1
|
Lu J, Xing X, Qu J, Wu J, Zheng M, Hua X, Xu J. Alterations of contralesional hippocampal subfield volumes and relations to cognitive functions in patients with unilateral stroke. Brain Behav 2024; 14:e3645. [PMID: 39135280 PMCID: PMC11319231 DOI: 10.1002/brb3.3645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 06/23/2024] [Accepted: 07/12/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND The volumes of the hippocampal subfields are related to poststroke cognitive dysfunctions. However, it remains unclear whether contralesional hippocampal subfield volume contributes to cognitive impairment. This study aimed to investigate the volumetric differences in the contralesional hippocampal subfields between patients with left and right hemisphere strokes (LHS/RHS). Additionally, correlations between contralesional hippocampal subfield volumes and clinical outcomes were explored. METHODS Fourteen LHS (13 males, 52.57 ± 7.10 years), 13 RHS (11 males, 51.23 ± 15.23 years), and 18 healthy controls (11 males, 46.94 ± 12.74 years) were enrolled. Contralesional global and regional hippocampal volumes were obtained with T1-weighted images. Correlations between contralesional hippocampal subfield volumes and clinical outcomes, including the Montreal Cognitive Assessment (MoCA) and Mini-Mental State Examination (MMSE), were analyzed. Bonferroni correction was applied for multiple comparisons. RESULTS Significant reductions were found in contralesional hippocampal as a whole (adjusted p = .011) and its subfield volumes, including the hippocampal tail (adjusted p = .005), cornu ammonis 1 (CA1) (adjusted p = .002), molecular layer (ML) (adjusted p = .004), granule cell and ML of the dentate gyrus (GC-ML-DG) (adjusted p = .015), CA3 (adjusted p = .009), and CA4 (adjusted p = .014) in the RHS group compared to the LHS group. MoCA and MMSE had positive correlations with volumes of contralesional hippocampal tail (p = .015, r = .771; p = .017, r = .763) and fimbria (p = .020, r = .750; p = .019, r = .753) in the LHS group, and CA3 (p = .007, r = .857; p = .009, r = .838) in the RHS group, respectively. CONCLUSION Unilateral stroke caused volumetric differences in different hippocampal subfields contralesionally, which correlated to cognitive impairment. RHS leads to greater volumetric reduction in the whole contralesional hippocampus and specific subfields (hippocampal tail, CA1, ML, GC-ML-DG, CA3, and CA4) compared to LHS. These changes are correlated with cognitive impairments, potentially due to disrupted neural pathways and interhemispheric communication.
Collapse
Affiliation(s)
- Juan‐Juan Lu
- School of Rehabilitation ScienceShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xiang‐Xin Xing
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jiao Qu
- Department of RadiologyShanghai Songjiang District Central HospitalShanghaiChina
| | - Jia‐Jia Wu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Mou‐Xiong Zheng
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xu‐Yun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jian‐Guang Xu
- School of Rehabilitation ScienceShanghai University of Traditional Chinese MedicineShanghaiChina
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of EducationShanghaiChina
| |
Collapse
|
2
|
Liang HB, Lai ZH, Tu XQ, Ding KQ, He JR, Yang GY, Sheng H, Zeng LL. MicroRNA-140-5p exacerbates vascular cognitive impairment by inhibiting neurogenesis in the adult mouse hippocampus after global cerebral ischemia. Brain Res Bull 2022; 183:73-83. [DOI: 10.1016/j.brainresbull.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/19/2022] [Accepted: 03/01/2022] [Indexed: 11/26/2022]
|
3
|
Chen Q, Wang Y, Qiu Y, Wu X, Zhou Y, Zhai G. A Deep Learning-Based Model for Classification of Different Subtypes of Subcortical Vascular Cognitive Impairment With FLAIR. Front Neurosci 2020; 14:557. [PMID: 32625048 PMCID: PMC7315844 DOI: 10.3389/fnins.2020.00557] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/06/2020] [Indexed: 11/17/2022] Open
Abstract
Deep learning methods have shown their great capability of extracting high-level features from image and have been used for effective medical imaging classification recently. However, training samples of medical images are restricted by the amount of patients as well as medical ethics issues, making it hard to train the neural networks. In this paper, we propose a novel end-to-end three-dimensional (3D) attention-based residual neural network (ResNet) architecture to classify different subtypes of subcortical vascular cognitive impairment (SVCI) with single-shot T2-weighted fluid-attenuated inversion recovery (FLAIR) sequence. Our aim is to develop a convolutional neural network to provide a convenient and effective way to assist doctors in the diagnosis and early treatment of the different subtypes of SVCI. The experiment data in this paper are collected from 242 patients from the Neurology Department of Renji Hospital, including 78 amnestic mild cognitive impairment (a-MCI), 70 nonamnestic MCI (na-MCI), and 94 no cognitive impairment (NCI). The accuracy of our proposed model has reached 98.6% on a training set and 97.3% on a validation set. The test accuracy on an untrained testing set reaches 93.8% with robustness. Our proposed method can provide a convenient and effective way to assist doctors in the diagnosis and early treatment.
Collapse
Affiliation(s)
- Qi Chen
- Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Wang
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yage Qiu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaowei Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Zhou
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guangtao Zhai
- Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Meng D, Hosseini AA, Simpson RJ, Welton T, Dineen RA, Auer DP. Large-scale network dysfunction in vascular cognitive disorder supports connectional diaschisis in advanced arteriosclerosis. Eur J Neurol 2019; 27:352-359. [PMID: 31505084 PMCID: PMC6973074 DOI: 10.1111/ene.14084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 09/03/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE The interrelation of cognitive performance, cerebrovascular damage and brain functional connectivity (FC) in advanced arteriosclerosis remains unclear. Our aim was to investigate the associations between FC, white matter damage and cognitive impairment in carotid artery disease. METHODS Seventy-one participants with a recent cerebrovascular event and with written informed consent underwent resting-state functional magnetic resonance imaging and the Addenbrooke's Cognitive Examination - Revised (ACE-R). Network and inter-hemispheric FC metrics were compared between cognitively normal and impaired subjects, and interrelated with cognition. In order to explore the nature of FC changes, their associations with microstructural damage of related white matter tracts and cognitive performance were investigated, followed by mediation analysis. RESULTS Participants with global cognitive impairment showed reduced FC compared to the cognitively intact subjects within the central executive network (CEN), and between hemispheres. Patients with executive dysfunction had decreased CEN FC whilst patients with memory loss demonstrated low FC in both the CEN and the default mode network (DMN). Global performance correlated with connectivity metrics of the CEN hub with DMN nodes, and between hemispheres. Cingulum mean diffusivity (MD) was negatively correlated with ACE-R and CEN-DMN FC. The cingulum MD-cognition association was partially mediated by CEN-DMN FC. CONCLUSIONS Long-range functional disconnection of the CEN with DMN nodes is the main feature of cognitive impairment in elderly subjects with symptomatic carotid artery disease. Our findings provide further support for the connectional diaschisis concept of vascular cognitive disorder, and highlight a mediation role of functional disconnection to explain associations between microstructural white matter tract damage and cognitive impairment.
Collapse
Affiliation(s)
- D Meng
- Radiological Sciences, Division of Clinical Neuroscience, School of Medicine, Queen's Medical Centre, University of Nottingham, Nottingham, UK.,Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK.,NIHR Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - A A Hosseini
- Radiological Sciences, Division of Clinical Neuroscience, School of Medicine, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - R J Simpson
- Radiological Sciences, Division of Clinical Neuroscience, School of Medicine, Queen's Medical Centre, University of Nottingham, Nottingham, UK.,Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK.,NIHR Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, UK.,Department of Vascular Surgery, Queen's Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - T Welton
- Radiological Sciences, Division of Clinical Neuroscience, School of Medicine, Queen's Medical Centre, University of Nottingham, Nottingham, UK.,Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - R A Dineen
- Radiological Sciences, Division of Clinical Neuroscience, School of Medicine, Queen's Medical Centre, University of Nottingham, Nottingham, UK.,Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK.,NIHR Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - D P Auer
- Radiological Sciences, Division of Clinical Neuroscience, School of Medicine, Queen's Medical Centre, University of Nottingham, Nottingham, UK.,Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK.,NIHR Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| |
Collapse
|
5
|
Haque ME, Gabr RE, Hasan KM, George S, Arevalo OD, Zha A, Alderman S, Jeevarajan J, Mas MF, Zhang X, Satani N, Friedman ER, Sitton CW, Savitz S. Ongoing Secondary Degeneration of the Limbic System in Patients With Ischemic Stroke: A Longitudinal MRI Study. Front Neurol 2019; 10:154. [PMID: 30890995 PMCID: PMC6411642 DOI: 10.3389/fneur.2019.00154] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/06/2019] [Indexed: 01/08/2023] Open
Abstract
Purpose: Ongoing post-stroke structural degeneration and neuronal loss preceding neuropsychological symptoms such as cognitive decline and depression are poorly understood. Various substructures of the limbic system have been linked to cognitive impairment. In this longitudinal study, we investigated the post-stroke macro- and micro-structural integrity of the limbic system using structural and diffusion tensor magnetic resonance imaging. Materials and Methods: Nineteen ischemic stroke patients (11 men, 8 women, average age 53.4 ± 12.3, range 18–75 years), with lesions remote from the limbic system, were serially imaged three times over 1 year. Structural and diffusion-tensor images (DTI) were obtained on a 3.0 T MRI system. The cortical thickness, subcortical volume, mean diffusivity (MD), and fractional anisotropy (FA) were measured in eight different regions of the limbic system. The National Institutes of Health Stroke Scale (NIHSS) was used for clinical assessment. A mixed model for multiple factors was used for statistical analysis, and p-values <0.05 was considered significant. Results: All patients demonstrated improved NIHSS values over time. The ipsilesional subcortical volumes of the thalamus, hippocampus, and amygdala significantly decreased (p < 0.05) and MD significantly increased (p < 0.05). The ipsilesional cortical thickness of the entorhinal and perirhinal cortices was significantly smaller than the contralesional hemisphere at 12 months (p < 0.05). The cortical thickness of the cingulate gyrus at 12 months was significantly decreased at the caudal and isthmus regions as compared to the 1 month assessment (p < 0.05). The cingulum fibers had elevated MD at the ipsilesional caudal-anterior and posterior regions compared to the corresponding contralesional regions. Conclusion: Despite the decreasing NIHSS scores, we found ongoing unilateral neuronal loss/secondary degeneration in the limbic system, irrespective of the lesion location. These results suggest a possible anatomical basis for post stroke psychiatric complications.
Collapse
Affiliation(s)
- Muhammad E Haque
- Institute for Stroke and Cerebrovascular Diseases, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Refaat E Gabr
- Diagnostic and Interventional Imaging, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Khader M Hasan
- Diagnostic and Interventional Imaging, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Sarah George
- Institute for Stroke and Cerebrovascular Diseases, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Octavio D Arevalo
- Diagnostic and Interventional Imaging, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Alicia Zha
- Institute for Stroke and Cerebrovascular Diseases, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Susan Alderman
- Institute for Stroke and Cerebrovascular Diseases, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jerome Jeevarajan
- Institute for Stroke and Cerebrovascular Diseases, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Manual F Mas
- TIRR Memorial Hermann Rehabilitation and Research, Houston, TX, United States
| | - Xu Zhang
- Biostatistics/Epidemiology/Research Design Component, Center for Clinical and Translational Sciences, McGovern Medical School at University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States
| | - Nikunj Satani
- Institute for Stroke and Cerebrovascular Diseases, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Elliott R Friedman
- Diagnostic and Interventional Imaging, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Clark W Sitton
- Diagnostic and Interventional Imaging, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Sean Savitz
- Institute for Stroke and Cerebrovascular Diseases, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
6
|
Schapira AHV. Progress in neurology 2017-2018. Eur J Neurol 2018; 25:1389-1397. [DOI: 10.1111/ene.13846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- A. H. V. Schapira
- Department of Clinical and Movement Neurosciences; UCL Queen Square Institute of Neurology; London UK
| |
Collapse
|
7
|
Skrobot OA, Black SE, Chen C, DeCarli C, Erkinjuntti T, Ford GA, Kalaria RN, O'Brien J, Pantoni L, Pasquier F, Roman GC, Wallin A, Sachdev P, Skoog I, Ben-Shlomo Y, Passmore AP, Love S, Kehoe PG. Progress toward standardized diagnosis of vascular cognitive impairment: Guidelines from the Vascular Impairment of Cognition Classification Consensus Study. Alzheimers Dement 2017; 14:280-292. [PMID: 29055812 DOI: 10.1016/j.jalz.2017.09.007] [Citation(s) in RCA: 257] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/31/2017] [Accepted: 09/06/2017] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Progress in understanding and management of vascular cognitive impairment (VCI) has been hampered by lack of consensus on diagnosis, reflecting the use of multiple different assessment protocols. A large multinational group of clinicians and researchers participated in a two-phase Vascular Impairment of Cognition Classification Consensus Study (VICCCS) to agree on principles (VICCCS-1) and protocols (VICCCS-2) for diagnosis of VCI. We present VICCCS-2. METHODS We used VICCCS-1 principles and published diagnostic guidelines as points of reference for an online Delphi survey aimed at achieving consensus on clinical diagnosis of VCI. RESULTS Six survey rounds comprising 65-79 participants agreed guidelines for diagnosis of VICCCS-revised mild and major forms of VCI and endorsed the National Institute of Neurological Disorders-Canadian Stroke Network neuropsychological assessment protocols and recommendations for imaging. DISCUSSION The VICCCS-2 suggests standardized use of the National Institute of Neurological Disorders-Canadian Stroke Network recommendations on neuropsychological and imaging assessment for diagnosis of VCI so as to promote research collaboration.
Collapse
Affiliation(s)
- Olivia A Skrobot
- Translational Health Sciences, University of Bristol, Bristol, UK
| | - Sandra E Black
- Sunnybrook Research Institute, University of Toronto, Ontario, Canada
| | - Christopher Chen
- Department of Pharmacology, National University of Singapore, Singapore
| | - Charles DeCarli
- Department of Neurology and Center for Neuroscience, University of California at Davis, Sacramento, California, USA
| | - Timo Erkinjuntti
- Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Gary A Ford
- Divison of Medical Sciences, Oxford University, Oxford, UK
| | | | - John O'Brien
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | | | | | | | - Anders Wallin
- Memory Clinic at Department of Neuropsychiatry, Sahlgrenska University Hospital, Mölndal, Sweden; Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Perminder Sachdev
- School of Psychiatry, University of New South Wales, Sydney, Australia; Neuropsychiatric Institute, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Ingmar Skoog
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | | | - Yoav Ben-Shlomo
- Population Health Sciences, University of Bristol, Bristol, UK
| | - Anthony P Passmore
- Institute of Clinical Sciences, Block B, Queens University Belfast, Belfast, UK
| | - Seth Love
- Translational Health Sciences, University of Bristol, Bristol, UK
| | - Patrick G Kehoe
- Translational Health Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|