1
|
Ruchitha BG, Kumar N, Sura C, Tung S. Selection for greater dispersal in early life increases rate of age-dependent decline in locomotor activity and shortens lifespan. J Evol Biol 2024; 37:1148-1157. [PMID: 39105302 DOI: 10.1093/jeb/voae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 07/08/2024] [Accepted: 08/03/2024] [Indexed: 08/07/2024]
Abstract
Locomotor activity is one of the major traits that is affected by age. Greater locomotor activity is also known to evolve in the course of dispersal evolution. However, the impact of dispersal evolution on the functional senescence of locomotor activity is largely unknown. We addressed this knowledge gap using large outbred populations of Drosophila melanogaster selected for increased dispersal. We tracked locomotor activity of these flies at regular intervals until a late age. The longevity of these flies was also recorded. We found that locomotor activity declines with age in general. However interestingly, the activity level of dispersal-selected populations never drops below the ancestry-matched controls, despite the rate of age-dependent decline in activity of the dispersal-selected populations being greater than their respective controls. The dispersal-selected population was also found to have a shorter lifespan as compared to its control, a potential cost of elevated level of activity throughout their life. These results are crucial in the context of invasion biology as contemporary climate change, habitat degradation, and destruction provide congenial conditions for dispersal evolution. Such controlled and tractable studies investigating the ageing pattern of important functional traits are important in the field of biogerontology as well.
Collapse
Affiliation(s)
- B G Ruchitha
- Integrated Genetics and Evolution Laboratory (IGEL), Department of Biology, Ashoka University, Sonipat, Haryana 131029, India
- Department of Biology, Indian Institute of Science Education and Research (IISER) Pune, Pune, Maharashtra 411008, India
| | - Nishant Kumar
- Integrated Genetics and Evolution Laboratory (IGEL), Department of Biology, Ashoka University, Sonipat, Haryana 131029, India
| | - Chand Sura
- Integrated Genetics and Evolution Laboratory (IGEL), Department of Biology, Ashoka University, Sonipat, Haryana 131029, India
| | - Sudipta Tung
- Integrated Genetics and Evolution Laboratory (IGEL), Department of Biology, Ashoka University, Sonipat, Haryana 131029, India
| |
Collapse
|
2
|
Beer MA, Trumbo DR, Rautsaw RM, Kozakiewicz CP, Epstein B, Hohenlohe PA, Alford RA, Schwarzkopf L, Storfer A. Spatial variation in genomic signatures of local adaptation during the cane toad invasion of Australia. Mol Ecol 2024; 33:e17464. [PMID: 38994885 DOI: 10.1111/mec.17464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 06/09/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
Adaptive evolution can facilitate species' range expansions across environmentally heterogeneous landscapes. However, serial founder effects can limit the efficacy of selection, and the evolution of increased dispersal during range expansions may result in gene flow swamping local adaptation. Here, we study how genetic drift, gene flow and selection interact during the cane toad's (Rhinella marina) invasion across the heterogeneous landscape of Australia. Following its introduction in 1935, the cane toad colonised eastern Australia and established several stable range edges. The ongoing, more rapid range expansion in north-central Australia has occurred concomitant with an evolved increase in dispersal capacity. Using reduced representation genomic data of Australian cane toads from the expansion front and from two areas of their established range, we test the hypothesis that high gene flow constrains local adaptation at the expansion front relative to established areas. Genetic analyses indicate the three study areas are genetically distinct but show similar levels of allelic richness, heterozygosity and inbreeding. Markedly higher gene flow or recency of colonisation at the expansion front have likely hindered local adaptation at the time of sampling, as indicated by reduced slopes of genetic-environment associations (GEAs) estimated using a novel application of geographically weighted regression that accounts for allele surfing; GEA slopes are significantly steeper in established parts of the range. Our work bolsters evidence supporting adaptation of invasive species post-introduction and adds novel evidence for differing strengths of evolutionary forces among geographic areas with different invasion histories.
Collapse
Affiliation(s)
- Marc A Beer
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Daryl R Trumbo
- Department of Biology, Colorado State University Pueblo, Pueblo, Colorado, USA
| | - Rhett M Rautsaw
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Christopher P Kozakiewicz
- W.K. Kellogg Biological Station, Department of Integrative Biology, Michigan State University, Hickory Corners, Michigan, USA
| | - Brendan Epstein
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, Minnesota, USA
| | - Paul A Hohenlohe
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Ross A Alford
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Lin Schwarzkopf
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
3
|
Nielsen ES, Walkes S, Sones JL, Fenberg PB, Paz-García DA, Cameron BB, Grosberg RK, Sanford E, Bay RA. Pushed waves, trailing edges, and extreme events: Eco-evolutionary dynamics of a geographic range shift in the owl limpet, Lottia gigantea. GLOBAL CHANGE BIOLOGY 2024; 30:e17414. [PMID: 39044553 DOI: 10.1111/gcb.17414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/25/2024]
Abstract
As climatic variation re-shapes global biodiversity, understanding eco-evolutionary feedbacks during species range shifts is of increasing importance. Theory on range expansions distinguishes between two different forms: "pulled" and "pushed" waves. Pulled waves occur when the source of the expansion comes from low-density peripheral populations, while pushed waves occur when recruitment to the expanding edge is supplied by high-density populations closer to the species' core. How extreme events shape pushed/pulled wave expansion events, as well as trailing-edge declines/contractions, remains largely unexplored. We examined eco-evolutionary responses of a marine invertebrate (the owl limpet, Lottia gigantea) that increased in abundance during the 2014-2016 marine heatwaves near the poleward edge of its geographic range in the northeastern Pacific. We used whole-genome sequencing from 19 populations across >11 degrees of latitude to characterize genomic variation, gene flow, and demographic histories across the species' range. We estimated present-day dispersal potential and past climatic stability to identify how contemporary and historical seascape features shape genomic characteristics. Consistent with expectations of a pushed wave, we found little genomic differentiation between core and leading-edge populations, and higher genomic diversity at range edges. A large and well-mixed population in the northern edge of the species' range is likely a result of ocean current anomalies increasing larval settlement and high-dispersal potential across biogeographic boundaries. Trailing-edge populations have higher differentiation from core populations, possibly driven by local selection and limited gene flow, as well as high genomic diversity likely as a result of climatic stability during the Last Glacial Maximum. Our findings suggest that extreme events can drive poleward range expansions that carry the adaptive potential of core populations, while also cautioning that trailing-edge extirpations may threaten unique evolutionary variation. This work highlights the importance of understanding how both trailing and leading edges respond to global change and extreme events.
Collapse
Affiliation(s)
- Erica S Nielsen
- Department of Evolution and Ecology, University of California Davis, Davis, California, USA
| | - Samuel Walkes
- Department of Evolution and Ecology, University of California Davis, Davis, California, USA
- Bodega Marine Laboratory, University of California Davis, Bodega Bay, California, USA
| | - Jacqueline L Sones
- Bodega Marine Reserve, University of California Davis, Bodega Bay, California, USA
| | - Phillip B Fenberg
- School of Ocean and Earth Sciences, National Oceanography Centre Southampton, University of Southampton, Southampton, UK
| | - David A Paz-García
- Laboratorio de Genética para la Conservación, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, Baja California Sur, Mexico
| | - Brenda B Cameron
- Department of Evolution and Ecology, University of California Davis, Davis, California, USA
| | - Richard K Grosberg
- Department of Evolution and Ecology, University of California Davis, Davis, California, USA
| | - Eric Sanford
- Department of Evolution and Ecology, University of California Davis, Davis, California, USA
- Bodega Marine Laboratory, University of California Davis, Bodega Bay, California, USA
| | - Rachael A Bay
- Department of Evolution and Ecology, University of California Davis, Davis, California, USA
| |
Collapse
|
4
|
Benning JW, Clark EI, Hufbauer RA, Weiss-Lehman C. Environmental gradients mediate dispersal evolution during biological invasions. Ecol Lett 2024; 27:e14472. [PMID: 39011649 DOI: 10.1111/ele.14472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 07/17/2024]
Abstract
Rapid evolution of increased dispersal at the edge of a range expansion can accelerate invasions. However, populations expanding across environmental gradients often face challenging environments that reduce fitness of dispersing individuals. We used an eco-evolutionary model to explore how environmental gradients influence dispersal evolution and, in turn, modulate the speed and predictability of invasion. Environmental gradients opposed evolution of increased dispersal during invasion, even leading to evolution of reduced dispersal along steeper gradients. Counterintuitively, reduced dispersal could allow for faster expansion by minimizing maladaptive gene flow and facilitating adaptation. While dispersal evolution across homogenous landscapes increased both the mean and variance of expansion speed, these increases were greatly dampened by environmental gradients. We illustrate our model's potential application to prediction and management of invasions by parameterizing it with data from a recent invertebrate range expansion. Overall, we find that environmental gradients strongly modulate the effect of dispersal evolution on invasion trajectories.
Collapse
Affiliation(s)
- John W Benning
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
| | - Eliza I Clark
- Department of Agricultural Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - Ruth A Hufbauer
- Department of Agricultural Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | | |
Collapse
|
5
|
Wu ZY, Milne RI, Liu J, Nathan R, Corlett RT, Li DZ. The establishment of plants following long-distance dispersal. Trends Ecol Evol 2023; 38:289-300. [PMID: 36456382 DOI: 10.1016/j.tree.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/30/2022]
Abstract
Long-distance dispersal (LDD) beyond the range of a species is an important driver of ecological and evolutionary patterns, but insufficient attention has been given to postdispersal establishment. In this review, we summarize current knowledge of the post-LDD establishment phase in plant colonization, identify six key determinants of establishment success, develop a general quantitative framework for post-LDD establishment, and address the major challenges and opportunities in future research. These include improving detection and understanding of LDD using novel approaches, investigating mechanisms determining post-LDD establishment success using mechanistic modeling and inference, and comparison of establishment between past and present. By addressing current knowledge gaps, we aim to further our understanding of how LDD affects plant distributions, and the long-term consequences of LDD events.
Collapse
Affiliation(s)
- Zeng-Yuan Wu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Richard I Milne
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JH, UK
| | - Jie Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Key Laboratory for Plant and Biodiversity of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Ran Nathan
- Movement Ecology Laboratory, Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Richard T Corlett
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| |
Collapse
|
6
|
Wisnoski NI, Lennon JT. Scaling up and down: movement ecology for microorganisms. Trends Microbiol 2023; 31:242-253. [PMID: 36280521 DOI: 10.1016/j.tim.2022.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
Movement is critical for the fitness of organisms, both large and small. It dictates how individuals acquire resources, evade predators, exchange genetic material, and respond to stressful environments. Movement also influences ecological and evolutionary dynamics at higher organizational levels, such as populations and communities. However, the links between individual motility and the processes that generate and maintain microbial diversity are poorly understood. Movement ecology is a framework linking the physiological and behavioral properties of individuals to movement patterns across scales of space, time, and biological organization. By synthesizing insights from cell biology, ecology, and evolution, we expand theory from movement ecology to predict the causes and consequences of microbial movements.
Collapse
Affiliation(s)
- Nathan I Wisnoski
- Wyoming Geographic Information Science Center, University of Wyoming, Laramie, WY 82071, USA; Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA.
| | - Jay T Lennon
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
7
|
Bernos TA, Avlijaš S, Hill J, Morissette O, Ricciardi A, Mandrak NE, Jeffries KM. Genetic diversity and structure of a recent fish invasion: Tench ( Tinca tinca) in eastern North America. Evol Appl 2023; 16:173-188. [PMID: 36699124 PMCID: PMC9850014 DOI: 10.1111/eva.13520] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/22/2022] [Accepted: 12/02/2022] [Indexed: 01/20/2023] Open
Abstract
Introduced and geographically expanding populations experience similar eco-evolutionary challenges, including founder events, genetic bottlenecks, and novel environments. Theory predicts that reduced genetic diversity resulting from such phenomena limits the success of introduced populations. Using 1900 SNPs obtained from restriction-site-associated DNA sequencing, we evaluated hypotheses related to the invasion history and connectivity of an invasive population of Tench (Tinca tinca), a Eurasian freshwater fish that has been expanding geographically in eastern North America for three decades. Consistent with the reported history of a single introduction event, our findings suggest that multiple introductions from distinct genetic sources are unlikely as Tench had a small effective population size (~114 [95% CI = 106-123] individuals), no strong population subdivision across time and space, and evidence of a recent genetic bottleneck. The large genetic neighbourhood size (220 km) and weak within-population genetic substructure suggested high connectivity across the invaded range, despite the relatively large area occupied. There was some evidence for a small decay in genetic diversity as the species expanded northward, but not southward, into new habitats. As eradicating the species within a ~112 km radius would be necessary to prevent recolonization, eradicating Tench is likely not feasible at watershed-and possibly local-scales. Management should instead focus on reducing abundance in priority conservation areas to mitigate adverse impacts. Our study indicates that introduced populations can thrive and exhibit relatively high levels of genetic diversity despite severe bottlenecks (<1.5% of the ancestral effective population size) and suggests that landscape heterogeneity and population demographics can generate variability in spatial patterns of genetic diversity within a single range expansion.
Collapse
Affiliation(s)
- Thaïs A. Bernos
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoOntarioCanada
- Department of Biological SciencesUniversity of Toronto ScarboroughScarboroughOntarioCanada
| | - Sunčica Avlijaš
- Redpath MuseumMcGill UniversityMontrealQuébecCanada
- Department of BiologyMcGill UniversityMontrealQuébecCanada
| | - Jaclyn Hill
- Maurice Lamontagne InstituteFisheries and Oceans CanadaMont‐JoliQuébecCanada
| | - Olivier Morissette
- Département des Sciences FondamentalesUniversité du Québec à ChicoutimiChicoutimiQuébecCanada
| | | | - Nicholas E. Mandrak
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoOntarioCanada
| | - Kenneth M. Jeffries
- Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
| |
Collapse
|
8
|
Clark EI, Bitume EV, Bean DW, Stahlke AR, Hohenlohe PA, Hufbauer RA. Evolution of reproductive life-history and dispersal traits during the range expansion of a biological control agent. Evol Appl 2022; 15:2089-2099. [PMID: 36540644 PMCID: PMC9753830 DOI: 10.1111/eva.13502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022] Open
Abstract
Evolutionary theory predicts that the process of range expansion will lead to differences in life-history and dispersal traits between the core and edge of a population. At the edge, selection and genetic drift can have opposing effects on reproductive ability, while spatial sorting by dispersal ability can increase dispersal. However, the context that individuals experience, including population density and mating status, also impacts dispersal behavior. We seek to understand the shifts in traits of populations expanding across natural, heterogenous environments, and the evolutionary and behavioral factors that may drive those shifts. We evaluated theoretical predictions for evolution of reproductive life-history and dispersal traits using the range expansion of a biological control agent, Diorhabda carinulata, or northern tamarisk beetle. We find that individuals from the edge had increased fecundity and female body mass, and reduced age at first reproduction, indicating that genetic load is low and suggesting that selection has acted at the edge. We also find that density of conspecifics during rearing and mating status influence dispersal of males and that dispersal increases at the edge of the range under certain conditions, particularly when males were unmated and reared at low density. The restricted conditions in which dispersal has increased suggest that spatial sorting has exerted weak effects relative to other potential processes. Our results support most theoretical predictions about evolution during range expansion, even across a heterogeneous environment, especially when the ecological context is considered.
Collapse
Affiliation(s)
- Eliza I. Clark
- Graduate Degree Program in Ecology, Department of Agricultural BiologyColorado State UniversityFort CollinsColoradoUSA
| | - Ellyn V. Bitume
- Pacific Southwest Research StationInstitute of Pacific Islands Forestry, USDA Forest ServiceHiloHawaiiUSA
| | - Dan W. Bean
- Colorado Department of AgriculturePalisade InsectaryPalisadeColoradoUSA
| | - Amanda R. Stahlke
- Initiative for Bioinformatics and Evolutionary Studies, Department of Biological SciencesUniversity of IdahoMoscowIdahoUSA
- Bee Research LaboratoryUSDA, Agricultural Research Service, Beltsville Agricultural Research CenterBeltsvilleMarylandUSA
| | - Paul A. Hohenlohe
- Initiative for Bioinformatics and Evolutionary Studies, Department of Biological SciencesUniversity of IdahoMoscowIdahoUSA
| | - Ruth A. Hufbauer
- Graduate Degree Program in Ecology, Department of Agricultural BiologyColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
9
|
Charmouh AP, Reid JM, Bilde T, Bocedi G. Eco-evolutionary extinction and recolonization dynamics reduce genetic load and increase time to extinction in highly inbred populations. Evolution 2022; 76:2482-2497. [PMID: 36117269 PMCID: PMC9828521 DOI: 10.1111/evo.14620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/01/2022] [Accepted: 07/11/2022] [Indexed: 01/22/2023]
Abstract
Understanding how genetic and ecological effects can interact to shape genetic loads within and across local populations is key to understanding ongoing persistence of systems that should otherwise be susceptible to extinction through mutational meltdown. Classic theory predicts short persistence times for metapopulations comprising small local populations with low connectivity, due to accumulation of deleterious mutations. Yet, some such systems have persisted over evolutionary time, implying the existence of mechanisms that allow metapopulations to avoid mutational meltdown. We first hypothesize a mechanism by which the combination of stochasticity in the numbers and types of mutations arising locally (genetic stochasticity), resulting local extinction, and recolonization through evolving dispersal facilitates metapopulation persistence. We then test this mechanism using a spatially and genetically explicit individual-based model. We show that genetic stochasticity in highly structured metapopulations can result in local extinctions, which can favor increased dispersal, thus allowing recolonization of empty habitat patches. This causes fluctuations in metapopulation size and transient gene flow, which reduces genetic load and increases metapopulation persistence over evolutionary time. Our suggested mechanism and simulation results provide an explanation for the conundrum presented by the continued persistence of highly structured populations with inbreeding mating systems that occur in diverse taxa.
Collapse
Affiliation(s)
- Anders P. Charmouh
- School of Biological SciencesUniversity of AberdeenAberdeenAB24 2TZUnited Kingdom
| | - Jane M. Reid
- School of Biological SciencesUniversity of AberdeenAberdeenAB24 2TZUnited Kingdom,Centre for Biodiversity DynamicsInstitutt for Biologi, NTNUTrondheim7491Norway
| | - Trine Bilde
- Department of BiologyAarhus UniversityAarhus C8000Denmark
| | - Greta Bocedi
- School of Biological SciencesUniversity of AberdeenAberdeenAB24 2TZUnited Kingdom
| |
Collapse
|
10
|
Genetic architecture of dispersal and local adaptation drives accelerating range expansions. Proc Natl Acad Sci U S A 2022; 119:e2121858119. [PMID: 35895682 PMCID: PMC9353510 DOI: 10.1073/pnas.2121858119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Contemporary evolution has the potential to significantly alter biotic responses to global change, including range expansion dynamics and biological invasions. Models predicting range dynamics often make highly simplifying assumptions about the genetic architecture underlying relevant traits. However, genetic architecture defines evolvability and higher-order evolutionary processes, which determine whether evolution will be able to keep up with environmental change or not. Therefore, we here study the impact of the genetic architecture of dispersal and local adaptation, two central traits of high relevance for range expansions, on the dynamics and predictability of invasion into an environmental gradient, such as temperature. In our theoretical model we assume that dispersal and local adaptation traits result from the products of two noninteracting gene-regulatory networks (GRNs). We compare our model to simpler quantitative genetics models and show that in the GRN model, range expansions are accelerating and less predictable. We further find that accelerating dynamics in the GRN model are primarily driven by an increase in the rate of local adaptation to novel habitats which results from greater sensitivity to mutation (decreased robustness) and increased gene expression. Our results highlight how processes at microscopic scales, here within genomes, can impact the predictions of large-scale, macroscopic phenomena, such as range expansions, by modulating the rate of evolution.
Collapse
|
11
|
Boussange V, Pellissier L. Eco-evolutionary model on spatial graphs reveals how habitat structure affects phenotypic differentiation. Commun Biol 2022; 5:668. [PMID: 35794362 PMCID: PMC9259634 DOI: 10.1038/s42003-022-03595-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 06/16/2022] [Indexed: 11/20/2022] Open
Abstract
Differentiation mechanisms are influenced by the properties of the landscape over which individuals interact, disperse and evolve. Here, we investigate how habitat connectivity and habitat heterogeneity affect phenotypic differentiation by formulating a stochastic eco-evolutionary model where individuals are structured over a spatial graph. We combine analytical insights into the eco-evolutionary dynamics with numerical simulations to understand how the graph topology and the spatial distribution of habitat types affect differentiation. We show that not only low connectivity but also heterogeneity in connectivity promotes neutral differentiation, due to increased competition in highly connected vertices. Habitat assortativity, a measure of habitat spatial auto-correlation in graphs, additionally drives differentiation under habitat-dependent selection. While assortative graphs systematically amplify adaptive differentiation, they can foster or depress neutral differentiation depending on the migration regime. By formalising the eco-evolutionary and spatial dynamics of biological populations on graphs, our study establishes fundamental links between landscape features and phenotypic differentiation.
Collapse
Affiliation(s)
- Victor Boussange
- Swiss Federal Research Institute WSL, CH-8903, Birmensdorf, Switzerland.
- Landscape Ecology, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, CH-8092, Zürich, Switzerland.
| | - Loïc Pellissier
- Swiss Federal Research Institute WSL, CH-8903, Birmensdorf, Switzerland.
- Landscape Ecology, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, CH-8092, Zürich, Switzerland.
| |
Collapse
|
12
|
Naaykens T, D’Aloia CC. Isolation‐by‐distance and genetic parentage analysis provide similar larval dispersal estimates. Mol Ecol 2022; 31:3072-3082. [DOI: 10.1111/mec.16465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/10/2022] [Accepted: 03/30/2022] [Indexed: 11/28/2022]
Affiliation(s)
- T. Naaykens
- Department of Biological Sciences University of New Brunswick – Saint John 100 Tucker Park Road NB E2L 4L5 Canada
| | - C. C. D’Aloia
- Department of Biology University of Toronto Mississauga 3359 Mississauga Road Mississauga ON L5L 1C6 Canada
| |
Collapse
|
13
|
Santorelli Junior S, Magnusson WE, de Deus CP, Keitt TH. Neutral processes and reduced dispersal across Amazonian rivers may explain how rivers maintain species diversity after secondary contact. Perspect Ecol Conserv 2022. [DOI: 10.1016/j.pecon.2021.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
14
|
Liu RL, Yang YB, Lee BR, Liu G, Zhang WG, Chen XY, Song XJ, Kang JQ, Zhu ZH. The dispersal-related traits of an invasive plant Galinsoga quadriradiata correlate with elevation during range expansion into mountain ranges. AOB PLANTS 2021; 13:plab008. [PMID: 34194688 PMCID: PMC8237851 DOI: 10.1093/aobpla/plab008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Detecting shifts in trait values among populations of an invasive plant is important for assessing invasion risks and predicting future spread. Although a growing number of studies suggest that the dispersal propensity of invasive plants increases during range expansion, there has been relatively little attention paid to dispersal patterns along elevational gradients. In this study, we tested the differentiation of dispersal-related traits in an invasive plant, Galinsoga quadriradiata, across populations at different elevations in the Qinling and Bashan Mountains in central China. Seed mass-area ratio (MAR), an important seed dispersal-related trait, of 45 populations from along an elevational gradient was measured, and genetic variation of 23 populations was quantified using inter-simple sequence repeat (ISSR) markers. Individuals from four populations were then planted in a greenhouse to compare their performance under shared conditions. Changing patterns of seed dispersal-related traits and populations genetic diversity along elevation were tested using linear regression. Mass-area ratio of G. quadriradiata increased, while genetic diversity decreased with elevation in the field survey. In the greenhouse, populations of G. quadriradiata sourced from different elevations showed a difference response of MAR. These results suggest that although rapid evolution may contribute to the range expansion of G. quadriradiata in mountain ranges, dispersal-related traits will also likely be affected by phenotypic plasticity. This challenges the common argument that dispersal ability of invasive plants increases along dispersal routes. Furthermore, our results suggest that high-altitude populations would be more effective at seed dispersal once they continue to expand their range downslope on the other side. Our experiment provides novel evidence that the spread of these high-altitude populations may be more likely than previously theorized and that they should thus be cautiously monitored.
Collapse
Affiliation(s)
- Rui-Ling Liu
- College of Life Sciences, Shaanxi Normal University, 710119 Xi’an, People’s Republic of China
| | - Ying-Bo Yang
- College of Life Sciences, Shaanxi Normal University, 710119 Xi’an, People’s Republic of China
| | - Benjamin R Lee
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gang Liu
- College of Life Sciences, Shaanxi Normal University, 710119 Xi’an, People’s Republic of China
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Shaanxi Normal University, 710119 Xi’an, People’s Republic of China
| | - Wen-Gang Zhang
- College of Life Sciences, Shaanxi Normal University, 710119 Xi’an, People’s Republic of China
| | - Xiao-Yan Chen
- College of Life Sciences, Shaanxi Normal University, 710119 Xi’an, People’s Republic of China
| | - Xing-Jiang Song
- College of Life Sciences, Shaanxi Normal University, 710119 Xi’an, People’s Republic of China
| | - Ju-Qing Kang
- College of Life Sciences, Shaanxi Normal University, 710119 Xi’an, People’s Republic of China
| | - Zhi-Hong Zhu
- College of Life Sciences, Shaanxi Normal University, 710119 Xi’an, People’s Republic of China
| |
Collapse
|
15
|
Yang F, Liu N, Crossley MS, Wang P, Ma Z, Guo J, Zhang R. Cropland connectivity affects genetic divergence of Colorado potato beetle along an invasion front. Evol Appl 2021; 14:553-565. [PMID: 33664794 PMCID: PMC7896701 DOI: 10.1111/eva.13140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 09/02/2020] [Accepted: 09/10/2020] [Indexed: 12/27/2022] Open
Abstract
The population genetic structure of invasive species can be strongly affected by environmental and landscape barriers to dispersal. Disentangling the relative contributions of these factors to genetic divergence among invading populations is a fundamental goal of landscape genetics with important implications for invasion management. Here, we relate patterns of genetic divergence in a global invasive agricultural pest, Colorado potato beetle (CPB; Leptinotarsa decemlineata), to environmental and landscape factors along an invasion front in Northwestern China. We first used microsatellite markers and spatial-temporal samples to assess broad patterns of genetic diversity as well as fine-scale changes in patterns of genetic divergence. We then distinguished the relative contributions of five factors to genetic divergence among front populations: geographic distance (isolation by distance), climate dissimilarity (isolation by environment), and least-cost distances (isolation by resistance) modeled with three factors: climate suitability, cropland cover, and road networks. Genetic diversity broadly decreased from West to East, with the exception being Eastern China. Low levels of genetic diversity and varying degrees of divergence were observed in Northwestern China, reflecting the potential effect of landscape heterogeneity. Least-cost distance across cropland cover was most positively correlated with genetic divergence, suggesting a role of croplands in facilitating gene flow. The contribution of climate to genetic divergence was secondary, whether modeled in terms of local adaptability or connectivity of the climatic landscape, suggesting that constraints to CPB gene flow imposed by a harsh climate may be ameliorated in agricultural landscapes. No evidence was found for an obvious effect of road networks on genetic divergence and population structuring. Our study provides an example of how agricultural landscape connectivity can facilitate the spread of invasive pests, even across a broad climatic gradient. More broadly, our findings can guide decisions about future land management for mitigating further spread.
Collapse
Affiliation(s)
- Fangyuan Yang
- Institute of EntomologyGuizhou UniversityGuiyangGuizhouChina
- Key Laboratory of Zoological Systematics and EvolutionInstitute of ZoologyChinese Academy of SciencesBeijingChina
| | - Ning Liu
- Key Laboratory of Zoological Systematics and EvolutionInstitute of ZoologyChinese Academy of SciencesBeijingChina
| | | | - Pengcheng Wang
- Key Laboratory of Zoological Systematics and EvolutionInstitute of ZoologyChinese Academy of SciencesBeijingChina
- College of Life ScienceUniversity of Chinese Academy of SciencesBeijingChina
| | - Zhuo Ma
- Key Laboratory of Zoological Systematics and EvolutionInstitute of ZoologyChinese Academy of SciencesBeijingChina
- College of Life ScienceUniversity of Chinese Academy of SciencesBeijingChina
| | - Jianjun Guo
- Institute of EntomologyGuizhou UniversityGuiyangGuizhouChina
| | - Runzhi Zhang
- Key Laboratory of Zoological Systematics and EvolutionInstitute of ZoologyChinese Academy of SciencesBeijingChina
- College of Life ScienceUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
16
|
Angert AL, Bontrager MG, Ågren J. What Do We Really Know About Adaptation at Range Edges? ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-012120-091002] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent theory and empirical evidence have provided new insights regarding how evolutionary forces interact to shape adaptation at stable and transient range margins. Predictions regarding trait divergence at leading edges are frequently supported. However, declines in fitness at and beyond edges show that trait divergence has sometimes been insufficient to maintain high fitness, so identifying constraints to adaptation at range edges remains a key challenge. Indirect evidence suggests that range expansion may be limited by adaptive genetic variation, but direct estimates of genetic constraints at and beyond range edges are still scarce. Sequence data suggest increased genetic load in edge populations in several systems, but its causes and fitness consequences are usually poorly understood. The balance between maladaptive and positive effects of gene flow on fitness at range edges deserves further study. It is becoming increasingly clear that characterizations about degree of adaptation based solely on geographical peripherality are unsupported.
Collapse
Affiliation(s)
- Amy L. Angert
- Departments of Botany and Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Megan G. Bontrager
- Department of Evolution and Ecology, University of California, Davis, California 95616, USA
| | - Jon Ågren
- Department of Ecology and Genetics, Uppsala University, SE-752 36 Uppsala, Sweden
| |
Collapse
|
17
|
Miller TEX, Angert AL, Brown CD, Lee-Yaw JA, Lewis M, Lutscher F, Marculis NG, Melbourne BA, Shaw AK, Szűcs M, Tabares O, Usui T, Weiss-Lehman C, Williams JL. Eco-evolutionary dynamics of range expansion. Ecology 2020; 101:e03139. [PMID: 32697876 DOI: 10.1002/ecy.3139] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/05/2020] [Accepted: 06/08/2020] [Indexed: 01/31/2023]
Abstract
Understanding the movement of species' ranges is a classic ecological problem that takes on urgency in this era of global change. Historically treated as a purely ecological process, range expansion is now understood to involve eco-evolutionary feedbacks due to spatial genetic structure that emerges as populations spread. We synthesize empirical and theoretical work on the eco-evolutionary dynamics of range expansion, with emphasis on bridging directional, deterministic processes that favor evolved increases in dispersal and demographic traits with stochastic processes that lead to the random fixation of alleles and traits. We develop a framework for understanding the joint influence of these processes in changing the mean and variance of expansion speed and its underlying traits. Our synthesis of recent laboratory experiments supports the consistent role of evolution in accelerating expansion speed on average, and highlights unexpected diversity in how evolution can influence variability in speed: results not well predicted by current theory. We discuss and evaluate support for three classes of modifiers of eco-evolutionary range dynamics (landscape context, trait genetics, and biotic interactions), identify emerging themes, and suggest new directions for future work in a field that stands to increase in relevance as populations move in response to global change.
Collapse
Affiliation(s)
- Tom E X Miller
- Program in Ecology and Evolutionary Biology, Department of BioSciences, Rice University, Houston, Texas, 77005, USA
| | - Amy L Angert
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z2, Canada
| | - Carissa D Brown
- Department of Geography, Memorial University, 230 Elizabeth Avenue, St John's, Newfoundland and Labrador, A1B 3X9, Canada
| | - Julie A Lee-Yaw
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z2, Canada.,Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, T1K 3M4, Canada
| | - Mark Lewis
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, T6G 2G1, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2G1, Canada
| | - Frithjof Lutscher
- Department of Mathematics and Statistics, and Department of Biology, University of Ottawa, Ottawa, Ottawa, K1N 6N5, Canada
| | - Nathan G Marculis
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, T6G 2G1, Canada.,Department of Environmental Science and Policy, University of California-Davis, Davis, California, 95616, USA
| | - Brett A Melbourne
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80309, USA
| | - Allison K Shaw
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, 55108, USA
| | - Marianna Szűcs
- Department of Entomology, Michigan State University, 288 Farm Lane, East Lansing, Michigan, 48824, USA
| | - Olivia Tabares
- Department of Geography and Biodiversity Research Centre, University of British Columbia, 1984 West Mall, Vancouver, British Columbia, V6T 1Z2, Canada
| | - Takuji Usui
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z2, Canada
| | - Christopher Weiss-Lehman
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, 55108, USA
| | - Jennifer L Williams
- Department of Geography and Biodiversity Research Centre, University of British Columbia, 1984 West Mall, Vancouver, British Columbia, V6T 1Z2, Canada
| |
Collapse
|
18
|
Mishra A, Chakraborty PP, Dey S. Dispersal evolution diminishes the negative density dependence in dispersal. Evolution 2020; 74:2149-2157. [PMID: 32725620 DOI: 10.1111/evo.14070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/15/2020] [Accepted: 07/26/2020] [Indexed: 12/17/2022]
Abstract
In many organisms, dispersal varies with the local population density. Such patterns of density-dependent dispersal (DDD) are expected to shape the dynamics, spatial spread, and invasiveness of populations. Despite their ecological importance, empirical evidence for the evolution of DDD patterns remains extremely scarce. This is especially relevant because rapid evolution of dispersal traits has now been empirically confirmed in several taxa. Changes in DDD of dispersing populations could help clarify not only the role of DDD in dispersal evolution, but also the possible pattern of subsequent range expansion. Here, we investigate the relationship between dispersal evolution and DDD using a long-term experimental evolution study on Drosophila melanogaster. We compared the DDD patterns of four dispersal-selected populations and their non-selected controls. The control populations showed negative DDD, which was stronger in females than in males. In contrast, the dispersal-selected populations showed DDD, where neither males nor females exhibited DDD. We compare our results with previous evolutionary predictions that focused largely on positive DDD, and highlight how the direction of evolutionary change depends on the initial DDD pattern of a population. Finally, we discuss the implications of DDD evolution for spatial ecology and evolution.
Collapse
Affiliation(s)
- Abhishek Mishra
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research, Pune, Pune, 411 008, India
| | - Partha Pratim Chakraborty
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research, Pune, Pune, 411 008, India.,Current Address: Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Sutirth Dey
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research, Pune, Pune, 411 008, India
| |
Collapse
|
19
|
Carbonell JA, Stoks R. Thermal evolution of life history and heat tolerance during range expansions toward warmer and cooler regions. Ecology 2020; 101:e03134. [PMID: 32691873 DOI: 10.1002/ecy.3134] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/08/2020] [Accepted: 06/08/2020] [Indexed: 12/19/2022]
Abstract
Species' range edges are expanding to both warmer and cooler regions. Yet, no studies directly compared the changes in range-limiting traits within the same species during both types of range expansions. To increase our mechanistic understanding of range expansions, it is crucial to disentangle the contributions of plastic and genetic changes in these traits. The aim of this study was to test for plastic and evolutionary changes in heat tolerance, life history, and behavior, and compare these during range expansions toward warmer and cooler regions. Using laboratory experiments we reconstructed the thermal performance curves (TPCurves) of larval life history (survival, growth, and development rates) and larval heat tolerance (CTmax) across two recent range expansions from the core populations in southern France toward a warmer (southeastern Spain) and a cooler (northwestern Spain) region in Europe by the damselfly Ischnura elegans. First-generation larvae from field-collected mothers were reared across a range of temperatures (16°-28°C) in incubators. The range expansion to the warmer region was associated with the evolution of a greater ability to cope with high temperatures (increased mean and thermal plasticity of CTmax), faster development, and, in part, a faster growth, indicating a higher time constraints caused by a shorter time frame available for larval development associated with a transition to a greater voltinism. Our results thereby support the emerging pattern that plasticity in heat tolerance alone is inadequate to adapt to new thermal regimes. The range expansion to the cooler region was associated with faster growth indicating countergradient variation without a change in CTmax. The evolution of a faster growth rate during both range expansions could be explained by a greater digestive efficiency rather than an increased food intake. Our results highlight that range expansions to warmer and cooler regions can result in similar evolutionary changes in the TPCurves for life history, and no opposite changes in heat tolerance.
Collapse
Affiliation(s)
- José Antonio Carbonell
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, Leuven, B-3000, Belgium.,Department of Wetland Ecology, Doñana Biological Station (EBD-CSIC), Avenida Américo Vespucio 26, Isla de la Cartuja, Seville, 41042, Spain
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, Leuven, B-3000, Belgium
| |
Collapse
|
20
|
Funk JL, Parker IM, Matzek V, Flory SL, Aschehoug ET, D’Antonio CM, Dawson W, Thomson DM, Valliere J. Keys to enhancing the value of invasion ecology research for management. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02267-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|