1
|
Magielski JH, Ruggiero SM, Xian J, Parthasarathy S, Galer PD, Ganesan S, Back A, McKee JL, McSalley I, Gonzalez AK, Morgan A, Donaher J, Helbig I. The clinical and genetic spectrum of paediatric speech and language disorders. Brain 2025; 148:663-674. [PMID: 39412438 PMCID: PMC11788197 DOI: 10.1093/brain/awae264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 10/23/2024] Open
Abstract
Speech and language disorders are known to have a substantial genetic contribution. Although frequently examined as components of other conditions, research on the genetic basis of linguistic differences as separate phenotypic subgroups has been limited so far. Here, we performed an in-depth characterization of speech and language disorders in 52 143 individuals, reconstructing clinical histories using a large-scale data-mining approach of the electronic medical records from an entire large paediatric healthcare network. The reported frequency of these disorders was the highest between 2 and 5 years old and spanned a spectrum of 26 broad speech and language diagnoses. We used natural language processing to assess the degree to which clinical diagnoses in full-text notes were reflected in ICD-10 diagnosis codes. We found that aphasia and speech apraxia could be retrieved easily through ICD-10 diagnosis codes, whereas stuttering as a speech phenotype was coded in only 12% of individuals through appropriate ICD-10 codes. We found significant comorbidity of speech and language disorders in neurodevelopmental conditions (30.31%) and, to a lesser degree, with epilepsies (6.07%) and movement disorders (2.05%). The most common genetic disorders retrievable in our analysis of electronic medical records were STXBP1 (n = 21), PTEN (n = 20) and CACNA1A (n = 18). When assessing associations of genetic diagnoses with specific linguistic phenotypes, we observed associations of STXBP1 and aphasia (P = 8.57 × 10-7, 95% confidence interval = 18.62-130.39) and MYO7A with speech and language development delay attributable to hearing loss (P = 1.24 × 10-5, 95% confidence interval = 17.46-infinity). Finally, in a sub-cohort of 726 individuals with whole-exome sequencing data, we identified an enrichment of rare variants in neuronal receptor pathways, in addition to associations of UQCRC1 and KIF17 with expressive aphasia, MROH8 and BCHE with poor speech, and USP37, SLC22A9 and UMODL1 with aphasia. In summary, our study outlines the landscape of paediatric speech and language disorders, confirming the phenotypic complexity of linguistic traits and novel genotype-phenotype associations. Subgroups of paediatric speech and language disorders differ significantly with respect to the composition of monogenic aetiologies.
Collapse
Affiliation(s)
- Jan H Magielski
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA 19146, USA
| | - Sarah M Ruggiero
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Julie Xian
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA 19146, USA
| | - Shridhar Parthasarathy
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA 19146, USA
| | - Peter D Galer
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA 19146, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shiva Ganesan
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA 19146, USA
| | - Amanda Back
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jillian L McKee
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA 19146, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ian McSalley
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA 19146, USA
| | - Alexander K Gonzalez
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA 19146, USA
| | - Angela Morgan
- Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
- Department of Audiology and Speech Pathology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Joseph Donaher
- Center for Childhood Communication, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ingo Helbig
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA 19146, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Huang N, Liu C, Liu Z, Lei H. Disulfidptosis-related gene in acute myocardial infarction and immune microenvironment analysis: A bioinformatics analysis and validation. PLoS One 2024; 19:e0314935. [PMID: 39666769 PMCID: PMC11637291 DOI: 10.1371/journal.pone.0314935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/18/2024] [Indexed: 12/14/2024] Open
Abstract
Disulfidptosis is a newly discovered method of cell death. However, no studies have fully elucidated the role of disulfidptosis-related genes (DSRGs) in acute myocardial infarction (AMI). The potential role of DSRGs in AMI was analyzed through a comprehensive bioinformatics approach. Finally, hub genes were verified in vitro by qPCR. Sixteen DE-DSRGs were in the AMI. Thereafter, seven hub genes were determined by machine learning algorithms, which had potential diagnostic value in AMI. The risk model showed a robust diagnostic value (area under curve, AUC = 0.940). Prognostic analysis revealed the potential prognostic value of INF2 and CD2AP. Immune landscape analysis showed that hub genes were closely related to the immune microenvironment. By predictive analysis, we obtained four miRNAs, thirteen small molecule drugs, and five TFs closely related to hub genes. Experimental verification revealed that Slc3a2 and Inf2 were significantly up-regulated and Dstn was significantly down-regulated in the hypoxic model. Our study demonstrated that DSRGs are disorderedly expressed in AMI and identified seven hub genes through machine learning. In addition, a diagnostic model was constructed based on hub genes, providing a new perspective for the early diagnosis of AMI.
Collapse
Affiliation(s)
- Nan Huang
- Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, Hunan Province, PR China
| | - Chan Liu
- Clinical Pharmacy, Liuyang People’s Hospital, Liuyang, Hunan Province, China
| | - Zheng Liu
- Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, Hunan Province, PR China
| | - Haibo Lei
- Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, Hunan Province, PR China
| |
Collapse
|
3
|
Magielski J, Ruggiero SM, Xian J, Parthasarathy S, Galer P, Ganesan S, Back A, McKee J, McSalley I, Gonzalez AK, Morgan A, Donaher J, Helbig I. The clinical and genetic spectrum of paediatric speech and language disorders in 52,143 individuals. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.23.24306192. [PMID: 38712155 PMCID: PMC11071575 DOI: 10.1101/2024.04.23.24306192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Speech and language disorders are known to have a substantial genetic contribution. Although frequently examined as components of other conditions, research on the genetic basis of linguistic differences as separate phenotypic subgroups has been limited so far. Here, we performed an in-depth characterization of speech and language disorders in 52,143 individuals, reconstructing clinical histories using a large-scale data mining approach of the Electronic Medical Records (EMR) from an entire large paediatric healthcare network. The reported frequency of these disorders was the highest between 2 and 5 years old and spanned a spectrum of twenty-six broad speech and language diagnoses. We used Natural Language Processing to assess to which degree clinical diagnosis in full-text notes were reflected in ICD-10 diagnosis codes. We found that aphasia and speech apraxia could be easily retrieved through ICD-10 diagnosis codes, while stuttering as a speech phenotype was only coded in 12% of individuals through appropriate ICD-10 codes. We found significant comorbidity of speech and language disorders in neurodevelopmental conditions (30.31%) and to a lesser degree with epilepsies (6.07%) and movement disorders (2.05%). The most common genetic disorders retrievable in our EMR analysis were STXBP1 (n=21), PTEN (n=20), and CACNA1A (n=18). When assessing associations of genetic diagnoses with specific linguistic phenotypes, we observed associations of STXBP1 and aphasia (P=8.57 × 10-7, CI=18.62-130.39) and MYO7A with speech and language development delay due to hearing loss (P=1.24 × 10-5, CI=17.46-Inf). Finally, in a sub-cohort of 726 individuals with whole exome sequencing data, we identified an enrichment of rare variants in synaptic protein and neuronal receptor pathways and associations of UQCRC1 with expressive aphasia and WASHC4 with abnormality of speech or vocalization. In summary, our study outlines the landscape of paediatric speech and language disorders, confirming the phenotypic complexity of linguistic traits and novel genotype-phenotype associations. Subgroups of paediatric speech and language disorders differ significantly with respect to the composition of monogenic aetiologies.
Collapse
Affiliation(s)
- Jan Magielski
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, 19146, USA
| | - Sarah M. Ruggiero
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Julie Xian
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, 19146, USA
| | - Shridhar Parthasarathy
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, 19146, USA
| | - Peter Galer
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, 19146, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shiva Ganesan
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, 19146, USA
| | - Amanda Back
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jillian McKee
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, 19146, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Ian McSalley
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, 19146, USA
| | - Alexander K. Gonzalez
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, 19146, USA
| | - Angela Morgan
- Murdoch Children’s Research Institute, Parkville 3052, Australia
- Department of Audiology and Speech Pathology, University of Melbourne, Parkville 3052, Australia
| | - Joseph Donaher
- Center for Childhood Communication, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Ingo Helbig
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, 19146, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| |
Collapse
|
4
|
Tonduti D, Zambon AA, Ghezzi D, Lamantea E, Izzo R, Parazzini C, Baldoli C, van der Knaap MS, Fumagalli F. Expanding the Spectrum of NUBPL-Related Leukodystrophy. Neuropediatrics 2023; 54:161-166. [PMID: 36868263 DOI: 10.1055/s-0043-1764214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Mitochondrial leukodystrophies constitute a group of different conditions presenting with a wide range of clinical presentation but with some shared neuroradiological features. Genetic defects in NUBPL have been recognized as cause of a pediatric onset mitochondrial leukodystrophy characterized by onset at the end of the first year of life with motor delay or regression and cerebellar signs, followed by progressive spasticity. Early magnetic resonance imagings (MRIs) show white matter abnormalities with predominant involvement of frontoparietal regions and corpus callosum. A striking cerebellar involvement is usually observed. Later MRIs show spontaneous improvement of white matter abnormalities but worsening of the cerebellar involvement evolving to global atrophy and progressive involvement of brainstem. After the 7 cases initially described, 11 more subjects were reported. Some of them were similar to patients from the original series while few others broadened the phenotypic spectrum. We performed a literature review and report on a new patient who further expand the spectrum of NUBPL-related leukodystrophy. With our study we confirm that the association of cerebral white matter and cerebellar cortex abnormalities is a feature commonly observed in early stages of the disease but beside the original and so far prevalent presentation, there are also uncommon phenotypes: clinical onset can be earlier and more severe than previously thought and signs of extraneurological involvement can be observed. Brain white matter can be diffusely abnormal without anteroposterior gradient, can progressively worsen, and cystic degeneration can be present. Thalami can be involved. Basal ganglia can also become involved during disease evolution.
Collapse
Affiliation(s)
- Davide Tonduti
- Unit of Pediatric Neurology, C.O.A.L.A (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Milan, Italy.,Department of Biomedical and Clinical Sciences, L. Sacco University Hospital, Università degli Studi di Milano, Milan, Italy
| | - Alberto A Zambon
- Neuromuscular Repair Unit, Division of Neuroscience, Institute of Experimental Neurology (InSpe), IRCCS Ospedale San Raffaele, Milan, Italy
| | - Daniele Ghezzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Eleonora Lamantea
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Rossella Izzo
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Cecilia Parazzini
- Pediatric Radiology and Neuroradiology Unit, C.O.A.L.A (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Milan, Italy
| | - Cristina Baldoli
- Neuroradiology Unit and CERMAC, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Marjo S van der Knaap
- Department of Child Neurology, Emma Children's Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, Netherlands.,Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Vrije Universiteit, Amsterdam, Netherlands.,Center for Neurogenomics and Cognitive Research, Integrative Neurophysiology, Vrije Universiteit, Amsterdam, Netherlands
| | - Francesca Fumagalli
- Units of Neurology and Neurophysiology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy (SR-Tiget) and Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
5
|
Cheng C, Cleak J, Weiss L, Cater H, Stewart M, Wells S, Columbres RC, Shmara A, Morato Torres CA, Zafar F, Schüle B, Neumann J, Hatchwell E, Kimonis V. Early embryonic lethality in complex I associated p.L104P Nubpl mutant mice. Orphanet J Rare Dis 2022; 17:386. [PMID: 36280881 PMCID: PMC9594925 DOI: 10.1186/s13023-022-02446-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 07/14/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Variants in the mitochondrial complex I assembly factor, NUBPL are associated with a rare cause of complex I deficiency mitochondrial disease. Patients affected by complex I deficiency harboring homozygous NUBPL variants typically have neurological problems including seizures, intellectual disability, and ataxia associated with cerebellar hypoplasia. Thus far only 19 cases have been reported worldwide, and no treatment is available for this rare disease. METHODS To investigate the pathogenesis of NUBPL-associated complex I deficiency, and for translational studies, we generated a knock-in mouse harboring a patient-specific variant Nubpl c.311T>C; p. L104P reported in three families. RESULTS Similar to Nubpl global knockout mice, the Nubpl p. L104P homozygous mice are lethal at embryonic day E10.5, suggesting that the Nubpl p. L104P variant is likely a hypomorph allele. Given the recent link between Parkinson's disease and loss-of-function NUBPL variants, we also explored aging-related behaviors and immunocytochemical changes in Nubpl hemizygous mice and did not find significant behavioral and pathological changes for alpha-synuclein and oxidative stress markers . CONCLUSION Our data suggest that homozygotes with Nubpl variants, similar to the null mice, are lethal, and heterozygotes are phenotypically and neuropathologically normal. We propose that a tissue-specific knockout strategy is required to establish a mouse model of Nubpl-associated complex I deficiency disorder for future mechanistic and translational studies.
Collapse
Affiliation(s)
- Cheng Cheng
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California, Irvine, CA, USA
| | - James Cleak
- Mary Lyon Centre, MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Lan Weiss
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California, Irvine, CA, USA
| | - Heather Cater
- Mary Lyon Centre, MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Michelle Stewart
- Mary Lyon Centre, MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Sara Wells
- Mary Lyon Centre, MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Rod Carlo Columbres
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California, Irvine, CA, USA
| | - Alyaa Shmara
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California, Irvine, CA, USA
| | | | - Faria Zafar
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Birgitt Schüle
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jonathan Neumann
- Transgenic Mouse Facility, University of California, Irvine, CA, USA
| | - Eli Hatchwell
- Population Bio UK, Inc, Begbroke Science Park, Begbroke, UK
| | - Virginia Kimonis
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California, Irvine, CA, USA.
- Department of Neurology, University of California, Irvine, CA, USA.
- Department of Pathology, University of California, Irvine, CA, USA.
- Department of Environmental Medicine, University of California, Irvine, CA, USA.
- Children's Hospital of Orange County, Orange, CA, USA.
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW The discovery of new disease-causing genes and availability of next-generation sequencing platforms have both progressed rapidly over the last few years. For the practicing neurologist, this presents an increasingly bewildering array both of potential diagnoses and of means to investigate them. We review the latest newly described genetic conditions associated with dystonia, and also address how the changing landscape of gene discovery and genetic testing can best be approached, from both a research and a clinical perspective. RECENT FINDINGS Several new genetic causes for disorders in which dystonia is a feature have been described in the last 2 years, including ZNF142, GSX2, IRF2BPL, DEGS1, PI4K2A, CAMK4, VPS13D and VAMP2. Dystonia has also been a newly described feature or alternative phenotype of several other genetic conditions, notably for genes classically associated with several forms of epilepsy. The DYT system for classifying genetic dystonias, however, last recognized a new gene discovery (KMT2B) in 2016. SUMMARY Gene discovery for dystonic disorders proceeds rapidly, but a high proportion of cases remain undiagnosed. The proliferation of rare disorders means that it is no longer realistic for clinicians to aim for diagnosis to the level of predicting genotype from phenotype in all cases, but rational and adaptive use of available genetic tests can certainly expedite diagnosis.
Collapse
|
7
|
Eis PS, Huang N, Langston JW, Hatchwell E, Schüle B. Loss-of-Function NUBPL Mutation May Link Parkinson's Disease to Recessive Complex I Deficiency. Front Neurol 2020; 11:555961. [PMID: 33224084 PMCID: PMC7667465 DOI: 10.3389/fneur.2020.555961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 09/28/2020] [Indexed: 02/01/2023] Open
Abstract
In an unbiased genome-wide screen for copy number variants (CNVs) on a cohort of Parkinson's disease (PD) patients, we identified in one patient a complex chromosomal rearrangement involving the nucleotide binding protein-like (NUBPL) gene on chromosome 14q12. We noted that mutations in the NUBPL gene had been reported as causing autosomal recessive (AR) mitochondrial Complex I (CI) deficiency in children. The precise breakpoints of the rearrangement in our PD case were found to be identical to those described in a patient with AR CI deficiency who also harbored a second pathogenic mutation in NUBPL. Mitochondrial dysfunction has long been considered a strong contributor to PD, and there is substantial evidence that decreased CI activity plays a central role in PD pathogenesis. We hypothesize that pathogenic NUBPL variants may increase the risk for PD analogous to variants in the glucosylceramidase beta (GBA) gene that increase the risk of developing PD in heterozygous carriers.
Collapse
Affiliation(s)
- Peggy S Eis
- Population Bio, Inc., New York, NY, United States
| | - Neng Huang
- Valley Parkinson Clinic, Los Gatos, CA, United States
| | - J William Langston
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Eli Hatchwell
- Population Bio, UK, Begbroke, Oxfordshire, United Kingdom
| | - Birgitt Schüle
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
8
|
Kimonis V, Al Dubaisi R, Maclean AE, Hall K, Weiss L, Stover AE, Schwartz PH, Berg B, Cheng C, Parikh S, Conner BR, Wu S, Hasso AN, Scott DA, Koenig MK, Karam R, Tang S, Smith M, Chao E, Balk J, Hatchwell E, Eis PS. NUBPL mitochondrial disease: new patients and review of the genetic and clinical spectrum. J Med Genet 2020; 58:314-325. [PMID: 32518176 DOI: 10.1136/jmedgenet-2020-106846] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/02/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND The nucleotide binding protein-like (NUBPL) gene was first reported as a cause of mitochondrial complex I deficiency (MIM 613621, 618242) in 2010. To date, only eight patients have been reported with this mitochondrial disorder. Five other patients were recently reported to have NUBPL disease but their clinical picture was different from the first eight patients. Here, we report clinical and genetic findings in five additional patients (four families). METHODS Whole exome sequencing was used to identify patients with compound heterozygous NUBPL variants. Functional studies included RNA-Seq transcript analyses, missense variant biochemical analyses in a yeast model (Yarrowia lipolytica) and mitochondrial respiration experiments on patient fibroblasts. RESULTS The previously reported c.815-27T>C branch-site mutation was found in all four families. In prior patients, c.166G>A [p.G56R] was always found in cis with c.815-27T>C, but only two of four families had both variants. The second variant found in trans with c.815-27T>C in each family was: c.311T>C [p.L104P] in three patients, c.693+1G>A in one patient and c.545T>C [p.V182A] in one patient. Complex I function in the yeast model was impacted by p.L104P but not p.V182A. Clinical features include onset of neurological symptoms at 3-18 months, global developmental delay, cerebellar dysfunction (including ataxia, dysarthria, nystagmus and tremor) and spasticity. Brain MRI showed cerebellar atrophy. Mitochondrial function studies on patient fibroblasts showed significantly reduced spare respiratory capacity. CONCLUSION We report on five new patients with NUBPL disease, adding to the number and phenotypic variability of patients diagnosed worldwide, and review prior reported patients with pathogenic NUBPL variants.
Collapse
Affiliation(s)
- Virginia Kimonis
- Division of Genetics and Metabolism, Department of Pediatrics, University of California Irvine, Irvine, California, USA
| | - Rehab Al Dubaisi
- Division of Genetics and Metabolism, Department of Pediatrics, University of California Irvine, Irvine, California, USA
| | - Andrew E Maclean
- Department of Biological Chemistry, John Innes Centre, Norwich, Norfolk, UK.,Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, Glasgow, UK
| | - Kathy Hall
- Division of Genetics and Metabolism, Department of Pediatrics, University of California Irvine, Irvine, California, USA
| | - Lan Weiss
- Division of Genetics and Metabolism, Department of Pediatrics, University of California Irvine, Irvine, California, USA
| | - Alexander E Stover
- CHOC National Human Neural Stem Cell Resource, Children's Hospital of Orange County Research Institute, Orange, California, USA
| | - Philip H Schwartz
- CHOC National Human Neural Stem Cell Resource, Children's Hospital of Orange County Research Institute, Orange, California, USA
| | - Bethany Berg
- Division of Genetics and Metabolism, Department of Pediatrics, University of California Irvine, Irvine, California, USA
| | - Cheng Cheng
- Division of Genetics and Metabolism, Department of Pediatrics, University of California Irvine, Irvine, California, USA
| | - Sumit Parikh
- Center for Pediatric Neurology, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Sitao Wu
- Ambry Genetics Corp, Aliso Viejo, California, USA
| | - Anton N Hasso
- Radiological Sciences, University of California Irvine School of Medicine, Irvine, California, USA
| | - Daryl A Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | - Mary Kay Koenig
- Department of Pediatrics, University of Texas McGovern Medical School, Houston, Texas, USA
| | - Rachid Karam
- Ambry Genetics Corp, Aliso Viejo, California, USA
| | - Sha Tang
- Ambry Genetics Corp, Aliso Viejo, California, USA
| | - Moyra Smith
- Division of Genetics and Metabolism, Department of Pediatrics, University of California Irvine, Irvine, California, USA
| | - Elizabeth Chao
- Division of Genetics and Metabolism, Department of Pediatrics, University of California Irvine, Irvine, California, USA.,Ambry Genetics Corp, Aliso Viejo, California, USA
| | - Janneke Balk
- Department of Biological Chemistry, John Innes Centre, Norwich, Norfolk, UK
| | | | - Peggy S Eis
- Population Bio, Inc, New York, New York, USA
| |
Collapse
|
9
|
Friederich MW, Perez FA, Knight KM, Van Hove RA, Yang SP, Saneto RP, Van Hove JLK. Pathogenic variants in NUBPL result in failure to assemble the matrix arm of complex I and cause a complex leukoencephalopathy with thalamic involvement. Mol Genet Metab 2020; 129:236-242. [PMID: 31917109 PMCID: PMC8096346 DOI: 10.1016/j.ymgme.2019.12.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/27/2019] [Accepted: 12/29/2019] [Indexed: 01/16/2023]
Abstract
Disorders of the white matter are genetically very heterogeneous including several genes involved in mitochondrial bioenergetics. Diagnosis of the underlying cause is aided by pattern recognition on neuroimaging and by next-generation sequencing. Recently, genetic changes in the complex I assembly factor NUBPL have been characterized by a consistent recognizable pattern of leukoencephalopathy affecting deep white matter including the corpus callosum and cerebellum. Here, we report twin boys with biallelic variants in NUBPL, an unreported c.351 G > A; p.(Met117Ile) and a previously reported pathological variant c. 693 + 1 G > A. Brain magnetic resonance imaging showed abnormal T2 hyperintense signal involving the periventricular white matter, external capsule, corpus callosum, and, prominently, the bilateral thalami. The neuroimaging pattern evolved over 18 months with marked diffuse white matter signal abnormality, volume loss, and new areas of signal abnormality in the cerebellar folia and vermis. Magnetic resonance spectroscopy showed elevated lactate. Functional studies in cultured fibroblasts confirmed pathogenicity of the genetic variants. Complex I activity of the respiratory chain was deficient spectrophotometrically and on blue native gel with in-gel activity staining. There was absent assembly and loss of proteins of the matrix arm of complex I when traced with an antibody to NDUFS2, and incomplete assembly of the membrane arm when traced with an NDUFB6 antibody. There was decreased NUBPL protein on Western blot in patient fibroblasts compared to controls. Compromised NUBPL activity impairs assembly of the matrix arm of complex I and produces a severe, rapidly-progressive leukoencephalopathy with thalamic involvement on MRI, further expanding the neuroimaging phenotype.
Collapse
Affiliation(s)
- Marisa W Friederich
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, RC1-N P18-4404K, 12800 East 19th Avenue, Aurora, CO 80045, USA; Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, 13121 East 16th Avenue, Aurora, CO 80045, USA
| | - Francisco A Perez
- Department of Radiology, Seattle Children's Hospital, University of Washington, 4800 Sand Point Way NE, Seattle, WA 98105, USA
| | - Kaz M Knight
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, RC1-N P18-4404K, 12800 East 19th Avenue, Aurora, CO 80045, USA
| | - Roxanne A Van Hove
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, RC1-N P18-4404K, 12800 East 19th Avenue, Aurora, CO 80045, USA
| | - Samuel P Yang
- Clinical Genomics and Preventative Medicine, Providence Medical Group, 105 West 8th Street 454-E, Spokane, WA 99204, USA
| | - Russell P Saneto
- Mitochondrial Medicine and Metabolism, Department of Neurology, Division of Pediatric Neurology, Seattle Children's Hospital, 4800 Sand Point Way NE, Seattle, WA 98105, USA; Center for Integrative Brain Research, Neuroscience Institute, 1900 Ninth Ave, Mailstop C9S-10, Seattle, WA 98101, USA
| | - Johan L K Van Hove
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, RC1-N P18-4404K, 12800 East 19th Avenue, Aurora, CO 80045, USA; Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, 13121 East 16th Avenue, Aurora, CO 80045, USA.
| |
Collapse
|
10
|
Protasoni M, Bruno C, Donati MA, Mohamoud K, Severino M, Allegri A, Robinson AJ, Reyes A, Zeviani M, Garone C. Novel compound heterozygous pathogenic variants in nucleotide-binding protein like protein (NUBPL) cause leukoencephalopathy with multi-systemic involvement. Mol Genet Metab 2020; 129:26-34. [PMID: 31787496 DOI: 10.1016/j.ymgme.2019.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/14/2019] [Accepted: 11/16/2019] [Indexed: 10/25/2022]
Abstract
NUBPL (Nucleotide-binding protein like) protein encodes a member of the Mrp/NBP35 ATP-binding proteins family, deemed to be involved in mammalian complex I (CI) assembly process. Exome sequencing of a patient presenting with infantile-onset hepatopathy, renal tubular acidosis, developmental delay, short stature, leukoencephalopathy with minimal cerebellar involvement and multiple OXPHOS deficiencies revealed the presence of two novel pathogenic compound heterozygous variants in NUBPL (p.Phe242Leu/p.Leu104Pro). We investigated patient's and control immortalised fibroblasts and demonstrated that both the peripheral and the membrane arms of complex I are undetectable in mutant NUBPL cells, resulting in virtually absent CI holocomplex and loss of enzyme activity. In addition, complex III stability was moderately affected as well. Lentiviral-mediated expression of the wild-type NUBPL cDNA rescued both CI and CIII assembly defects, confirming the pathogenicity of the variants. In conclusion, this is the first report describing a complex multisystemic disorder due to NUBPL defect. In addition, we confirmed the role of NUBPL in Complex I assembly associated with secondary effect on Complex III stability and we demonstrated a defect of mtDNA-related translation which suggests a potential additional role of NUBPL in mtDNA expression.
Collapse
Affiliation(s)
- Margherita Protasoni
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, CB20XY Cambridge, UK
| | - Claudio Bruno
- Center of Translational and Experimental Myology, IRCCS Giannina Gaslini Institute, via Gerolamo Gaslini 5, 16147 Genoa, Italy
| | - Maria Alice Donati
- Metabolic Unit, A. Meyer Children's Hospital, viale Pieraccini 24, 50139 Florence, Italy
| | - Khadra Mohamoud
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, CB20XY Cambridge, UK
| | - Mariasavina Severino
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, via Gerolamo Gaslini 5, 16147 Genoa, Italy
| | - Anna Allegri
- Pediatric Clinic Unit, IRCCS Istituto Giannina Gaslini, via Gerolamo Gaslini 5, 16147, Genoa, Italy
| | - Alan J Robinson
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, CB20XY Cambridge, UK
| | - Aurelio Reyes
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, CB20XY Cambridge, UK
| | - Massimo Zeviani
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, CB20XY Cambridge, UK.
| | - Caterina Garone
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, CB20XY Cambridge, UK; Dipartimento di Scienze Mediche e Chirurgiche, Centro di Ricerca Biomedica Applicata, Università di Bologna, via Massarenti, 11, 40100 Bologna, Italy.
| |
Collapse
|
11
|
Neuropathology and pathogenesis of extrapyramidal movement disorders: a critical update. II. Hyperkinetic disorders. J Neural Transm (Vienna) 2019; 126:997-1027. [DOI: 10.1007/s00702-019-02030-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/14/2019] [Indexed: 12/14/2022]
|