1
|
Jao CW, Wu HM, Wang TY, Duan CA, Wang PS, Wu YT. Morphological changes of cerebral gray matter in spinocerebellar ataxia type 3 using fractal dimension analysis. PROGRESS IN BRAIN RESEARCH 2024; 290:1-21. [PMID: 39448107 DOI: 10.1016/bs.pbr.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 10/26/2024]
Abstract
Spinocerebellar ataxia type 3 (SCA3), or Machado-Joseph disease, presents as a cerebellar cognitive affective syndrome (CCAS) and represents the predominant SCA genotype in Taiwan. Beyond cerebellar involvement, SCA3 patients exhibit cerebral atrophy. While prior neurodegenerative disease studies relied on voxel-based morphometry (VBM) for brain atrophy assessment, its qualitative nature limits individual and region-specific evaluations. To address this, we employed fractal dimension (FD) analysis to quantify cortical complexity changes in SCA3 patients. We examined 50 SCA3 patients and 50 age- and sex-matched healthy controls (HC), dividing MRI cerebral gray matter (GM) into 68 auto-anatomical subregions. Using three-dimensional FD analysis, we identified GM atrophy manifestations in SCA3 patients. Results revealed lateral atrophy symptoms in the left frontal, parietal, and occipital lobes, and fewer symptoms in the right hemisphere's parietal and occipital lobes. Focal areas of atrophy included regions previously identified in SCA3 studies, alongside additional regions with decreased FD values. Bilateral postcentral gyrus and inferior parietal gyrus exhibited pronounced atrophy, correlating with Scale for the Assessment and Rating of Ataxia (SARA) scores and disease duration. Notably, the most notable focal areas were the bilateral postcentral gyrus and the left superior temporal gyrus, serving as imaging biomarkers for SCA3. Our study enhances understanding of regional brain atrophy in SCA3, corroborating known clinical features while offering new insights into disease progression.
Collapse
Affiliation(s)
- Chi-Wen Jao
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Research, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Hsiu-Mei Wu
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tzu-Yun Wang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan; Quanta Computer, Taipei, Taiwan
| | - Chien-An Duan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Guishan, Taiwan
| | - Po-Shan Wang
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Neurology, Taipei Municipal Gan-Dau Hospital, Taipei, Taiwan.
| | - Yu-Te Wu
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
2
|
Rezende TJR, Adanyaguh I, Barsottini OGP, Bender B, Cendes F, Coutinho L, Deistung A, Dogan I, Durr A, Fernandez-Ruiz J, Göricke SL, Grisoli M, Hernandez-Castillo CR, Lenglet C, Mariotti C, Martinez ARM, Massuyama BK, Mochel F, Nanetti L, Nigri A, Ono SE, Öz G, Pedroso JL, Reetz K, Synofzik M, Teive H, Thomopoulos SI, Thompson PM, Timmann D, van de Warrenburg BPC, van Gaalen J, França MC, Harding IH. Genotype-specific spinal cord damage in spinocerebellar ataxias: an ENIGMA-Ataxia study. J Neurol Neurosurg Psychiatry 2024; 95:682-690. [PMID: 38383154 PMCID: PMC11187354 DOI: 10.1136/jnnp-2023-332696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/17/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Spinal cord damage is a feature of many spinocerebellar ataxias (SCAs), but well-powered in vivo studies are lacking and links with disease severity and progression remain unclear. Here we characterise cervical spinal cord morphometric abnormalities in SCA1, SCA2, SCA3 and SCA6 using a large multisite MRI dataset. METHODS Upper spinal cord (vertebrae C1-C4) cross-sectional area (CSA) and eccentricity (flattening) were assessed using MRI data from nine sites within the ENIGMA-Ataxia consortium, including 364 people with ataxic SCA, 56 individuals with preataxic SCA and 394 nonataxic controls. Correlations and subgroup analyses within the SCA cohorts were undertaken based on disease duration and ataxia severity. RESULTS Individuals in the ataxic stage of SCA1, SCA2 and SCA3, relative to non-ataxic controls, had significantly reduced CSA and increased eccentricity at all examined levels. CSA showed large effect sizes (d>2.0) and correlated with ataxia severity (r<-0.43) and disease duration (r<-0.21). Eccentricity correlated only with ataxia severity in SCA2 (r=0.28). No significant spinal cord differences were evident in SCA6. In preataxic individuals, CSA was significantly reduced in SCA2 (d=1.6) and SCA3 (d=1.7), and the SCA2 group also showed increased eccentricity (d=1.1) relative to nonataxic controls. Subgroup analyses confirmed that CSA and eccentricity are abnormal in early disease stages in SCA1, SCA2 and SCA3. CSA declined with disease progression in all, whereas eccentricity progressed only in SCA2. CONCLUSIONS Spinal cord abnormalities are an early and progressive feature of SCA1, SCA2 and SCA3, but not SCA6, which can be captured using quantitative MRI.
Collapse
Affiliation(s)
- Thiago Junqueira Ribeiro Rezende
- Department of Neurology, University of Campinas (UNICAMP), Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Isaac Adanyaguh
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Tübingen, Germany
| | - Fernando Cendes
- Department of Neurology, University of Campinas (UNICAMP), Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Leo Coutinho
- Graduate program of Internal Medicine, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, Brazil
| | - Andreas Deistung
- University Clinic and Outpatient Clinic for Radiology, Department for Radiation Medicine, University Hospital Halle (Saale), University Medicine Halle, Halle (Saale), Germany
| | - Imis Dogan
- Department of Neurology, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Center Jülich GmbH, Jülich, Germany
| | - Alexandra Durr
- Sorbonne Université, Paris Brain Institute (ICM), Pitié-Salpêtrière Hospital, AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, Paris, France
| | - Juan Fernandez-Ruiz
- Neuropsychology Laboratory, Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Sophia L Göricke
- Institute of Diagnostic and Interventional Radiology and Neuroradiology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Marina Grisoli
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Christophe Lenglet
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Caterina Mariotti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alberto R M Martinez
- Department of Neurology, University of Campinas (UNICAMP), Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Breno K Massuyama
- Department of Neurology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Fanny Mochel
- Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière University Hospital, Paris, France
| | - Lorenzo Nanetti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Anna Nigri
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sergio E Ono
- Clínica DAPI - Diagnóstico Avançado Por Imagem, Curitiba, Brazil
| | - Gülin Öz
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - José Luiz Pedroso
- Department of Neurology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Center Jülich GmbH, Jülich, Germany
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Helio Teive
- Graduate program of Internal Medicine, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, Brazil
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, Brazil
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Bart P C van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Neurology, Rijnstate Hospital, Arnhem, Netherlands
| | - Judith van Gaalen
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Neurology, Rijnstate Hospital, Arnhem, Netherlands
| | - Marcondes C França
- Department of Neurology, University of Campinas (UNICAMP), Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Ian H Harding
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
3
|
Su S, Sha R, Qiu H, Chu J, Lin L, Qian L, Hu M, Wu C, Cheung GL, Yang Z, Chen Y, Zhao J. Altered large-scale individual-based morphological brain network in spinocerebellar ataxia type 3. CNS Neurosci Ther 2023; 29:4102-4112. [PMID: 37392035 PMCID: PMC10651944 DOI: 10.1111/cns.14332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND Accumulating evidences indicate regional gray matter (GM) morphology atrophy in spinocerebellar ataxia type 3 (SCA3); however, whether large-scale morphological brain networks (MBNs) undergo widespread reorganization in these patients remains unclear. OBJECTIVE To investigate the topological organization of large-scale individual-based MBNs in SCA3 patients. METHODS The individual-based MBNs were constructed based on the inter-regional morphological similarity of GM regions. Graph theoretical analysis was taken to assess GM structural connectivity in 76 symptomatic SCA3, 24 pre-symptomatic SCA3, and 54 healthy normal controls (NCs). Topological parameters of the resulting graphs and network-based statistics analysis were compared among symptomatic SCA3, pre-symptomatic SCA3, and NCs groups. The inner association between network properties and clinical variables was further analyzed. RESULTS Compared to NCs and pre-symptomatic SCA3 patients, symptomatic SCA3 indicated significantly decreased integration and segregation, a shift to "weaker small-worldness", characterized by decreased Cp , lower Eloc, and Eglob (all p < 0.005). Regarding nodal properties, symptomatic SCA3 exhibited significantly decreased nodal profiles in the central executive network (CEN)-related left inferior frontal gyrus, limbic regions involving the bilateral amygdala, left hippocampus, and bilateral pallidum, thalamus; and increased nodal degree, efficiency in bilateral caudate (all pFDR <0.05). Meanwhile, clinical variables were correlated with altered nodal profiles (pFDR ≤0.029). SCA3-related subnetwork was closely interrelated with dorsolateral cortico-striatal circuitry extending to orbitofrontal-striatal circuits and dorsal visual systems (lingual gyrus-striatal). CONCLUSION Symptomatic SCA3 patients undergo an extensive and significant reorganization in large-scale individual-based MBNs, probably due to disrupted prefrontal cortico-striato-thalamo-cortical loops, limbic-striatum circuitry, and enhanced connectivity in the neostriatum. This study highlights the crucial role of abnormal morphological connectivity alterations beyond the pattern of brain atrophy, which might pave the way for therapeutic development in the future.
Collapse
Affiliation(s)
- Shu Su
- Department of Radiology, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Runhua Sha
- Department of Radiology, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Haishan Qiu
- Department of Radiology, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Jianping Chu
- Department of Radiology, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Liping Lin
- Department of Radiology, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Long Qian
- Department of Biomedical Engineering, College of EngineeringPeking UniversityBeijingChina
| | - Manshi Hu
- Department of Radiology, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Chao Wu
- Department of Neurology, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | | | - Zhiyun Yang
- Department of Radiology, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Yingqian Chen
- Department of Radiology, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Jing Zhao
- Department of Radiology, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
4
|
de Oliveira CM, Leotti VB, Polita S, Anes M, Cappelli AH, Rocha AG, Ecco G, Bolzan G, Kersting N, Duarte JA, Saraiva-Pereira ML, Junior MCF, Rezende TJR, Jardim LB. The longitudinal progression of MRI changes in pre-ataxic carriers of SCA3/MJD. J Neurol 2023; 270:4276-4287. [PMID: 37193796 PMCID: PMC10187509 DOI: 10.1007/s00415-023-11763-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND The natural history of magnetic resonance imaging (MRI) in pre-ataxic stages of spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) is not well known. We report cross-sectional and longitudinal data obtained at this stage. METHODS Baseline (follow-up) observations included 32 (17) pre-ataxic carriers (SARA < 3) and 20 (12) related controls. The mutation length was used to estimate the time to onset (TimeTo) of gait ataxia. Clinical scales and MRIs were performed at baseline and after a median (IQR) of 30 (7) months. Cerebellar volumetries (ACAPULCO), deep gray-matter (T1-Multiatlas), cortical thickness (FreeSurfer), cervical spinal cord area (SCT) and white matter (DTI-Multiatlas) were assessed. Baseline differences between groups were described; variables that presented a p < 0.1 after Bonferroni correction were assessed longitudinally, using TimeTo and study time. For TimeTo strategy, corrections for age, sex and intracranial volume were done with Z-score progression. A significance level of 5% was adopted. RESULTS SCT at C1 level distinguished pre-ataxic carriers from controls. DTI measures of the right inferior cerebellar peduncle (ICP), bilateral middle cerebellar peduncles (MCP) and bilateral medial lemniscus (ML), also distinguished pre-ataxic carriers from controls, and progressed over TimeTo, with effect sizes varying from 0.11 to 0.20, larger than those of the clinical scales. No MRI variable showed progression over study time. DISCUSSION DTI parameters of the right ICP, left MCP and right ML were the best biomarkers for the pre-ataxic stage of SCA3/MJD. TimeTo is an interesting timescale, since it captured the longitudinal worsening of these structures.
Collapse
Affiliation(s)
- Camila Maria de Oliveira
- Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Vanessa Bielefeldt Leotti
- Departamento de Estatística, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Epidemiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Sandra Polita
- Serviço de Radiologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Mauricio Anes
- Serviço de Física Médica e Radioproteção, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Amanda Henz Cappelli
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Gabriela Ecco
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Gabriela Bolzan
- Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Nathalia Kersting
- Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Juliana Avila Duarte
- Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Serviço de Radiologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria-Luiza Saraiva-Pereira
- Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marcondes Cavalcante França Junior
- Departamento de Neurologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Neuroimaging Laboratory, Rua Vital Brasil, 89-99, Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-888, Brazil
| | - Thiago Junqueira Ribeiro Rezende
- Departamento de Neurologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil.
- Neuroimaging Laboratory, Rua Vital Brasil, 89-99, Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-888, Brazil.
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, 90035-003, Brazil.
| | - Laura Bannach Jardim
- Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
- Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
- Departamento de Medicina Interna, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, 90035-003, Brazil.
| |
Collapse
|
5
|
Vucic S, Stanley Chen KH, Kiernan MC, Hallett M, Benninger DH, Di Lazzaro V, Rossini PM, Benussi A, Berardelli A, Currà A, Krieg SM, Lefaucheur JP, Long Lo Y, Macdonell RA, Massimini M, Rosanova M, Picht T, Stinear CM, Paulus W, Ugawa Y, Ziemann U, Chen R. Clinical diagnostic utility of transcranial magnetic stimulation in neurological disorders. Updated report of an IFCN committee. Clin Neurophysiol 2023; 150:131-175. [PMID: 37068329 PMCID: PMC10192339 DOI: 10.1016/j.clinph.2023.03.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
The review provides a comprehensive update (previous report: Chen R, Cros D, Curra A, Di Lazzaro V, Lefaucheur JP, Magistris MR, et al. The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 2008;119(3):504-32) on clinical diagnostic utility of transcranial magnetic stimulation (TMS) in neurological diseases. Most TMS measures rely on stimulation of motor cortex and recording of motor evoked potentials. Paired-pulse TMS techniques, incorporating conventional amplitude-based and threshold tracking, have established clinical utility in neurodegenerative, movement, episodic (epilepsy, migraines), chronic pain and functional diseases. Cortical hyperexcitability has emerged as a diagnostic aid in amyotrophic lateral sclerosis. Single-pulse TMS measures are of utility in stroke, and myelopathy even in the absence of radiological changes. Short-latency afferent inhibition, related to central cholinergic transmission, is reduced in Alzheimer's disease. The triple stimulation technique (TST) may enhance diagnostic utility of conventional TMS measures to detect upper motor neuron involvement. The recording of motor evoked potentials can be used to perform functional mapping of the motor cortex or in preoperative assessment of eloquent brain regions before surgical resection of brain tumors. TMS exhibits utility in assessing lumbosacral/cervical nerve root function, especially in demyelinating neuropathies, and may be of utility in localizing the site of facial nerve palsies. TMS measures also have high sensitivity in detecting subclinical corticospinal lesions in multiple sclerosis. Abnormalities in central motor conduction time or TST correlate with motor impairment and disability in MS. Cerebellar stimulation may detect lesions in the cerebellum or cerebello-dentato-thalamo-motor cortical pathways. Combining TMS with electroencephalography, provides a novel method to measure parameters altered in neurological disorders, including cortical excitability, effective connectivity, and response complexity.
Collapse
Affiliation(s)
- Steve Vucic
- Brain, Nerve Research Center, The University of Sydney, Sydney, Australia.
| | - Kai-Hsiang Stanley Chen
- Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Matthew C Kiernan
- Brain and Mind Centre, The University of Sydney; and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, Maryland, United States
| | - David H Benninger
- Department of Neurology, University Hospital of Lausanne (CHUV), Switzerland
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, Rome, Italy
| | - Paolo M Rossini
- Department of Neurosci & Neurorehab IRCCS San Raffaele-Rome, Italy
| | - Alberto Benussi
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli; Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Currà
- Department of Medico-Surgical Sciences and Biotechnologies, Alfredo Fiorini Hospital, Sapienza University of Rome, Terracina, LT, Italy
| | - Sandro M Krieg
- Department of Neurosurgery, Technical University Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Jean-Pascal Lefaucheur
- Univ Paris Est Creteil, EA4391, ENT, Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, AP-HP, Créteil, France
| | - Yew Long Lo
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, and Duke-NUS Medical School, Singapore
| | | | - Marcello Massimini
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milan, Italy; Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences University of Milan, Milan, Italy
| | - Thomas Picht
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Cluster of Excellence: "Matters of Activity. Image Space Material," Humboldt University, Berlin Simulation and Training Center (BeST), Charité-Universitätsmedizin Berlin, Germany
| | - Cathy M Stinear
- Department of Medicine Waipapa Taumata Rau, University of Auckland, Auckland, Aotearoa, New Zealand
| | - Walter Paulus
- Department of Neurology, Ludwig-Maximilians-Universität München, München, Germany
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Japan
| | - Ulf Ziemann
- Department of Neurology and Stroke, Eberhard Karls University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany; Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Otfried-Müller-Straße 27, 72076 Tübingen, Germany
| | - Robert Chen
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital-UHN, Division of Neurology-University of Toronto, Toronto Canada
| |
Collapse
|
6
|
Tang J, Xie Y, Liao W, Zhang Y, Yang F, Zhao L, Zhou G, Zhang Y, Jiang H, Xing W. Association between cortical gyrification and white matter integrity in spinocerebellar ataxia type 3. Cereb Cortex 2023; 33:2174-2182. [PMID: 35567796 DOI: 10.1093/cercor/bhac199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/28/2022] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
Gray matter volume and thickness reductions have been reported in patients with spinocerebellar ataxia type 3 (SCA3), whereas cortical gyrification alterations of this disease remain largely unexplored. Using local gyrification index (LGI) and fractional anisotropy (FA) from structural and diffusion MRI data, this study investigated the cortical gyrification alterations as well as their relationship with white matter microstructural abnormalities in patients with SCA3 (n = 61) compared with healthy controls (n = 69). We found widespread reductions in cortical LGI and white matter FA in patients with SCA3 and that changes in these 2 features were also coupled. In the patient group, the LGI of the left middle frontal gyrus, bilateral insula, and superior temporal gyrus was negatively correlated with the severity of depressive symptoms, and the FA of a cluster in the left cerebellum was negatively correlated with the Scale for the Assessment and Rating of Ataxia scores. Our findings suggest that the gyrification abnormalities observed in this study may account for the clinical heterogeneity in SCA3 and are likely to be mediated by the underlying white matter microstructural abnormalities of this disease.
Collapse
Affiliation(s)
- Jingyi Tang
- Department of Radiology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Yue Xie
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, China.,Molecular Imaging Research Center of Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Youming Zhang
- Department of Radiology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, China
| | - Fangxue Yang
- Department of Radiology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Linmei Zhao
- Department of Radiology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Gaofeng Zhou
- Department of Radiology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Yuanchao Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Wu Xing
- Department of Radiology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
| |
Collapse
|
7
|
Guo J, Jiang Z, Liu X, Li H, Biswal BB, Zhou B, Sheng W, Gao Q, Chen H, Fan Y, Zhu W, Wang J, Chen H, Liu C. Cerebello-cerebral resting-state functional connectivity in spinocerebellar ataxia type 3. Hum Brain Mapp 2022; 44:927-936. [PMID: 36250694 PMCID: PMC9875927 DOI: 10.1002/hbm.26113] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/24/2022] [Accepted: 09/26/2022] [Indexed: 01/28/2023] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is a neurodegenerative disorder characterized by progressive motor and nonmotor deficits concomitant with degenerative pathophysiological changes within the cerebellum. The cerebellum is topographically organized into cerebello-cerebral circuits that create distinct functional networks regulating movement, cognition, and affect. SCA3-associated motor and nonmotor symptoms are possibly related not only to intracerebellar changes but also to disruption of the connectivity within these cerebello-cerebral circuits. However, to date, no comprehensive investigation of cerebello-cerebral connectivity in SCA3 has been conducted. The present study aimed to identify cerebello-cerebral functional connectivity alterations and associations with downstream clinical phenotypes and upstream topographic markers of cerebellar neurodegeneration in patients with SCA3. This study included 45 patients with SCA3 and 49 healthy controls. Voxel-based morphometry and resting-state functional magnetic resonance imaging (MRI) were performed to characterize the cerebellar atrophy and to examine the cerebello-cerebral functional connectivity patterns. Structural MRI confirmed widespread gray matter atrophy in the motor and cognitive cerebellum of patients with SCA3. We found reduced functional connectivity between the cerebellum and the cerebral cortical networks, including the somatomotor, frontoparietal, and default networks; however, increased connectivity was observed between the cerebellum and the dorsal attention network. These abnormal patterns correlated with the CAG repeat expansion and deficits in global cognition. Our results indicate the contribution of cerebello-cerebral networks to the motor and cognitive impairments in patients with SCA3 and reveal that such alterations occur in association with cerebellar atrophy. These findings add important insights into our understanding of the role of the cerebellum in SCA3.
Collapse
Affiliation(s)
- Jing Guo
- The Center of Psychosomatic MedicineSichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of ChinaChengduChina,The Clinical Hospital of Chengdu Brain Science InstituteSchool of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina,Department of RadiologySouthwest Hospital, Army Medical University (Third Military Medical University)ChongqingChina
| | - Zhouyu Jiang
- The Clinical Hospital of Chengdu Brain Science InstituteSchool of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina,MOE Key Lab for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Xinyuan Liu
- The Clinical Hospital of Chengdu Brain Science InstituteSchool of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina,MOE Key Lab for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Haoru Li
- The Clinical Hospital of Chengdu Brain Science InstituteSchool of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina,MOE Key Lab for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Bharat B. Biswal
- The Clinical Hospital of Chengdu Brain Science InstituteSchool of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina,Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNew JerseyUSA
| | - Bo Zhou
- The Center of Psychosomatic MedicineSichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of ChinaChengduChina
| | - Wei Sheng
- The Clinical Hospital of Chengdu Brain Science InstituteSchool of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina,MOE Key Lab for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Qing Gao
- The Clinical Hospital of Chengdu Brain Science InstituteSchool of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina,MOE Key Lab for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Hui Chen
- Department of RadiologySouthwest Hospital, Army Medical University (Third Military Medical University)ChongqingChina
| | - Yunshuang Fan
- The Clinical Hospital of Chengdu Brain Science InstituteSchool of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina,MOE Key Lab for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Wenyan Zhu
- Data Processing DepartmentYidu Cloud Technology, Inc.BeijingChina
| | - Jian Wang
- Department of RadiologySouthwest Hospital, Army Medical University (Third Military Medical University)ChongqingChina
| | - Huafu Chen
- The Center of Psychosomatic MedicineSichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of ChinaChengduChina,The Clinical Hospital of Chengdu Brain Science InstituteSchool of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina,Department of RadiologySouthwest Hospital, Army Medical University (Third Military Medical University)ChongqingChina
| | - Chen Liu
- Department of RadiologySouthwest Hospital, Army Medical University (Third Military Medical University)ChongqingChina
| |
Collapse
|
8
|
Marvel CL, Chen L, Joyce MR, Morgan OP, Iannuzzelli KG, LaConte SM, Lisinski JM, Rosenthal LS, Li X. Quantitative susceptibility mapping of basal ganglia iron is associated with cognitive and motor functions that distinguish spinocerebellar ataxia type 6 and type 3. Front Neurosci 2022; 16:919765. [PMID: 36061587 PMCID: PMC9433989 DOI: 10.3389/fnins.2022.919765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Background In spinocerebellar ataxia type 3 (SCA3), volume loss has been reported in the basal ganglia, an iron-rich brain region, but iron content has not been examined. Recent studies have reported that patients with SCA6 have markedly decreased iron content in the cerebellar dentate, coupled with severe volume loss. Changing brain iron levels can disrupt cognitive and motor functions, yet this has not been examined in the SCAs, a disease in which iron-rich regions are affected. Methods In the present study, we used quantitative susceptibility mapping (QSM) to measure tissue magnetic susceptibility (indicating iron concentration), structural volume, and normalized susceptibility mass (indicating iron content) in the cerebellar dentate and basal ganglia in people with SCA3 (n = 10) and SCA6 (n = 6) and healthy controls (n = 9). Data were acquired using a 7T Philips MRI scanner. Supplemental measures assessed motor, cognitive, and mood domains. Results Putamen volume was lower in both SCA groups relative to controls, replicating prior findings. Dentate susceptibility mass and volume in SCA6 was lower than in SCA3 or controls, also replicating prior findings. The novel finding was that higher basal ganglia susceptibility mass in SCA6 correlated with lower cognitive performance and greater motor impairment, an association that was not observed in SCA3. Cerebellar dentate susceptibility mass, however, had the opposite relationship with cognition and motor function in SCA6, suggesting that, as dentate iron is depleted, it relocated to the basal ganglia, which contributed to cognitive and motor decline. By contrast, basal ganglia volume loss, rather than iron content, appeared to drive changes in motor function in SCA3. Conclusion The associations of higher basal ganglia iron with lower motor and cognitive function in SCA6 but not in SCA3 suggest the potential for using brain iron deposition profiles beyond the cerebellar dentate to assess disease states within the cerebellar ataxias. Moreover, the role of the basal ganglia deserves greater attention as a contributor to pathologic and phenotypic changes associated with SCA.
Collapse
Affiliation(s)
- Cherie L. Marvel
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lin Chen
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Michelle R. Joyce
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Owen P. Morgan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Katherine G. Iannuzzelli
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Stephen M. LaConte
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, United States
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - Jonathan M. Lisinski
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, United States
| | - Liana S. Rosenthal
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Xu Li
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
9
|
Sobana SA, Huda F, Hermawan R, Sribudiani Y, Koan TS, Dian S, Ong PA, Dahlan NL, Utami N, Pusparini I, Gamayani U, Mohamed Ibrahim N, Achmad TH. Brain MRI Volumetry Analysis in an Indonesian Family of SCA 3 Patients: A Case-Based Study. Front Neurol 2022; 13:912592. [PMID: 35847233 PMCID: PMC9277061 DOI: 10.3389/fneur.2022.912592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/01/2022] [Indexed: 11/22/2022] Open
Abstract
Introduction Spinocerebellar ataxia type-3 (SCA3) is an adult-onset autosomal dominant neurodegenerative disease. It is caused by expanding of CAG repeat in ATXN3 gene that later on would affect brain structures. This brain changes could be evaluated using brain MRI volumetric. However, findings across published brain volumetric studies have been inconsistent. Here, we report MRI brain volumetric analysis in a family of SCA 3 patients, which included pre-symptomatic and symptomatic patients. Methodology The study included affected and unaffected members from a large six-generation family of SCA 3, genetically confirmed using PolyQ/CAG repeat expansion analysis, Sanger sequencing, and PCR. Clinical evaluation was performed using Scale for the Assessment and Rating of Ataxia (SARA). Subjects' brains were scanned using 3.0-T MRI with a 3D T1 BRAVO sequence. Evaluations were performed by 2 independent neuroradiologists. An automated volumetric analysis was performed using FreeSurfer and CERES (for the cerebellum). Result We evaluated 7 subjects from this SCA3 family, including 3 subjects with SCA3 and 4 unaffected subjects. The volumetric evaluation revealed smaller brain volumes (p < 0.05) in the corpus callosum, cerebellar volume of lobules I-II, lobule IV, lobule VIIB and lobule IX; and in cerebellar gray matter volume of lobule IV, and VIIIA; in the pathologic/expanded CAG repeat group (SCA3). Conclusion Brain MRI volumetry of SCA3 subjects showed smaller brain volumes in multiple brain regions including the corpus callosum and gray matter volumes of several cerebellar lobules.
Collapse
Affiliation(s)
- Siti Aminah Sobana
- Department of Neurology, Faculty of Medicine, Dr. Hasan Sadikin Central General Hospital/Universitas Padjadjaran, Bandung, Indonesia
- Research Center of Medical Genetics, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Doctoral Study Program, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Siti Aminah Sobana
| | - Fathul Huda
- Department of Neurology, Faculty of Medicine, Dr. Hasan Sadikin Central General Hospital/Universitas Padjadjaran, Bandung, Indonesia
- Research Center of Medical Genetics, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- *Correspondence: Fathul Huda
| | - Robby Hermawan
- Department of Radiology, Saint Borromeus Hospital, Bandung, Indonesia
| | - Yunia Sribudiani
- Research Center of Medical Genetics, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Tan Siauw Koan
- Department of Radiology, Saint Borromeus Hospital, Bandung, Indonesia
| | - Sofiati Dian
- Department of Neurology, Faculty of Medicine, Dr. Hasan Sadikin Central General Hospital/Universitas Padjadjaran, Bandung, Indonesia
| | - Paulus Anam Ong
- Department of Neurology, Faculty of Medicine, Dr. Hasan Sadikin Central General Hospital/Universitas Padjadjaran, Bandung, Indonesia
| | - Nushrotul Lailiyya Dahlan
- Department of Neurology, Faculty of Medicine, Dr. Hasan Sadikin Central General Hospital/Universitas Padjadjaran, Bandung, Indonesia
| | - Nastiti Utami
- Department of Neurology, Faculty of Medicine, Dr. Hasan Sadikin Central General Hospital/Universitas Padjadjaran, Bandung, Indonesia
| | - Iin Pusparini
- Department of Neurology, Faculty of Medicine, Dr. Hasan Sadikin Central General Hospital/Universitas Padjadjaran, Bandung, Indonesia
| | - Uni Gamayani
- Department of Neurology, Faculty of Medicine, Dr. Hasan Sadikin Central General Hospital/Universitas Padjadjaran, Bandung, Indonesia
| | - Norlinah Mohamed Ibrahim
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur, Malaysia
| | - Tri Hanggono Achmad
- Research Center of Medical Genetics, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
10
|
Hu J, Chen X, Li M, Xu HL, Huang Z, Chen N, Tu Y, Chen Q, Gan S, Cao D. Pattern of cerebellar grey matter loss associated with ataxia severity in spinocerebellar ataxias type 3: a multi-voxel pattern analysis. Brain Imaging Behav 2021; 16:379-388. [PMID: 34417969 DOI: 10.1007/s11682-021-00511-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2021] [Indexed: 01/08/2023]
Abstract
Spinocerebellar ataxias type 3 (SCA3) patients are clinically characterized by progressive cerebellar ataxia combined with degeneration of the cerebellum. Previous neuroimaging studies have indicated ataxia severity associated with cerebellar atrophy using univariate methods. However, whether cerebellar atrophy patterns can be used to quantitatively predict ataxia severity in SCA3 patients at the individual level remains largely unexplored. In this study, a group of 66 SCA3 patients and 58 healthy controls were included. Disease duration and ataxia assessment, including the Scale for the Assessment and Rating of Ataxia (SARA) and the International Cooperative Ataxia Rating Scale (ICARS), were collected for SCA3 patients. The high-resolution T1-weighted MRI was obtained, and cerebellar grey matter (GM) was extracted using a spatially unbiased infratentorial template toolbox for all participants. We investigated the association between the pattern of cerebellar grey matter (GM) loss and ataxia assessment in SCA3 by using a multivariate machine learning technique. We found that the application of RVR allowed quantitative prediction of both SARA scores (leave-one-subject-out cross-validation: correlation = 0.56, p-value = 0.001; mean squared error (MSE) = 20.51, p-value = 0.001; ten-fold cross-validation: correlation = 0.52, p-value = 0.001; MSE = 21.00, p-value = 0.001) and ICARS score (leave-one-subject-out cross-validation: correlation = 0.59, p-value = 0.001; MSE = 139.69, p-value = 0.001; ten-fold cross-validation: correlation = 0.57, p-value = 0.001; MSE = 145.371, p-value = 0.001) with statistically significant accuracy. These results provide proof-of-concept that ataxia severity in SCA3 patients can be predicted by the alteration pattern of cerebellar GM using multi-voxel pattern analysis.
Collapse
Affiliation(s)
- Jianping Hu
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, 20 ChaZhong Rd, Fuzhou, Fujian, 350005, People's Republic of China
| | - Xinyuan Chen
- Department of Rehabilitation, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, People's Republic of China
| | - Mengcheng Li
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, 20 ChaZhong Rd, Fuzhou, Fujian, 350005, People's Republic of China
| | - Hao-Ling Xu
- Department of Neurology, 900TH Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Ziqiang Huang
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, 20 ChaZhong Rd, Fuzhou, Fujian, 350005, People's Republic of China
| | - Naping Chen
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, 20 ChaZhong Rd, Fuzhou, Fujian, 350005, People's Republic of China
| | - Yuqing Tu
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, 20 ChaZhong Rd, Fuzhou, Fujian, 350005, People's Republic of China
| | - Qunlin Chen
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, 20 ChaZhong Rd, Fuzhou, Fujian, 350005, People's Republic of China
| | - Shirui Gan
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, People's Republic of China. .,Fujian Institute of Neurology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| | - Dairong Cao
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, 20 ChaZhong Rd, Fuzhou, Fujian, 350005, People's Republic of China. .,Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China. .,Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, the First Affiliated Hospital, Fujian Medical University, 20 ChaZhong Rd, Fuzhou, 350005, Fujian, China.
| |
Collapse
|
11
|
Wiatr K, Marczak Ł, Pérot JB, Brouillet E, Flament J, Figiel M. Broad Influence of Mutant Ataxin-3 on the Proteome of the Adult Brain, Young Neurons, and Axons Reveals Central Molecular Processes and Biomarkers in SCA3/MJD Using Knock-In Mouse Model. Front Mol Neurosci 2021; 14:658339. [PMID: 34220448 PMCID: PMC8248683 DOI: 10.3389/fnmol.2021.658339] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/01/2021] [Indexed: 01/11/2023] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3/MJD) is caused by CAG expansion mutation resulting in a long polyQ domain in mutant ataxin-3. The mutant protein is a special type of protease, deubiquitinase, which may indicate its prominent impact on the regulation of cellular proteins levels and activity. Yet, the global model picture of SCA3 disease progression on the protein level, molecular pathways in the brain, and neurons, is largely unknown. Here, we investigated the molecular SCA3 mechanism using an interdisciplinary research paradigm combining behavioral and molecular aspects of SCA3 in the knock-in ki91 model. We used the behavior, brain magnetic resonance imaging (MRI) and brain tissue examination to correlate the disease stages with brain proteomics, precise axonal proteomics, neuronal energy recordings, and labeling of vesicles. We have demonstrated that altered metabolic and mitochondrial proteins in the brain and the lack of weight gain in Ki91 SCA3/MJD mice is reflected by the failure of energy metabolism recorded in neonatal SCA3 cerebellar neurons. We have determined that further, during disease progression, proteins responsible for metabolism, cytoskeletal architecture, vesicular, and axonal transport are disturbed, revealing axons as one of the essential cell compartments in SCA3 pathogenesis. Therefore we focus on SCA3 pathogenesis in axonal and somatodendritic compartments revealing highly increased axonal localization of protein synthesis machinery, including ribosomes, translation factors, and RNA binding proteins, while the level of proteins responsible for cellular transport and mitochondria was decreased. We demonstrate the accumulation of axonal vesicles in neonatal SCA3 cerebellar neurons and increased phosphorylation of SMI-312 positive adult cerebellar axons, which indicate axonal dysfunction in SCA3. In summary, the SCA3 disease mechanism is based on the broad influence of mutant ataxin-3 on the neuronal proteome. Processes central in our SCA3 model include disturbed localization of proteins between axonal and somatodendritic compartment, early neuronal energy deficit, altered neuronal cytoskeletal structure, an overabundance of various components of protein synthesis machinery in axons.
Collapse
Affiliation(s)
- Kalina Wiatr
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Łukasz Marczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Jean-Baptiste Pérot
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Direction de la Recherche Fondamentale, Institut de Biologie François Jacob, Molecular Imaging Research Center, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
| | - Emmanuel Brouillet
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Direction de la Recherche Fondamentale, Institut de Biologie François Jacob, Molecular Imaging Research Center, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
| | - Julien Flament
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Direction de la Recherche Fondamentale, Institut de Biologie François Jacob, Molecular Imaging Research Center, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
| | - Maciej Figiel
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
12
|
Chen ML, Lin CC, Rosenthal LS, Opal P, Kuo SH. Rating scales and biomarkers for CAG-repeat spinocerebellar ataxias: Implications for therapy development. J Neurol Sci 2021; 424:117417. [PMID: 33836316 DOI: 10.1016/j.jns.2021.117417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/26/2021] [Accepted: 03/23/2021] [Indexed: 01/18/2023]
Abstract
Spinocerebellar ataxias (SCAs) are a group of dominantly-inherited cerebellar ataxias, among which CAG expansion-related SCAs are most common. These diseases have very high penetrance with defined disease progression, and emerging therapies are being developed to provide either symptomatic or disease-modifying benefits. In clinical trial design, it is crucial to incorporate biomarkers to test target engagement or track disease progression in response to therapies, especially in rare diseases such as SCAs. In this article, we review the available rating scales and recent advances of biomarkers in CAG-repeat SCAs. We divided biomarkers into neuroimaging, body fluid, and physiological studies. Understanding the utility of each biomarker will facilitate the design of robust clinical trials to advance therapies for SCAs.
Collapse
Affiliation(s)
- Meng-Ling Chen
- Department of Neurology, Columbia University, New York, NY, USA; Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Chih-Chun Lin
- Department of Neurology, Columbia University, New York, NY, USA; Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Liana S Rosenthal
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Puneet Opal
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Cellular and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University, New York, NY, USA; Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA.
| |
Collapse
|
13
|
Maas RPPWM, Killaars S, van de Warrenburg BPC, Schutter DJLG. The cerebellar cognitive affective syndrome scale reveals early neuropsychological deficits in SCA3 patients. J Neurol 2021; 268:3456-3466. [PMID: 33743045 PMCID: PMC8357713 DOI: 10.1007/s00415-021-10516-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/20/2020] [Accepted: 03/10/2021] [Indexed: 12/18/2022]
Abstract
Background The cerebellar cognitive affective syndrome scale (CCAS-S) was recently developed to detect specific neuropsychological deficits in patients with cerebellar diseases in an expedited manner. Objectives To evaluate the discriminative ability of the CCAS-S in an etiologically homogeneous cohort of spinocerebellar ataxia type 3 (SCA3) patients and to examine relationships between cognitive deficits and motor symptom severity. Methods The CCAS-S was administered to twenty mildly to moderately affected SCA3 patients and eighteen healthy controls matched for age, sex, and educational level. Disease severity was measured by the Scale for the Assessment and Rating of Ataxia (SARA), Inventory of Non-Ataxia Signs (INAS), 8 m walk test, nine-hole peg test (9HPT), and Patient Health Questionnaire-9 (PHQ-9). Results SCA3 patients had a lower total CCAS-S score (p < 0.001) and higher number of failed tests (p = 0.006) than healthy controls. Patients displayed impairments in semantic fluency, phonemic fluency, category switching, cube drawing, and affect regulation. Total CCAS-S score showed high discriminative ability (area under the curve [AUC]: 0.96) and was associated with disease duration, SARA score, walking speed, and dominant hand 9HPT performance. No correlations were observed with INAS count, repeat length, and PHQ-9 score. Discriminative capacity of the number of failed tests was moderate (AUC: 0.76). Conclusion Essentially all SCA3 patients exhibited some form of cognitive impairment. The CCAS-S differentiates SCA3 patients from healthy controls, detects neuropsychological deficits early in the disease course, and correlates with relevant ataxia severity measures.
Collapse
Affiliation(s)
- Roderick P P W M Maas
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Sven Killaars
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bart P C van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dennis J L G Schutter
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
14
|
McCord MR, Bigio EH, Kam KL, Fischer V, Obeidin F, White CL, Brat DJ, Muller WA, Mao Q. Spinocerebellar Ataxia Type 3: A Case Report and Literature Review. J Neuropathol Exp Neurol 2020; 79:641-646. [PMID: 32346735 DOI: 10.1093/jnen/nlaa033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/24/2019] [Accepted: 03/27/2020] [Indexed: 12/12/2022] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3), also known by the eponym Machado-Joseph disease, is an autosomal dominant CAG trinucleotide (polyglutamine) repeat disease that presents in young- to middle-aged adults. SCA3 was first described in Azorean individuals and has interesting epidemiological patterns. It is characterized clinically by progressive ataxia and neuropathologically by progressive degenerative changes in the spinal cord and cerebellum, along with degeneration of the cortex and basal ganglia. Here, we describe the clinical and neuropathologic features in a case of SCA3 with unique findings, including involvement of the inferior olivary nucleus and cerebellar Purkinje cell layer, which are classically spared in the disease. We also discuss research into the disease mechanisms of SCA3 and the potential for therapeutic intervention.
Collapse
Affiliation(s)
| | - Eileen H Bigio
- Department of Pathology.,Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | | | | | | | - Charles L White
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | | | - Qinwen Mao
- Department of Pathology.,Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| |
Collapse
|
15
|
Elyoseph Z, Mintz M, Vakil E, Zaltzman R, Gordon CR. Selective Procedural Memory Impairment but Preserved Declarative Memory in Spinocerebellar Ataxia Type 3. THE CEREBELLUM 2020; 19:226-234. [PMID: 31912433 DOI: 10.1007/s12311-019-01101-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease, is an autosomal dominant neurodegenerative disorder that affects mainly the cerebellum and less other brain areas. While the ataxic/motor features of the disease have been well described, the cognitive consequences of the degeneration require additional testing. The aim of this study was to evaluate learning abilities in SCA3. We tested 13 SCA3 patients and 14 age-matched healthy controls, all of Yemenite origin, on a neuropsychological battery of procedural and declarative memory tests. SCA3 patients demonstrated impaired sequence learning on the procedural Serial Reaction Time test (SRTt) but normal learning on the procedural Weather Prediction Probabilistic Classification test (WPPCt). SCA3 patients showed normal learning on the declarative Rey Auditory Verbal Learning test (Rey-AVLt). The correlations between the learning measures of the SRTt, WPPCt, and Rey-AVLt tests in SCA3 and controls separately were not significant. These results imply that the cerebellar degeneration in SCA3 causes selective impairment in procedural sequence learning while the procedural probabilistic learning and declarative memory were mostly preserved. These findings support the assumption that procedural learning is not a homogeneous function and could be dissociated in cerebellar neurodegenerative disease.
Collapse
Affiliation(s)
- Zohar Elyoseph
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Matti Mintz
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Eli Vakil
- Department of Psychology, Bar Ilan University, Ramat Gan, Israel.,Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| | - Roy Zaltzman
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Neurology, Meir Medical Center, Kfar Saba, Israel
| | - Carlos R Gordon
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel. .,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. .,Department of Neurology, Meir Medical Center, Kfar Saba, Israel.
| |
Collapse
|
16
|
Corticospinal tract involvement in spinocerebellar ataxia type 3: a diffusion tensor imaging study. Neuroradiology 2020; 63:217-224. [PMID: 32876704 DOI: 10.1007/s00234-020-02528-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/16/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE The aim of this study was to evaluate the integrity of the corticospinal tracts (CST) in patients with SCA3 and age- and gender-matched healthy control subjects using diffusion tensor imaging (DTI). We also looked at the clinical correlates of such diffusivity abnormalities. METHODS We assessed 2 cohorts from different Brazilian centers: cohort 1 (n = 29) scanned in a 1.5 T magnet and cohort 2 (n = 91) scanned in a 3.0 T magnet. We used Pearson's coefficients to assess the correlation of CST DTI parameters and ataxia severity (expressed by SARA scores). RESULTS Two different results were obtained. Cohort 1 showed no significant between-group differences in DTI parameters. Cohort 2 showed significant between-group differences in the FA values in the bilateral precentral gyri (p < 0.001), bilateral superior corona radiata (p < 0.001), bilateral posterior limb of the internal capsule (p < 0.001), bilateral cerebral peduncle (p < 0.001), and bilateral basis pontis (p < 0.001). There was moderate correlation between CST diffusivity parameters and SARA scores in cohort 2 (Pearson correlation coefficient: 0.40-0.59). CONCLUSION DTI particularly at 3 T is able to uncover and quantify CST damage in SCA3. Moreover, CST microstructural damage may contribute with ataxia severity in the disease.
Collapse
|
17
|
Wan N, Chen Z, Wan L, Tang B, Jiang H. MR Imaging of SCA3/MJD. Front Neurosci 2020; 14:749. [PMID: 32848545 PMCID: PMC7417615 DOI: 10.3389/fnins.2020.00749] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/25/2020] [Indexed: 12/15/2022] Open
Abstract
Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) is a progressive autosomal dominantly inherited cerebellar ataxia characterized by the aggregation of polyglutamine-expanded protein within neuronal nuclei in the brain, which can lead to brain damage that precedes the onset of clinical manifestations. Magnetic resonance imaging (MRI) techniques such as morphometric MRI, diffusion tensor imaging (DTI), functional magnetic resonance imaging (fMRI), and magnetic resonance spectroscopy (MRS) have gained increasing attention as non-invasive and quantitative methods for the assessment of structural and functional alterations in clinical SCA3/MJD patients as well as preclinical carriers. Morphometric MRI has demonstrated typical patterns of atrophy or volume loss in the cerebellum and brainstem with extensive lesions in some supratentorial areas. DTI has detected widespread microstructural alterations in brain white matter, which indicate disrupted brain anatomical connectivity. Task-related fMRI has presented unusual brain activation patterns within the cerebellum and some extracerebellar tissue, reflecting the decreased functional connectivity of these brain regions in SCA3/MJD subjects. MRS has revealed abnormal neurochemical profiles, such as the levels or ratios of N-acetyl aspartate, choline, and creatine, in both clinical cases and preclinical cases before the alterations in brain anatomical structure. Moreover, a number of studies have reported correlations of MR imaging alterations with clinical and genetic features. The utility of these MR imaging techniques can help to identify preclinical SCA3/MJD carriers, monitor disease progression, evaluate response to therapeutic interventions, and illustrate the pathophysiological mechanisms underlying the occurrence, development, and prognosis of SCA3/MJD.
Collapse
Affiliation(s)
- Na Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhao Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Linlin Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| |
Collapse
|
18
|
Nakata Y, Sakamoto A, Kawata A. Neuromelanin imaging analyses of the substantia nigra in patients with Machado-Joseph disease. Neuroradiology 2020; 62:1433-1439. [DOI: 10.1007/s00234-020-02479-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/11/2020] [Indexed: 12/31/2022]
|
19
|
Schmidt J, Mayer AK, Bakula D, Freude J, Weber JJ, Weiss A, Riess O, Schmidt T. Vulnerability of frontal brain neurons for the toxicity of expanded ataxin-3. Hum Mol Genet 2020; 28:1463-1473. [PMID: 30576445 DOI: 10.1093/hmg/ddy437] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/16/2022] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is caused by the expansion of CAG repeats in the ATXN3 gene leading to an elongated polyglutamine tract in the ataxin-3 protein. Previously, we demonstrated that symptoms of SCA3 are reversible in the first conditional mouse model for SCA3 directing ataxin-3 predominantly to the hindbrain. Here, we report on the effects of transgenic ataxin-3 expression in forebrain regions. Employing the Tet-off CamKII-promoter mouse line and our previously published SCA3 responder line, we generated double transgenic mice (CamKII/MJD77), which develop a neurological phenotype characterized by impairment in rotarod performance, and deficits in learning new motor tasks as well as hyperactivity. Ataxin-3 and ubiquitin-positive inclusions are detected in brains of double transgenic CamKII/MJD77 mice. After turning off the expression of pathologically expanded ataxin-3, these inclusions disappear. However, the observed phenotype could not be reversed, very likely due to pronounced apoptotic cell death in the frontal brain. Our data demonstrate that cerebellar expression is not required to induce a neurological phenotype using expanded ATXN3 as well as the pronounced sensibility of forebrain neurons for toxic ataxin-3.
Collapse
Affiliation(s)
- Jana Schmidt
- SCA3 research group, Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany.,Center for Rare Diseases, University of Tuebingen, Tuebingen, Germany.,NGS Competence Center, University of Tuebingen, Tuebingen, Germany
| | - Anja K Mayer
- SCA3 research group, Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany.,Center for Rare Diseases, University of Tuebingen, Tuebingen, Germany.,NGS Competence Center, University of Tuebingen, Tuebingen, Germany
| | - Daniela Bakula
- SCA3 research group, Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany.,Center for Rare Diseases, University of Tuebingen, Tuebingen, Germany.,NGS Competence Center, University of Tuebingen, Tuebingen, Germany
| | - Jasmin Freude
- SCA3 research group, Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany.,Center for Rare Diseases, University of Tuebingen, Tuebingen, Germany.,NGS Competence Center, University of Tuebingen, Tuebingen, Germany
| | - Jonasz J Weber
- SCA3 research group, Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany.,Center for Rare Diseases, University of Tuebingen, Tuebingen, Germany.,NGS Competence Center, University of Tuebingen, Tuebingen, Germany
| | | | - Olaf Riess
- SCA3 research group, Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany.,Center for Rare Diseases, University of Tuebingen, Tuebingen, Germany.,NGS Competence Center, University of Tuebingen, Tuebingen, Germany
| | - Thorsten Schmidt
- SCA3 research group, Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany.,Center for Rare Diseases, University of Tuebingen, Tuebingen, Germany.,NGS Competence Center, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
20
|
Wang PS, Wu YT, Wang TY, Wu HM, Soong BW, Jao CW. Supratentorial and Infratentorial Lesions in Spinocerebellar Ataxia Type 3. Front Neurol 2020; 11:124. [PMID: 32194495 PMCID: PMC7062793 DOI: 10.3389/fneur.2020.00124] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/04/2020] [Indexed: 12/22/2022] Open
Abstract
Background: Spinocerebellar ataxia type 3 (SCA) is a cerebellum-dominant degenerative disorder that is characterized primarily by infratentorial damage, although less severe supratentorial involvement may contribute to the clinical manifestation. These impairments may result from the efferent loss of the cerebellar cortex and degeneration of the cerebral cortex. Method: We used the three-dimensional fractal dimension (3D-FD) method to quantify the morphological changes in the supratentorial regions and assessed atrophy in the relatively focal regions in patients with SCA3. A total of 48 patients with SCA3 and 50 sex- and age-matched healthy individuals, as the control group, participated in this study. The 3D-FD method was proposed to distinguish 97 automatic anatomical label regions of gray matter (left cerebrum: 45, right cerebrum: 45, cerebellum: 7) between healthy individuals and patients with SCA3. Results: Patients with SCA3 exhibited reduced brain complexity within both the traditional olivopontocerebellar atrophy (OPCA) pattern and specific supratentorial regions. The study results confirmed the extensive involvement of extracerebellar regions in SCA3. The atrophied regions of SCA3 in infratentorial and supratentorial cortex showed a wide range of overlapped areas as in two functional cortexes, namely cerebellum-related cortex and basal ganglia-related cortex. Conclusions: Our results found that the atrophy of the SCA3 are not only limited in the infratentorial regions. Both cerebellar related cortex and basal ganglia related cortex were affected in the disease process of SCA3. Our findings might correlate to the common symptoms of SCA3, such as ataxia, Parkinsonism, dysarthria, and dysmetria. SCA3 should no longer be considered a disease limited to the cerebellum and its connections; rather, it should be considered a pathology affecting the whole brain.
Collapse
Affiliation(s)
- Po-Shan Wang
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan.,Department of Neurology, Taipei Municipal Gan-Dau Hospital, Taipei, Taiwan
| | - Yu-Te Wu
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan.,Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Tzu-Yun Wang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Hsiu-Mei Wu
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Bing-Wen Soong
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan.,Department of Neurology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.,Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chi-Wen Jao
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan.,Department of Neurology, Shin-Kong Wu Ho Su Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
21
|
Jao CW, Soong BW, Huang CW, Duan CA, Wu CC, Wu YT, Wang PS. Diffusion Tensor Magnetic Resonance Imaging for Differentiating Multiple System Atrophy Cerebellar Type and Spinocerebellar Ataxia Type 3. Brain Sci 2019; 9:E354. [PMID: 31817016 PMCID: PMC6956111 DOI: 10.3390/brainsci9120354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/25/2019] [Accepted: 12/02/2019] [Indexed: 12/28/2022] Open
Abstract
Multiple system atrophy cerebellar type (MSA-C) and spinocerebellar ataxia type 3 (SCA3) demonstrate similar manifestations, including ataxia, pyramidal and extrapyramidal signs, as well as atrophy and signal intensity changes in the cerebellum and brainstem. MSA-C and SCA3 cannot be clinically differentiated through T1-weighted magnetic resonance imaging (MRI) alone; therefore, clinical consensus criteria and genetic testing are also required. Here, we used diffusion tensor imaging (DTI) to measure water molecular diffusion of white matter and investigate the difference between MSA-C and SCA3. Four measurements were calculated from DTI images, including fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD). Fifteen patients with MSA-C, 15 patients with SCA3, and 30 healthy individuals participated in this study. Both patient groups demonstrated a significantly decreased FA but a significantly increased AD, RD, and MD in the cerebello-ponto-cerebral tracts. Moreover, patients with SCA3 demonstrated a significant decrease in FA but more significant increases in AD, RD, and MD in the cerebello-cerebral tracts than patients with MSAC. Our results may suggest that FA and MD can be effectively used for differentiating SCA3 and MSA-C, both of which are cerebellar ataxias and have many common atrophied regions in the cerebral and cerebellar cortex.
Collapse
Affiliation(s)
- Chi-Wen Jao
- Institute of Biophotonics, National Yang-Ming University, Taipei 11221, Taiwan; (C.-W.J.); (C.-W.H.); (C.-A.D.)
- Brain Research Center, National Yang-Ming University, Taipei 11221, Taiwan
- Department of Neurology, Shin-Kong Wu Ho Su Memorial Hospital, Taipei 11101, Taiwan
| | - Bing-Wen Soong
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 11041, Taiwan;
- Department of Neurology, Taipei Veterans General Hospital, Taipei 11221, Taiwan
| | - Chao-Wen Huang
- Institute of Biophotonics, National Yang-Ming University, Taipei 11221, Taiwan; (C.-W.J.); (C.-W.H.); (C.-A.D.)
| | - Chien-An Duan
- Institute of Biophotonics, National Yang-Ming University, Taipei 11221, Taiwan; (C.-W.J.); (C.-W.H.); (C.-A.D.)
| | - Chih-Chun Wu
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, Taipei 11221, Taiwan
| | - Yu-Te Wu
- Institute of Biophotonics, National Yang-Ming University, Taipei 11221, Taiwan; (C.-W.J.); (C.-W.H.); (C.-A.D.)
- Brain Research Center, National Yang-Ming University, Taipei 11221, Taiwan
| | - Po-Shan Wang
- Institute of Biophotonics, National Yang-Ming University, Taipei 11221, Taiwan; (C.-W.J.); (C.-W.H.); (C.-A.D.)
- Brain Research Center, National Yang-Ming University, Taipei 11221, Taiwan
- The Neurological Institute, Taipei Municipal Gan-Dau Hospital, Taipei 11261, Taiwan
| |
Collapse
|
22
|
Wiatr K, Piasecki P, Marczak Ł, Wojciechowski P, Kurkowiak M, Płoski R, Rydzanicz M, Handschuh L, Jungverdorben J, Brüstle O, Figlerowicz M, Figiel M. Altered Levels of Proteins and Phosphoproteins, in the Absence of Early Causative Transcriptional Changes, Shape the Molecular Pathogenesis in the Brain of Young Presymptomatic Ki91 SCA3/MJD Mouse. Mol Neurobiol 2019; 56:8168-8202. [PMID: 31201651 PMCID: PMC6834541 DOI: 10.1007/s12035-019-01643-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/10/2019] [Indexed: 12/19/2022]
Abstract
Spinocerebellar ataxia type 3 (SCA3/MJD) is a polyQ neurodegenerative disease where the presymptomatic phase of pathogenesis is unknown. Therefore, we investigated the molecular network of transcriptomic and proteomic triggers in young presymptomatic SCA3/MJD brain from Ki91 knock-in mouse. We found that transcriptional dysregulations resulting from mutant ataxin-3 are not occurring in young Ki91 mice, while old Ki91 mice and also postmitotic patient SCA3 neurons demonstrate the late transcriptomic changes. Unlike the lack of early mRNA changes, we have identified numerous early changes of total proteins and phosphoproteins in 2-month-old Ki91 mouse cortex and cerebellum. We discovered the network of processes in presymptomatic SCA3 with three main groups of disturbed processes comprising altered proteins: (I) modulation of protein levels and DNA damage (Pabpc1, Ddb1, Nedd8), (II) formation of neuronal cellular structures (Tubb3, Nefh, p-Tau), and (III) neuronal function affected by processes following perturbed cytoskeletal formation (Mt-Co3, Stx1b, p-Syn1). Phosphoproteins downregulate in the young Ki91 mouse brain and their phosphosites are associated with kinases that interact with ATXN3 such as casein kinase, Camk2, and kinases controlled by another Atxn3 interactor p21 such as Gsk3, Pka, and Cdk kinases. We conclude that the onset of SCA3 pathology occurs without altered transcript level and is characterized by changed levels of proteins responsible for termination of translation, DNA damage, spliceosome, and protein phosphorylation. This disturbs global cellular processes such as cytoskeleton and transport of vesicles and mitochondria along axons causing energy deficit and neurodegeneration also manifesting in an altered level of transcripts at later ages.
Collapse
Affiliation(s)
- Kalina Wiatr
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Piotr Piasecki
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Łukasz Marczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Paweł Wojciechowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań, Poland.,Institute of Computing Science, Poznan University of Technology, Poznań, Poland
| | - Małgorzata Kurkowiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | | | - Luiza Handschuh
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Johannes Jungverdorben
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn School of Medicine & University Hospital Bonn, 53127, Bonn, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn School of Medicine & University Hospital Bonn, 53127, Bonn, Germany
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Maciej Figiel
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań, Poland.
| |
Collapse
|
23
|
Martins Junior CR, Martinez ARM, Vasconcelos IF, de Rezende TJR, Casseb RF, Pedroso JL, Barsottini OGP, Lopes-Cendes Í, França MC. Structural signature in SCA1: clinical correlates, determinants and natural history. J Neurol 2018; 265:2949-2959. [PMID: 30324307 DOI: 10.1007/s00415-018-9087-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 09/29/2018] [Accepted: 10/08/2018] [Indexed: 12/20/2022]
Abstract
Spinocerebellar ataxia type 1 is an autosomal dominant disorder caused by a CAG repeat expansion in ATXN1, characterized by progressive cerebellar and extracerebellar symptoms. MRI-based studies in SCA1 focused in the cerebellum and connections, but there are few data about supratentorial/spinal damage and its clinical relevance. We have thus designed this multimodal MRI study to uncover the structural signature of SCA1. To accomplish that, a group of 33 patients and 33 age-and gender-matched healthy controls underwent MRI on a 3T scanner. All patients underwent a comprehensive neurological and neuropsychological evaluation. We correlated the structural findings with the clinical features of the disease. In addition, we evaluated the disease progression looking at differences in SCA1 subgroups defined by disease duration. Ataxia and pyramidal signs were the main symptoms. Neuropsychological evaluation disclosed cognitive impairment in 53% with predominant frontotemporal dysfunction. Gray matter analysis unfolded cortical thinning of primary and associative motor areas with more restricted impairment of deep structures. Deep gray matter atrophy was associated with motor handicap and poor cognition skills. White matter integrity loss was diffuse in the brainstem but restricted in supratentorial structures. Cerebellar cortical thinning was found in multiple areas and correlated not only with motor disability but also with verbal fluency. Spinal cord atrophy correlated with motor handicap. Comparison of MRI findings in disease duration-defined subgroups identified a peculiar pattern of progressive degeneration.
Collapse
Affiliation(s)
- Carlos Roberto Martins Junior
- Department of Neurology, University of Campinas (UNICAMP), R. Tessália Vieira de Camargo, 126, Campinas, 13083-887, Brazil
| | - Alberto Rolim Muro Martinez
- Department of Neurology, University of Campinas (UNICAMP), R. Tessália Vieira de Camargo, 126, Campinas, 13083-887, Brazil
| | - Ingrid Faber Vasconcelos
- Department of Neurology, University of Campinas (UNICAMP), R. Tessália Vieira de Camargo, 126, Campinas, 13083-887, Brazil
| | | | - Raphael Fernandes Casseb
- Department of Neurology, University of Campinas (UNICAMP), R. Tessália Vieira de Camargo, 126, Campinas, 13083-887, Brazil
| | - Jose Luiz Pedroso
- Department of Neurology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Íscia Lopes-Cendes
- Department of Medical Genetics, University of Campinas (UNICAMP), Campinas, Brazil
| | - Marcondes Cavalcante França
- Department of Neurology, University of Campinas (UNICAMP), R. Tessália Vieira de Camargo, 126, Campinas, 13083-887, Brazil.
| |
Collapse
|
24
|
Hernandez-Castillo CR, King M, Diedrichsen J, Fernandez-Ruiz J. Unique degeneration signatures in the cerebellar cortex for spinocerebellar ataxias 2, 3, and 7. Neuroimage Clin 2018; 20:931-938. [PMID: 30308379 PMCID: PMC6178193 DOI: 10.1016/j.nicl.2018.09.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 08/13/2018] [Accepted: 09/25/2018] [Indexed: 12/14/2022]
Abstract
Spinocerebellar ataxias (SCAs) are a heterogeneous group of neurodegenerative diseases that selectively affect vulnerable neuronal populations in the cerebellum and other subcortical regions. While previous studies have reported subtype differences in the absolute amount of degeneration in specific regions of interest, they failed to account for two important factors. First, they did not control for overall differences in the severity of the degeneration pattern, and second, they did not fully characterize the spatial pattern of degeneration for each SCA subtype. Here, we provide a systematic characterization of the spatial degeneration patterns for three polyQ SCAs (55 patients, either SCA2, SCA3, or SCA7) while controlling for the severity of the degeneration pattern. After this correction, the cerebellar degeneration pattern can successfully classify between the three different SCA subtypes with high cross-validated accuracy. Specifically, degeneration in SCA3 disproportionally affects motor regions of the cerebellar cortex, which explains the relatively severe motor symptoms observed in this subtype. Our results demonstrate that each of the three studied SCA subtypes has a unique cerebellar degeneration signature, hinting at differences in the disease process. Clinically, these differentiable patterns of cerebellar degeneration can be used to reliably discern subtypes, even at relatively early stages of the disease.
Collapse
Affiliation(s)
- Carlos R Hernandez-Castillo
- CONACYT - Instituto de Neuroetologia, Universidad Veracruzana, Xalapa, Mexico; Brain and Mind Institute, Western University, London, ON, Canada.
| | - Maedbh King
- Department of Psychology, University of California, Berkeley, CA, USA
| | - Jörn Diedrichsen
- Brain and Mind Institute, Western University, London, ON, Canada; Department of Computer Science and Department of Statistical and Actuarial Sciences, Western University, London, ON, Canada
| | - Juan Fernandez-Ruiz
- Departamento de Fisiologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico. Mexico
| |
Collapse
|
25
|
Rezende TJR, de Paiva JLR, Martinez ARM, Lopes-Cendes I, Pedroso JL, Barsottini OGP, Cendes F, França MC. Structural signature of SCA3: From presymptomatic to late disease stages. Ann Neurol 2018; 84:401-408. [PMID: 30014526 DOI: 10.1002/ana.25297] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Machado-Joseph disease (SCA3/MJD) is the most frequent spinocerebellar ataxia worldwide and characterized by brainstem, basal ganglia, and cerebellar damage. However, little is known about the natural history of the disease. This motivated us to determine the extension and progression of central nervous system involvement in SCA3/MJD using multimodal magnetic resonance imaging (MRI)-based analyses in a large cohort of patients (n = 79) and presymptomatic subjects (n = 12). METHODS All subjects underwent MRI in a 3T device to assess gray and white matter. To evaluate the cerebral and cerebellar cortices, we used measures from FreeSurfer and SUIT. T1-multiatlas assessed deep gray matter. Diffusion tensor imaging multiatlas was used to investigate cerebral white matter (WM) and SpineSeg to assess the cervical spinal cord. RESULTS There was widespread WM and cerebellar damage, in contrast to the restricted motor cortex involvement when all patients are compared to age- and sex-matched controls. Presymtomatic patients showed WM microstructural abnormalities mainly in the cerebellar and cerebral peduncles and volumetric reduction of midbrain, spinal cord, and substantia nigra. To assess the disease progression, we divided patients into four subgroups defined by time from ataxia onset. There was a clear pattern of evolving structural compromise, starting in infratentorial structures and progressing up to the cerebral cortex. CONCLUSION Structural damage in SCA3/MJD begins in the spinal cord, cerebellar peduncles, as well as substantia nigra and progresses to cerebral areas in the long term. These structural differences reveal some insights into the pathogenesis of SCA3/MJD and suggest a staging scheme to map the progression of the disease. Ann Neurol 2018;84:401-408.
Collapse
Affiliation(s)
| | | | | | - Iscia Lopes-Cendes
- Department of Medical Genetics, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - José Luiz Pedroso
- Department of Neurology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Fernando Cendes
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Marcondes C França
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
26
|
Faber I, Martinez ARM, de Rezende TJR, Martins CR, Martins MP, Lourenço CM, Marques W, Montecchiani C, Orlacchio A, Pedroso JL, Barsottini OGP, Lopes-Cendes Í, França MC. SPG11 mutations cause widespread white matter and basal ganglia abnormalities, but restricted cortical damage. Neuroimage Clin 2018; 19:848-857. [PMID: 29946510 PMCID: PMC6008284 DOI: 10.1016/j.nicl.2018.05.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 05/20/2018] [Accepted: 05/22/2018] [Indexed: 12/12/2022]
Abstract
SPG11 mutations are the major cause of autosomal recessive Hereditary Spastic Paraplegia. The disease has a wide phenotypic variability indicating many regions of the nervous system besides the corticospinal tract are affected. Despite this, anatomical and phenotypic characterization is restricted. In the present study, we investigate the anatomical abnormalities related to SPG11 mutations and how they relate to clinical and cognitive measures. Moreover, we aim to depict how the disease course influences the regions affected, unraveling different susceptibility of specific neuronal populations. We performed clinical and paraclinical studies encompassing neuropsychological, neuroimaging, and neurophysiological tools in a cohort of twenty-five patients and age matched controls. We assessed cortical thickness (FreeSurfer software), deep grey matter volumes (T1-MultiAtlas tool), white matter microstructural damage (DTI-MultiAtlas) and spinal cord morphometry (Spineseg software) on a 3 T MRI scan. Mean age and disease duration were 29 and 13.2 years respectively. Sixty-four percent of the patients were wheelchair bound while 84% were demented. We were able to unfold a diffuse pattern of white matter integrity loss as well as basal ganglia and spinal cord atrophy. Such findings contrasted with a restricted pattern of cortical thinning (motor, limbic and parietal cortices). Electromyography revealed motor neuronopathy affecting 96% of the probands. Correlations with disease duration pointed towards a progressive degeneration of multiple grey matter structures and spinal cord, but not of the white matter. SPG11-related hereditary spastic paraplegia is characterized by selective neuronal vulnerability, in which a precocious and widespread white matter involvement is later followed by a restricted but clearly progressive grey matter degeneration.
Collapse
Key Words
- ACE-R, Addenbrooke's Cognitive Examination Revised
- ALS, amyotrophic lateral sclerosis
- CA, cord area
- CE, cord eccentricity
- CMAP, compound muscle action potential
- CST, corticospinal tract
- Complicated hereditary spastic paraplegia
- DTI, diffusion tensor imaging
- FA, fractional anisotropy
- GM, grey matter
- Grey matter
- HSP, hereditary spastic paraplegia
- LH, left hemisphere
- MD, mean diffusivity
- MOCA, Montreal cognitive assessment
- Motor neuron disorder
- NPI, neuropsychiatric inventory
- PNP, sensory-motor polyneuropathy
- PNS, peripheral nervous system
- RH, right hemisphere
- ROI, region of interest
- SC, spinal cord
- SNAP, sensory nerve action potential
- SPG11
- SPRS, Spastic Paraplegia Rating Scale
- STS, cortex adjacent to the superior temporal sulcus
- Spinal cord
- Thinning of the corpus callosum
- WES, whole exome sequencing
- WM, white matter
- White matter
Collapse
Affiliation(s)
- Ingrid Faber
- Department of Neurology, University of Campinas (UNICAMP), Campinas, Brazil
| | | | | | | | | | | | - Wilson Marques
- Department of Neurology, University of São Paulo (USP-RP), Ribeirão Preto, Brazil
| | - Celeste Montecchiani
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC) - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia, Rome, Italy
| | - Antonio Orlacchio
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC) - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia, Rome, Italy; Dipartimento di Scienze Chirurgiche e Biomediche, Università di Perugia, Perugia, Italy
| | - Jose Luiz Pedroso
- Department of Neurology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Íscia Lopes-Cendes
- Department of Medical Genetics, University of Campinas (UNICAMP), Campinas, Brazil
| | | |
Collapse
|
27
|
Saute JAM, Jardim LB. Planning Future Clinical Trials for Machado-Joseph Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1049:321-348. [PMID: 29427112 DOI: 10.1007/978-3-319-71779-1_17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) is an autosomal dominant multiple neurological systems degenerative disorder caused by a CAG repeat expansion at ATXN3 gene. Only a few treatments were evaluated in randomized clinical trials (RCT) in SCA3/MJD patients, with a lack of evidence for both disease-modifying and symptomatic therapies. The present chapter discuss in detail major methodological issues for planning future RCT for SCA3/MJD. There are several potential therapies for SCA3/MJD with encouraging preclinical results. Route of treatment, dosage titration and potential therapy biomarkers might differ among candidate drugs; however, the core study design and protocol will be mostly the same. RCT against placebo group is the best study design to test a disease-modifying therapy; the same cannot be stated for some symptomatic treatments. Main outcomes for future RCT are clinical scales: the Scale for the Assessment and Rating of ataxia (SARA) is currently the instrument of choice to prove efficacy of disease-modifying or symptomatic treatments against ataxia, the most important disease feature. Ataxia quantitative scales or its composite scores can be used as primary outcomes to provide preliminary evidence of efficacy in phase 2 RCT, due to a greater sensitivity to change. Details regarding eligibility criteria, randomization, sample size estimation, duration and type of analysis for both disease modifying and symptomatic treatment trials, were also discussed. Finally, a section anticipates the methodological issues for testing novel drugs when an effective treatment is already available. We conclude emphasizing four points, the first being the need of RCT for a number of different aims in the care of SCA3/MJD. Due to large sample sizes needed to warrant power, RCT for disease-modifying therapies should be multicenter enterprises. There is an urge need for surrogate markers validated for several drug classes. Finally, engagement of at risk or presymptomatic individuals in future trials will enable major advances on treatment research for SCA3/MJD.
Collapse
Affiliation(s)
- Jonas Alex Morales Saute
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
- Laboratório de Identificação Genética, Centro de Pesquisa Experimental, HCPA, Porto Alegre, RS, Brazil
- Programa de Pós-Gradução em Medicina, Ciências Médicas Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Medicina Interna, UFRGS, Porto Alegre, RS, Brazil
| | - Laura Bannach Jardim
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.
- Laboratório de Identificação Genética, Centro de Pesquisa Experimental, HCPA, Porto Alegre, RS, Brazil.
- Programa de Pós-Gradução em Medicina, Ciências Médicas Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Departamento de Medicina Interna, UFRGS, Porto Alegre, RS, Brazil.
- Instituto Nacional de Genética Médica Populacional (INAGEMP), Rio de Janeiro, Brazil.
| |
Collapse
|
28
|
Abstract
Machado-Joseph disease (MJD) also known as Spinocerebellar ataxia type 3, is a hereditary neurodegenerative disease associated with severe clinical manifestations and premature death. Although rare, it is the most common autosomal dominant spinocerebellar ataxia worldwide and has a distinct geographic distribution, reaching peak prevalence in certain regions of Brazil, Portugal and China. Due to its clinical heterogeneity, it was initially described as several different entities and as had many designations over the last decades. An accurate diagnosis become possible in 1994, after the identification of the MJD1 gene. Among its wide clinical spectrum, progressive cerebellar ataxia is normally present. Other symptoms include pyramidal syndrome, peripheral neuropathy, oculomotor abnormalities, extrapyramidal signs and sleep disorders. On the basis of the presence/absence of important extra-pyramidal signs, and the presence/absence of peripheral signs, five clinical types have been defined. Neuroimaging studies like MRI, DTI and MRS, can be useful as they can characterize structural and functional differences in specific subgroups of patients with MJD. There is no effective treatment for MJD. Symptomatic therapies are used to relieve some of the clinical symptoms and physiotherapy is also helpful in improving quality of live. Several clinical trials have been carried out using different molecules like sulfamethoxazole-trimethoprim, varenicline and lithium carbonate, but the results of these trials were negative or showed little benefit. Future studies sufficiently powered and adequately designed are warranted.
Collapse
|
29
|
|
30
|
Sarro L, Nanetti L, Castaldo A, Mariotti C. Monitoring disease progression in spinocerebellar ataxias: implications for treatment and clinical research. Expert Rev Neurother 2017; 17:919-931. [PMID: 28805093 DOI: 10.1080/14737175.2017.1364628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Spinocerebellar ataxias (SCAs) are autosomal dominant diseases characterized by progressive gait and limb incoordination, disequilibrium, dysarthria, and eye movement disturbances. Approximately 40 genetic subtypes of SCAs are known and classified according to the causative disease gene/locus. With the possibility of the specific genetic diagnosis in patients and at-risk family members, several clinical scales and functional tests have been validated and used in ataxic patients with the purposes of measuring the entity of disease progression in natural history studies and the possible slowing of neurological impairment in therapeutic trials. Areas covered: This paper reviews the most widely used clinical scales and quantitative tests that contributed in monitoring disease progression of the most common forms of SCAs. Expert commentary: The currently available and validated clinical scales and quantitative performance scores are adequate to measure disease severity, but may require a considerable number of subjects and a long period of treatment to allow the recognition of beneficial effect of interventional therapies. Advanced MRI techniques are a consistent biomarker and maybe useful to track disease progression from the preclinical to the manifest ataxic phase in association with appropriate clinical or paraclinical investigations.
Collapse
Affiliation(s)
- Lidia Sarro
- a Unit of Genetics of Neurodegenerative and Metabolic Diseases , Fondazione IRCCS Istituto Neurologico Carlo Besta , Milan , Italy
| | - Lorenzo Nanetti
- a Unit of Genetics of Neurodegenerative and Metabolic Diseases , Fondazione IRCCS Istituto Neurologico Carlo Besta , Milan , Italy
| | - Anna Castaldo
- a Unit of Genetics of Neurodegenerative and Metabolic Diseases , Fondazione IRCCS Istituto Neurologico Carlo Besta , Milan , Italy
| | - Caterina Mariotti
- a Unit of Genetics of Neurodegenerative and Metabolic Diseases , Fondazione IRCCS Istituto Neurologico Carlo Besta , Milan , Italy
| |
Collapse
|
31
|
Hernandez-Castillo CR, Diaz R, Campos-Romo A, Fernandez-Ruiz J. Neural correlates of ataxia severity in spinocerebellar ataxia type 3/Machado-Joseph disease. CEREBELLUM & ATAXIAS 2017; 4:7. [PMID: 28593048 PMCID: PMC5460485 DOI: 10.1186/s40673-017-0065-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 05/29/2017] [Indexed: 12/25/2022]
Abstract
Background Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) is an autosomal dominant inherited neurodegenerative disorder. Several post-mortem and imaging studies have shown cerebellar and brainstem atrophy. A number of studies have used volumetric regional information to investigate the relationship between neurodegeneration and the ataxia severity. However, regional analysis can obscure the specific location in which the degenerative process is affecting the brain tissue, which can be crucial for the development of new target treatments for this disease. Here we explored the relationship between the gray matter degeneration and the ataxia severity on a cohort of SCA3 patients using a voxel-wise approach. Methods Seventeen patients with molecular diagnose of SCA3 and 17 matched healthy controls participated in this study. Magnetic resonance imaging (MRI) brain images were acquired and voxel-based morphometry was used to obtain the grey matter volume of each participant. Ataxia severity in the patient group was evaluated using the scale for the assessment and rating of ataxia (SARA). Results Group comparison revealed significant atrophy in SCA3 including bilateral cerebellum, vermis, brainstem, and occipital cortex. Significant negative correlations between gray matter volume and SARA scores were found in the cerebellum and the cingulate gyrus. Conclusions These findings highlight the specific contribution of the cerebellum and the cingulate cortex to the ataxia deficits among the other regions showing neurodegeneration in SCA3 patients.
Collapse
Affiliation(s)
| | - Rosalinda Diaz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autonoma de México, UNAM, CP 04510 Coyoacán, Ciudad de México México
| | - Aurelio Campos-Romo
- Unidad Periférica de Neurociencias, Facultad de Medicina, Universidad Nacional Autonoma de México UNAM, CP 04510 Coyoacán, Ciudad de México Mexico
| | - Juan Fernandez-Ruiz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autonoma de México, UNAM, CP 04510 Coyoacán, Ciudad de México México
| |
Collapse
|
32
|
Affiliation(s)
- A H V Schapira
- Clinical Neurosciences, UCL Institute of Neurology, London, UK
| |
Collapse
|
33
|
Subramony SH. Degenerative Ataxias: challenges in clinical research. Ann Clin Transl Neurol 2016; 4:53-60. [PMID: 28078315 PMCID: PMC5221462 DOI: 10.1002/acn3.374] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 01/05/2023] Open
Abstract
The degenerative ataxias are a very heterogeneous group of disorders that include numerous genetic diseases as well as apparently “sporadic” entities. There has been an explosion of discoveries related to genetic defects and related pathomechanisms that has brought us to the threshold of meaningful therapies in some but not all of these diseases. There also continues to be lack of knowledge of the causation of disease in a sizeable proportion of these patients. The overall rarity of ataxias as a whole and certainly of the individual genetic entities together with slow and variable progression and variable prognosis in juxtaposition with a rapid development of possible therapies in the horizon such as gene replacement and gene knock‐down strategies places the ataxias in a unique position distinct from other similar neurodegenerative diseases. The pace of laboratory research seems not matched by the pace of clinical research and clinical trial readiness. This review summarizes the author's views on the various challenges in translational research in ataxias and hopes to stimulate further thought and discussions on how to bring real help to these patients.
Collapse
Affiliation(s)
- Sub H Subramony
- Department of Neurology University of Florida College of Medicine and McKnight Brain Institute Gainesville Florida
| |
Collapse
|
34
|
Huang SR, Wu YT, Jao CW, Soong BW, Lirng JF, Wu HM, Wang PS. CAG repeat length does not associate with the rate of cerebellar degeneration in spinocerebellar ataxia type 3. Neuroimage Clin 2016; 13:97-105. [PMID: 27942452 PMCID: PMC5133648 DOI: 10.1016/j.nicl.2016.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/07/2016] [Accepted: 11/09/2016] [Indexed: 12/14/2022]
Abstract
This cross-sectional study investigated the correlation between the CAG repeat length and the degeneration of cerebellum in spinocerebellar ataxia type 3 (SCA3) patients based on neuroimaging approaches. Forty SCA3 patients were recruited and classified into two subgroups according to their CAG repeat lengths (≥ 74 and < 74). We measured each patient's Scale for the Assessment and Rating of Ataxia (SARA) score, N-acetylaspartate (NAA)/creatine (Cr) ratios based on magnetic resonance spectroscopy (MRS), and 3-dimensional fractal dimension (3D-FD) values derived from magnetic resonance imaging (MRI) results. Furthermore, the 3D-FD values were used to construct structural covariance networks based on graph theoretical analysis. The results revealed that SCA3 patients with a longer CAG repeat length demonstrated earlier disease onset. However, the CAG repeat length did not significantly correlate with their SARA scores, cerebellar NAA/Cr ratios or cerebellar 3D-FD values. Network dissociation between cerebellar regions and parietal-occipital regions was found in SCA3 patients with CAG ≥ 74, but not in those with CAG < 74. In conclusion, the CAG repeat length is uncorrelated with the change of SARA score, cerebellar function and cerebellar structure in SCA3. Nevertheless, a longer CAG repeat length may indicate early structural covariance network dissociation.
Collapse
Affiliation(s)
- Shang-Ran Huang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No.155, Sec. 2, Linong St., Taipei, Taiwan
| | - Yu-Te Wu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No.155, Sec. 2, Linong St., Taipei, Taiwan
- Institute of Biophotonics, National Yang-Ming University, No.155, Sec. 2, Linong St., Taipei, Taiwan
| | - Chii-Wen Jao
- Institute of Biophotonics, National Yang-Ming University, No.155, Sec. 2, Linong St., Taipei, Taiwan
| | - Bing-Wen Soong
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Taipei, Taiwan
- School of Medicine, National Yang-Ming University, No.155, Sec. 2, Linong St., Taipei, Taiwan
| | - Jiing-Feng Lirng
- School of Medicine, National Yang-Ming University, No.155, Sec. 2, Linong St., Taipei, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Taipei, Taiwan
| | - Hsiu-Mei Wu
- School of Medicine, National Yang-Ming University, No.155, Sec. 2, Linong St., Taipei, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Taipei, Taiwan
| | - Po-Shan Wang
- Institute of Biophotonics, National Yang-Ming University, No.155, Sec. 2, Linong St., Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Taipei, Taiwan
- School of Medicine, National Yang-Ming University, No.155, Sec. 2, Linong St., Taipei, Taiwan
- Department of Neurology, Taipei Municipal Gan-Dau Hospital, No.12, Ln. 225, Zhixing Rd., Taipei, Taiwan
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW This article provides a description on clinical features and pathophysiology of the main sleep disorders observed in Machado-Joseph disease (MJD). RECENT FINDINGS Pathological studies have clearly demonstrated that degenerative process in MJD is widespread in the nervous system, and not restricted to the cerebellum. Nonmotor manifestations are frequent and may include pain, cramps, dysautonomia, cognitive deficits, psychiatric manifestations, olfactory deficits, fatigue, nutritional issues, and sleep disorders. SUMMARY Sleep disorders are frequent in MJD, and include restless legs syndrome, rapid eye movement sleep behavior disorder, excessive daytime sleepiness, insomnia, sleep apnea, periodic limb movements during sleep, parasomnia, and others. Pathophysiological mechanisms related to sleep disorders in Machado-Joseph are complex and poorly understood. Considering that sleep complaints are a treatable condition, recognizing sleep disorders in MJD is relevant.
Collapse
|
36
|
Farrar MA, Vucic S, Nicholson G, Kiernan MC. Motor cortical dysfunction develops in spinocerebellar ataxia type 3. Clin Neurophysiol 2016; 127:3418-3424. [PMID: 27689815 DOI: 10.1016/j.clinph.2016.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 08/25/2016] [Accepted: 09/07/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Spinocerebellar ataxia type 3 (SCA3) is an inherited neurodegenerative disorder characterized by cerebellar ataxia and variable expression of clinical features beyond the cerebellum. To gain further insights into disease pathophysiology, the present study explored motor cortex function in SCA3 to determine whether cortical dysfunction was present and if this contributed to the development of clinical manifestations. METHODS Clinical phenotyping and longitudinal assessments were combined with central (threshold-tracking transcranial magnetic stimulation) and peripheral (nerve excitability) techniques in 11 genetically characterized SCA3 patients. RESULTS Short-interval intracortical inhibition was significantly reduced in presymptomatic and symptomatic SCA3 patients (-1.3±1.4%) compared to healthy controls (10.3±0.7%, P<0.0005), with changes evident prior to clinical onset of ataxia and related to worsening severity (R=-0.78, P<0.005). Central motor conduction time was also significantly prolonged in presymptomatic and symptomatic SCA3 patients (7.5±0.4ms) compared to healthy controls (5.3±0.2ms, P<0.0005) and related to clinical severity (R=0.81, P<0.005). Markers of peripheral motor neurodegeneration and excitability did not correlate with cortical hyperexcitability or ataxia. CONCLUSIONS Simultaneous investigation of clinical status, and central and peripheral nerve function has identified progressive cortical dysfunction in SCA3 patients related to the development of ataxia. SIGNIFICANCE These findings suggest alteration in cortical activity is associated with SCA3 pathogenesis and neurodegeneration.
Collapse
Affiliation(s)
- Michelle A Farrar
- Discipline of Paediatrics, School of Women's and Children's Health, UNSW Medicine, The University of New South Wales, Sydney, Australia.
| | - Steve Vucic
- Department of Neurology, Westmead Hospital and Western Clinical School, University of Sydney, Sydney, Australia
| | - Garth Nicholson
- ANZAC Research Institute, University of Sydney, Concord Hospital, New South Wales, Australia
| | - Matthew C Kiernan
- Sydney Medical School, Brain & Mind Centre, University of Sydney, Sydney, Australia
| |
Collapse
|
37
|
Phonoarticulation in spinocerebellar ataxia type 3. Eur Arch Otorhinolaryngol 2016; 274:1139-1145. [PMID: 27491321 DOI: 10.1007/s00405-016-4240-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 08/01/2016] [Indexed: 02/07/2023]
Abstract
Phonoarticulation is characterized by changes in resonance, diadochokinesis, prosody, sound frequency, vocal quality, and intraoral pressure. The main aim of this study was to characterize the phonoarticulation in spinocerebellar ataxia type 3 (SCA3) and correlate it with clinical and genetic factors. Thirty-one patients with SCA3 who were subjected to spontaneous speech recordings and phonoarticulatory diadochokinesis (DDK) participated in the study. Speech analyses were performed starting after 10 s of spontaneous speech, by three experienced speech therapists, using a protocol for dysarthria adapted from the Mayo Clinic. The intra-evaluator reliability was analyzed. The lower the patient's age at disease onset was, the more frequent the occurrences of monofrequency and altered speech rhythm were. Articulation, DDK, resonance, and prosody showed a moderate correlation with the number of "CAG" triplet repeats. We conclude that the phonoarticulation of patients with Machado-Joseph disease (MJD) is characterized by mixed dysarthrophonia with cerebellar and hypokinetic components, and that there is a tendency toward higher frequency of dysarthrophonia symptoms with lower age of disease onset, longer time since onset and higher number of "CAG" triplet repeats.
Collapse
|
38
|
Klaes A, Reckziegel E, Franca MC, Rezende TJR, Vedolin LM, Jardim LB, Saute JA. MR Imaging in Spinocerebellar Ataxias: A Systematic Review. AJNR Am J Neuroradiol 2016; 37:1405-12. [PMID: 27173364 PMCID: PMC7960281 DOI: 10.3174/ajnr.a4760] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/22/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND PURPOSE Polyglutamine expansion spinocerebellar ataxias are autosomal dominant slowly progressive neurodegenerative diseases with no current treatment. MR imaging is the best-studied surrogate biomarker candidate for polyglutamine expansion spinocerebellar ataxias, though with conflicting results. We aimed to review quantitative central nervous system MR imaging technique findings in patients with polyglutamine expansion spinocerebellar ataxias and correlations with well-established clinical and molecular disease markers. MATERIALS AND METHODS We searched MEDLINE, LILACS, and Cochrane data bases of clinical trials between January 1995 and January 2016, for quantitative MR imaging volumetric approaches, MR spectroscopy, diffusion tensor imaging, or other quantitative techniques, comparing patients with polyglutamine expansion spinocerebellar ataxias (SCAs) with controls. Pertinent details for each study regarding participants, imaging methods, and results were extracted. RESULTS After reviewing the 706 results, 18 studies were suitable for inclusion: 2 studies in SCA1, 1 in SCA2, 15 in SCA3, 1 in SCA7, 1 in SCA1 and SCA6 presymptomatic carriers, and none in SCA17 and dentatorubropallidoluysian atrophy. Cerebellar hemispheres and vermis, whole brain stem, midbrain, pons, medulla oblongata, cervical spine, striatum, and thalamus presented significant atrophy in SCA3. The caudate, putamen and whole brain stem presented similar sensitivity to change compared with ataxia scales after 2 years of follow-up in a single prospective study in SCA3. MR spectroscopy and DTI showed abnormalities only in cross-sectional studies in SCA3. Results from single studies in other polyglutamine expansion spinocerebellar ataxias should be replicated in different cohorts. CONCLUSIONS Additional cross-sectional and prospective volumetric analysis, MR spectroscopy, and DTI studies are necessary in polyglutamine expansion spinocerebellar ataxias. The properties of preclinical disease biomarkers (presymptomatic) of MR imaging should be targeted in future studies.
Collapse
Affiliation(s)
- A Klaes
- From the Departments of Radiology (A.K., L.M.V.)
| | - E Reckziegel
- Medical Genetics Services (E.R., L.B.J., J.A.M.S.), Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - M C Franca
- Departments of Neurology (M.C.F., T.J.R.R.)
| | - T J R Rezende
- Departments of Neurology (M.C.F., T.J.R.R.) Cosmic Rays and Chronology (T.J.R.R.), Universidade Estadual de Campinas, Campinas, Brazil
| | - L M Vedolin
- From the Departments of Radiology (A.K., L.M.V.) Department of Internal Medicine (L.M.V., L.B.J.)
| | - L B Jardim
- Medical Genetics Services (E.R., L.B.J., J.A.M.S.), Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil Department of Internal Medicine (L.M.V., L.B.J.) Postgraduate Program in Medicine: Medical Sciences (L.B.J.), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - J A Saute
- Medical Genetics Services (E.R., L.B.J., J.A.M.S.), Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
39
|
Fatigue and Its Associated Factors in Spinocerebellar Ataxia Type 3/Machado-Joseph Disease. THE CEREBELLUM 2016; 16:118-121. [DOI: 10.1007/s12311-016-0775-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Nunes MB, Martinez ARM, Rezende TJR, Friedman JH, Lopes-Cendes I, D'Abreu A, França MC. Dystonia in Machado–Joseph disease: Clinical profile, therapy and anatomical basis. Parkinsonism Relat Disord 2015; 21:1441-7. [DOI: 10.1016/j.parkreldis.2015.10.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/16/2015] [Accepted: 10/20/2015] [Indexed: 12/16/2022]
|
41
|
|