1
|
Harmáčková L, Remeš V. The Evolution of Local Co-occurrence in Birds in Relation to Latitude, Degree of Sympatry, and Range Symmetry. Am Nat 2024; 203:432-443. [PMID: 38358810 DOI: 10.1086/728687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
AbstractRecent speciation rates and the degree of range-wide sympatry are usually higher farther from the equator. Is there also a higher degree of secondary syntopy (coexistence in local assemblages in sympatry) at higher latitudes and, subsequently, an increase in local species richness? We studied the evolution of syntopy in passerine birds using worldwide species distribution data. We chose recently diverged species pairs from subclades not older than 5 or 7 million years, range-wide degree of sympatry not lower than 5% or 25%, and three definitions of the breeding season. We related their syntopy to latitude, the degree of sympatry (breeding range overlap), range symmetry, and the age of split. Syntopy was positively related to latitude, but it did not differ between tropical and temperate regions, instead increasing from the Southern to the Northern Hemisphere. Syntopy was also higher in species pairs with a higher degree of sympatry and more symmetric ranges, but it did not predict local species richness. Following speciation, species in the Northern Hemisphere presumably achieve positive local co-occurrence faster than elsewhere, which could facilitate their higher speciation rates. However, this does not seem to be linked to local species richness, which is probably governed by other processes.
Collapse
|
2
|
Henry EG, Santini L, Butchart SHM, González-Suárez M, Lucas PM, Benítez-López A, Mancini G, Jung M, Cardoso P, Zizka A, Meyer C, Akçakaya HR, Berryman AJ, Cazalis V, Di Marco M. Modelling the probability of meeting IUCN Red List criteria to support reassessments. GLOBAL CHANGE BIOLOGY 2024; 30:e17119. [PMID: 38273572 DOI: 10.1111/gcb.17119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/02/2023] [Indexed: 01/27/2024]
Abstract
Comparative extinction risk analysis-which predicts species extinction risk from correlation with traits or geographical characteristics-has gained research attention as a promising tool to support extinction risk assessment in the IUCN Red List of Threatened Species. However, its uptake has been very limited so far, possibly because existing models only predict a species' Red List category, without indicating which Red List criteria may be triggered. This prevents such approaches to be integrated into Red List assessments. We overcome this implementation gap by developing models that predict the probability of species meeting individual Red List criteria. Using data on the world's birds, we evaluated the predictive performance of our criterion-specific models and compared it with the typical criterion-blind modelling approach. We compiled data on biological traits (e.g. range size, clutch size) and external drivers (e.g. change in canopy cover) often associated with extinction risk. For each specific criterion, we modelled the relationship between extinction risk predictors and species' Red List category under that criterion using ordinal regression models. We found criterion-specific models were better at identifying threatened species compared to a criterion-blind model (higher sensitivity), but less good at identifying not threatened species (lower specificity). As expected, different covariates were important for predicting extinction risk under different criteria. Change in annual temperature was important for criteria related to population trends, while high forest dependency was important for criteria related to restricted area of occupancy or small population size. Our criteria-specific method can support Red List assessors by producing outputs that identify species likely to meet specific criteria, and which are the most important predictors. These species can then be prioritised for re-evaluation. We expect this new approach to increase the uptake of extinction risk models in Red List assessments, bridging a long-standing research-implementation gap.
Collapse
Affiliation(s)
- Etienne G Henry
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- École Normale Supérieure, Paris, France
| | - Luca Santini
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | - Stuart H M Butchart
- BirdLife International, Cambridge, UK
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Manuela González-Suárez
- Ecology and Evolutionary Biology, School of Biological Sciences, University of Reading, Reading, UK
| | - Pablo M Lucas
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza Università di Roma, Rome, Italy
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
| | - Ana Benítez-López
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| | - Giordano Mancini
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | - Martin Jung
- Biodiversity, Ecology and Conservation Group, Biodiversity and Natural Resources Management Programme, International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Pedro Cardoso
- Faculty of Sciences, CE3C - Centre for Ecology, Evolution and Environmental Sciences, CHANGE - Institute for Global Change and Sustainability, University of Lisbon, Lisbon, Portugal
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History Luomus, University of Helsinki, Helsinki, Finland
| | - Alexander Zizka
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Carsten Meyer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Geosciences and Geography, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - H Reşit Akçakaya
- Department of Ecology and Evolution, Stony Brook University, New York, USA
- IUCN Species Survival Commission (SSC), Gland, Switzerland
| | | | - Victor Cazalis
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Leipzig University, Leipzig, Germany
| | - Moreno Di Marco
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
3
|
Levey DR, Patten MA, Estrada A. Bird species occupancy trends in Southeast Mexico over 1900-2020: Accounting for sighting record absences. J Anim Ecol 2023; 92:606-618. [PMID: 36520005 DOI: 10.1111/1365-2656.13871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Long-term land-use change impacts tropical bird communities through population-level and functional diversity effects from habitat loss, degradation and fragmentation, leading to land management and conservation challenges. Assessing the temporal impacts of land-use change on occupancy patterns, population change and functional traits of bird species in tropical areas is limited by the treatment of nondetections as true absences or artefacts of low sampling effort during and throughout years. With this in mind, we developed a novel Bayesian species occupancy framework to account for species absences to evaluate bird community changes in Palenque, Chiapas, Mexico, where there is opportunity for study given exceptional records of change across habitats from rainforest to urban centres. We created a novel dataset of population trends for 244 bird species over the years 1900 to 2020 from published short-term field studies, expert field notes and community science pages. Our results show that open area species had higher population increases than forest specialists over time, represented most evidently by the turnover of rainforest specialists for urban species. Modelled influence of functional traits displayed the importance of main habitat types, body mass and habitat and dietary breadth as factors that associated with bird population trends. On average, species with body masses <6.6 and > 948.4 g showed decreasing trends, while all other species showed increasing or stable trends. Our findings illuminate the value of accounting for species absences from several data sources to discover long-term species population trends and affiliated functional traits whose preservation requires conservation and land management action to protect bird ecosystem services. Primary forest conservation is key to maintaining populations of habitat and dietary specialists, such as small understorey insectivorous and large frugivorous species. Protecting rare natural savanna patches from conversion to cattle pasture is vital to prevent further extirpation of native granivores and to slow colonization by exotic and invasive species.
Collapse
Affiliation(s)
- Dallas R Levey
- Department of Biology, Stanford University, Stanford, California, USA.,Posgrado en Ciencias Biológicas, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Michael A Patten
- Ecology Research Group, Faculty of Biosciences and Aquaculture, Nord University, Steinkjer, Norway
| | - Alejandro Estrada
- Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
4
|
Barnes AE, Davies JG, Martay B, Boersch-Supan PH, Harris SJ, Noble DG, Pearce-Higgins JW, Robinson RA. Rare and declining bird species benefit most from designating protected areas for conservation in the UK. Nat Ecol Evol 2023; 7:92-101. [PMID: 36471120 PMCID: PMC9834046 DOI: 10.1038/s41559-022-01927-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 10/11/2022] [Indexed: 12/12/2022]
Abstract
There have been recent renewed commitments to increase the extent of protected areas to combat the growing biodiversity crisis but the underpinning evidence for their effectiveness is mixed and causal connections are rarely evaluated. We used data gathered by three large-scale citizen science programmes in the UK to provide the most comprehensive assessment to date of whether national (Sites of Special Scientific Interest) and European (Special Protection Areas/Special Areas of Conservation) designated areas are associated with improved state (occurrence, abundance), change (rates of colonization, persistence and trend in abundance), community structure and, uniquely, demography (productivity) on a national avifauna, while controlling for differences in land cover, elevation and climate. We found positive associations with state that suggest these areas are well targeted and that the greatest benefit accrued to the most conservation-dependent species since positive associations with change were largely restricted to rare and declining species and habitat specialists. We suggest that increased productivity provides a plausible demographic mechanism for positive effects of designation.
Collapse
Affiliation(s)
- A. E. Barnes
- grid.423196.b0000 0001 2171 8108British Trust for Ornithology, The Nunnery, Thetford, UK
| | - J. G. Davies
- grid.11918.300000 0001 2248 4331British Trust for Ornithology (Scotland), Unit 15 Beta Centre, Stirling University Innovation Park, Stirling, UK
| | - B. Martay
- grid.11918.300000 0001 2248 4331British Trust for Ornithology (Scotland), Unit 15 Beta Centre, Stirling University Innovation Park, Stirling, UK
| | - P. H. Boersch-Supan
- grid.423196.b0000 0001 2171 8108British Trust for Ornithology, The Nunnery, Thetford, UK
| | - S. J. Harris
- grid.423196.b0000 0001 2171 8108British Trust for Ornithology, The Nunnery, Thetford, UK
| | - D. G. Noble
- grid.423196.b0000 0001 2171 8108British Trust for Ornithology, The Nunnery, Thetford, UK
| | - J. W. Pearce-Higgins
- grid.423196.b0000 0001 2171 8108British Trust for Ornithology, The Nunnery, Thetford, UK ,grid.5335.00000000121885934Conservation Science Group, Department of Zoology, Cambridge University, Cambridge, UK
| | - R. A. Robinson
- grid.423196.b0000 0001 2171 8108British Trust for Ornithology, The Nunnery, Thetford, UK
| |
Collapse
|
5
|
Bao S, Yang F. Influences of Climate Change and Land Use Change on the Habitat Suitability of Bharal in the Sanjiangyuan District, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:17082. [PMID: 36554974 PMCID: PMC9779355 DOI: 10.3390/ijerph192417082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
One of the biggest dangers to the degradation of biodiversity worldwide is climate change. Its oscillations in the future could result in potential alterations to species populations and habitat structure. With Sanjiangyuan District as the study site, an uncrewed aerial vehicle (UAV) was utilized to investigate the number and location of the bharal (Pseudois nayaur). The Maximum Entropy model and the Minimum Cumulative Resistance model (MaxEnt-MCR) were coupled to simulate the distribution of wildlife. On this basis, the future geographical distribution of bharal under different climate scenarios was simulated, and the ecological corridor and habitat centroid of bharal were revealed. The results showed that the suitable area of the bharal habitat was 4669 km2, which was mainly concentrated in the Maduo, Qumalai, and Gonghe counties. The potential distribution of the species under different future climate scenarios had a decreasing trend. Under the SSP-245 scenario, the habitat area of bharal in 2030 and 2050 decreased by 25.68 and 44.61% compared with the present situation and cumulatively decreased by 1199 and 2083 km2, respectively. Under the SSP-585 scenario, the habitat area of bharal in 2030 and 2050 decreased by 27.5 and 48.44%, with a total reduction of 1284 and 2262 km2, respectively. Furthermore, a complete loss of habitat was predicted in Gonghe County by 2050. In addition, it was observed that the landscape structure in Sanjiangyuan District would be more fragmented and complex. The continued climate change will seriously affect the habitat distribution of this species. Therefore, preventive measures, such as protecting habitat areas and establishing ecological corridors for bharal, should be implemented in the Sanjiangyuan District. Such measures should not focus solely on the potential degradation but should also be extended to include potential distribution areas for future migration.
Collapse
|
6
|
Species richness response to human pressure hides important assemblage transformations. Proc Natl Acad Sci U S A 2022; 119:e2107361119. [PMID: 35500119 DOI: 10.1073/pnas.2107361119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceHuman activities are causing biodiversity loss, but there is still strong debate on their effect on species richness. Here, I propose a unification of five trajectories of species richness response to increasing human pressure under the "replace then remove framework." It consists in a first phase of assemblage transformation (with the replacement of "loser" by "winner" species), often followed by a second phase of steep decline in species richness (with the decline of many winner species) when human pressure exceeds a certain threshold. The empirical results presented in this study provide an outstanding illustration of assemblage transformations that may cause biotic homogenization, demonstrating how habitat specialist, endemic, sensitive, and threatened species are replaced by others with increasing human pressure.
Collapse
|