Deng X, Xiong W, Shen Z, Zhang N, Geisen S, Li R, Shen Q, Kowalchuk GA. Additive fungal interactions drive biocontrol of Fusarium wilt disease. THE NEW PHYTOLOGIST 2023; 238:1198-1214. [PMID: 36740577 DOI: 10.1111/nph.18793] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Host-associated fungi can help protect plants from pathogens, and empirical evidence suggests that such microorganisms can be manipulated by introducing probiotic to increase disease suppression. However, we still generally lack the mechanistic knowledge of what determines the success of probiotic application, hampering the development of reliable disease suppression strategies. We conducted a three-season consecutive microcosm experiment in which we amended banana Fusarium wilt disease-conducive soil with Trichoderma-amended biofertilizer or lacking this inoculum. High-throughput sequencing was complemented with cultivation-based methods to follow changes in fungal microbiome and explore potential links with plant health. Trichoderma application increased banana biomass by decreasing disease incidence by up to 72%, and this effect was attributed to changes in fungal microbiome, including the reduction in Fusarium oxysporum density and enrichment of pathogen-suppressing fungi (Humicola). These changes were accompanied by an expansion in microbial carbon resource utilization potential, features that contribute to disease suppression. We further demonstrated the disease suppression actions of Trichoderma-Humicola consortia, and results suggest niche overlap with pathogen and induction of plant systemic resistance may be mechanisms driving the observed biocontrol effects. Together, we demonstrate that fungal inoculants can modify the composition and functioning of the resident soil fungal microbiome to suppress soilborne disease.
Collapse
Affiliation(s)
- Chengyuan Tao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Sanya, Hainan, 572000, China
| | - Zhe Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Sanya, Hainan, 572000, China
| | - Shanshan Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Nana Lv
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xuhui Deng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Wu Xiong
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zongzhuan Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Sanya, Hainan, 572000, China
| | - Nan Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Stefan Geisen
- Department of Terrestrial Ecology, Netherlands Institute for Ecology (NIOO-KNAW), Wageningen, 6708 PB, the Netherlands
- Laboratory of Nematology, Wageningen University, Wageningen, 6700 AA, the Netherlands
| | - Rong Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Sanya, Hainan, 572000, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - George A Kowalchuk
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Utrecht, 3584 CH, the Netherlands
| |
Collapse
|
25
|
Wang Z, Hu X, Solanki MK, Pang F. A Synthetic Microbial Community of Plant Core Microbiome Can Be a Potential Biocontrol Tool. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5030-5041. [PMID: 36946724 DOI: 10.1021/acs.jafc.2c08017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Microbes are accepted as the foremost drivers of the rhizosphere ecology that influences plant health in direct or indirect ways. In recent years, the rapid development of gene sequencing technology has greatly facilitated the study of plant microbiome structure and function, and various plant-associated microbiomes have been categorized. Additionally, there is growing research interest in plant-disease-related microbes, and some specific microflora beneficial to plant health have been identified. This Review discusses the plant-associated microbiome's biological control pathways and functions to modulate plant defense against pathogens. How do plant microbiomes enhance plant resistance? How does the plant core microbiome-associated synthetic microbial community (SynCom) improve plant health? This Review further points out the primary need to develop smart agriculture practices using SynComs against plant diseases. Finally, this Review provides ideas for future opportunities in plant disease control and mining new microbial resources.
Collapse
Affiliation(s)
- Zhen Wang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Agricultural College, Yulin Normal University, Yulin, Guangxi 537000, China
| | - Xiaohu Hu
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Agricultural College, Yulin Normal University, Yulin, Guangxi 537000, China
| | - Manoj Kumar Solanki
- Plant Cytogenetics and Molecular Biology Group, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice 40-701, Poland
| | - Fei Pang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Agricultural College, Yulin Normal University, Yulin, Guangxi 537000, China
| |
Collapse
|
26
|
Ge J, Li D, Ding J, Xiao X, Liang Y. Microbial coexistence in the rhizosphere and the promotion of plant stress resistance: A review. ENVIRONMENTAL RESEARCH 2023; 222:115298. [PMID: 36642122 DOI: 10.1016/j.envres.2023.115298] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Plants can recruit soil microorganisms into the rhizosphere when experiencing various environmental stresses, including biotic (e.g., insect pests) and abiotic (e.g., heavy metal pollution, droughts, floods, and salinity) stresses. However, species coexistence in plant resistance has not received sufficient attention. Current research on microbial coexistence is only at the community scale, and there is a limited understanding of the interaction patterns between species, especially microbe‒microbe interactions. The relevant interaction patterns are limited to a few model strains. The coexisting microbial communities form a stable system involving complex nutritional competition, metabolic exchange, and even interdependent interactions. This pattern of coexistence can ultimately enhance plant stress tolerance. Hence, a systematic understanding of the coexistence pattern of rhizosphere microorganisms under stress is essential for the precise development and utilization of synthetic microbial communities and the achievement of efficient ecological control. Here, we integrated current analytical methods and introduced several new experimental methods to elucidate rhizosphere microbial coexistence patterns. Some advancements (e.g., network analysis, coculture experiments, and synthetic communities) that can be applied to plant stress resistance are also updated. This review aims to summarize the key role and potential application prospects of microbial coexistence in the resistance of plants to environmental stresses. Our suggestions, enhancing plant resistance with coexisting microbes, would allow us to gain further knowledge on plant-microbial and microbial-microbial functions, and facilitate translation to more effective measures.
Collapse
Affiliation(s)
- Jiaqi Ge
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Dong Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jixian Ding
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xian Xiao
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China.
| | - Yuting Liang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
27
|
Cardoni M, Fernández-González AJ, Valverde-Corredor A, Fernández-López M, Mercado-Blanco J. Co-occurrence network analysis unveils the actual differential impact on the olive root microbiota by two Verticillium wilt biocontrol rhizobacteria. ENVIRONMENTAL MICROBIOME 2023; 18:21. [PMID: 36949520 PMCID: PMC10035242 DOI: 10.1186/s40793-023-00480-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Verticillium wilt of olive (VWO), caused by Verticillium dahliae Kleb, is one of the most threatening diseases affecting olive cultivation. An integrated disease management strategy is recommended for the effective control of VWO. Within this framework, the use of biological control agents (BCAs) is a sustainable and environmentally friendly approach. No studies are available on the impact that the introduction of BCAs has on the resident microbiota of olive roots. Pseudomonas simiae PICF7 and Paenibacillus polymyxa PIC73 are two BCAs effective against VWO. We examined the effects of the introduction of these BCAs on the structure, composition and co-occurrence networks of the olive (cv. Picual) root-associated microbial communities. The consequences of the subsequent inoculation with V. dahliae on BCA-treated plants were also assessed. RESULTS Inoculation with any of the BCAs did not produce significant changes in the structure or the taxonomic composition of the 'Picual' root-associated microbiota. However, significant and distinctive alterations were observed in the topologies of the co-occurrence networks. The introduction of PIC73 provoked a diminution of positive interactions within the 'Picual' microbial community; instead, PICF7 inoculation increased the microbiota's compartmentalization. Upon pathogen inoculation, the network of PIC73-treated plants decreased the number of interactions and showed a switch of keystone species, including taxa belonging to minor abundant phyla (Chloroflexi and Planctomycetes). Conversely, the inoculation of V. dahliae in PICF7-treated plants significantly increased the complexity of the network and the number of links among their modules, suggestive of a more stable network. No changes in their keystone taxa were detected. CONCLUSION The absence of significant modifications on the structure and composition of the 'Picual' belowground microbiota due to the introduction of the tested BCAs underlines the low/null environmental impact of these rhizobacteria. These findings may have important practical consequences regarding future field applications of these BCAs. Furthermore, each BCA altered the interactions among the components of the olive belowground microbiota in idiosyncratic ways (i.e. PIC73 strongly modified the number of positive relations in the 'Picual' microbiota whereas PICF7 mostly affected the network stability). These modifications may provide clues on the biocontrol strategies used by these BCAs.
Collapse
Affiliation(s)
- Martina Cardoni
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas [CSIC], Córdoba, Spain
| | | | - Antonio Valverde-Corredor
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas [CSIC], Córdoba, Spain
| | - Manuel Fernández-López
- Departamento de Microbiología del Suelo y la Planta, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Jesús Mercado-Blanco
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas [CSIC], Córdoba, Spain.
- Departamento de Microbiología del Suelo y la Planta, Estación Experimental del Zaidín, CSIC, Granada, Spain.
| |
Collapse
|
28
|
Guan X, Cheng Z, Li Y, Wang J, Zhao R, Guo Z, Zhao T, Huang L, Qiu C, Shi W, Jin S. Mixed organic and inorganic amendments enhance soil microbial interactions and environmental stress resistance of Tibetan barley on plateau farmland. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117137. [PMID: 36584462 DOI: 10.1016/j.jenvman.2022.117137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/08/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Sufficient crop yield while maintaining soil health and sustainable agricultural development is a global objective, serving a special challenge to certain climate-sensitive plateau areas. Despite conducting trails on a variety of soil amendments in plateau areas, systematic research is lacking regarding the influences of organic and inorganic amendments on soil quality, particularly soil microbiome. To our knowledge, this was the first study that compared the effects of inorganic, organic, and mixed amendments on typical plateau crop hulless barley (Hordeum vulgare L. var. Nudum, also known as "Qingke" in Chinese) over the course of tillering, jointing, and ripening. Microbial communities and their responses to amendments, soil properties and Tibetan hulless barley growth, yield were investigated. Results indicated that mixed organic and inorganic amendments promoted the abundance of rhizosphere microorganisms, enhancing the rhizosphere root-microbes interactions and resistance to pathogenic bacteria and environmental stresses. The rhizosphere abundant and significantly different genera Arthrobacter, Rhodanobacter, Sphingomona, Nocardioides and so on demonstrated their unique adaptation to the plateau environment based on the results of metagenomic binning. The abundance of 23 genes about plant growth and environmental adaptations in the mixed amendment soil were significantly higher than other treatments. Findings from this study suggest that the mixed organic/inorganic amendments can help establish a healthy microbiome and increase soil quality while achieving sufficient hulless barley yields in Tibet and presumably other similar geographic areas of high altitude.
Collapse
Affiliation(s)
- Xiangyu Guan
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Zhen Cheng
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Yiqiang Li
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Jinfeng Wang
- College of Food Science & Nutritional Engineering, China Agricultural University, No. 17 Qinghuadong Road, Haidian District, Beijing, 100083, China.
| | - Ruoyu Zhao
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Zining Guo
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Tingting Zhao
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Liying Huang
- Institute of Agricultural Quality Standards and Testing, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, 850031, China
| | - Cheng Qiu
- Institute of Agricultural Quality Standards and Testing, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, 850031, China
| | - Wenyu Shi
- College of Food Science & Nutritional Engineering, China Agricultural University, No. 17 Qinghuadong Road, Haidian District, Beijing, 100083, China
| | - Song Jin
- Department of Civil and Architectural Engineering, University of Wyoming, Laramie, WY, 82071, USA.
| |
Collapse
|
29
|
Poppeliers SW, Sánchez-Gil JJ, de Jonge R. Microbes to support plant health: understanding bioinoculant success in complex conditions. Curr Opin Microbiol 2023; 73:102286. [PMID: 36878082 DOI: 10.1016/j.mib.2023.102286] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/24/2023] [Accepted: 02/02/2023] [Indexed: 03/07/2023]
Abstract
A promising, sustainable way to enhance plant health and productivity is by leveraging beneficial microbes. Beneficial microbes are natural soil residents with proven benefits for plant performance and health. When applied in agriculture to improve crop yield and performance, these microbes are commonly referred to as bioinoculants. Yet, despite their promising properties, bioinoculant efficacy can vary dramatically in the field, hampering their applicability. Invasion of the rhizosphere microbiome is a critical determinant for bioinoculant success. Invasion is a complex phenomenon that is shaped by interactions with the local, resident microbiome and the host plant. Here, we explore all of these dimensions by cross-cutting ecological theory and molecular biology of microbial invasion in the rhizosphere. We refer to the famous Chinese philosopher and strategist Sun Tzu, who believed that solutions for problems require deep understanding of the problems themselves, to review the major biotic factors determining bioinoculant effectiveness.
Collapse
Affiliation(s)
- Sanne Wm Poppeliers
- Plant-Microbe Interactions, Department of Biology, Science for Life, Utrecht University, Utrecht, the Netherlands
| | - Juan J Sánchez-Gil
- Plant-Microbe Interactions, Department of Biology, Science for Life, Utrecht University, Utrecht, the Netherlands
| | - Ronnie de Jonge
- Plant-Microbe Interactions, Department of Biology, Science for Life, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
30
|
Ogier JC, Akhurst R, Boemare N, Gaudriault S. The endosymbiont and the second bacterial circle of entomopathogenic nematodes. Trends Microbiol 2023; 31:629-643. [PMID: 36801155 DOI: 10.1016/j.tim.2023.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 02/19/2023]
Abstract
Single host-symbiont interactions should be reconsidered from the perspective of the pathobiome. We revisit here the interactions between entomopathogenic nematodes (EPNs) and their microbiota. We first describe the discovery of these EPNs and their bacterial endosymbionts. We also consider EPN-like nematodes and their putative symbionts. Recent high-throughput sequencing studies have shown that EPNs and EPN-like nematodes are also associated with other bacterial communities, referred to here as the second bacterial circle of EPNs. Current findings suggest that some members of this second bacterial circle contribute to the pathogenic success of nematodes. We suggest that the endosymbiont and the second bacterial circle delimit an EPN pathobiome.
Collapse
Affiliation(s)
| | | | - Noël Boemare
- DGIMI, Univ Montpellier, INRAE, Montpellier, France
| | | |
Collapse
|
31
|
Li Y, Qi G, Xie Z, Li B, Wang R, Tan J, Shi H, Xiang B, Zhao X. The Endophytic Root Microbiome Is Different in Healthy and Ralstonia solanacearum-Infected Plants and Is Regulated by a Consortium Containing Beneficial Endophytic Bacteria. Microbiol Spectr 2023; 11:e0203122. [PMID: 36515552 PMCID: PMC9927471 DOI: 10.1128/spectrum.02031-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Plant bacterial wilt disease caused by Ralstonia solanacearum leads to huge economic losses worldwide. Endophytes play vital roles in promoting plant growth and health. It is hypothesized that the endophytic root microbiome and network structure are different in healthy and diseased plants. Here, the endophytic root microbiomes and network structures of healthy and diseased tobacco plants were investigated. Composition and network structures of endophytic root microbiomes were distinct between healthy and diseased plants. Healthy plants were enriched with more beneficial bacteria and bacteria with antagonistic activity against R. solanacearum. R. solanacearum was most abundant in diseased plants. Microbial networks in diseased plants had fewer modules and edges, lower connectivity, and fewer keystone microorganisms than those in healthy plants. Almost half of the nodes were unique in the two networks. Ralstonia was identified as a key microorganism of the diseased-plant network. In healthy plants, abundant bacteria and biomarkers (Pseudomonas and Streptomyces) and keystone microorganisms (Bacillus, Lysobacter, and Paenibacillus) were plant-beneficial bacteria and showed antibacterial and plant growth-promoting activities. The endophytic strain Bacillus velezensis E9 produced bacillaene to inhibit R. solanacearum. Consortia containing keystone microorganisms and beneficial endophytic bacteria significantly regulated the endophytic microbiome and attenuated bacterial wilt by inducing systemic resistance and producing antibiotic. Overall, the endophytic root microbiome and network structure in diseased plants were different from those in healthy plants. The endophytic root microbiome of diseased plants had low abundances of beneficial bacteria and an unstable network and lacked beneficial keystone microorganisms, which favored infection. Synthetic microbial consortia were effective measures for preventing R. solanacearum infection. IMPORTANCE Bacterial wilt disease causes heavy yield losses in many crops. Endophytic microbiomes play important roles in control of plant diseases. However, the role of the endophytic root microbiome in controlling bacterial wilt disease is poorly understood. Here, differences in endophytic root microbiomes and network structures between healthy and diseased tobacco plants are reported. A synthetic microbial consortium containing beneficial endophytic bacteria was used to regulate the endophytic microbiome and attenuate bacterial wilt disease. The results could be generally used to guide control of bacterial wilt disease.
Collapse
Affiliation(s)
- Yiting Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Gaofu Qi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ziqiong Xie
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Baolong Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Rui Wang
- Enshi Tobacco Company of Hubei Province, Enshi, China
| | - Jun Tan
- Enshi Tobacco Company of Hubei Province, Enshi, China
| | - Heli Shi
- Enshi Tobacco Company of Hubei Province, Enshi, China
| | - Bikun Xiang
- Enshi Tobacco Company of Hubei Province, Enshi, China
| | - Xiuyun Zhao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
32
|
Yang K, Wang X, Hou R, Lu C, Fan Z, Li J, Wang S, Xu Y, Shen Q, Friman VP, Wei Z. Rhizosphere phage communities drive soil suppressiveness to bacterial wilt disease. MICROBIOME 2023; 11:16. [PMID: 36721270 PMCID: PMC9890766 DOI: 10.1186/s40168-023-01463-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 01/09/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND Bacterial viruses, phages, play a key role in nutrient turnover and lysis of bacteria in terrestrial ecosystems. While phages are abundant in soils, their effects on plant pathogens and rhizosphere bacterial communities are poorly understood. Here, we used metagenomics and direct experiments to causally test if differences in rhizosphere phage communities could explain variation in soil suppressiveness and bacterial wilt plant disease outcomes by plant-pathogenic Ralstonia solanacearum bacterium. Specifically, we tested two hypotheses: (1) that healthy plants are associated with stronger top-down pathogen control by R. solanacearum-specific phages (i.e. 'primary phages') and (2) that 'secondary phages' that target pathogen-inhibiting bacteria play a stronger role in diseased plant rhizosphere microbiomes by indirectly 'helping' the pathogen. RESULTS Using a repeated sampling of tomato rhizosphere soil in the field, we show that healthy plants are associated with distinct phage communities that contain relatively higher abundances of R. solanacearum-specific phages that exert strong top-down pathogen density control. Moreover, 'secondary phages' that targeted pathogen-inhibiting bacteria were more abundant in the diseased plant microbiomes. The roles of R. solanacearum-specific and 'secondary phages' were directly validated in separate greenhouse experiments where we causally show that phages can reduce soil suppressiveness, both directly and indirectly, via top-down control of pathogen densities and by alleviating interference competition between pathogen-inhibiting bacteria and the pathogen. CONCLUSIONS Together, our findings demonstrate that soil suppressiveness, which is most often attributed to bacteria, could be driven by rhizosphere phage communities that regulate R. solanacearum densities and strength of interference competition with pathogen-suppressing bacteria. Rhizosphere phage communities are hence likely to be important in determining bacterial wilt disease outcomes and soil suppressiveness in agricultural fields. Video Abstract.
Collapse
Affiliation(s)
- Keming Yang
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xiaofang Wang
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Rujiao Hou
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Chunxia Lu
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Zhe Fan
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jingxuan Li
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Shuo Wang
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yangchun Xu
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Qirong Shen
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Ville-Petri Friman
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK.
- Department of Microbiology, University of Helsinki, 00014, Helsinki, Finland.
| | - Zhong Wei
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
33
|
Plant litter strengthens positive biodiversity-ecosystem functioning relationships over time. Trends Ecol Evol 2023; 38:473-484. [PMID: 36599737 DOI: 10.1016/j.tree.2022.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 01/04/2023]
Abstract
Plant biodiversity-productivity relationships become stronger over time in grasslands, forests, and agroecosystems. Plant shoot and root litter is important in mediating these positive relationships, yet the functional role of plant litter remains overlooked in long-term experiments. We propose that plant litter strengthens biodiversity-ecosystem functioning relationships over time in four ways by providing decomposing detritus that releases nitrogen (N) over time for uptake by existing and succeeding plants, enhancing overall soil fertility, changing soil community composition, and reducing the impact of residue-borne pathogens and pests. We bring new insights into how diversity-productivity relationships may change over time and suggest that the diversification of crop residue retention through increased residue diversity from plant mixtures will improve the sustainability of food production systems.
Collapse
|
34
|
Wang L, Chen M, Lam PY, Dini-Andreote F, Dai L, Wei Z. Multifaceted roles of flavonoids mediating plant-microbe interactions. MICROBIOME 2022; 10:233. [PMID: 36527160 PMCID: PMC9756786 DOI: 10.1186/s40168-022-01420-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 11/09/2022] [Indexed: 05/07/2023]
Abstract
Plant-microbe interactions dynamically affect plant growth, health, and development. The mechanisms underpinning these associations are-to a large extent-mediated by specialized host-derived secondary metabolites. Flavonoids are one of the most studied classes of such metabolites, regulating both plant development and the interaction with commensal microbes. Here, we provide a comprehensive review of the multiple roles of flavonoids in mediating plant-microbe interactions. First, we briefly summarize the general aspects of flavonoid synthesis, transport, and exudation in plants. Then, we review the importance of flavonoids regulating plant-microbe interactions and dynamically influencing the overall community assembly of plant-root microbiomes. Last, we highlight potential knowledge gaps in our understanding of how flavonoids determine the interactions between plants and commensal microbes. Collectively, we advocate the importance of advancing research in this area toward innovative strategies to effectively manipulate plant-microbiome composition, in this case, via flavonoid production and exudation in plant roots. Video Abstract.
Collapse
Affiliation(s)
- Lanxiang Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Moxian Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Pui-Ying Lam
- Center for Crossover Education, Graduate School of Engineering Science, Akita University, Tegata Gakuen-machi 1-1, Akita City, Akita, 010-8502, Japan
| | - Francisco Dini-Andreote
- Department of Plant Science & Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
35
|
Is Plant Microbiota a Driver of Resistance to the Vector-Borne Pathogen Xylella fastidiosa? Pathogens 2022; 11:pathogens11121492. [PMID: 36558826 PMCID: PMC9782604 DOI: 10.3390/pathogens11121492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Xylella fastidiosa is a vector-borne plant vascular bacterial pathogen that causes several economically important diseases, including Pierce's disease (PD) in grapevine and olive quick decline syndrome (OQDS) in olive trees, among others [...].
Collapse
|
36
|
Piccardi P, Alberti G, Alexander JM, Mitri S. Microbial invasion of a toxic medium is facilitated by a resident community but inhibited as the community co-evolves. THE ISME JOURNAL 2022; 16:2644-2652. [PMID: 36104451 PMCID: PMC9666444 DOI: 10.1038/s41396-022-01314-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/27/2022] [Accepted: 08/24/2022] [Indexed: 12/15/2022]
Abstract
Predicting whether microbial invaders will colonize an environment is critical for managing natural and engineered ecosystems, and controlling infectious disease. Invaders often face competition by resident microbes. But how invasions play out in communities dominated by facilitative interactions is less clear. We previously showed that growth medium toxicity can promote facilitation between four bacterial species, as species that cannot grow alone rely on others to survive. Following the same logic, here we allowed other bacterial species to invade the four-species community and found that invaders could more easily colonize a toxic medium when the community was present. In a more benign environment instead, invasive species that could survive alone colonized more successfully when the residents were absent. Next, we asked whether early colonists could exclude future ones through a priority effect, by inoculating the invaders into the resident community only after its members had co-evolved for 44 weeks. Compared to the ancestral community, the co-evolved resident community was more competitive toward invaders and less affected by them. Our experiments show how communities may assemble by facilitating one another in harsh, sterile environments, but that arriving after community members have co-evolved can limit invasion success.
Collapse
Affiliation(s)
- Philippe Piccardi
- Département de Microbiologie Fondamentale, Université de Lausanne, Lausanne, Switzerland
| | - Géraldine Alberti
- Département de Microbiologie Fondamentale, Université de Lausanne, Lausanne, Switzerland
| | - Jake M Alexander
- Department of Environmental Systems Science, ETH Zurich, Zürich, Switzerland
| | - Sara Mitri
- Département de Microbiologie Fondamentale, Université de Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
37
|
Hu H, Wang M, Huang Y, Xu Z, Xu P, Nie Y, Tang H. Guided by the principles of microbiome engineering: Accomplishments and perspectives for environmental use. MLIFE 2022; 1:382-398. [PMID: 38818482 PMCID: PMC10989833 DOI: 10.1002/mlf2.12043] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/19/2022] [Accepted: 09/02/2022] [Indexed: 06/01/2024]
Abstract
Although the accomplishments of microbiome engineering highlight its significance for the targeted manipulation of microbial communities, knowledge and technical gaps still limit the applications of microbiome engineering in biotechnology, especially for environmental use. Addressing the environmental challenges of refractory pollutants and fluctuating environmental conditions requires an adequate understanding of the theoretical achievements and practical applications of microbiome engineering. Here, we review recent cutting-edge studies on microbiome engineering strategies and their classical applications in bioremediation. Moreover, a framework is summarized for combining both top-down and bottom-up approaches in microbiome engineering toward improved applications. A strategy to engineer microbiomes for environmental use, which avoids the build-up of toxic intermediates that pose a risk to human health, is suggested. We anticipate that the highlighted framework and strategy will be beneficial for engineering microbiomes to address difficult environmental challenges such as degrading multiple refractory pollutants and sustain the performance of engineered microbiomes in situ with indigenous microorganisms under fluctuating conditions.
Collapse
Affiliation(s)
- Haiyang Hu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Miaoxiao Wang
- Department of Environmental Systems ScienceETH ZürichZürichSwitzerland
- Department of Environmental MicrobiologyETH ZürichEawagSwitzerland
| | - Yiqun Huang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Zhaoyong Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Yong Nie
- College of EngineeringPeking UniversityBeijingChina
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
38
|
Mo Y, Peng F, Jeppesen E, Gamfeldt L, Xiao P, Al MA, Yang J. Microbial network complexity drives non-linear shift in biodiversity-nutrient cycling in a saline urban reservoir. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:158011. [PMID: 35970466 DOI: 10.1016/j.scitotenv.2022.158011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Aquatic biodiversity is important in mediating ecosystem functioning, contributing to ecosystem sustainability and human wellbeing. However, how microbial network complexity affects the biodiversity-nutrient cycling relationship in saline freshwater ecosystems remains underexplored. Using high-resolution time-series data, we examined the relationships between microeukaryotic-bacterial community network complexity, biodiversity and multi-nutrient cycling in an urban reservoir undergoing a freshwater salinization-desalinization cycle. We found that low microbial diversity enhanced ecosystem multi-nutrient cycling under high salinity stress. In addition, multi-nutrient cycling declined with increased network complexity. Further, we found a non-linear relationship between salinity-induced shifts in the complexity of the microbial network and biodiversity-nutrient cycling (BNC) relationship of keystone taxa, i.e. the strength of the BNC relationship first became weak and then strong with increased network complexity. Together, these results highlighted the significant insight that there is not always positive relationship between biodiversity/network complexity and multi-nutrient cycling, even between network complexity and BNC relationship in real-world ecosystems, suggesting that preserving microbial association is important in aquatic health managing and evaluating the freshwater salinization problem.
Collapse
Affiliation(s)
- Yuanyuan Mo
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Peng
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Erik Jeppesen
- Department of Ecoscience, Aarhus University, Silkeborg 8600, Denmark; Sino-Danish Centre for Education and Research, Beijing 100049, China; Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara 06800, Turkey; Institute of Marine Sciences, Middle East Technical University, Erdemli-Mersin 33731, Turkey
| | - Lars Gamfeldt
- Department of Marine Sciences, University of Gothenburg, Göteborg SE-40530, Sweden
| | - Peng Xiao
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Mamun Abdullah Al
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Yang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
39
|
Li M, Pommier T, Yin Y, Cao W, Zhang X, Hu J, Hautier Y, Yang T, Xu Y, Shen Q, Kowalchuk GA, Jousset A, Wei Z. Resource availability drives bacteria community resistance to pathogen invasion via altering bacterial pairwise interactions. Environ Microbiol 2022; 24:5680-5689. [PMID: 36053873 DOI: 10.1111/1462-2920.16184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/29/2022] [Indexed: 01/12/2023]
Abstract
Microbial interactions within resident communities are a major determinant of resistance to pathogen invasion. Yet, interactions vary with environmental conditions, raising the question of how community composition and environments interactively shape invasion resistance. Here, we use resource availability (RA) as a model parameter altering the resistance of model bacterial communities to invasion by the plant pathogenic bacterium Ralstonia solanacearum. We found that at high RA, interactions between resident bacterial species were mainly driven by the direct antagonism, in terms of the means of invader inhibition. Consequently, the competitive resident communities with a higher production of antibacterial were invaded to a lesser degree than facilitative communities. At low RA, bacteria produced little direct antagonist potential, but facilitative communities reached a relatively higher community productivity, which showed higher resistance to pathogen invasion than competitive communities with lower productivities. This framework may lay the basis to understand complex microbial interactions and biological invasion as modulated by the dynamic changes of environmental resource availability.
Collapse
Affiliation(s)
- Mei Li
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Bio-interaction and Plant Health, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China.,Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Institute for Environmental Biology, Ecology and Biodiversity, Utrecht University, Utrecht, The Netherlands
| | - Thomas Pommier
- Univ Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Yue Yin
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Bio-interaction and Plant Health, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Wenhui Cao
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Bio-interaction and Plant Health, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Xiaohui Zhang
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Bio-interaction and Plant Health, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Jie Hu
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Bio-interaction and Plant Health, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China.,Institute for Environmental Biology, Ecology and Biodiversity, Utrecht University, Utrecht, The Netherlands.,UMR 6553 Ecobio, CNRS-University of Rennes, Rennes Cedex, France
| | - Yann Hautier
- Institute for Environmental Biology, Ecology and Biodiversity, Utrecht University, Utrecht, The Netherlands
| | - Tianjie Yang
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Bio-interaction and Plant Health, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Yangchun Xu
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Bio-interaction and Plant Health, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Qirong Shen
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Bio-interaction and Plant Health, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - George A Kowalchuk
- Institute for Environmental Biology, Ecology and Biodiversity, Utrecht University, Utrecht, The Netherlands
| | - Alexandre Jousset
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Bio-interaction and Plant Health, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Zhong Wei
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Bio-interaction and Plant Health, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| |
Collapse
|
40
|
Xing J, Chen M, Deng X, Chen J, Jiang P, Qin H. Resilience of soil microbial metabolic functions to temporary E. coli invasion. CHEMOSPHERE 2022; 307:135906. [PMID: 35944672 DOI: 10.1016/j.chemosphere.2022.135906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/23/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Due to the globalization and increasing human activities, there is a significant increase in bacterial invasions to the soil ecosystems. Soil resident communities are vulnerable to bacterial invasion and suffered legacy effects after unsuccessful invasion. However, whether such changes in the soil ecosystems are permanent or temporary remains unclear. Here, we investigated the functional resilience of soil ecosystems to bacterial invasion and intensive managements. We used Escherichia coli O157:H7 (E. coli) as model strain examined the soil microbial metabolic functions, including enzyme activities, nitrogen and carbon use efficiency, community niche, and carbon metabolic potential, as well as soil physicochemical properties and microbial invader survival in 8 soil samples, 4 from natural hardwood forests and 4 from intensively managed Moso bamboo forests. The results showed that soil ecosystems were not resistant to E. coli invasion regardless of the intensity of management, which the finding was significantly reflected in the nutrient-acquiring activities or carbon utilization, or both. Besides, the invasion legacy effect (the effect after invader apoptosis) was positively related to E. coli survival time. However, most of the metabolic functions could recover almost to the initial state after 135 days of incubation, suggesting a strong recovery capacity of the soil ecosystems. These data indicate that E. coli invasion has a legacy effect on the functions of soil resident communities. However, soil ecosystems are highly resilient even under intensive human management.
Collapse
Affiliation(s)
- Jiajia Xing
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Min Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Xuhui Deng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Junhui Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Peikun Jiang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Hua Qin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
41
|
Mousa S, Magdy M, Xiong D, Nyaruabaa R, Rizk SM, Yu J, Wei H. Microbial Profiling of Potato-Associated Rhizosphere Bacteria under Bacteriophage Therapy. Antibiotics (Basel) 2022; 11:antibiotics11081117. [PMID: 36009986 PMCID: PMC9405460 DOI: 10.3390/antibiotics11081117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Potato soft rot and wilt are economically problematic diseases due to the lack of effective bactericides. Bacteriophages have been studied as a novel and environment-friendly alternative to control plant diseases. However, few experiments have been conducted to study the changes in plants and soil microbiomes after bacteriophage therapy. In this study, rhizosphere microbiomes were examined after potatoes were separately infected with three bacteria (Ralstonia solanacearum, Pectobacterium carotovorum, Pectobacterium atrosepticum) and subsequently treated with a single phage or a phage cocktail consisting of three phages each. Results showed that using the phage cocktails had better efficacy in reducing the disease incidence and disease symptoms’ levels when compared to the application of a single phage under greenhouse conditions. At the same time, the rhizosphere microbiota in the soil was affected by the changes in micro-organisms’ richness and counts. In conclusion, the explicit phage mixers have the potential to control plant pathogenic bacteria and cause changes in the rhizosphere bacteria, but not affect the beneficial rhizosphere microbes.
Collapse
Affiliation(s)
- Samar Mousa
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- International College, University of Chinese Academy of Sciences, Beijing 101408, China
- Agricultural Botany Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Mahmoud Magdy
- Genetics Department, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Dongyan Xiong
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Raphael Nyaruabaa
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- International College, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Samah Mohamed Rizk
- Genetics Department, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Junping Yu
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Hongping Wei
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- Correspondence:
| |
Collapse
|
42
|
Lorusso NS, Faillace CA. Indirect facilitation between prey promotes asymmetric apparent competition. J Anim Ecol 2022; 91:1869-1879. [PMID: 35765925 PMCID: PMC9544837 DOI: 10.1111/1365-2656.13768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 06/17/2022] [Indexed: 11/30/2022]
Abstract
Apparent competition is one mechanism that can contribute to the complex dynamics observed in natural systems, yet it remains understudied in empirical systems. Understanding the dynamics that shape the outcome of processes like apparent competition is vital for appreciating how they influence natural systems. We empirically evaluated the role of indirect trophic interactions in driving apparent competition in a model laboratory system. Our experimental system was designed to let us evaluate combined direct and indirect interactions among species. Here we describe the results of a factorial experiment using two noncompeting prey (Colpidium kleini, a heterotroph, and Chlamydomonas reinhardtii, an autotroph) consumed by a generalist predator Euplotes eurystomus to explore the dynamics of apparent competition. To gain intuition into the potential mechanism driving the asymmetry in the observed results, we further explored the system using structural equation modelling. Our results show an important role of positive interactions and indirect effects contributing to apparent competition in this system with a marked asymmetrical outcome favouring one prey, Chlamydomonas. The selected structural equation supports a role of indirect facilitation; although Chlamydomonas (a photoautotroph) and Colpidium (a bacterivore) use different resources and therefor do not directly compete, Colpidium reduces bacteria that may compete with Chlamydomonas. In addition, formation of colonies by Chlamydomonas in response to predation by Euplotes provides an antipredator defence not available to Colpidium. Asymmetric apparent competition may be more common in natural systems than the symmetric interaction originally proposed in classic theory, suggesting that exploration of the mechanisms driving the asymmetry of the interaction can be a fruitful area of further research to better our understanding of interspecific interactions and community dynamics.
Collapse
Affiliation(s)
- Nicholas S Lorusso
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, Jersey.,Current Institution: Department of Life Sciences, University of North Texas at Dallas, 7500 University Hills Blvd, Dallas, Texas, USA
| | - Cara A Faillace
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, Jersey.,Current Institution: University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
43
|
Du S, Trivedi P, Wei Z, Feng J, Hu HW, Bi L, Huang Q, Liu YR. The Proportion of Soil-Borne Fungal Pathogens Increases with Elevated Organic Carbon in Agricultural Soils. mSystems 2022; 7:e0133721. [PMID: 35311561 PMCID: PMC9040864 DOI: 10.1128/msystems.01337-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/14/2022] [Indexed: 11/20/2022] Open
Abstract
Soil-borne fungal phytopathogens are important threats to soil and crop health. However, their community composition and environmental determinants remain unclear. Here, we explored the effects of agricultural fertilization regime (i.e., organic material application) on soil fungal phytopathogens, using data sets from a combination of field survey and long-term experiment. We found that soil organic carbon was the key factor that affected the diversity and relative abundance of fungal phytopathogens in agricultural soils. The dominant genera of phytopathogens including Monographella was also strongly associated with soil organic carbon. In addition, the elevated soil organic carbon enhanced the node proportion of phytopathogens and the positive interactions within the fungal community in the network. Results of the long-term experiment revealed that applications of crop straw and fresh livestock manure significantly increased the proportion of phytopathogens, which were associated with the elevated soil organic carbon. This work offers new insights into the occurrence and environmental factors of fungal phytopathogens in agricultural soils, which are fundamental to control their impacts on the soil and crop systems. IMPORTANCE Fungal phytopathogens are important threats to soil and crop health, but their community composition and environmental determinants remain unclear. We found that soil organic carbon is the key factor of the prevalence of fungal phytopathogens through a field survey, which is also supported by our long-term (6-year) experiment showing the applications of crop straw and fresh livestock manure significantly increased the proportion of fungal phytopathogens. These findings advance our understanding of the occurrence and environmental drivers of soil-borne fungal phytopathogens under agricultural fertilization regime and have important implications for the control of soil-borne pathogens.
Collapse
Affiliation(s)
- Shuai Du
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Pankaj Trivedi
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Jiao Feng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Hang-Wei Hu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Li Bi
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Yu-Rong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
44
|
Rare Species-Driven Diversity-Ecosystem Multifunctionality Relationships are Promoted by Stochastic Community Assembly. mBio 2022; 13:e0044922. [PMID: 35420485 PMCID: PMC9239226 DOI: 10.1128/mbio.00449-22] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The relative functional importance of rare and abundant species in driving relationships between biodiversity and ecosystem functions (BEF) remains unknown. Here, we investigated the functional roles of rare and abundant species diversity (multitrophic soil organism groups) on multifunctionality derived from 16 ecosystem functions in 228 agricultural fields relating to soil and crop health. The results revealed that the diversity of rare species, rather than of abundant species, was positively related to multifunctionality. Abundant taxa tended to maintain a larger number of functions than rare taxa, while rare subcommunity contributed more phylotypes supporting to the single ecosystem functions. Community assembly processes were closely related to the ecosystem functional performance of soil biodiversity, only observed in rare subcommunity. Higher relative contributions of stochastic assembly processes promoted the positive effects of diversity of rare taxa on multifunctionality, while reducing their diversity and multifunctionality overall. Our results highlight the importance of rare species for ecosystem multifunctionality and elucidate the linkage between ecological assembly processes and BEF relationships.
Collapse
|
45
|
Zhao S, Niu C, Xing X, Fan L, Zheng F, Liu C, Wang J, Li Q. Revealing the changes of microbiota structure and function in broad bean paste mediated by sunlight and ventilation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
46
|
Li M, Pommier T, Yin Y, Wang J, Gu S, Jousset A, Keuskamp J, Wang H, Wei Z, Xu Y, Shen Q, Kowalchuk GA. Indirect reduction of Ralstonia solanacearum via pathogen helper inhibition. THE ISME JOURNAL 2022; 16:868-875. [PMID: 34671104 PMCID: PMC8857195 DOI: 10.1038/s41396-021-01126-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/02/2021] [Accepted: 09/20/2021] [Indexed: 11/26/2022]
Abstract
The rhizosphere microbiome forms a first line of defense against soilborne pathogens. To date, most microbiome enhancement strategies have relied on bioaugmentation with antagonistic microorganisms that directly inhibit pathogens. Previous studies have shown that some root-associated bacteria are able to facilitate pathogen growth. We therefore hypothesized that inhibiting such pathogen helpers may help reduce pathogen densities. We examined tripartite interactions between a model pathogen, Ralstonia solanacearum, two model helper strains and a collection of 46 bacterial isolates recovered from the tomato rhizosphere. This system allowed us to examine the importance of direct (effects of rhizobacteria on pathogen growth) and indirect (effects of rhizobacteria on helper growth) pathways affecting pathogen growth. We found that the interaction between rhizosphere isolates and the helper strains was the major determinant of pathogen suppression both in vitro and in vivo. We therefore propose that controlling microbiome composition to prevent the growth of pathogen helpers may become part of sustainable strategies for pathogen control.
Collapse
Affiliation(s)
- Mei Li
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, 210095, Nanjing, PR China
- Institute for Environmental Biology, Ecology & Biodiversity, Utrecht University, Padualaan 8, 3584CH, Utrecht, The Netherlands
| | - Thomas Pommier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Yue Yin
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Jianing Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Shaohua Gu
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, PR China
| | - Alexandre Jousset
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Joost Keuskamp
- Institute for Environmental Biology, Ecology & Biodiversity, Utrecht University, Padualaan 8, 3584CH, Utrecht, The Netherlands
- Biont Research, Abeelstraat 33, 3552 RC, Utrecht, The Netherlands
| | - Honggui Wang
- School of Environmental Science and Engineering, Yangzhou University, 225127, Yangzhou, Jiangsu, PR China
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, 210095, Nanjing, PR China.
| | - Yangchun Xu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - George A Kowalchuk
- Institute for Environmental Biology, Ecology & Biodiversity, Utrecht University, Padualaan 8, 3584CH, Utrecht, The Netherlands
| |
Collapse
|
47
|
Jiang G, Zhang Y, Gan G, Li W, Wan W, Jiang Y, Yang T, Zhang Y, Xu Y, Wang Y, Shen Q, Wei Z, Dini-Andreote F. Exploring rhizo-microbiome transplants as a tool for protective plant-microbiome manipulation. ISME COMMUNICATIONS 2022; 2:10. [PMID: 37938685 PMCID: PMC9723603 DOI: 10.1038/s43705-022-00094-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 04/20/2023]
Abstract
The development of strategies for effectively manipulating and engineering beneficial plant-associated microbiomes is a major challenge in microbial ecology. In this sense, the efficacy and potential implications of rhizosphere microbiome transplant (RMT) in plant disease management have only scarcely been explored in the literature. Here, we initially investigated potential differences in rhizosphere microbiomes of 12 Solanaceae eggplant varieties and accessed their level of resistance promoted against bacterial wilt disease caused by the pathogen Ralstonia solanacearum, in a 3-year field trial. We elected 6 resistant microbiomes and further tested the broad feasibility of using RMT from these donor varieties to a susceptible model Solanaceae tomato variety MicroTom. Overall, we found the rhizosphere microbiome of resistant varieties to enrich for distinct and specific bacterial taxa, of which some displayed significant associations with the disease suppression. Quantification of the RMT efficacy using source tracking analysis revealed more than 60% of the donor microbial communities to successfully colonize and establish in the rhizosphere of recipient plants. RTM from distinct resistant donors resulted in different levels of wilt disease suppression, reaching up to 47% of reduction in disease incidence. Last, we provide a culture-dependent validation of potential bacterial taxa associated with antagonistic interactions with the pathogen, thus contributing to a better understanding of the potential mechanism associated with the disease suppression. Our study shows RMT from appropriate resistant donors to be a promising tool to effectively modulate protective microbiomes and promote plant health. Together we advocate for future studies aiming at understanding the ecological processes and mechanisms mediating rates of coalescence between donor and recipient microbiomes in the plant rhizosphere.
Collapse
Affiliation(s)
- Gaofei Jiang
- Laboratory of Bio-interactions and Crop Health, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Yuling Zhang
- Laboratory of Bio-interactions and Crop Health, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Guiyun Gan
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Weiliu Li
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Wen Wan
- Laboratory of Bio-interactions and Crop Health, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Yaqin Jiang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Tianjie Yang
- Laboratory of Bio-interactions and Crop Health, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Yong Zhang
- College of Resources and Environment, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China
| | - Yangchun Xu
- Laboratory of Bio-interactions and Crop Health, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Yikui Wang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China.
| | - Qirong Shen
- Laboratory of Bio-interactions and Crop Health, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Zhong Wei
- Laboratory of Bio-interactions and Crop Health, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China.
| | - Francisco Dini-Andreote
- Department of Plant Science & Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
48
|
Vandermaesen J, Du S, Daly AJ, Baetens JM, Horemans B, De Baets B, Boon N, Springael D. Interspecies Interactions of the 2,6-Dichlorobenzamide Degrading Aminobacter sp. MSH1 with Resident Sand Filter Bacteria: Indications for Mutual Cooperative Interactions That Improve BAM Mineralization Activity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1352-1364. [PMID: 34982540 DOI: 10.1021/acs.est.1c06653] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bioaugmentation often involves an invasion process requiring the establishment and activity of a foreign microbe in the resident community of the target environment. Interactions with resident micro-organisms, either antagonistic or cooperative, are believed to impact invasion. However, few studies have examined the variability of interactions between an invader and resident species of its target environment, and none of them considered a bioremediation context. Aminobacter sp. MSH1 mineralizing the groundwater micropollutant 2,6-dichlorobenzamide (BAM), is proposed for bioaugmentation of sand filters used in drinking water production to avert BAM contamination. We examined the nature of the interactions between MSH1 and 13 sand filter resident bacteria in dual and triple species assemblies in sand microcosms. The residents affected MSH1-mediated BAM mineralization without always impacting MSH1 cell densities, indicating effects on cell physiology rather than on cell number. Exploitative competition explained most of the effects (70%), but indications of interference competition were also found. Two residents improved BAM mineralization in dual species assemblies, apparently in a mutual cooperation, and overruled negative effects by others in triple species systems. The results suggest that sand filter communities contain species that increase MSH1 fitness. This opens doors for assisting bioaugmentation through co-inoculation with "helper" bacteria originating from and adapted to the target environment.
Collapse
Affiliation(s)
- Johanna Vandermaesen
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20 Bus 2459, B-3001 Heverlee, Belgium
| | - Siyao Du
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20 Bus 2459, B-3001 Heverlee, Belgium
| | - Aisling J Daly
- KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Jan M Baetens
- KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Benjamin Horemans
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20 Bus 2459, B-3001 Heverlee, Belgium
| | - Bernard De Baets
- KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Dirk Springael
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20 Bus 2459, B-3001 Heverlee, Belgium
| |
Collapse
|
49
|
Chen P, He W, Shen Y, Zhu L, Yao X, Sun R, Dai C, Sun B, Chen Y. Interspecific Neighbor Stimulates Peanut Growth Through Modulating Root Endophytic Microbial Community Construction. FRONTIERS IN PLANT SCIENCE 2022; 13:830666. [PMID: 35310651 PMCID: PMC8928431 DOI: 10.3389/fpls.2022.830666] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/07/2022] [Indexed: 05/04/2023]
Abstract
Plants have evolved the capability to respond to interspecific neighbors by changing morphological performance and reshaping belowground microbiota. However, whether neighboring plants influence the microbial colonization of the host's root and further affect host performance is less understood. In this study, using 16S rRNA high-throughput sequencing of peanut (Arachis hypogaea L.) roots from over 5 years of mono- and intercropping field systems, we found that neighbor maize can alter the peanut root microbial composition and re-shape microbial community assembly. Interspecific maize coexistence increased the colonization of genera Bradyrhizobium and Streptomyces in intercropped peanut roots. Through endophytic bacterial isolation and isolate back inoculation experiments, we demonstrated that the functional potentials of available nutrient accumulation and phytohormones production from Bradyrhizobium and Streptomyces endowed them with the ability to act as keystones in the microbial network to benefit peanut growth and production with neighbor competition. Our results support the idea that plants establish a plant-endophytic microbial holobiont through root selective filtration to enhance host competitive dominance, and provide a promising direction to develop modern diversified planting for harnessing crop microbiomes for the promotion of crop growth and productivity in sustainable agriculture.
Collapse
Affiliation(s)
- Pin Chen
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Wei He
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yi Shen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lingyue Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Xiangzhi Yao
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ruibo Sun
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Chuanchao Dai
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Bo Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yan Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- *Correspondence: Yan Chen,
| |
Collapse
|
50
|
Jiao S, Lu Y, Wei G. Soil multitrophic network complexity enhances the link between biodiversity and multifunctionality in agricultural systems. GLOBAL CHANGE BIOLOGY 2022; 28:140-153. [PMID: 34610173 DOI: 10.1111/gcb.15917] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/30/2021] [Indexed: 05/14/2023]
Abstract
Belowground biodiversity supports multiple ecosystem functions and services that humans rely on. However, there is a dearth of studies exploring the determinants of the biodiversity-ecosystem function (BEF) relationships, particularly in intensely managed agricultural ecosystems. Here, we reported significant and positive relationships between soil biodiversity of multiple organism groups and multiple ecosystem functions in 228 agricultural fields, relating to crop yield, nutrient provisioning, element cycling, and pathogen control. The relationships were influenced by the types of organisms that soil phylotypes with larger sizes or at higher trophic levels, for example, invertebrates or protist predators, appeared to exhibit weaker or no BEF relationships when compared to those with smaller sizes or at lower trophic levels, for example, archaea, bacteria, fungi, and protist phototrophs. Particularly, we highlighted the role of soil network complexity, reflected by co-occurrence patterns among multitrophic-level organisms, in enhancing the link between soil biodiversity and ecosystem functions. Our results represent a significant advance in forecasting the impacts of belowground multitrophic organisms on ecosystem functions in agricultural systems, and suggest that soil multitrophic network complexity should be considered a key factor in enhancing ecosystem productivity and sustainability under land-use intensification.
Collapse
Affiliation(s)
- Shuo Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yahai Lu
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|