1
|
Lv Y, Li H. Blood diagnostic and prognostic biomarkers in amyotrophic lateral sclerosis. Neural Regen Res 2025; 20:2556-2570. [PMID: 39314138 DOI: 10.4103/nrr.nrr-d-24-00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
Amyotrophic lateral sclerosis is a devastating neurodegenerative disease for which the current treatment approaches remain severely limited. The principal pathological alterations of the disease include the selective degeneration of motor neurons in the brain, brainstem, and spinal cord, as well as abnormal protein deposition in the cytoplasm of neurons and glial cells. The biological markers under extensive scrutiny are predominantly located in the cerebrospinal fluid, blood, and even urine. Among these biomarkers, neurofilament proteins and glial fibrillary acidic protein most accurately reflect the pathologic changes in the central nervous system, while creatinine and creatine kinase mainly indicate pathological alterations in the peripheral nerves and muscles. Neurofilament light chain levels serve as an indicator of neuronal axonal injury that remain stable throughout disease progression and are a promising diagnostic and prognostic biomarker with high specificity and sensitivity. However, there are challenges in using neurofilament light chain to differentiate amyotrophic lateral sclerosis from other central nervous system diseases with axonal injury. Glial fibrillary acidic protein predominantly reflects the degree of neuronal demyelination and is linked to non-motor symptoms of amyotrophic lateral sclerosis such as cognitive impairment, oxygen saturation, and the glomerular filtration rate. TAR DNA-binding protein 43, a pathological protein associated with amyotrophic lateral sclerosis, is emerging as a promising biomarker, particularly with advancements in exosome-related research. Evidence is currently lacking for the value of creatinine and creatine kinase as diagnostic markers; however, they show potential in predicting disease prognosis. Despite the vigorous progress made in the identification of amyotrophic lateral sclerosis biomarkers in recent years, the quest for definitive diagnostic and prognostic biomarkers remains a formidable challenge. This review summarizes the latest research achievements concerning blood biomarkers in amyotrophic lateral sclerosis that can provide a more direct basis for the differential diagnosis and prognostic assessment of the disease beyond a reliance on clinical manifestations and electromyography findings.
Collapse
Affiliation(s)
- Yongting Lv
- Department of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Hongfu Li
- Department of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Department of Medical Genetics and Center for Rare disease, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Nanhu Brain-Computer Interface Institute, Hangzhou, Zhejiang Province, China
| |
Collapse
|
2
|
Moriyama H, Yokota T. Recent Progress of Antisense Oligonucleotide Therapy for Superoxide-Dismutase-1-Mutated Amyotrophic Lateral Sclerosis: Focus on Tofersen. Genes (Basel) 2024; 15:1342. [PMID: 39457466 PMCID: PMC11507444 DOI: 10.3390/genes15101342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a refractory neurodegenerative disease characterized by the degeneration and loss of motor neurons, typically resulting in death within five years of onset. There have been few effective treatments, making the development of robust therapies an urgent challenge. Genetic mutations have been identified as contributors to ALS, with mutations in superoxide dismutase 1 (SOD1), which neutralizes the harmful reactive oxygen species superoxide, accounting for approximately 2% of all ALS cases. To counteract the toxic gain of function caused by SOD1 mutations, therapeutic strategies aimed at suppressing SOD1 gene expression have shown promise. Antisense oligonucleotide (ASO) is an artificially synthesized, short, single-stranded DNA/RNA molecule that binds to target RNA to alter gene expression, representing a next-generation therapeutic approach. In 2023, tofersen became the first ASO drug approved by the FDA for ALS. Administered intrathecally, tofersen specifically binds to SOD1 mRNA, inhibiting the production of toxic SOD1 protein, thereby improving biomarkers of ALS. The long-term efficacy and safety of tofersen require further validation, and the development of more optimized treatment protocols is essential. A series of studies and therapeutic developments related to SOD1 mutations have advanced the understanding of ALS pathophysiology and significantly contributed to treatment strategies for central nervous system disorders. This review focuses on an overview of SOD1 mutations and the development process of tofersen, aiming to deepen the understanding of advancements in ALS research and discuss future challenges and directions for ASO therapy.
Collapse
Affiliation(s)
- Hidenori Moriyama
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Sciences Research, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
3
|
Alshehri RS, Abuzinadah AR, Alrawaili MS, Alotaibi MK, Alsufyani HA, Alshanketi RM, AlShareef AA. A Review of Biomarkers of Amyotrophic Lateral Sclerosis: A Pathophysiologic Approach. Int J Mol Sci 2024; 25:10900. [PMID: 39456682 PMCID: PMC11507293 DOI: 10.3390/ijms252010900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive degeneration of upper and lower motor neurons. The heterogeneous nature of ALS at the clinical, genetic, and pathological levels makes it challenging to develop diagnostic and prognostic tools that fit all disease phenotypes. Limitations associated with the functional scales and the qualitative nature of mainstay electrophysiological testing prompt the investigation of more objective quantitative assessment. Biofluid biomarkers have the potential to fill that gap by providing evidence of a disease process potentially early in the disease, its progression, and its response to therapy. In contrast to other neurodegenerative diseases, no biomarker has yet been validated in clinical use for ALS. Several fluid biomarkers have been investigated in clinical studies in ALS. Biofluid biomarkers reflect the different pathophysiological processes, from protein aggregation to muscle denervation. This review takes a pathophysiologic approach to summarizing the findings of clinical studies utilizing quantitative biofluid biomarkers in ALS, discusses the utility and shortcomings of each biomarker, and highlights the superiority of neurofilaments as biomarkers of neurodegeneration over other candidate biomarkers.
Collapse
Affiliation(s)
- Rawiah S. Alshehri
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (R.S.A.); (H.A.A.)
| | - Ahmad R. Abuzinadah
- Department of Neurology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (M.S.A.); (A.A.A.)
- Neuromuscular Medicine Unit, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Moafaq S. Alrawaili
- Department of Neurology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (M.S.A.); (A.A.A.)
- Neuromuscular Medicine Unit, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Muteb K. Alotaibi
- Neurology Department, Prince Sultan Military Medical City, Riyadh 12233, Saudi Arabia;
| | - Hadeel A. Alsufyani
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (R.S.A.); (H.A.A.)
| | - Rajaa M. Alshanketi
- Internal Medicine Department, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia;
| | - Aysha A. AlShareef
- Department of Neurology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (M.S.A.); (A.A.A.)
- Neuromuscular Medicine Unit, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| |
Collapse
|
4
|
Meyer T, Schumann P, Weydt P, Petri S, Weishaupt JH, Weyen U, Koch JC, Günther R, Regensburger M, Boentert M, Wiesenfarth M, Koc Y, Kolzarek F, Kettemann D, Norden J, Bernsen S, Elmas Z, Conrad J, Valkadinov I, Vidovic M, Dorst J, Ludolph AC, Hesebeck-Brinckmann J, Spittel S, Münch C, Maier A, Körtvélyessy P. Clinical and patient-reported outcomes and neurofilament response during tofersen treatment in SOD1-related ALS-A multicenter observational study over 18 months. Muscle Nerve 2024; 70:333-345. [PMID: 39031772 DOI: 10.1002/mus.28182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/26/2024] [Accepted: 06/01/2024] [Indexed: 07/22/2024]
Abstract
INTRODUCTION/AIMS In amyotrophic lateral sclerosis (ALS) caused by SOD1 mutations (SOD1-ALS), tofersen received accelerated approval in the United States and is available via expanded access programs (EAP) outside the United States. This multicenter study investigates clinical and patient-reported outcomes (PRO) and serum neurofilament light chain (sNfL) during tofersen treatment in an EAP in Germany. METHODS Sixteen SOD1-ALS patients receiving tofersen for at least 6 months were analyzed. The ALS progression rate (ALS-PR), as measured by the monthly change of the ALS functional rating scale-revised (ALSFRS-R), slow vital capacity (SVC), and sNfL were investigated. PRO included the Measure Yourself Medical Outcome Profile (MYMOP2), Treatment Satisfaction Questionnaire for Medication (TSQM-9), and Net Promoter Score (NPS). RESULTS Mean tofersen treatment was 11 months (6-18 months). ALS-PR showed a mean change of -0.2 (range 0 to -1.1) and relative reduction by 25%. Seven patients demonstrated increased ALSFRS-R. SVC was stable (mean 88%, range -15% to +28%). sNfL decreased in all patients except one heterozygous D91A-SOD1 mutation carrier (mean change of sNfL -58%, range -91 to +27%, p < .01). MYMOP2 indicated improved symptom severity (n = 10) or yet perception of partial response (n = 6). TSQM-9 showed high global treatment satisfaction (mean 83, SD 16) although the convenience of drug administration was modest (mean 50, SD 27). NPS revealed a very high recommendation rate for tofersen (NPS +80). DISCUSSION Data from this EAP supported the clinical and sNfL response to tofersen in SOD1-ALS. PRO suggested a favorable patient perception of tofersen treatment in clinical practice.
Collapse
Affiliation(s)
- Thomas Meyer
- Center for ALS and other Motor Neuron Disorders, Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Ambulanzpartner Soziotechnologie APST GmbH, Berlin, Germany
| | - Peggy Schumann
- Center for ALS and other Motor Neuron Disorders, Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Ambulanzpartner Soziotechnologie APST GmbH, Berlin, Germany
| | - Patrick Weydt
- Department for Neuromuscular Disorders, Bonn University, Bonn, Germany
- DZNE, Deutsches Zentrum für Neurodegenerative Erkrankungen, Research Site Bonn, Bonn, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Jochen H Weishaupt
- Neurology Department, Division for Neurodegenerative Diseases, Mannheim Center for Translational Medicine, University Medicine Mannheim, Heidelberg University, Mannheim, Germany
| | - Ute Weyen
- Department of Neurology, Ruhr-University Bochum, BG-Kliniken Bergmannsheil, Bochum, Germany
| | - Jan C Koch
- Department of Neurology, Universitätsmedizin Göttingen, Göttingen, Germany
| | - René Günther
- Department of Neurology, Technische Universität Dresden, University Hospital Carl Gustav Carus, Dresden, Germany
- DZNE, Deutsches Zentrum für Neurodegenerative Erkrankungen, Research Site Dresden, Dresden, Germany
| | - Martin Regensburger
- Department of Molecular Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Boentert
- Department of Neurology, Münster University Hospital, Münster, Germany
| | | | - Yasemin Koc
- Center for ALS and other Motor Neuron Disorders, Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Felix Kolzarek
- Ambulanzpartner Soziotechnologie APST GmbH, Berlin, Germany
| | - Dagmar Kettemann
- Center for ALS and other Motor Neuron Disorders, Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jenny Norden
- Center for ALS and other Motor Neuron Disorders, Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sarah Bernsen
- Center for ALS and other Motor Neuron Disorders, Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Ambulanzpartner Soziotechnologie APST GmbH, Berlin, Germany
| | - Zeynep Elmas
- Department of Neurology, Ulm University, Ulm, Germany
| | - Julian Conrad
- Neurology Department, Division for Neurodegenerative Diseases, Mannheim Center for Translational Medicine, University Medicine Mannheim, Heidelberg University, Mannheim, Germany
| | - Ivan Valkadinov
- Neurology Department, Division for Neurodegenerative Diseases, Mannheim Center for Translational Medicine, University Medicine Mannheim, Heidelberg University, Mannheim, Germany
| | - Maximilian Vidovic
- Department of Neurology, Technische Universität Dresden, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Johannes Dorst
- Department of Neurology, Ulm University, Ulm, Germany
- DZNE, Deutsches Zentrum für Neurodegenerative Erkrankungen, Research Site Ulm, Ulm, Germany
| | - Albert C Ludolph
- Department of Neurology, Ulm University, Ulm, Germany
- DZNE, Deutsches Zentrum für Neurodegenerative Erkrankungen, Research Site Ulm, Ulm, Germany
| | - Jasper Hesebeck-Brinckmann
- Neurology Department, Division for Neurodegenerative Diseases, Mannheim Center for Translational Medicine, University Medicine Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Christoph Münch
- Center for ALS and other Motor Neuron Disorders, Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Ambulanzpartner Soziotechnologie APST GmbH, Berlin, Germany
| | - André Maier
- Center for ALS and other Motor Neuron Disorders, Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Péter Körtvélyessy
- Center for ALS and other Motor Neuron Disorders, Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
5
|
Meyer T, Dreger M, Grehl T, Weyen U, Kettemann D, Weydt P, Günther R, Lingor P, Petri S, Koch JC, Großkreutz J, Rödiger A, Baum P, Hermann A, Prudlo J, Boentert M, Weishaupt JH, Löscher WN, Dorst J, Koc Y, Bernsen S, Cordts I, Vidovic M, Steinbach R, Metelmann M, Kleinveld VE, Norden J, Ludolph A, Walter B, Schumann P, Münch C, Körtvélyessy P, Maier A. Serum neurofilament light chain in distinct phenotypes of amyotrophic lateral sclerosis: A longitudinal, multicenter study. Eur J Neurol 2024; 31:e16379. [PMID: 38859579 PMCID: PMC11295170 DOI: 10.1111/ene.16379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/01/2024] [Accepted: 05/21/2024] [Indexed: 06/12/2024]
Abstract
OBJECTIVE To assess the performance of serum neurofilament light chain (sNfL) in clinical phenotypes of amyotrophic lateral sclerosis (ALS). METHODS In 2949 ALS patients at 16 ALS centers in Germany and Austria, clinical characteristics and sNfL were assessed. Phenotypes were differentiated for two anatomical determinants: (1) upper and/or lower motor involvement (typical, typMN; upper/lower motor neuron predominant, UMNp/LMNp; primary lateral sclerosis, PLS) and (2) region of onset and propagation of motor neuron dysfunction (bulbar, limb, flail-arm, flail-leg, thoracic onset). Phenotypes were correlated to sNfL, progression, and survival. RESULTS Mean sNfL was - compared to typMN (75.7 pg/mL, n = 1791) - significantly lower in LMNp (45.1 pg/mL, n = 413), UMNp (58.7 pg/mL n = 206), and PLS (37.6 pg/mL, n = 84). Also, sNfL significantly differed in the bulbar (92.7 pg/mL, n = 669), limb (64.1 pg/mL, n = 1305), flail-arm (46.4 pg/mL, n = 283), flail-leg (53.6 pg/mL, n = 141), and thoracic (74.5 pg/mL, n = 96) phenotypes. Binary logistic regression analysis showed highest contribution to sNfL elevation for faster progression (odds ratio [OR] 3.24) and for the bulbar onset phenotype (OR 1.94). In contrast, PLS (OR 0.20), LMNp (OR 0.45), and thoracic onset (OR 0.43) showed reduced contributions to sNfL. Longitudinal sNfL (median 12 months, n = 2862) showed minor monthly changes (<0.2%) across all phenotypes. Correlation of sNfL with survival was confirmed (p < 0.001). CONCLUSIONS This study underscored the correlation of ALS phenotypes - differentiated for motor neuron involvement and region of onset/propagation - with sNfL, progression, and survival. These phenotypes demonstrated a significant effect on sNfL and should be recognized as independent confounders of sNfL analyses in ALS trials and clinical practice.
Collapse
Affiliation(s)
- Thomas Meyer
- Department of Neurology, Center for ALS and Other Motor Neuron DisordersCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin and Berlin Institute of HealthBerlinGermany
- Ambulanzpartner Soziotechnologie APST GmbHBerlinGermany
| | - Marie Dreger
- Department of Neurology, Center for ALS and Other Motor Neuron DisordersCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin and Berlin Institute of HealthBerlinGermany
| | - Torsten Grehl
- Department of NeurologyCenter for ALS and Other Motor Neuron Disorders, Alfried Krupp KrankenhausEssenGermany
| | - Ute Weyen
- Department of Neurology, Center for ALS and Other Motor Neuron DisordersBerufsgenossenschaftliches Universitätsklinikum BergmannsheilBochumGermany
| | - Dagmar Kettemann
- Department of Neurology, Center for ALS and Other Motor Neuron DisordersCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin and Berlin Institute of HealthBerlinGermany
| | - Patrick Weydt
- Department for Neuromuscular DisordersBonn UniversityBonnGermany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)BonnGermany
| | - René Günther
- Department of NeurologyTechnische Universität Dresden, University Hospital Carl Gustav CarusDresdenGermany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)DresdenGermany
| | - Paul Lingor
- Department of NeurologyTechnical University of Munich, School of Medicine, Klinikum rechts der IsarMunichGermany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)MunichGermany
| | - Susanne Petri
- Department of NeurologyHannover Medical SchoolHannoverGermany
| | | | - Julian Großkreutz
- Department of NeurologyUniversitätsmedizin Schleswig‐Holstein, Campus LübeckLübeckGermany
| | - Annekathrin Rödiger
- Department of NeurologyJena University HospitalJenaGermany
- Zentrum für Seltene Erkrankungen (ZSE)Jena University HospitalJenaGermany
| | - Petra Baum
- Department of NeurologyUniversity Hospital LeipzigLeipzigGermany
| | - Andreas Hermann
- Translational Neurodegeneration Section “Albrecht‐Kossel”, Department of NeurologyUniversity of Rostock, University Medical CenterRostockGermany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)GreifswaldGermany
| | - Johannes Prudlo
- Translational Neurodegeneration Section “Albrecht‐Kossel”, Department of NeurologyUniversity of Rostock, University Medical CenterRostockGermany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)GreifswaldGermany
| | | | - Jochen H. Weishaupt
- Division for Neurodegenerative Diseases, Neurology Department, Mannheim Center for Translational MedicineUniversity Medicine Mannheim, Heidelberg UniversityMannheimGermany
| | | | - Johannes Dorst
- Department of NeurologyUlm UniversityUlmGermany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)UlmGermany
| | - Yasemin Koc
- Department of Neurology, Center for ALS and Other Motor Neuron DisordersCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin and Berlin Institute of HealthBerlinGermany
| | - Sarah Bernsen
- Department of Neurology, Center for ALS and Other Motor Neuron DisordersCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin and Berlin Institute of HealthBerlinGermany
- Department for Neuromuscular DisordersBonn UniversityBonnGermany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)BonnGermany
| | - Isabell Cordts
- Department of NeurologyTechnical University of Munich, School of Medicine, Klinikum rechts der IsarMunichGermany
| | - Maximilian Vidovic
- Department of NeurologyTechnische Universität Dresden, University Hospital Carl Gustav CarusDresdenGermany
| | | | - Moritz Metelmann
- Department of NeurologyUniversity Hospital LeipzigLeipzigGermany
| | | | - Jenny Norden
- Department of Neurology, Center for ALS and Other Motor Neuron DisordersCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin and Berlin Institute of HealthBerlinGermany
| | - Albert Ludolph
- Department of NeurologyUlm UniversityUlmGermany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)UlmGermany
| | - Bertram Walter
- Department of Neurology, Center for ALS and Other Motor Neuron DisordersCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin and Berlin Institute of HealthBerlinGermany
| | - Peggy Schumann
- Department of Neurology, Center for ALS and Other Motor Neuron DisordersCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin and Berlin Institute of HealthBerlinGermany
- Ambulanzpartner Soziotechnologie APST GmbHBerlinGermany
| | - Christoph Münch
- Department of Neurology, Center for ALS and Other Motor Neuron DisordersCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin and Berlin Institute of HealthBerlinGermany
- Ambulanzpartner Soziotechnologie APST GmbHBerlinGermany
| | - Péter Körtvélyessy
- Department of Neurology, Center for ALS and Other Motor Neuron DisordersCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin and Berlin Institute of HealthBerlinGermany
| | - André Maier
- Department of Neurology, Center for ALS and Other Motor Neuron DisordersCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin and Berlin Institute of HealthBerlinGermany
| |
Collapse
|
6
|
Witzel S, Huss A, Nagel G, Rosenbohm A, Rothenbacher D, Peter RS, Bäzner H, Börtlein A, Dempewolf S, Schabet M, Hecht M, Kohler A, Opherk C, Naegele A, Sommer N, Lindner A, Alexudis C, Bachhuber F, Halbgebauer S, Brenner D, Ruf W, Weiland U, Mayer B, Schuster J, Dorst J, Tumani H, Ludolph AC. Population-Based Evidence for the Use of Serum Neurofilaments as Individual Diagnostic and Prognostic Biomarkers in Amyotrophic Lateral Sclerosis. Ann Neurol 2024. [PMID: 39177232 DOI: 10.1002/ana.27054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/04/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024]
Abstract
OBJECTIVE Neurofilament light chains (NfL) and phosphorylated neurofilament heavy chains (pNfH), established as diagnostic and prognostic biomarkers in hospital-based amyotrophic lateral sclerosis (ALS) cohorts, are now surrogate markers in clinical trials. This study extends their evaluation to a population level, with the aim of advancing their full establishment and assessing the transferability of biomarker findings from controlled cohorts to real-world ALS populations. METHODS We measured serum NfL and pNfH levels in all ALS patients (n = 790) and general population controls (n = 570) with available baseline samples participating in the epidemiological ALS Registry Swabia, providing platform-specific (ELLA™) reference data and Z-scores for controls, as well as reference data, disease-specific Z-scores and longitudinal data in ALS. We evaluated the diagnostic and prognostic utility of neurofilaments and quantified the impact of ALS-related factors and non-ALS confounders. RESULTS Neurofilaments showed high diagnostic and prognostic utility at the population level, with NfL superior to pNfH. The novel concept of a population-based ALS Z-score significantly improved the prognostic utility compared to absolute raw values. Both biomarkers increased more strongly with age in controls than in ALS, and age adjustment improved diagnostic accuracy. Our data show that disease progression rates, ALS phenotype, body mass index (BMI), and renal function need to be considered when interpreting neurofilament levels; longitudinal neurofilament levels were generally stable in individual patients, especially when adjusted for age and baseline levels. INTERPRETATION Population-based assessment enhances the utility of particularly serum NfL as a diagnostic and prognostic biomarker in ALS and improves the translation of findings from controlled cohorts to real-world populations. ANN NEUROL 2024.
Collapse
Affiliation(s)
- Simon Witzel
- Department of Neurology, Ulm University, Ulm, Germany
| | - André Huss
- Department of Neurology, Ulm University, Ulm, Germany
| | - Gabriele Nagel
- Institute for Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | | | | | - Raphael S Peter
- Institute for Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Hansjörg Bäzner
- Department of Neurology, Klinikum Stuttgart, Katharinenhospital, Stuttgart, Germany
| | - Axel Börtlein
- Department of Neurology, Klinikum Stuttgart, Katharinenhospital, Stuttgart, Germany
| | - Silke Dempewolf
- Department of Neurology, RKH Klinikum Ludwigsburg, Ludwigsburg, Germany
| | - Martin Schabet
- Department of Neurology, RKH Klinikum Ludwigsburg, Ludwigsburg, Germany
| | - Martin Hecht
- Department of Neurology, Klinikum Kaufbeuren, Kliniken Ostallgaeu-Kaufbeuren, Kaufbeuren, Germany
| | - Andreas Kohler
- Department of Neurology, Klinikum am Gesundbrunnen Heilbronn, Heilbronn, Germany
| | - Christian Opherk
- Department of Neurology, Klinikum am Gesundbrunnen Heilbronn, Heilbronn, Germany
| | - Andrea Naegele
- Department of Neurology, Christophsbad Goeppingen, Göppingen, Germany
| | - Norbert Sommer
- Department of Neurology, Christophsbad Goeppingen, Göppingen, Germany
| | - Alfred Lindner
- Department of Neurology, Marienhospital Stuttgart, Stuttgart, Germany
| | | | | | - Steffen Halbgebauer
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Ulm, Ulm, Germany
| | - David Brenner
- Department of Neurology, Ulm University, Ulm, Germany
| | - Wolfgang Ruf
- Department of Neurology, Ulm University, Ulm, Germany
| | | | - Benjamin Mayer
- Institute for Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Joachim Schuster
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Ulm, Ulm, Germany
| | | | - Hayrettin Tumani
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Ulm, Ulm, Germany
| | - Albert C Ludolph
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Ulm, Ulm, Germany
| |
Collapse
|
7
|
Bernard E, Cluse F, Bohic A, Hermier M, Raoul C, Leblanc P, Guissart C. A Novel De Novo Missense Mutation in KIF1A Associated with Young-Onset Upper-Limb Amyotrophic Lateral Sclerosis. Int J Mol Sci 2024; 25:8170. [PMID: 39125740 PMCID: PMC11311656 DOI: 10.3390/ijms25158170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
We investigate the etiology of amyotrophic lateral sclerosis (ALS) in a 35-year-old woman presenting with progressive weakness in her left upper limb. Prior to sequencing, a comprehensive neurological work-up was performed, including neurological examination, electrophysiology, biomarker assessment, and brain and spinal cord MRI. Six months before evaluation, the patient experienced weakness and atrophy in her left hand, accompanied by brisk reflexes and Hoffman sign in the same arm. Electroneuromyography revealed lower motor neuron involvement in three body regions. Neurofilament light chains were elevated in her cerebrospinal fluid. Brain imaging showed asymmetrical T2 hyperintensity of the corticospinal tracts and T2 linear hypointensity of the precentral gyri. Trio genome sequencing identified a likely pathogenic de novo variant in the KIF1A gene (NM_001244008.2): c.574A>G, p.(Ile192Val). Pathogenic variants in KIF1A have been associated with a wide range of neurological manifestations called KIF1A-associated neurological diseases (KAND). This report describes a likely pathogenic de novo variant in KIF1A associated with ALS, expanding the phenotypic spectrum of KAND and our understanding of the pathophysiology of ALS.
Collapse
Affiliation(s)
- Emilien Bernard
- Lyon ALS Reference Center, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Université de Lyon, 59 Boulevard Pinel, 69677 Bron, France; (F.C.); (A.B.)
- Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon I, 8 Avenue Rockefeller, CEDEX 08, 69373 Lyon, France;
| | - Florent Cluse
- Lyon ALS Reference Center, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Université de Lyon, 59 Boulevard Pinel, 69677 Bron, France; (F.C.); (A.B.)
| | - Adrien Bohic
- Lyon ALS Reference Center, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Université de Lyon, 59 Boulevard Pinel, 69677 Bron, France; (F.C.); (A.B.)
| | - Marc Hermier
- Department of Neuroradiology, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Université de Lyon, 59 Boulevard Pinel, 69677 Bron, France;
| | - Cédric Raoul
- INM, Université de Montpellier, INSERM, CNRS, 34295 Montpellier, France; (C.R.); (C.G.)
- ALS Reference Center, Université de Montpellier, CHU Montpellier, 34295 Montpellier, France
| | - Pascal Leblanc
- Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon I, 8 Avenue Rockefeller, CEDEX 08, 69373 Lyon, France;
| | - Claire Guissart
- INM, Université de Montpellier, INSERM, CNRS, 34295 Montpellier, France; (C.R.); (C.G.)
- GCS AURAGEN, 69003 Lyon, France
- Service de Biochimie et Biologie Moléculaire, CHU Nîmes, Université de Montpellier, Place du Professeur Robert Debré, 30029 Nîmes, France
| |
Collapse
|
8
|
Xu Z, Xu R. Current potential diagnostic biomarkers of amyotrophic lateral sclerosis. Rev Neurosci 2024; 0:revneuro-2024-0037. [PMID: 38976599 DOI: 10.1515/revneuro-2024-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) currently lacks the useful diagnostic biomarkers. The current diagnosis of ALS is mainly depended on the clinical manifestations, which contributes to the diagnostic delay and be difficult to make the accurate diagnosis at the early stage of ALS, and hinders the clinical early therapeutics. The more and more pathogenesis of ALS are found at the last 30 years, including excitotoxicity, the oxidative stress, the mitochondrial dysfunction, neuroinflammation, the altered energy metabolism, the RNA misprocessing and the most recent neuroimaging findings. The findings of these pathogenesis bring the new clues for searching the diagnostic biomarkers of ALS. At present, a large number of relevant studies about the diagnostic biomarkers are underway. The ALS pathogenesis related to the diagnostic biomarkers might lessen the diagnostic reliance on the clinical manifestations. Among them, the cortical altered signatures of ALS patients derived from both structural and functional magnetic resonance imaging and the emerging proteomic biomarkers of neuronal loss and glial activation in the cerebrospinal fluid as well as the potential biomarkers in blood, serum, urine, and saliva are leading a new phase of biomarkers. Here, we reviewed these current potential diagnostic biomarkers of ALS.
Collapse
Affiliation(s)
- Zheqi Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
- The Clinical College of Nanchang Medical College, Nanchang 330006, China
- Medical College of Nanchang University, Nanchang 330006, China
| | - Renshi Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
- The Clinical College of Nanchang Medical College, Nanchang 330006, China
- Medical College of Nanchang University, Nanchang 330006, China
| |
Collapse
|
9
|
Wohnrade C, Seeliger T, Gingele S, Bjelica B, Skripuletz T, Petri S. Diagnostic value of neurofilaments in differentiating motor neuron disease from multifocal motor neuropathy. J Neurol 2024; 271:4441-4452. [PMID: 38683209 PMCID: PMC11233354 DOI: 10.1007/s00415-024-12355-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024]
Abstract
OBJECTIVE To evaluate the performance of serum neurofilament light chain (NfL) and cerebrospinal fluid (CSF) phosphorylated neurofilament heavy chain (pNfH) as diagnostic biomarkers for the differentiation between motor neuron disease (MND) and multifocal motor neuropathy (MMN). METHODS This retrospective, monocentric study included 16 patients with MMN and 34 incident patients with MND. A subgroup of lower motor neuron (MN) dominant MND patients (n = 24) was analyzed separately. Serum NfL was measured using Ella automated immunoassay, and CSF pNfH was measured using enzyme-linked immunosorbent assay. Area under the curve (AUC), optimal cutoff values (Youden's index), and correlations with demographic characteristics were calculated. RESULTS Neurofilament concentrations were significantly higher in MND compared to MMN (p < 0.001), and serum NfL and CSF pNfH correlated strongly with each other (Spearman's rho 0.68, p < 0.001). Serum NfL (AUC 0.946, sensitivity and specificity 94%) and CSF pNfH (AUC 0.937, sensitivity 90.0%, specificity 100%) performed excellent in differentiating MND from MMN. Optimal cutoff values were ≥ 44.15 pg/mL (serum NfL) and ≥ 715.5 pg/mL (CSF pNfH), respectively. Similar results were found when restricting the MND cohort to lower MN dominant patients. Only one MMN patient had serum NfL above the cutoff. Two MND patients presented with neurofilament concentrations below the cutoffs, both featuring a slowly progressive disease. CONCLUSION Neurofilaments are valuable supportive biomarkers for the differentiation between MND and MMN. Serum NfL and CSF pNfH perform similarly well and elevated neurofilaments in case of diagnostic uncertainty underpin MND diagnosis.
Collapse
Affiliation(s)
- Camilla Wohnrade
- Department of Neurology, Hannover Medical School, 30625, Hannover, Germany.
| | - Tabea Seeliger
- Department of Neurology, Hannover Medical School, 30625, Hannover, Germany
| | - Stefan Gingele
- Department of Neurology, Hannover Medical School, 30625, Hannover, Germany
| | - Bogdan Bjelica
- Department of Neurology, Hannover Medical School, 30625, Hannover, Germany
| | - Thomas Skripuletz
- Department of Neurology, Hannover Medical School, 30625, Hannover, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, 30625, Hannover, Germany
- Center for Systems Neuroscience (ZSN) Hannover, 30559, Hannover, Germany
| |
Collapse
|
10
|
Oliveira Santos M, de Carvalho M. Profiling tofersen as a treatment of superoxide dismutase 1 amyotrophic lateral sclerosis. Expert Rev Neurother 2024; 24:549-553. [PMID: 38758193 DOI: 10.1080/14737175.2024.2355983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a rapidly progressive motor neuron disorder with a fatal outcome 3-5 years after disease onset due to respiratory complications. Superoxide dismutase 1 (SOD1) mutations are found in about 2% of all patients. Tofersen is a novel oligonucleotide antisense drug specifically developed to treat SOD1-ALS patients. AREAS COVERED Our review covers and discusses tofersen pharmacological properties and its phase I/II and III clinical trials results. Other available drugs and their limitations are also addressed. EXPERT OPINION VALOR study failed to meet the primary endpoint (change in the revised Amyotrophic Lateral Sclerosis Functional Rating Scale score from baseline to week 28, tofersen arm vs. placebo), but a significant reduction in plasma neurofilament light chain (NfL) levels was observed in tofersen arm (60% vs. 20%). PrefALS study has proposed plasma NfL has a potential biomarker for presymptomatic treatment, since it increases 6-12 months before phenoconversion. There is probably a delay between plasma NfL reduction and the clinical benefit. ATLAS study will allow more insights regarding tofersen clinical efficacy in disease progression rate, survival, and even disease onset delay in presymptomatic SOD1 carriers.
Collapse
Affiliation(s)
- Miguel Oliveira Santos
- Institute of Physiology, Instituto de Medicina Molecular João Lobo Antunes, Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal
| | - Mamede de Carvalho
- Institute of Physiology, Instituto de Medicina Molecular João Lobo Antunes, Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal
| |
Collapse
|
11
|
Witzel S, Statland JM, Steinacker P, Otto M, Dorst J, Schuster J, Barohn RJ, Ludolph AC. Longitudinal course of neurofilament light chain levels in amyotrophic lateral sclerosis-insights from a completed randomized controlled trial with rasagiline. Eur J Neurol 2024; 31:e16154. [PMID: 37975796 PMCID: PMC11235763 DOI: 10.1111/ene.16154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/17/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND AND PURPOSE Rasagiline might be disease modifying in patients with amyotrophic lateral sclerosis (ALS). The aim was to evaluate the effect of rasagiline 2 mg/day on neurofilament light chain (NfL), a prognostic biomarker in ALS. METHODS In 65 patients with ALS randomized in a 3:1 ratio to rasagiline 2 mg/day (n = 48) or placebo (n = 17) in a completed randomized controlled multicentre trial, NfL levels in plasma were measured at baseline, month 6 and month 12. Longitudinal changes in NfL levels were evaluated regarding treatment and clinical parameters. RESULTS Baseline NfL levels did not differ between the study arms and correlated with disease progression rates both pre-baseline (r = 0.64, p < 0.001) and during the study (r = 0.61, p < 0.001). NfL measured at months 6 and 12 did not change significantly from baseline in both arms, with a median individual NfL change of +1.4 pg/mL (interquartile range [IQR] -5.6, 14.2) across all follow-up time points. However, a significant difference in NfL change at month 12 was observed between patients with high and low NfL baseline levels treated with rasagiline (high [n = 13], -6.9 pg/mL, IQR -20.4, 6.0; low [n = 18], +5.9 pg/mL, IQR -1.4, 19.7; p = 0.025). Additionally, generally higher longitudinal NfL variability was observed in patients with high baseline levels, whereas disease progression rates and disease duration at baseline had no impact on the longitudinal NfL course. CONCLUSION Post hoc NfL measurements in completed clinical trials are helpful in interpreting NfL data from ongoing and future interventional trials and could provide hypothesis-generating complementary insights. Further studies are warranted to ultimately differentiate NfL response to treatment from other factors.
Collapse
Affiliation(s)
| | | | | | - Markus Otto
- Department of NeurologyUniversity of HalleHalle (Saale)Germany
| | | | - Joachim Schuster
- Department of NeurologyUlm UniversityUlmGermany
- German Center for Neurodegenerative Diseases (DZNE)UlmGermany
| | - Richard J. Barohn
- School of Medicine, NextGen Precision Health, University of MissouriColumbiaMissouriUSA
| | - Albert C. Ludolph
- Department of NeurologyUlm UniversityUlmGermany
- German Center for Neurodegenerative Diseases (DZNE)UlmGermany
| |
Collapse
|
12
|
Irwin KE, Sheth U, Wong PC, Gendron TF. Fluid biomarkers for amyotrophic lateral sclerosis: a review. Mol Neurodegener 2024; 19:9. [PMID: 38267984 PMCID: PMC10809579 DOI: 10.1186/s13024-023-00685-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/21/2023] [Indexed: 01/26/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the loss of upper and lower motor neurons. Presently, three FDA-approved drugs are available to help slow functional decline for patients with ALS, but no cure yet exists. With an average life expectancy of only two to five years after diagnosis, there is a clear need for biomarkers to improve the care of patients with ALS and to expedite ALS treatment development. Here, we provide a review of the efforts made towards identifying diagnostic, prognostic, susceptibility/risk, and response fluid biomarkers with the intent to facilitate a more rapid and accurate ALS diagnosis, to better predict prognosis, to improve clinical trial design, and to inform interpretation of clinical trial results. Over the course of 20 + years, several promising fluid biomarker candidates for ALS have emerged. These will be discussed, as will the exciting new strategies being explored for ALS biomarker discovery and development.
Collapse
Affiliation(s)
- Katherine E Irwin
- Department of Pathology, Johns Hopkins Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins Medicine, Baltimore, MD, 21205, USA
| | - Udit Sheth
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Philip C Wong
- Department of Pathology, Johns Hopkins Medicine, Baltimore, MD, 21205, USA.
- Department of Neuroscience, Johns Hopkins Medicine, Baltimore, MD, 21205, USA.
| | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|
13
|
Donini L, Tanel R, Zuccarino R, Basso M. Protein biomarkers for the diagnosis and prognosis of Amyotrophic Lateral Sclerosis. Neurosci Res 2023; 197:31-41. [PMID: 37689321 DOI: 10.1016/j.neures.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is the most common motor neuron disease, still incurable. The disease is highly heterogenous both genetically and phenotypically. Therefore, developing efficacious treatments is challenging in many aspects because it is difficult to predict the rate of disease progression and stratify the patients to minimize statistical variability in clinical studies. Moreover, there is a lack of sensitive measures of therapeutic effect to assess whether a pharmacological intervention ameliorates the disease. There is also urgency of markers that reflect a molecular mechanism dysregulated by ALS pathology and can be rescued when a treatment relieves the condition. Here, we summarize and discuss biomarkers tested in multicentered studies and across different laboratories like neurofilaments, the most used marker in ALS clinical studies, neuroinflammatory-related proteins, p75ECD, p-Tau/t-Tau, and UCHL1. We also explore the applicability of muscle proteins and extracellular vesicles as potential biomarkers.
Collapse
Affiliation(s)
- Luisa Donini
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Italy.
| | - Raffaella Tanel
- Clinical Center NeMO, APSS Ospedale Riabilitativo Villa Rosa, Pergine 38057, TN, Italy.
| | - Riccardo Zuccarino
- Clinical Center NeMO, APSS Ospedale Riabilitativo Villa Rosa, Pergine 38057, TN, Italy
| | - Manuela Basso
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Italy.
| |
Collapse
|
14
|
Yang J, Xin C, Huo J, Li X, Dong H, Liu Q, Li R, Liu Y. Rab Geranylgeranyltransferase Subunit Beta as a Potential Indicator to Assess the Progression of Amyotrophic Lateral Sclerosis. Brain Sci 2023; 13:1531. [PMID: 38002490 PMCID: PMC10670085 DOI: 10.3390/brainsci13111531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/11/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Currently, there is no effective treatment for amyotrophic lateral sclerosis (ALS), a devastating neurodegenerative disorder. Many biomarkers have been proposed, but because ALS is a clinically heterogeneous disease with an unclear etiology, biomarker discovery for ALS has been challenging due to the lack of specificity of these biomarkers. In recent years, the role of autophagy in the development and treatment of ALS has become a research hotspot. In our previous studies, we found that the expression of RabGGTase (low RABGGTB expression and no change in RABGGTA) is lower in the lumbar and thoracic regions of spinal cord motoneurons in SOD1G93A mice compared with WT (wild-type) mice groups, and upregulation of RABGGTB promoted prenylation modification of Rab7, which promoted autophagy to protect neurons by degrading SOD1. Given that RabGGTase is associated with autophagy and autophagy is associated with inflammation, and based on the above findings, since peripheral blood mononuclear cells are readily available from patients with ALS, we proposed to investigate the expression of RabGGTase in peripheral inflammatory cells. METHODS Information and venous blood were collected from 86 patients diagnosed with ALS between January 2021 and August 2023. Flow cytometry was used to detect the expression of RABGGTB in monocytes from peripheral blood samples collected from patients with ALS and healthy controls. Extracted peripheral blood mononuclear cells (PBMCs) were differentiated in vitro into macrophages, and then the expression of RABGGTB was detected by immunofluorescence. RABGGTB levels in patients with ALS were analyzed to determine their impact on disease progression. RESULTS Using flow cytometry in monocytes and immunofluorescence in macrophages, we found that RABGGTB expression in the ALS group was significantly higher than in the control group. Age, sex, original location, disease course, C-reactive protein (CRP), and interleukin-6 (IL-6) did not correlate with the ALS functional rating scale-revised (ALSFRS-R), whereas the RABGGTB level was significantly correlated with the ALSFRS-R. In addition, multivariate analysis revealed a significant correlation between RABGGTB and ALSFRS-R score. Further analysis revealed a significant correlation between RABGGTB expression levels and disease progression levels (ΔFS). CONCLUSIONS The RABGGTB level was significantly increased in patients with ALS compared with healthy controls. An elevated RABGGTB level in patients with ALS is associated with the rate of progression in ALS, suggesting that elevated RABGGTB levels in patients with ALS may serve as an indicator for tracking ALS progression.
Collapse
Affiliation(s)
- Jing Yang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; (J.Y.); (C.X.); (J.H.); (X.L.); (H.D.); (Q.L.); (R.L.)
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang 050000, China
- Neurological Laboratory of Hebei Province, Shijiazhuang 050000, China
| | - Cheng Xin
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; (J.Y.); (C.X.); (J.H.); (X.L.); (H.D.); (Q.L.); (R.L.)
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang 050000, China
- Neurological Laboratory of Hebei Province, Shijiazhuang 050000, China
| | - Jia Huo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; (J.Y.); (C.X.); (J.H.); (X.L.); (H.D.); (Q.L.); (R.L.)
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang 050000, China
- Neurological Laboratory of Hebei Province, Shijiazhuang 050000, China
| | - Xin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; (J.Y.); (C.X.); (J.H.); (X.L.); (H.D.); (Q.L.); (R.L.)
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang 050000, China
- Neurological Laboratory of Hebei Province, Shijiazhuang 050000, China
| | - Hui Dong
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; (J.Y.); (C.X.); (J.H.); (X.L.); (H.D.); (Q.L.); (R.L.)
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang 050000, China
- Neurological Laboratory of Hebei Province, Shijiazhuang 050000, China
| | - Qi Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; (J.Y.); (C.X.); (J.H.); (X.L.); (H.D.); (Q.L.); (R.L.)
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang 050000, China
- Neurological Laboratory of Hebei Province, Shijiazhuang 050000, China
| | - Rui Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; (J.Y.); (C.X.); (J.H.); (X.L.); (H.D.); (Q.L.); (R.L.)
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang 050000, China
- Neurological Laboratory of Hebei Province, Shijiazhuang 050000, China
| | - Yaling Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; (J.Y.); (C.X.); (J.H.); (X.L.); (H.D.); (Q.L.); (R.L.)
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang 050000, China
- Neurological Laboratory of Hebei Province, Shijiazhuang 050000, China
| |
Collapse
|
15
|
Martin Schaff C, Kurent JE, Kolodziejczak S, Milic M, Foster LA, Mehta AK. Neuroprognostication for Patients with Amyotrophic Lateral Sclerosis: An Updated, Evidence-Based Review. Semin Neurol 2023; 43:776-790. [PMID: 37751856 DOI: 10.1055/s-0043-1775595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disorder that presents and progresses in various ways, making prognostication difficult. Several paradigms exist for providers to elucidate prognosis in a way that addresses not only the amount of time a patient has to live, but also a patient's quality of their life moving forward. Prognostication, with regard to both survivability and quality of life, is impacted by several features that include, but are not limited to, patient demographics, clinical features on presentation, and over time, access to therapy, and access to multidisciplinary clinics. An understanding of the impact that these features have on the life of a patient with ALS can help providers to develop a better and more personalized approach for patients related to their clinical prognosis after a diagnosis is made. The ultimate goal of prognostication is to empower patients with ALS to take control and make decisions with their care teams to ensure that their goals are addressed and met.
Collapse
Affiliation(s)
| | - Jerome E Kurent
- Department of Neurology and Medicine, Medical University of South Carolina, Charleston, South Carolina
- Department of Neurology, ALS Multidisciplinary Clinic, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| | - Sherry Kolodziejczak
- ALS Clinic Treatment Center of Excellence, Crestwood Medical Center, Huntsville, Alabama
| | - Michelle Milic
- Division of Pulmonary, Critical Care, and Sleep Medicine, MedStar Georgetown University Hospital, Washington, District of Columbia
- Division of Palliative Care Medicine, MedStar Georgetown University Hospital, Washington, District of Columbia
| | - Laura A Foster
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado
| | - Ambereen K Mehta
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Palliative Care Program, Division of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
16
|
Morichon L, Hirtz C, Tiers L, Mezghrani A, Raoul C, Esselin F, La Cruz ED, Julien JP, Camu W, Lehmann S. Ultrasensitive digital immunoassays for SOD1 conformation in amyotrophic lateral sclerosis. Bioanalysis 2023; 15:927-936. [PMID: 37650499 DOI: 10.4155/bio-2023-0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Aim: The aim of this study was to detect misfolded Cu/Zn SOD1 as a potential biomarker for amyotrophic lateral sclerosis (ALS). Materials & methods: Two ultrasensitive immunodetection assays were developed for the quantification of total and misfolded SOD1. Results: The detection of total and misfolded SOD1 was possible in human serum and cerebrospinal fluid. Total SOD1 was increased in cerebrospinal fluid from ALS patients. Misfolded SOD1 had low and variable expression in both control and ALS patient samples. Conclusion: These assays hold promise for improving our understanding of ALS and its detection, and could lead to more effective treatment options in the future. Further studies in larger cohorts are now required.
Collapse
Affiliation(s)
- Lisa Morichon
- LBPC-PPC, University of Montpellier, CHU Montpellier, INM INSERM, Montpellier, 34295, France
| | - Christophe Hirtz
- LBPC-PPC, University of Montpellier, CHU Montpellier, INM INSERM, Montpellier, 34295, France
| | - Laurent Tiers
- LBPC-PPC, University of Montpellier, CHU Montpellier, INM INSERM, Montpellier, 34295, France
| | | | - Cédric Raoul
- INM, University of Montpellier, INSERM, Montpellier, 34295, France
| | - Florence Esselin
- Department of Neurology, University of Montpellier, CHU Montpellier, INM, INSERM, Montpellier, 34295, France
| | - Elisa De La Cruz
- Department of Neurology, University of Montpellier, CHU Montpellier, INM, INSERM, Montpellier, 34295, France
| | - Jean-Pierre Julien
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, University Laval, Quebec City, 23027, Canada
| | - William Camu
- Department of Neurology, University of Montpellier, CHU Montpellier, INM, INSERM, Montpellier, 34295, France
| | - Sylvain Lehmann
- LBPC-PPC, University of Montpellier, CHU Montpellier, INM INSERM, Montpellier, 34295, France
- INM, University of Montpellier, INSERM, Montpellier, 34295, France
| |
Collapse
|
17
|
Sanchez-Tejerina D, Llaurado A, Sotoca J, Lopez-Diego V, Vidal Taboada JM, Salvado M, Juntas-Morales R. Biofluid Biomarkers in the Prognosis of Amyotrophic Lateral Sclerosis: Recent Developments and Therapeutic Applications. Cells 2023; 12:cells12081180. [PMID: 37190090 DOI: 10.3390/cells12081180] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Amyotrophic lateral sclerosis is a neurodegenerative disease characterized by the degeneration of motor neurons for which effective therapies are lacking. One of the most explored areas of research in ALS is the discovery and validation of biomarkers that can be applied to clinical practice and incorporated into the development of innovative therapies. The study of biomarkers requires an adequate theoretical and operational framework, highlighting the "fit-for-purpose" concept and distinguishing different types of biomarkers based on common terminology. In this review, we aim to discuss the current status of fluid-based prognostic and predictive biomarkers in ALS, with particular emphasis on those that are the most promising ones for clinical trial design and routine clinical practice. Neurofilaments in cerebrospinal fluid and blood are the main prognostic and pharmacodynamic biomarkers. Furthermore, several candidates exist covering various pathological aspects of the disease, such as immune, metabolic and muscle damage markers. Urine has been studied less often and should be explored for its possible advantages. New advances in the knowledge of cryptic exons introduce the possibility of discovering new biomarkers. Collaborative efforts, prospective studies and standardized procedures are needed to validate candidate biomarkers. A combined biomarkers panel can provide a more detailed disease status.
Collapse
Affiliation(s)
- Daniel Sanchez-Tejerina
- Neuromuscular Diseases Unit, Neurology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Peripheral Nervous System Group, Vall d'Hebron Research Institut (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Medicine Department, Universitat Autónoma de Barcelona, 08035 Barcelon, Spain
| | - Arnau Llaurado
- Neuromuscular Diseases Unit, Neurology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Peripheral Nervous System Group, Vall d'Hebron Research Institut (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Javier Sotoca
- Neuromuscular Diseases Unit, Neurology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Peripheral Nervous System Group, Vall d'Hebron Research Institut (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Veronica Lopez-Diego
- Neuromuscular Diseases Unit, Neurology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Peripheral Nervous System Group, Vall d'Hebron Research Institut (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Jose M Vidal Taboada
- Peripheral Nervous System Group, Vall d'Hebron Research Institut (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Medicine Department, Universitat Autónoma de Barcelona, 08035 Barcelon, Spain
| | - Maria Salvado
- Neuromuscular Diseases Unit, Neurology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Peripheral Nervous System Group, Vall d'Hebron Research Institut (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Raul Juntas-Morales
- Neuromuscular Diseases Unit, Neurology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Peripheral Nervous System Group, Vall d'Hebron Research Institut (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Medicine Department, Universitat Autónoma de Barcelona, 08035 Barcelon, Spain
| |
Collapse
|
18
|
Verde F, Milone I, Colombo E, Maranzano A, Solca F, Torre S, Doretti A, Gentile F, Manini A, Bonetti R, Peverelli S, Messina S, Maderna L, Morelli C, Poletti B, Ratti A, Silani V, Ticozzi N. Phenotypic correlates of serum neurofilament light chain levels in amyotrophic lateral sclerosis. Front Aging Neurosci 2023; 15:1132808. [PMID: 37009451 PMCID: PMC10050442 DOI: 10.3389/fnagi.2023.1132808] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
ObjectiveTo investigate the relationship between serum levels of the neuroaxonal degeneration biomarker neurofilament light chain (NFL) and phenotype in ALS.Materials and methodsSerum NFL (sNFL) concentration was quantified in 209 ALS patients and 46 neurologically healthy controls (NHCs).ResultssNFL was clearly increased in ALS patients and discriminated them from NHCs with AUC = 0.9694. Among ALS patients, females had higher sNFL levels, especially in case of bulbar onset. sNFL was more increased in phenotypes with both upper (UMN) and lower motor neuron (LMN) signs, and particularly in those with UMN predominance, compared to LMN forms. At the same time, primary lateral sclerosis (PLS) had significantly lower levels compared to UMN-predominant ALS (AUC = 0.7667). sNFL correlated negatively with disease duration at sampling and ALSFRS-R score, positively with disease progression rate, differed among King’s stages, and was negatively associated with survival. It also correlated with clinical/neurophysiological indices of UMN and LMN dysfunction (Penn UMN Score, LMN score, MRC composite score, active spinal denervation score). On the contrary, sNFL was not associated with cognitive deficits nor with respiratory parameters. Notably, we found a negative correlation between sNFL and estimated glomerular filtration rate (eGFR).InterpretationWe confirm that ALS is characterized by increased sNFL levels, whose main determinant is the rate of degeneration of both UMNs and LMNs. sNFL is a biomarker of only motor, not of extra-motor, disease. The negative correlation with kidney function might reflect varying renal clearance of the molecule and deserves further investigation before introducing sNFL measurement as routine test in clinical care of ALS patients.
Collapse
Affiliation(s)
- Federico Verde
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, “Dino Ferrari” Center, Università degli Studi di Milano, Milan, Italy
- *Correspondence: Federico Verde,
| | - Ilaria Milone
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Eleonora Colombo
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Alessio Maranzano
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Federica Solca
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Silvia Torre
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Alberto Doretti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Francesco Gentile
- Neurology Residency Program, Università degli Studi di Milano, Milan, Italy
| | - Arianna Manini
- Neurology Residency Program, Università degli Studi di Milano, Milan, Italy
| | - Ruggero Bonetti
- Neurology Residency Program, Università degli Studi di Milano, Milan, Italy
| | - Silvia Peverelli
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Stefano Messina
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Luca Maderna
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Claudia Morelli
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Barbara Poletti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Antonia Ratti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, “Dino Ferrari” Center, Università degli Studi di Milano, Milan, Italy
| | - Nicola Ticozzi
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, “Dino Ferrari” Center, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
19
|
Meyer T, Salkic E, Grehl T, Weyen U, Kettemann D, Weydt P, Günther R, Lingor P, Koch JC, Petri S, Hermann A, Prudlo J, Großkreutz J, Baum P, Boentert M, Metelmann M, Norden J, Cordts I, Weishaupt JH, Dorst J, Ludolph A, Koc Y, Walter B, Münch C, Spittel S, Dreger M, Maier A, Körtvélyessy P. Performance of serum neurofilament light chain in a wide spectrum of clinical courses of amyotrophic lateral sclerosis-a cross-sectional multicenter study. Eur J Neurol 2023; 30:1600-1610. [PMID: 36899448 DOI: 10.1111/ene.15773] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/15/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023]
Abstract
BACKGROUND AND PURPOSE The objective was to assess the performance of serum neurofilament light chain (sNfL) in amyotrophic lateral sclerosis (ALS) in a wide range of disease courses, in terms of progression, duration and tracheostomy invasive ventilation (TIV). METHODS A prospective cross-sectional study at 12 ALS centers in Germany was performed. sNfL concentrations were age adjusted using sNfL Z scores expressing the number of standard deviations from the mean of a control reference database and correlated to ALS duration and ALS progression rate (ALS-PR), defined by the decline of the ALS Functional Rating Scale. RESULTS In the total ALS cohort (n = 1378) the sNfL Z score was elevated (3.04; 2.46-3.43; 99.88th percentile). There was a strong correlation of sNfL Z score with ALS-PR (p < 0.001). In patients with long (5-10 years, n = 167) or very long ALS duration (>10 years, n = 94) the sNfL Z score was significantly lower compared to the typical ALS duration of <5 years (n = 1059) (p < 0.001). Furthermore, in patients with TIV, decreasing sNfL Z scores were found in correlation with TIV duration and ALS-PR (p = 0.002; p < 0.001). CONCLUSIONS The finding of moderate sNfL elevation in patients with long ALS duration underlined the favorable prognosis of low sNfL. The strong correlation of sNfL Z score with ALS-PR strengthened its value as progression marker in clinical management and research. The lowering of sNfL in correlation with long TIV duration could reflect a reduction either in disease activity or in the neuroaxonal substrate of biomarker formation during the protracted course of ALS.
Collapse
Affiliation(s)
- Thomas Meyer
- Department of Neurology, Center for ALS and Other Motor Neuron Disorders, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
- APST Research GmbH, Berlin, Germany
| | - Erma Salkic
- Department of Neurology, Center for ALS and Other Motor Neuron Disorders, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Torsten Grehl
- Department of Neurology, Center for ALS and Other Motor Neuron Disorders, Alfried Krupp Krankenhaus, Essen, Germany
| | - Ute Weyen
- Department of Neurology, Center for ALS and Other Motor Neuron Disorders, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil, Bochum, Germany
| | - Dagmar Kettemann
- Department of Neurology, Center for ALS and Other Motor Neuron Disorders, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Patrick Weydt
- Department for Neurodegenerative Disorders and Gerontopsychiatry, Bonn University, Bonn, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Research Site Bonn, Bonn, Germany
| | - René Günther
- Department of Neurology, Technische Universität Dresden, Dresden, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Research Site Dresden (DZNE), Dresden, Germany
| | - Paul Lingor
- Department of Neurology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jan Christoph Koch
- Department of Neurology, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Andreas Hermann
- Department of Neurology, Translational Neurodegeneration Section "Albrecht-Kossel", University of Rostock, University Medical Center, Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Research Site Rostock/Greifswald, DZNE, Greifswald, Germany
| | - Johannes Prudlo
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Research Site Rostock/Greifswald, DZNE, Greifswald, Germany
- Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock,, Germany
| | - Julian Großkreutz
- Department of Neurology, Universitätsmedizin Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Petra Baum
- Department of Neurology, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Matthias Boentert
- Department of Neurology, Universitätsklinikum Münster, Münster, Germany
| | - Moritz Metelmann
- Department of Neurology, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Jenny Norden
- Department of Neurology, Center for ALS and Other Motor Neuron Disorders, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Isabell Cordts
- Department of Neurology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jochen H Weishaupt
- Division for Neurodegenerative Diseases, Department of Neurology, Mannheim Center for Translational Medicine, University Medicine Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Albert Ludolph
- Department of Neurology, Ulm University, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Research Site Ulm (DZNE), Ulm, Germany
| | - Yasemin Koc
- Department of Neurology, Center for ALS and Other Motor Neuron Disorders, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Bertram Walter
- Department of Neurology, Center for ALS and Other Motor Neuron Disorders, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Münch
- Department of Neurology, Center for ALS and Other Motor Neuron Disorders, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
- APST Research GmbH, Berlin, Germany
| | - Susanne Spittel
- Department of Neurology, Center for ALS and Other Motor Neuron Disorders, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
- APST Research GmbH, Berlin, Germany
| | - Marie Dreger
- Department of Neurology, Center for ALS and Other Motor Neuron Disorders, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - André Maier
- Department of Neurology, Center for ALS and Other Motor Neuron Disorders, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Péter Körtvélyessy
- Department of Neurology, Center for ALS and Other Motor Neuron Disorders, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Research Site Magdeburg (DZNE), Magdeburg, Germany
| |
Collapse
|
20
|
Delaby C, Hirtz C, Lehmann S. Overview of the blood biomarkers in Alzheimer's disease: Promises and challenges. Rev Neurol (Paris) 2023; 179:161-172. [PMID: 36371265 DOI: 10.1016/j.neurol.2022.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/11/2022]
Abstract
The increasing number of people with advanced Alzheimer's disease (AD) represents a significant psychological and financial cost to the world population. Accurate detection of the earliest phase of preclinical AD is of major importance for the success of preventive and therapeutic strategies (Cullen et al., 2021). Advances in analytical techniques have been essential for the development of sensitive, specific and reliable diagnostic tests for AD biomarkers in biological fluids (cerebrospinal fluid and blood). Blood biomarkers hold promising potential for early and minimally invasive detection of AD, but also for differential diagnosis of dementia and for monitoring the course of the disease. The aim of this review is to provide an overview of current blood biomarkers of AD, from tau proteins and amyloid peptides to biomarkers of neuronal degeneration and inflammation, reactive and metabolic factors. We thus discuss the informative value of currently candidate blood biomarkers and their potential to be integrated into clinical practice for the management of AD in the near future.
Collapse
Affiliation(s)
- C Delaby
- LBPC-PPC, Université Montpellier, CHU Montpellier, INM Inserm, Montpellier, France; Hospital de la Santa Creu i Sant Pau - Biomedical Research Institute Sant Pau - Universitat Autònoma de Barcelona, Barcelona, Spain
| | - C Hirtz
- LBPC-PPC, Université Montpellier, CHU Montpellier, INM Inserm, Montpellier, France
| | - S Lehmann
- LBPC-PPC, Université Montpellier, CHU Montpellier, INM Inserm, Montpellier, France.
| |
Collapse
|
21
|
Delaby C, Bousiges O, Bouvier D, Fillée C, Fourier A, Mondésert E, Nezry N, Omar S, Quadrio I, Rucheton B, Schraen-Maschke S, van Pesch V, Vicca S, Lehmann S, Bedel A. Neurofilaments contribution in clinic: state of the art. Front Aging Neurosci 2022; 14:1034684. [PMID: 36389064 PMCID: PMC9664201 DOI: 10.3389/fnagi.2022.1034684] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/10/2022] [Indexed: 07/26/2023] Open
Abstract
Neurological biomarkers are particularly valuable to clinicians as they can be used for diagnosis, prognosis, or response to treatment. This field of neurology has evolved considerably in recent years with the improvement of analytical methods, allowing the detection of biomarkers not only in cerebrospinal fluid (CSF) but also in less invasive fluids like blood. These advances greatly facilitate the repeated quantification of biomarkers, including at asymptomatic stages of the disease. Among the various informative biomarkers of neurological disorders, neurofilaments (NfL) have proven to be of particular interest in many contexts, such as neurodegenerative diseases, traumatic brain injury, multiple sclerosis, stroke, and cancer. Here we discuss these different pathologies and the potential value of NfL assay in the management of these patients, both for diagnosis and prognosis. We also describe the added value of NfL compared to other biomarkers currently used to monitor the diseases described in this review.
Collapse
Affiliation(s)
- Constance Delaby
- Université de Montpellier, IRMB, INM, INSERM, CHU de Montpellier, Laboratoire Biochimie-Protéomique clinique, Montpellier, France
- Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau—Biomedical Research Institute Sant Pau—Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Olivier Bousiges
- Laboratoire de biochimie et biologie moléculaire (LBBM)—Pôle de biologie Hôpital de Hautepierre—CHU de Strasbourg, CNRS, laboratoire ICube UMR 7357 et FMTS (Fédération de Médecine Translationnelle de Strasbourg), équipe IMIS, Strasbourg, France
| | - Damien Bouvier
- Service de Biochimie et Génétique Moléculaire, CHU de Clermont-Ferrand, Clermont-Ferrand, France
| | - Catherine Fillée
- Cliniques universitaires Saint-Luc UCLouvain, Service de Biochimie Médicale, Brussels, Belgium
| | - Anthony Fourier
- Biochimie et Biologie Moléculaire—LBMMS, Unité de diagnostic des pathologies dégénératives, Centre de Biologie et Pathologie Est, Groupement Hospitalier Est, Lyon, France
| | - Etienne Mondésert
- Université de Montpellier, IRMB, INM, INSERM, CHU de Montpellier, Laboratoire Biochimie-Protéomique clinique, Montpellier, France
| | - Nicolas Nezry
- Univ. Lille, Inserm, CHU Lille, UMR-S-U1172, LiCEND, Lille Neuroscience & Cognition, LabEx DISTALZ, Lille, France
| | - Souheil Omar
- Laboratoire de biologie médicale de l’Institut de Neurologie de Tunis, Tunis, Tunisia
| | - Isabelle Quadrio
- Biochimie et Biologie Moléculaire—LBMMS, Unité de diagnostic des pathologies dégénératives, Centre de Biologie et Pathologie Est, Groupement Hospitalier Est, Lyon, France
| | - Benoit Rucheton
- Laboratoire de Biologie, Institut Bergonié, Bordeaux, France
| | - Susanna Schraen-Maschke
- Univ. Lille, Inserm, CHU Lille, UMR-S-U1172, LiCEND, Lille Neuroscience & Cognition, LabEx DISTALZ, Lille, France
| | - Vincent van Pesch
- Cliniques universitaires Saint-Luc UCLouvain, Service de Neurologie, Brussels, Belgium
| | - Stéphanie Vicca
- Hôpital Necker-Enfants malades, Paris, Laboratoire de Biochimie générale, DMU BioPhyGen, AP-HP.Centre—Université de Paris, Paris, France
| | - Sylvain Lehmann
- Université de Montpellier, IRMB, INM, INSERM, CHU de Montpellier, Laboratoire Biochimie-Protéomique clinique, Montpellier, France
| | - Aurelie Bedel
- Service de Biochimie, CHU Pellegrin, Bordeaux, France
| |
Collapse
|
22
|
Rival M, Thouvenot E, Du Trieu de Terdonck L, Laurent-Chabalier S, Demattei C, Uygunoglu U, Castelnovo G, Cohen M, Okuda DT, Kantarci OH, Pelletier D, Azevedo C, Marin P, Lehmann S, Siva A, Mura T, Lebrun-Frenay C. Neurofilament Light Chain Levels Are Predictive of Clinical Conversion in Radiologically Isolated Syndrome. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 10:10/1/e200044. [PMID: 36280258 PMCID: PMC9621336 DOI: 10.1212/nxi.0000000000200044] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/29/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND AND OBJECTIVES To evaluate the predictive value of serum neurofilament light chain (sNfL) and CSF NfL (cNfL) in patients with radiologically isolated syndrome (RIS) for evidence of disease activity (EDA) and clinical conversion (CC). METHODS sNfL and cNfL were measured at RIS diagnosis by single-molecule array (Simoa). The risk of EDA and CC according to sNfL and cNfL was evaluated using the Kaplan-Meier analysis and multivariate Cox regression models including age, spinal cord (SC) or infratentorial lesions, oligoclonal bands, CSF chitinase 3-like protein 1, and CSF white blood cells. RESULTS Sixty-one patients with RIS were included. At diagnosis, sNfL and cNfL were correlated (Spearman r = 0.78, p < 0.001). During follow-up, 47 patients with RIS showed EDA and 36 patients showed CC (median time 12.6 months, 1-86). When compared with low levels, medium and high cNfL (>260 pg/mL) and sNfL (>5.0 pg/mL) levels were predictive of EDA (log rank, p < 0.01 and p = 0.02, respectively). Medium-high cNfL levels were predictive of CC (log rank, p < 0.01). In Cox regression models, cNfL and sNfL were independent factors of EDA, while SC lesions, cNfL, and sNfL were independent factors of CC. DISCUSSION cNfL >260 pg/mL and sNfL >5.0 pg/mL at diagnosis are independent predictive factors of EDA and CC in RIS. Although cNfL predicts disease activity better, sNfL is more accessible than cNfL and can be considered when a lumbar puncture is not performed. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that in people with radiologic isolated syndrome (RIS), initial serum and CSF NfL levels are associated with subsequent evidence of disease activity or clinical conversion.
Collapse
Affiliation(s)
- Manon Rival
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Eric Thouvenot
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France.
| | - Lucile Du Trieu de Terdonck
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Sabine Laurent-Chabalier
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Christophe Demattei
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Ugur Uygunoglu
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Giovanni Castelnovo
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Mikael Cohen
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Darin T Okuda
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Orhun H Kantarci
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Daniel Pelletier
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Christina Azevedo
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Philippe Marin
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Sylvain Lehmann
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Aksel Siva
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Thibault Mura
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Christine Lebrun-Frenay
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| |
Collapse
|
23
|
Serum neurofilament levels in patients with multiple sclerosis: A comparison of SIMOA and high sensitivity ELISA assays and contributing factors to ELISA levels. Mult Scler Relat Disord 2022; 67:104177. [PMID: 36130459 DOI: 10.1016/j.msard.2022.104177] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Serum neurofilaments (sNfs), especially the most investigated serum neurofilament light chain (sNfL), are promising biomarkers in multiple sclerosis (MS). However, their clinical utility is still limited, given the availability and costs of accessible analytical methods. The gold standard for the detection of sNfs is represented by the single molecule arrays (SIMOA). Recently, a high sensitivity enzyme-linked immunosorbent assay (hsELISA) has also been introduced. The objective of the study was to compare both assays for the determination of sNfL and neurofilament heavy chain (sNfH) concentrations in a defined MS cohort. The second objective was to identify contributing factors to sNfs concentrations determined by hsELISA. METHODS Serum samples were collected from MS patients attending the MS Centre, University Hospital Ostrava, Czech Republic. The levels of sNfs were detected using SIMOA and hsELISA assays. RESULTS The Spearman's rank correlation coefficient between the sNfL SIMOA and sNfL hsELISA and between the sNfH SIMOA and sNfH hsELISA was moderate rs= 0.543 (p = 0.001) and rs= 0.583 (p = 0.001), respectively. The Passing-Bablok regression analysis demonstrated bias between both methods. Equally significant bias between the methods was confirmed by the Bland-Altman plots. Furthermore, confounding factors affecting the sNfL levels were glomerular filtration rate (eGFR; 95% CI -2.34 to -0.04) and sex (95% CI -2.38 to -0.10). The sNfH levels were affected by age (95% CI 0.01 to 0.07), eGFR (95% CI -2.45 to -0.02), body mass index (BMI; 95% CI -0.31 to -0.05), and blood volume (95% CI 0.69 to 3.35). CONCLUSION This analytical study showed significant differences between hsELISA and SIMOA methods, especially for the sNfH concentrations. We identified confounding factors for sNfs levels determined by hsELISA. The sNfs levels were influenced by renal function and sex, whilst sNfH levels were affected by age, BMI, and total blood volume.
Collapse
|
24
|
Esselin F, De la Cruz E, Hirtz C, Tiers L, Alphandery S, Baudesson L, Taieb G, Camu W, Lehmann S. Repeated neurofilament light chain measurements did not capture Riluzole therapeutic effect in amyotrophic lateral sclerosis patients. CNS Neurosci Ther 2022; 28:1532-1538. [PMID: 35751632 PMCID: PMC9437233 DOI: 10.1111/cns.13894] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/24/2022] [Accepted: 06/01/2022] [Indexed: 11/26/2022] Open
Abstract
Background Little is known about the influence of Riluzole on serum neurofilament light chain (sNfL) levels, a biomarker of prognosis in amyotrophic lateral sclerosis (ALS), and variations with time of sNfL concentrations are controversial. Methods Sera from ALS patients (n = 141) and controls (n = 33) were collected at inclusion (sNfL1) and second visit (sNfL2, mean delay 10.4 ± 8.7 months). sNfL levels, determined by single‐molecule array, were compared between ALS and controls at both time points. sNfL concentration changes were compared between patients with Riluzole (w/Ril) at inclusion in the study and those who were treated by Riluzole following inclusion (w/o Ril). The factors influencing sNfL concentrations and changes were studied using linear regression and multivariate analysis. Results sNfL levels were higher in ALS patients than in controls at the two time points (p < 0.00001). In ALS patients, sNfL concentrations were higher in females for both sNfL1 (p = 0.014) and sNfL2 (p < 0.001). In the whole ALS group, sNfL levels were higher at sNfL2 than at sNfL1 (p < 0.001). sNfL1 and sNfL2 concentrations were similar between the two ALS subgroups (w/ and w/o Ril). ALS functional rating scale‐revised rate of decline and gender were the two main factors significantly influencing both sNfL1 and sNfL2 levels (p < 0.01). However, only gender was shown to significantly influence sNfL changes with time (p = 0.003). Conclusions In this study, sNfL levels increased with time in ALS patients and there was no difference between subjects already treated by Riluzole and those treated after sNfL1. Further studies with larger population samples and different sampling intervals are warranted to better determine the real potential of sNfL measurement as a tool to monitor treatment response in ALS.
Collapse
Affiliation(s)
- Florence Esselin
- Explorations neurologiques et centre SLA, Univ Montpellier, CHU Gui de Chauliac, INM, INSERM, Montpellier, France
| | - Elisa De la Cruz
- Explorations neurologiques et centre SLA, Univ Montpellier, CHU Gui de Chauliac, INM, INSERM, Montpellier, France
| | - Christophe Hirtz
- LBPC-PPC, Univ Montpellier, CHU Montpellier, INSERM, INM Montpellier, Montpellier, France
| | - Laurent Tiers
- LBPC-PPC, Univ Montpellier, CHU Montpellier, INSERM, INM Montpellier, Montpellier, France
| | - Sébastien Alphandery
- Explorations neurologiques et centre SLA, Univ Montpellier, CHU Gui de Chauliac, INM, INSERM, Montpellier, France
| | - Léandra Baudesson
- Explorations neurologiques et centre SLA, Univ Montpellier, CHU Gui de Chauliac, INM, INSERM, Montpellier, France
| | - Guillaume Taieb
- Explorations neurologiques et centre SLA, Univ Montpellier, CHU Gui de Chauliac, INM, INSERM, Montpellier, France
| | - William Camu
- Explorations neurologiques et centre SLA, Univ Montpellier, CHU Gui de Chauliac, INM, INSERM, Montpellier, France
| | - Sylvain Lehmann
- LBPC-PPC, Univ Montpellier, CHU Montpellier, INSERM, INM Montpellier, Montpellier, France
| |
Collapse
|
25
|
Fluid Biomarkers in Alzheimer’s Disease and Other Neurodegenerative Disorders: Toward Integrative Diagnostic Frameworks and Tailored Treatments. Diagnostics (Basel) 2022; 12:diagnostics12040796. [PMID: 35453843 PMCID: PMC9029739 DOI: 10.3390/diagnostics12040796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/09/2022] [Accepted: 03/17/2022] [Indexed: 02/05/2023] Open
Abstract
The diagnosis of neurodegenerative diseases (NDDs) represents an increasing social burden, with the unsolved issue of disease-modifying therapies (DMTs). The failure of clinical trials treating Alzheimer′s Disease (AD) so far highlighted the need for a different approach in drug design and patient selection. Identifying subjects in the prodromal or early symptomatic phase is critical to slow down neurodegeneration, but the implementation of screening programs with this aim will have an ethical and social aftermath. Novel minimally invasive candidate biomarkers (derived from blood, saliva, olfactory brush) or classical cerebrospinal fluid (CSF) biomarkers have been developed in research settings to stratify patients with NDDs. Misfolded protein accumulation, neuroinflammation, and synaptic loss are the pathophysiological hallmarks detected by these biomarkers to refine diagnosis, prognosis, and target engagement of drugs in clinical trials. We reviewed fluid biomarkers of NDDs, considering their potential role as screening, diagnostic, or prognostic tool, and their present-day use in clinical trials (phase II and III). A special focus will be dedicated to novel techniques for the detection of misfolded proteins. Eventually, an applicative diagnostic algorithm will be proposed to translate the research data in clinical practice and select prodromal or early patients to be enrolled in the appropriate DMTs trials for NDDs.
Collapse
|
26
|
Zhang L, Ji T, Wu C, Zhang S, Tang L, Zhang N, Liu X, Fan D. Serum Neurofilament Light Chain Levels May Be a Marker of Lower Motor Neuron Damage in Amyotrophic Lateral Sclerosis. Front Neurol 2022; 13:833507. [PMID: 35280276 PMCID: PMC8905596 DOI: 10.3389/fneur.2022.833507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/31/2022] [Indexed: 11/25/2022] Open
Abstract
Objectives The aims of this study were to investigate whether serum neurofilament light chain (NfL) levels were correlated with the severity of the axonal degeneration of lower motor neurons (LMNs) in the early symptomatic phase of amyotrophic lateral sclerosis (ALS). Methods In this prospective study, the serum samples used for NfL measurement were obtained from 103 sporadic ALS outpatients within 2 years of disease duration. The severity of axonal degeneration was assessed by assessing the decrease in the compound muscle action potentials (CMAPs) within a 1-month interval from serum sampling. Results The NfL levels showed a significant positive correlation with the relative score as a proxy for the axonal damage of LMNs in patients with ALS (coefficient: 0.264, p = 0.009). Furthermore, this correlation became stronger (coefficient: 0.582, p = 0.037) when estimated only among patients with disease subtypes that involve only LMNs, that is, patients with flail arm or leg syndrome (FAS or FLS). The levels of NfL increased with the severity of axonal damage of LMNs (F = 6.694, P = 0.0001). Conclusions Serum NfL levels mirrored the severity of the axonal degeneration of LMNs, particularly in patients with signs of predominant LMN involvement. These results may have a profound effect on the selection of patients and the monitoring of treatment efficacy in future disease-modifying clinical trials.
Collapse
Affiliation(s)
- Linjing Zhang
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Tuo Ji
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Department of Neurology, Zhengzhou University First Affiliated Hospital, Zhengzhou, China
| | - Chujun Wu
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shuo Zhang
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Lu Tang
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Nan Zhang
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Xiangyi Liu
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China.,Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
27
|
Guedes VA, Lange RT, Lippa SM, Lai C, Greer K, Mithani S, Devoto C, A Edwards K, Wagner CL, Martin CA, Driscoll AE, Wright MM, Gillow KC, Baschenis SM, Brickell TA, French LM, Gill JM. Extracellular vesicle neurofilament light is elevated within the first 12-months following traumatic brain injury in a U.S military population. Sci Rep 2022; 12:4002. [PMID: 35256615 PMCID: PMC8901614 DOI: 10.1038/s41598-022-05772-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 06/14/2021] [Indexed: 12/19/2022] Open
Abstract
Traumatic brain injury (TBI) can be associated with long-term neurobehavioral symptoms. Here, we examined levels of neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) in extracellular vesicles isolated from blood, and their relationship with TBI severity and neurobehavioral symptom reporting. Participants were 218 service members and veterans who sustained uncomplicated mild TBIs (mTBI, n = 107); complicated mild, moderate, or severe TBIs (smcTBI, n = 66); or Injured controls (IC, orthopedic injury without TBI, n = 45). Within one year after injury, but not after, NfL was higher in the smcTBI group than mTBI (p = 0.001, d = 0.66) and IC (p = 0.001, d = 0.35) groups, which remained after controlling for demographics and injury characteristics. NfL also discriminated the smcTBI group from IC (AUC:77.5%, p < 0.001) and mTBI (AUC:76.1%, p < 0.001) groups. No other group differences were observed for NfL or GFAP at either timepoint. NfL correlated with post-concussion symptoms (rs = - 0.38, p = 0.04) in the mTBI group, and with PTSD symptoms in mTBI (rs = - 0.43, p = 0.021) and smcTBI groups (rs = - 0.40, p = 0.024) within one year after injury, which was not confirmed in regression models. Our results suggest the potential of NfL, a protein previously linked to axonal damage, as a diagnostic biomarker that distinguishes TBI severity within the first year after injury.
Collapse
Affiliation(s)
- Vivian A Guedes
- National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, 20814, USA
| | - Rael T Lange
- Traumatic Brain Injury Center of Excellence, Silver Spring, MD, USA
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
- General Dynamics Information Technology, Falls Church, VA, USA
- University of British Columbia, Vancouver, BC, Canada
| | - Sara M Lippa
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Chen Lai
- National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, 20814, USA
| | - Kisha Greer
- National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, 20814, USA
| | - Sara Mithani
- National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, 20814, USA
| | - Christina Devoto
- National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, 20814, USA
| | - Katie A Edwards
- National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, 20814, USA
| | - Chelsea L Wagner
- National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, 20814, USA
| | - Carina A Martin
- National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, 20814, USA
| | - Angela E Driscoll
- Traumatic Brain Injury Center of Excellence, Silver Spring, MD, USA
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Megan M Wright
- Traumatic Brain Injury Center of Excellence, Silver Spring, MD, USA
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
- General Dynamics Information Technology, Falls Church, VA, USA
| | - Kelly C Gillow
- Traumatic Brain Injury Center of Excellence, Silver Spring, MD, USA
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
- General Dynamics Information Technology, Falls Church, VA, USA
| | - Samantha M Baschenis
- Traumatic Brain Injury Center of Excellence, Silver Spring, MD, USA
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
- General Dynamics Information Technology, Falls Church, VA, USA
| | - Tracey A Brickell
- Traumatic Brain Injury Center of Excellence, Silver Spring, MD, USA
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
- General Dynamics Information Technology, Falls Church, VA, USA
- University of British Columbia, Vancouver, BC, Canada
| | - Louis M French
- Traumatic Brain Injury Center of Excellence, Silver Spring, MD, USA
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jessica M Gill
- National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, 20814, USA.
| |
Collapse
|
28
|
Papapetropoulos S, Pontius A, Finger E, Karrenbauer V, Lynch DS, Brennan M, Zappia S, Koehler W, Schoels L, Hayer SN, Konno T, Ikeuchi T, Lund T, Orthmann-Murphy J, Eichler F, Wszolek ZK. Adult-Onset Leukoencephalopathy With Axonal Spheroids and Pigmented Glia: Review of Clinical Manifestations as Foundations for Therapeutic Development. Front Neurol 2022; 12:788168. [PMID: 35185751 PMCID: PMC8850408 DOI: 10.3389/fneur.2021.788168] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/14/2021] [Indexed: 12/11/2022] Open
Abstract
A comprehensive review of published literature was conducted to elucidate the genetics, neuropathology, imaging findings, prevalence, clinical course, diagnosis/clinical evaluation, potential biomarkers, and current and proposed treatments for adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP), a rare, debilitating, and life-threatening neurodegenerative disorder for which disease-modifying therapies are not currently available. Details on potential efficacy endpoints for future interventional clinical trials in patients with ALSP and data related to the burden of the disease on patients and caregivers were also reviewed. The information in this position paper lays a foundation to establish an effective clinical rationale and address the clinical gaps for creation of a robust strategy to develop therapeutic agents for ALSP, as well as design future clinical trials, that have clinically meaningful and convergent endpoints.
Collapse
Affiliation(s)
- Spyros Papapetropoulos
- Vigil Neuroscience, Inc, Cambridge, MA, United States
- Massachusetts General Hospital, Boston, MA, United States
| | | | - Elizabeth Finger
- Clinical Neurological Sciences, Western University, London, ON, Canada
| | - Virginija Karrenbauer
- Neurology Medical Unit, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - David S. Lynch
- National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | | | | | | | - Ludger Schoels
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University Hospital Tuebingen, Tuebingen, Germany
- German Research Center for Neurodegenerative Diseases, Tuebingen, Germany
| | - Stefanie N. Hayer
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University Hospital Tuebingen, Tuebingen, Germany
- German Research Center for Neurodegenerative Diseases, Tuebingen, Germany
| | - Takuya Konno
- Brain Research Institute, Niigata University, Niigata, Japan
| | - Takeshi Ikeuchi
- Brain Research Institute, Niigata University, Niigata, Japan
| | - Troy Lund
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | | | | | | |
Collapse
|
29
|
Sferruzza G, Bosco L, Falzone YM, Russo T, Domi T, Quattrini A, Filippi M, Riva N. Neurofilament light chain as a biological marker for amyotrophic lateral sclerosis: a meta-analysis study. Amyotroph Lateral Scler Frontotemporal Degener 2021; 23:446-457. [PMID: 34874217 DOI: 10.1080/21678421.2021.2007952] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Aim: The aim of the present metanalysis is to evaluate blood and CSF Neurofilament light chain (NfL) concentrations in ALS patients, compared to healthy controls, ALS mimic disorders (ALSmd) and other neurological diseases (OND), and to evaluate their diagnostic yield against ALSmd. Methods: Search engines were systematically investigated for relevant studies. A random effect model was applied to estimate the pooled standard mean difference in NfL levels between ALS and controls and a bivariate mixed-effects model was applied to estimate their diagnostic accuracy on blood and CSF. Results and conclusions: NfL CSF levels were higher in ALS compared with all other control groups. On blood, NfL levels were significantly higher in ALS patients compared with healthy controls and ALSmd. In a subgroup analysis, the use of SIMOA yielded to a better differentiation between ALS and controls on blood, compared with ELISA. Studies performed on CSF (AUC = 0.90) yielded to better diagnostic performances compared with those conducted on blood (AUC = 0.78). Further prospective investigations are needed to determine a diagnostic cutoff, exploitable in clinical practice.
Collapse
Affiliation(s)
- Giacomo Sferruzza
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Bosco
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Yuri Matteo Falzone
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy and.,Neuropathology Unit, Institute of Experimental Neurology (INSP E), San Raffaele Scientific Institute, Milan, Italy
| | - Tommaso Russo
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy and.,Neuropathology Unit, Institute of Experimental Neurology (INSP E), San Raffaele Scientific Institute, Milan, Italy
| | - Teuta Domi
- Neuropathology Unit, Institute of Experimental Neurology (INSP E), San Raffaele Scientific Institute, Milan, Italy
| | - Angelo Quattrini
- Neuropathology Unit, Institute of Experimental Neurology (INSP E), San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy and
| | - Nilo Riva
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neuropathology Unit, Institute of Experimental Neurology (INSP E), San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
30
|
Su WM, Cheng YF, Jiang Z, Duan QQ, Yang TM, Shang HF, Chen YP. Predictors of survival in patients with amyotrophic lateral sclerosis: A large meta-analysis. EBioMedicine 2021; 74:103732. [PMID: 34864363 PMCID: PMC8646173 DOI: 10.1016/j.ebiom.2021.103732] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/10/2021] [Accepted: 11/22/2021] [Indexed: 02/04/2023] Open
Abstract
Background The survival time of amyotrophic lateral sclerosis (ALS) is greatly variable and protective or risk effects of the potential survival predictors are controversial. Thus, we aim to undertake a comprehensive meta-analysis of studies investigating non-genetic prognostic and survival factors in patients with ALS. Methods A search of relevant literature from PubMed, Embase, Cochrane library and other citations from 1st January 1966 to 1st December 020 was conducted. Random-effects models were conducted to pool the multivariable or adjusted hazard ratios (HR) by Stata MP 16.0. PROSPERO registration number: CRD42021256923. Findings A total of 5717 reports were identified, with 115 studies meeting pre-designed inclusion criteria involving 55,169 ALS patients. Five dimensions, including demographic, environmental or lifestyle, clinical manifestations, biochemical index, therapeutic factors or comorbidities were investigated. Twenty-five prediction factors, including twenty non-intervenable and five intervenable factors, were associated with ALS survival. Among them, NFL (HR:3.70, 6.80, in serum and CSF, respectively), FTD (HR:2.98), ALSFRS-R change (HR:2.37), respiratory subtype (HR:2.20), executive dysfunction (HR:2.10) and age of onset (HR:1.03) were superior predictors for poor prognosis, but pLMN or pUMN (HR:0.32), baseline ALSFRS-R score (HR:0.95), duration (HR:0.96), diagnostic delay (HR:0.97) were superior predictors for a good prognosis. Our results did not support the involvement of gender, education level, diabetes, hypertension, NIV, gastrostomy, and statins in ALS survival. Interpretation Our study provided a comprehensive and quantitative index for assessing the prognosis for ALS patients, and the identified non-intervenable or intervenable factors will facilitate the development of treatment strategies for ALS. Funding This study was supported by the National Natural Science Fund of China (Grant No. 81971188), the 1.3.5 project for disciplines of excellence, West China Hospital, Sichuan University (Grant No. 2019HXFH046), and the Science and Technology Bureau Fund of Sichuan Province (No. 2019YFS0216).
Collapse
Affiliation(s)
- Wei-Ming Su
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yang-Fan Cheng
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zheng Jiang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qing-Qing Duan
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tian-Mi Yang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hui-Fang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Yong-Ping Chen
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
31
|
Amyotrophic lateral sclerosis: Correlations between fluid biomarkers of NfL, TDP-43, and tau, and clinical characteristics. PLoS One 2021; 16:e0260323. [PMID: 34843548 PMCID: PMC8629269 DOI: 10.1371/journal.pone.0260323] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/07/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES We previously reported the diagnostic and prognostic performance of neurofilament light chain (NfL), TAR DNA-binding protein 43 (TDP-43), and total tau (t-tau) in cerebrospinal fluid (CSF) and plasma as amyotrophic lateral sclerosis (ALS) biomarkers. The present study aimed to elucidate associations between clinical characteristics and the markers as well as mutual associations of the markers in ALS patients using the same dataset. METHODS NfL, TDP-43, and t-tau levels in CSF and plasma in 75 ALS patients were analyzed. The associations between those markers and clinical details were investigated by uni- and multivariate analyses. Correlations between the markers were analyzed univariately. RESULTS In multivariate analysis of CSF proteins, the disease progression rate (DPR) was positively correlated with NfL (β: 0.51, p = 0.007) and t-tau (β: 0.37, p = 0.03). Plasma NfL was correlated with age (β: 0.53, p = 0.005) and diagnostic grade (β: -0.42, p = 0.02) in multivariate analysis. Plasma TDP-43 was correlated negatively with split hand index (β: -0.48, p = 0.04) and positively with % vital capacity (β: 0.64, p = 0.03) in multivariate analysis. Regarding mutual biomarker analysis, a negative correlation between CSF-NfL and TDP-43 was identified (r: -0.36, p = 0.002). CONCLUSIONS Elevated NfL and t-tau levels in CSF may be biomarkers to predict rapid DPR from onset to sample collection. The negative relationship between CSF NfL and TDP-43 suggests that elevation of CSF TDP-43 in ALS is not a simple consequence of its release into CSF during neurodegeneration. The negative correlation between plasma TDP-43 and split hand index may support the pathophysiological association between plasma TDP-43 and ALS.
Collapse
|
32
|
Li JY, Cai ZY, Sun XH, Shen DC, Yang XZ, Liu MS, Cui LY. Blood-brain barrier dysfunction and myelin basic protein in survival of amyotrophic lateral sclerosis with or without frontotemporal dementia. Neurol Sci 2021; 43:3201-3210. [PMID: 34826032 DOI: 10.1007/s10072-021-05731-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/08/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE We aim to investigate blood-brain barrier (BBB) dysfunction and myelin basic protein (MBP) in amyotrophic lateral sclerosis (ALS) with or without frontotemporal dementia (FTD) and further determine the effect of these factors on the survival of ALS. METHODS This was a retrospective study of 113 ALS patients, 12 ALS-FTD patients, and 40 disease controls hospitalized between September 2013 and October 2020. CSF parameters including total protein (TP), albumin (Alb), immunoglobulin-G (IgG), and MBP were collected and compared between groups. The CSF-TP, CSF-Alb, CSF-IgG, and CSF/serum quotients of Alb and IgG (QAlb, QIgG) were used to reflect the BBB status. Patients were followed up until December 2020. Cox regression and Kaplan-Meier method were used for survival analysis. RESULTS The CSF-TP, CSF-Alb, and CSF-IgG concentrations were significantly higher in patients than controls (p < 0.01). Increased CSF-TP and CSF-IgG was found in 45 (39.8%) and 27 (23.9%) ALS patients, while in 7 (58.3%) and 5 (41.7%) ALS-FTD patients. The level of CSF-Alb, CSF-IgG, and CSF-MBP were significantly higher in patients with ALS-FTD than ALS. MBP showed a moderate accuracy in the distinction between ALS-FTD and ALS (AUC = 0.715 ± 0.101). No difference in MBP was found between patients and controls. Kaplan-Meier analysis indicated that a higher CSF-TP, CSF-IgG, QIgG, or QAlb was significantly associated with shorter survival. Cox regression model showed that CSF-TP, CSF-IgG, and QIgG were independent predictors of survival. CONCLUSION Our findings suggested that BBB dysfunction was more prominent in ALS-FTD than ALS and associated with a worse prognosis. Further studies are needed to determine the role of CSF-MBP as a biomarker in ALS.
Collapse
Affiliation(s)
- Jin-Yue Li
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Zheng-Yi Cai
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Xiao-Han Sun
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Dong-Chao Shen
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Xun-Zhe Yang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Ming-Sheng Liu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Li-Ying Cui
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China.
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
33
|
Vacchiano V, Mastrangelo A, Zenesini C, Masullo M, Quadalti C, Avoni P, Polischi B, Cherici A, Capellari S, Salvi F, Liguori R, Parchi P. Plasma and CSF Neurofilament Light Chain in Amyotrophic Lateral Sclerosis: A Cross-Sectional and Longitudinal Study. Front Aging Neurosci 2021; 13:753242. [PMID: 34744694 PMCID: PMC8569186 DOI: 10.3389/fnagi.2021.753242] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/27/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Neurofilament light chain (NfL) is a validated biofluid marker of neuroaxonal damage with great potential for monitoring patients with neurodegenerative diseases. We aimed to further validate the clinical utility of plasma (p) vs. CSF (c) NfL for distinguishing patients with Amyotrophic Lateral Sclerosis (ALS) from ALS mimics. We also assessed the association of biomarker values with clinical variables and survival and established the longitudinal changes of pNfL during the disease course. Methods: We studied 231 prospectively enrolled patients with suspected ALS who underwent a standardized protocol including neurological examination, electromyography, brain MRI, and lumbar puncture. Patients who received an alternative clinical diagnosis were considered ALS mimics. We classified the patients based on the disease progression rate (DPR) into fast (DPR > 1), intermediate (DPR 0.5–1), and slow progressors (DPR < 0.5). All patients were screened for the most frequent ALS-associated genes. Plasma and CSF samples were retrospectively analyzed; NfL concentrations were measured with the SIMOA platform using a commercial kit. Results: ALS patients (n = 171) showed significantly higher pNfL (p < 0.0001) and cNfL (p < 0.0001) values compared to ALS mimics (n = 60). Both cNfL and pNfL demonstrated a good diagnostic value in discriminating the two groups, although cNfL performed slightly better (cNfL: AUC 0.924 ± 0.022, sensitivity 86.8%, specificity 92.4; pNfL: AUC 0.873 ± 0.036, sensitivity 84.7%, specificity 83.3%). Fast progressors showed higher cNfL and pNfL as compared to intermediate (p = 0.026 and p = 0.001) and slow progressors (both p < 0.001). Accordingly, ALS patients with higher baseline cNfL and pNfL levels had a shorter survival (highest tertile of cNfL vs. lowest tertile, HR 4.58, p = 0.005; highest tertile of pNfL vs. lowest tertile, HR 2.59, p = 0.015). Moreover, there were positive associations between cNfL and pNfL levels and the number of body regions displaying UMN signs (rho = 0.325, p < 0.0001; rho = 0.308, p = 0.001). Finally, longitudinal analyses in 57 patients showed stable levels of pNfL during the disease course. Conclusion: Both cNfL and pNfL have excellent diagnostic and prognostic performance for symptomatic patients with ALS. The stable longitudinal trajectory of pNfL supports its use as a marker of drug effect in clinical trials.
Collapse
Affiliation(s)
- Veria Vacchiano
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Andrea Mastrangelo
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Corrado Zenesini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Marco Masullo
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Corinne Quadalti
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Patrizia Avoni
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Barbara Polischi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Arianna Cherici
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Sabina Capellari
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Fabrizio Salvi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Rocco Liguori
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Piero Parchi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Experimental Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| |
Collapse
|
34
|
Zhou YN, Chen YH, Dong SQ, Yang WB, Qian T, Liu XN, Cheng Q, Wang JC, Chen XJ. Role of Blood Neurofilaments in the Prognosis of Amyotrophic Lateral Sclerosis: A Meta-Analysis. Front Neurol 2021; 12:712245. [PMID: 34690913 PMCID: PMC8526968 DOI: 10.3389/fneur.2021.712245] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/03/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Neurofilaments in cerebrospinal fluid (CSF) and in blood are considered promising biomarkers of amyotrophic lateral sclerosis (ALS) because their levels can be significantly increased in patients with ALS. However, the roles of neurofilaments, especially blood neurofilaments, in the prognosis of ALS are inconsistent. We performed a meta-analysis to explore the prognostic roles of blood neurofilaments in ALS patients. Methods: We searched all relevant studies on the relationship between blood neurofilament levels and the prognosis of ALS patients in PubMed, Embase, Scopus, and Web of Science before February 2, 2021. The quality of the included articles was assessed using the Quality in Prognosis Studies (QUIPS) scale, and R (version 4.02) was used for statistical analysis. Results: Fourteen articles were selected, covering 1,619 ALS patients. The results showed that higher blood neurofilament light chain (NfL) levels in ALS patients were associated with a higher risk of death [medium vs. low NfL level: HR = 2.43, 95% CI (1.34-4.39), p < 0.01; high vs. low NfL level: HR = 4.51, 95% CI (2.45-8.32), p < 0.01]. There was a positive correlation between blood phosphorylated neurofilament heavy chain (pNfH) levels and risk of death in ALS patients [HR = 1.87, 95% CI (1.35-2.59), p < 0.01]. The levels of NfL and pNfH in blood positively correlated with disease progression rate (DPR) of ALS patients [NfL: summary r = 0.53, 95% CI (0.45-0.60), p < 0.01; pNfH: summary r = 0.51, 95% CI (0.24-0.71), p < 0.01]. Conclusion: The blood neurofilament levels can predict the prognosis of ALS patients; specifically, higher levels of blood neurofilaments are associated with a greater risk of death.
Collapse
Affiliation(s)
- Yan-ni Zhou
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
- Department of Neurology, Huashan Hospital, Institute of Neurology, Fudan University and National Center Neurological Disorders, Shanghai, China
| | - You-hong Chen
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Si-qi Dong
- Department of Neurology, Huashan Hospital, Institute of Neurology, Fudan University and National Center Neurological Disorders, Shanghai, China
| | - Wen-bo Yang
- Department of Neurology, Huashan Hospital, Institute of Neurology, Fudan University and National Center Neurological Disorders, Shanghai, China
| | - Ting Qian
- Department of Neurology, Huashan Hospital, Institute of Neurology, Fudan University and National Center Neurological Disorders, Shanghai, China
| | - Xiao-ni Liu
- Department of Neurology, Huashan Hospital, Institute of Neurology, Fudan University and National Center Neurological Disorders, Shanghai, China
| | - Qi Cheng
- Department of Neurology, Ruijin Hospital Affiliated With the School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiu-cun Wang
- Department of Dermatology, Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Xiang-jun Chen
- Department of Neurology, Huashan Hospital, Institute of Neurology, Fudan University and National Center Neurological Disorders, Shanghai, China
- Department of Dermatology, Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, China
| |
Collapse
|
35
|
Yuan A, Nixon RA. Neurofilament Proteins as Biomarkers to Monitor Neurological Diseases and the Efficacy of Therapies. Front Neurosci 2021; 15:689938. [PMID: 34646114 PMCID: PMC8503617 DOI: 10.3389/fnins.2021.689938] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/02/2021] [Indexed: 01/01/2023] Open
Abstract
Biomarkers of neurodegeneration and neuronal injury have the potential to improve diagnostic accuracy, disease monitoring, prognosis, and measure treatment efficacy. Neurofilament proteins (NfPs) are well suited as biomarkers in these contexts because they are major neuron-specific components that maintain structural integrity and are sensitive to neurodegeneration and neuronal injury across a wide range of neurologic diseases. Low levels of NfPs are constantly released from neurons into the extracellular space and ultimately reach the cerebrospinal fluid (CSF) and blood under physiological conditions throughout normal brain development, maturation, and aging. NfP levels in CSF and blood rise above normal in response to neuronal injury and neurodegeneration independently of cause. NfPs in CSF measured by lumbar puncture are about 40-fold more concentrated than in blood in healthy individuals. New ultra-sensitive methods now allow minimally invasive measurement of these low levels of NfPs in serum or plasma to track disease onset and progression in neurological disorders or nervous system injury and assess responses to therapeutic interventions. Any of the five Nf subunits - neurofilament light chain (NfL), neurofilament medium chain (NfM), neurofilament heavy chain (NfH), alpha-internexin (INA) and peripherin (PRPH) may be altered in a given neuropathological condition. In familial and sporadic Alzheimer's disease (AD), plasma NfL levels may rise as early as 22 years before clinical onset in familial AD and 10 years before sporadic AD. The major determinants of elevated levels of NfPs and degradation fragments in CSF and blood are the magnitude of damaged or degenerating axons of fiber tracks, the affected axon caliber sizes and the rate of release of NfP and fragments at different stages of a given neurological disease or condition directly or indirectly affecting central nervous system (CNS) and/or peripheral nervous system (PNS). NfPs are rapidly emerging as transformative blood biomarkers in neurology providing novel insights into a wide range of neurological diseases and advancing clinical trials. Here we summarize the current understanding of intracellular NfP physiology, pathophysiology and extracellular kinetics of NfPs in biofluids and review the value and limitations of NfPs and degradation fragments as biomarkers of neurodegeneration and neuronal injury.
Collapse
Affiliation(s)
- Aidong Yuan
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, United States
- Department of Psychiatry, NYU Neuroscience Institute, New York, NY, United States
| | - Ralph A. Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, United States
- Department of Psychiatry, NYU Neuroscience Institute, New York, NY, United States
- Department of Cell Biology, New York University Grossman School of Medicine, (NYU), Neuroscience Institute, New York, NY, United States
| |
Collapse
|
36
|
Campese N, Beatino MF, Del Gamba C, Belli E, Giampietri L, Del Prete E, Galgani A, Vergallo A, Siciliano G, Ceravolo R, Hampel H, Baldacci F. Ultrasensitive techniques and protein misfolding amplification assays for biomarker-guided reconceptualization of Alzheimer's and other neurodegenerative diseases. Expert Rev Neurother 2021; 21:949-967. [PMID: 34365867 DOI: 10.1080/14737175.2021.1965879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION The clinical validation and qualification of biomarkers reflecting the complex pathophysiology of neurodegenerative diseases (NDDs) is a fundamental challenge for current drug discovery and development and next-generation clinical practice. Novel ultrasensitive detection techniques and protein misfolding amplification assays hold the potential to optimize and accelerate this process. AREAS COVERED Here we perform a PubMed-based state of the art review and perspective report on blood-based ultrasensitive detection techniques and protein misfolding amplification assays for biomarkers discovery and development in NDDs. EXPERT OPINION Ultrasensitive assays represent innovative solutions for blood-based assessments during the entire Alzheimer's disease (AD) biological and clinical continuum, for contexts of use (COU) such as prediction, detection, early diagnosis, and prognosis of AD. Moreover, cerebrospinal fluid (CSF)-based misfolding amplification assays show encouraging performance in detecting α-synucleinopathies in prodromal or at-high-risk individuals and may serve as tools for patients' stratification by the presence of α-synuclein pathology. Further clinical research will help overcome current methodological limitations, also through exploring multiple accessible bodily matrices. Eventually, integrative longitudinal studies will support precise definitions for appropriate COU across NDDs.
Collapse
Affiliation(s)
- Nicole Campese
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Claudia Del Gamba
- Neurology Unit, Nuovo Ospedale Santo Stefano, Via Suor Niccolina Infermiera 20, Prato, Italy
| | - Elisabetta Belli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Linda Giampietri
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Eleonora Del Prete
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alessandro Galgani
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Andrea Vergallo
- Sorbonne University, GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié- Salpêtrière Hospital, Boulevard De L'hôpital, Paris, France
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Harald Hampel
- Sorbonne University, GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié- Salpêtrière Hospital, Boulevard De L'hôpital, Paris, France
| | - Filippo Baldacci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,Sorbonne University, GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié- Salpêtrière Hospital, Boulevard De L'hôpital, Paris, France
| |
Collapse
|
37
|
Witzel S, Frauhammer F, Steinacker P, Devos D, Pradat PF, Meininger V, Halbgebauer S, Oeckl P, Schuster J, Anders S, Dorst J, Otto M, Ludolph AC. Neurofilament light and heterogeneity of disease progression in amyotrophic lateral sclerosis: development and validation of a prediction model to improve interventional trials. Transl Neurodegener 2021; 10:31. [PMID: 34433481 PMCID: PMC8390195 DOI: 10.1186/s40035-021-00257-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/07/2021] [Indexed: 11/10/2022] Open
Abstract
Background Interventional trials in amyotrophic lateral sclerosis (ALS) suffer from the heterogeneity of the disease as it considerably reduces statistical power. We asked if blood neurofilament light chains (NfL) could be used to anticipate disease progression and increase trial power. Methods In 125 patients with ALS from three independent prospective studies—one observational study and two interventional trials—we developed and externally validated a multivariate linear model for predicting disease progression, measured by the monthly decrease of the ALS Functional Rating Scale Revised (ALSFRS-R) score. We trained the prediction model in the observational study and tested the predictive value of the following parameters assessed at diagnosis: NfL levels, sex, age, site of onset, body mass index, disease duration, ALSFRS-R score, and monthly ALSFRS-R score decrease since disease onset. We then applied the resulting model in the other two study cohorts to assess the actual utility for interventional trials. We analyzed the impact on trial power in mixed-effects models and compared the performance of the NfL model with two currently used predictive approaches, which anticipate disease progression using the ALSFRS-R decrease during a three-month observational period (lead-in) or since disease onset (ΔFRS). Results Among the parameters provided, the NfL levels (P < 0.001) and the interaction with site of onset (P < 0.01) contributed significantly to the prediction, forming a robust NfL prediction model (R = 0.67). Model application in the trial cohorts confirmed its applicability and revealed superiority over lead-in and ΔFRS-based approaches. The NfL model improved statistical power by 61% and 22% (95% confidence intervals: 54%–66%, 7%–29%). Conclusion The use of the NfL-based prediction model to compensate for clinical heterogeneity in ALS could significantly increase the trial power. NCT00868166, registered March
23, 2009; NCT02306590, registered December 2, 2014. Supplementary Information The online version contains supplementary material available at 10.1186/s40035-021-00257-y.
Collapse
Affiliation(s)
- Simon Witzel
- Department of Neurology, University of Ulm, Ulm, Germany.
| | - Felix Frauhammer
- Center for Molecular Biology, Heidelberg University, Heidelberg, Germany
| | | | - David Devos
- Department of Medical Pharmacology, Expert center for Parkinson, CHU-Lille, Lille Neuroscience and Cognition, Inserm, UMR-S1172, LICEND, NS-Park Network, University of Lille, Lille, France
| | | | - Vincent Meininger
- APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Paris, France
| | | | - Patrick Oeckl
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | - Simon Anders
- Center for Molecular Biology, Heidelberg University, Heidelberg, Germany
| | - Johannes Dorst
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Albert C Ludolph
- Department of Neurology, University of Ulm, Ulm, Germany.,German Centre for Neurodegenerative Diseases (DZNE) Site Ulm, Ulm, Germany
| |
Collapse
|
38
|
Circulating Biomarkers in Neuromuscular Disorders: What Is Known, What Is New. Biomolecules 2021; 11:biom11081246. [PMID: 34439911 PMCID: PMC8393752 DOI: 10.3390/biom11081246] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
The urgent need for new therapies for some devastating neuromuscular diseases (NMDs), such as Duchenne muscular dystrophy or amyotrophic lateral sclerosis, has led to an intense search for new potential biomarkers. Biomarkers can be classified based on their clinical value into different categories: diagnostic biomarkers confirm the presence of a specific disease, prognostic biomarkers provide information about disease course, and therapeutic biomarkers are designed to predict or measure treatment response. Circulating biomarkers, as opposed to instrumental/invasive ones (e.g., muscle MRI or nerve ultrasound, muscle or nerve biopsy), are generally easier to access and less “time-consuming”. In addition to well-known creatine kinase, other promising molecules seem to be candidate biomarkers to improve the diagnosis, prognosis and prediction of therapeutic response, such as antibodies, neurofilaments, and microRNAs. However, there are some criticalities that can complicate their application: variability during the day, stability, and reliable performance metrics (e.g., accuracy, precision and reproducibility) across laboratories. In the present review, we discuss the application of biochemical biomarkers (both validated and emerging) in the most common NMDs with a focus on their diagnostic, prognostic/predictive and therapeutic application, and finally, we address the critical issues in the introduction of new biomarkers.
Collapse
|
39
|
Bagnato S, D’Ippolito ME, Boccagni C, De Tanti A, Lucca LF, Nardone A, Salucci P, Fiorilla T, Pingue V, Gennaro S, Ursino M, Colombo V, Barone T, Rubino F, Andriolo M. Sustained Axonal Degeneration in Prolonged Disorders of Consciousness. Brain Sci 2021; 11:1068. [PMID: 34439687 PMCID: PMC8394581 DOI: 10.3390/brainsci11081068] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/08/2021] [Accepted: 08/12/2021] [Indexed: 12/05/2022] Open
Abstract
(1) Background: Sustained axonal degeneration may play a critical role in prolonged disorder of consciousness (DOCs) pathophysiology. We evaluated levels of neurofilament light chain (NFL), an axonal injury marker, in patients with unresponsive wakefulness syndrome (UWS) and in the minimally conscious state (MCS) after traumatic brain injury (TBI) and hypoxic-ischemic brain injury (HIBI). (2) Methods: This prospective multicenter blinded study involved 70 patients with prolonged DOC and 70 sex-/age-matched healthy controls. Serum NFL levels were evaluated at 1-3 and 6 months post-injury and compared with those of controls. NFL levels were compared by DOC severity (UWS vs. MCS) and etiology (TBI vs. HIBI). (3) Results: Patients' serum NFL levels were significantly higher than those of controls at 1-3 and 6 months post-injury (medians, 1729 and 426 vs. 90 pg/mL; both p < 0.0001). NFL levels were higher in patients with UWS than in those in MCS at 1-3 months post-injury (p = 0.008) and in patients with HIBI than in those with TBI at 6 months post-injury (p = 0.037). (4) Conclusions: Patients with prolonged DOC present sustained axonal degeneration that is affected differently over time by brain injury severity and etiology.
Collapse
Affiliation(s)
- Sergio Bagnato
- Unit of Neurophysiology and Unit for Severe Acquired Brain Injuries, Rehabilitation Department, Giuseppe Giglio Foundation, 90015 Cefalù, Italy; (C.B.); (T.F.); (F.R.)
| | - Maria Enza D’Ippolito
- Molecular Biology Laboratory, Giuseppe Giglio Foundation, 90015 Cefalù, Italy; (M.E.D.); (M.A.)
| | - Cristina Boccagni
- Unit of Neurophysiology and Unit for Severe Acquired Brain Injuries, Rehabilitation Department, Giuseppe Giglio Foundation, 90015 Cefalù, Italy; (C.B.); (T.F.); (F.R.)
| | - Antonio De Tanti
- Cardinal Ferrari Center, 43012 Fontanellato, Italy; (A.D.T.); (S.G.)
| | - Lucia Francesca Lucca
- RAN (Research in Advanced Neuro-Rehabilitation), S. Anna Institute, 88900 Crotone, Italy; (L.F.L.); (M.U.)
| | - Antonio Nardone
- Neurorehabilitation and Spinal Units, ICS Maugeri, Institute of Pavia, 27100 Pavia, Italy; (A.N.); (V.P.)
| | - Pamela Salucci
- Montecatone Rehabilitation Institute, 40026 Imola, Italy; (P.S.); (V.C.)
| | - Teresa Fiorilla
- Unit of Neurophysiology and Unit for Severe Acquired Brain Injuries, Rehabilitation Department, Giuseppe Giglio Foundation, 90015 Cefalù, Italy; (C.B.); (T.F.); (F.R.)
| | - Valeria Pingue
- Neurorehabilitation and Spinal Units, ICS Maugeri, Institute of Pavia, 27100 Pavia, Italy; (A.N.); (V.P.)
| | - Serena Gennaro
- Cardinal Ferrari Center, 43012 Fontanellato, Italy; (A.D.T.); (S.G.)
| | - Maria Ursino
- RAN (Research in Advanced Neuro-Rehabilitation), S. Anna Institute, 88900 Crotone, Italy; (L.F.L.); (M.U.)
| | - Valentina Colombo
- Montecatone Rehabilitation Institute, 40026 Imola, Italy; (P.S.); (V.C.)
| | - Teresa Barone
- Immunohematology and Transfusion Service, 90015 Cefalù, Italy;
| | - Francesca Rubino
- Unit of Neurophysiology and Unit for Severe Acquired Brain Injuries, Rehabilitation Department, Giuseppe Giglio Foundation, 90015 Cefalù, Italy; (C.B.); (T.F.); (F.R.)
| | - Maria Andriolo
- Molecular Biology Laboratory, Giuseppe Giglio Foundation, 90015 Cefalù, Italy; (M.E.D.); (M.A.)
| |
Collapse
|
40
|
Tankisi H, Nielsen CSZ, Howells J, Cengiz B, Samusyte G, Koltzenburg M, Blicher JU, Møller AT, Pugdahl K, Fuglsang-Frederiksen A, de Carvalho M, Bostock H. Early diagnosis of amyotrophic lateral sclerosis by threshold tracking and conventional transcranial magnetic stimulation. Eur J Neurol 2021; 28:3030-3039. [PMID: 34233060 PMCID: PMC9291110 DOI: 10.1111/ene.15010] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/30/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE Short-interval intracortical inhibition by threshold tracking (T-SICI) has been proposed as a diagnostic tool for amyotrophic lateral sclerosis (ALS) but has not been compared directly with conventional amplitude measurements (A-SICI). This study compared A-SICI and T-SICI for sensitivity and clinical usefulness as biomarkers for ALS. METHODS In all, 104 consecutive patients referred with suspicion of ALS were prospectively included and were subsequently divided into 62 patients with motor neuron disease (MND) and 42 patient controls (ALS mimics) by clinical follow-up. T-SICI and A-SICI recorded in the first dorsal interosseus muscle (index test) were compared with recordings from 53 age-matched healthy controls. The reference standard was the Awaji criteria. Clinical scorings, conventional nerve conduction studies and electromyography were also performed on the patients. RESULTS Motor neuron disease patients had significantly reduced T-SICI and A-SICI compared with the healthy and patient control groups, which were similar. Sensitivity and specificity for discriminating MND patients from patient controls were high (areas under the receiver operating characteristic curves 0.762 and 0.810 for T-SICI and A-SICI respectively at 1-3.5 ms). Paradoxically, T-SICI was most reduced in MND patients with the fewest upper motor neuron (UMN) signs (Spearman ρ = 0.565, p = 4.3 × 10-6 ). CONCLUSIONS Amplitude-based measure of cortical inhibition and T-SICI are both sensitive measures for the detection of cortical involvement in MND patients and may help early diagnosis of ALS, with T-SICI most abnormal before UMN signs have developed. The gradation in T-SICI from pathological facilitation in patients with minimal UMN signs to inhibition in those with the most UMN signs may be due to progressive degeneration of the subset of UMNs experiencing facilitation.
Collapse
Affiliation(s)
- Hatice Tankisi
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | | | - James Howells
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Bülent Cengiz
- Department of Neurology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Gintaute Samusyte
- Department of Neurology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Martin Koltzenburg
- Department of Clinical Neurophysiology, National Hospital for Neurology and Neurosurgery, London, UK.,Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Jakob U Blicher
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark.,Centre of Functionally Integrated Neuroscience, Aarhus University, Aarhus, Denmark
| | - Anette T Møller
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Kirsten Pugdahl
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Mamede de Carvalho
- Instituto de Fisiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Univeridade de Lisboa, Lisbon, Portugal.,Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal
| | - Hugh Bostock
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
41
|
Barro C, Zetterberg H. The blood biomarkers puzzle - A review of protein biomarkers in neurodegenerative diseases. J Neurosci Methods 2021; 361:109281. [PMID: 34237384 DOI: 10.1016/j.jneumeth.2021.109281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/07/2021] [Accepted: 07/04/2021] [Indexed: 02/04/2023]
Abstract
Neurodegenerative diseases are heterogeneous in their cause and clinical presentation making clinical assessment and disease monitoring challenging. Because of this, there is an urgent need for objective tools such as fluid biomarkers able to quantitate different aspects of the disease. In the last decade, technological improvements and awareness of the importance of biorepositories led to the discovery of an evolving number of fluid biomarkers covering the main characteristics of neurodegenerative diseases such as neurodegeneration, protein aggregates and inflammation. The ability to quantitate each aspect of the disease at a high definition enables a more precise stratification of the patients at inclusion in clinical trials, hence reducing the noise that may hamper the detection of therapeutical efficacy and allowing for smaller but likewise powered studies, which particularly improves the ability to start clinical trials for rare neurological diseases. Moreover, the use of fluid biomarkers has the potential to support a targeted therapeutical intervention, as it is now emerging for the treatment of amyloid-beta deposition in patients suffering from Alzheimer's disease. Here we review the knowledge that evolved from the measurement of fluid biomarker proteins in neurodegenerative conditions.
Collapse
Affiliation(s)
- Christian Barro
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA.
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| |
Collapse
|
42
|
Verde F, Otto M, Silani V. Neurofilament Light Chain as Biomarker for Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Front Neurosci 2021; 15:679199. [PMID: 34234641 PMCID: PMC8255624 DOI: 10.3389/fnins.2021.679199] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two related currently incurable neurodegenerative diseases. ALS is characterized by degeneration of upper and lower motor neurons causing relentless paralysis of voluntary muscles, whereas in FTD, progressive atrophy of the frontal and temporal lobes of the brain results in deterioration of cognitive functions, language, personality, and behavior. In contrast to Alzheimer's disease (AD), ALS and FTD still lack a specific neurochemical biomarker reflecting neuropathology ex vivo. However, in the past 10 years, considerable progress has been made in the characterization of neurofilament light chain (NFL) as cerebrospinal fluid (CSF) and blood biomarker for both diseases. NFL is a structural component of the axonal cytoskeleton and is released into the CSF as a consequence of axonal damage or degeneration, thus behaving in general as a relatively non-specific marker of neuroaxonal pathology. However, in ALS, the elevation of its CSF levels exceeds that observed in most other neurological diseases, making it useful for the discrimination from mimic conditions and potentially worthy of consideration for introduction into diagnostic criteria. Moreover, NFL correlates with disease progression rate and is negatively associated with survival, thus providing prognostic information. In FTD patients, CSF NFL is elevated compared with healthy individuals and, to a lesser extent, patients with other forms of dementia, but the latter difference is not sufficient to enable a satisfying diagnostic performance at individual patient level. However, also in FTD, CSF NFL correlates with several measures of disease severity. Due to technological progress, NFL can now be quantified also in peripheral blood, where it is present at much lower concentrations compared with CSF, thus allowing less invasive sampling, scalability, and longitudinal measurements. The latter has promoted innovative studies demonstrating longitudinal kinetics of NFL in presymptomatic individuals harboring gene mutations causing ALS and FTD. Especially in ALS, NFL levels are generally stable over time, which, together with their correlation with progression rate, makes NFL an ideal pharmacodynamic biomarker for therapeutic trials. In this review, we illustrate the significance of NFL as biomarker for ALS and FTD and discuss unsolved issues and potential for future developments.
Collapse
Affiliation(s)
- Federico Verde
- Department of Neurology-Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy.,Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy
| | - Markus Otto
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| | - Vincenzo Silani
- Department of Neurology-Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy.,Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
43
|
Willemse EAJ, Scheltens P, Teunissen CE, Vijverberg EGB. A neurologist's perspective on serum neurofilament light in the memory clinic: a prospective implementation study. ALZHEIMERS RESEARCH & THERAPY 2021; 13:101. [PMID: 34006321 PMCID: PMC8132439 DOI: 10.1186/s13195-021-00841-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/04/2021] [Indexed: 11/10/2022]
Abstract
Background Neurofilament light in serum (sNfL) is a biomarker for axonal damage with elevated levels in many neurological disorders, including neurodegenerative dementias. Since within-group variation of sNfL is large and concentrations increase with aging, sNfL’s clinical use in memory clinic practice remains to be established. The objective of the current study was to evaluate the clinical use of serum neurofilament light (sNfL), a cross-disease biomarker for axonal damage, in a tertiary memory clinic cohort. Methods Six neurologists completed questionnaires regarding the usefulness of sNfL (n = 5–42 questionnaires/neurologist). Patients that visited the Alzheimer Center Amsterdam for the first time between May and October 2019 (n = 109) were prospectively included in this single-center implementation study. SNfL levels were analyzed on Simoa and reported together with normal values in relation to age, as part of routine diagnostic work-up and in addition to cerebrospinal fluid (CSF) biomarker analysis. Results SNfL was perceived as useful in 53% (n = 58) of the cases. SNfL was more often perceived as useful in patients < 62 years (29/48, 60%, p = 0.05) and males (41/65, 63%, p < 0.01). Availability of CSF biomarker results at time of result discussion had no influence. We observed non-significant trends for increased perceived usefulness of sNfL for patients with the diagnosis subjective cognitive decline (64%), psychiatric disorder (71%), or uncertain diagnosis (67%). SNfL was mostly helpful to neurologists in confirming or excluding neurodegeneration. Whether sNfL was regarded as useful strongly depended on which neurologist filled out the questionnaire (ranging from 0 to 73% of useful cases/neurologist). Discussion Regardless of the availability of CSF biomarker results, sNfL was perceived as a useful tool in more than half of the evaluated cases in a tertiary memory clinic practice. Based on our results, we recommend the analysis of the biomarker sNfL to confirm or exclude neurodegeneration in patients below 62 years old and in males. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-021-00841-4.
Collapse
Affiliation(s)
- E A J Willemse
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Center, Vrije Universiteit, De Boelelaan, 1117, Amsterdam, The Netherlands.
| | - P Scheltens
- Alzheimer Center, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center, Vrije Universiteit, De Boelelaan, 1117, Amsterdam, The Netherlands
| | - C E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Center, Vrije Universiteit, De Boelelaan, 1117, Amsterdam, The Netherlands
| | - E G B Vijverberg
- Alzheimer Center, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center, Vrije Universiteit, De Boelelaan, 1117, Amsterdam, The Netherlands.,Brain Research Center, Amsterdam, The Netherlands
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW This review draws together the most recent findings in ALS biomarker research from biochemical, imaging and neurophysiology techniques. RECENT FINDINGS The potential of circulating RNA is highlighted, including new retrieval techniques. With ongoing genetic clinical trials, the need for pharmacodynamic biomarkers is essential. There is a strong case for neurofilament proteins being validated in ALS; their biomarker profile is discussed. Oxidative stress and neuroinflammation studies offer insight into disease mechanisms and offer good biomarker potential. Recent metabolic studies include investigation of lipid profiles, creatinine and ferritin. The potential of chitinase proteins as pharmacodynamic and prognostic biomarkers is highlighted. The role of tau and amyloidβ is debated, as evidenced by the articles presented here. Proteomic approaches provide unbiased discoveries of novel biomarkers, together with confirmation of previous findings. The use of imaging techniques is outlined to demonstrate selective atrophy, volume loss, muscle and tract involvement. In-vivo imaging is discussed with reference to histone deacetylase, oxidative stress, neuroinflammation and metabolic changes. New applications of electrophysiology demonstrate objective muscle biomarkers and brain network perturbations. SUMMARY The biomarker research field continues to provide insight into the disease. Multicentre collaborations are needed to validate these promising recent findings.
Collapse
|
45
|
Valverde A, Montero-Calle A, Barderas R, Calero M, Yáñez-Sedeño P, Campuzano S, Pingarrón J. Electrochemical immunoplatform to unravel neurodegeneration and Alzheimer's disease through the determination of neurofilament light protein. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137815] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
46
|
Ravi B, Chan-Cortés MH, Sumner CJ. Gene-Targeting Therapeutics for Neurological Disease: Lessons Learned from Spinal Muscular Atrophy. Annu Rev Med 2021; 72:1-14. [PMID: 33502897 DOI: 10.1146/annurev-med-070119-115459] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The last few decades have seen an explosion in identification of genes that cause monogenetic neurological diseases, as well as advances in gene-targeting therapeutics. Neurological conditions that were once considered incurable are now increasingly tractable. At the forefront is the motor neuron disease spinal muscular atrophy (SMA), historically the leading inherited cause of infant mortality. In the last 5 years, three SMA treatments have been approved by the US Food and Drug Administration (FDA): intrathecally delivered splice-switching antisense oligonucleotide (nusinersen), systemically delivered AAV9-based gene replacement therapy (onasemnogene abeparvovec), and an orally bioavailable, small-molecule, splice-switching drug (risdiplam). Despite this remarkable progress, clinical outcomes in patients are variable. Therapeutic optimization will require improved understanding of drug pharmacokinetics and target engagement in neurons, potential toxicities, and long-term effects. We review current progress in SMA therapeutics, clinical trials, shortcomings of current treatments, and implications for the treatment of other neurogenetic diseases.
Collapse
Affiliation(s)
- Bhavya Ravi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA;
| | | | - Charlotte J Sumner
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; .,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21202, USA
| |
Collapse
|
47
|
Falzone YM, Russo T, Domi T, Pozzi L, Quattrini A, Filippi M, Riva N. Current application of neurofilaments in amyotrophic lateral sclerosis and future perspectives. Neural Regen Res 2021; 16:1985-1991. [PMID: 33642372 PMCID: PMC8343335 DOI: 10.4103/1673-5374.308072] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Motor neuron disease includes a heterogeneous group of relentless progressive neurological disorders defined and characterized by the degeneration of motor neurons. Amyotrophic lateral sclerosis is the most common and aggressive form of motor neuron disease with no effective treatment so far. Unfortunately, diagnostic and prognostic biomarkers are lacking in clinical practice. Neurofilaments are fundamental structural components of the axons and neurofilament light chain and phosphorylated neurofilament heavy chain can be measured in both cerebrospinal fluid and serum. Neurofilament light chain and phosphorylated neurofilament heavy chain levels are elevated in amyotrophic lateral sclerosis, reflecting the extensive damage of motor neurons and axons. Hence, neurofilaments are now increasingly recognized as the most promising candidate biomarker in amyotrophic lateral sclerosis. The potential usefulness of neurofilaments regards various aspects, including diagnosis, prognosis, patient stratification in clinical trials and evaluation of treatment response. In this review paper, we review the body of literature about neurofilaments measurement in amyotrophic lateral sclerosis. We also discuss the open issues concerning the use of neurofilaments clinical practice, as no overall guideline exists to date; finally, we address the most recent evidence and future perspectives.
Collapse
Affiliation(s)
- Yuri Matteo Falzone
- Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute; Neurology and Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Tommaso Russo
- Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute; Neurology and Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Teuta Domi
- Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Laura Pozzi
- Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Angelo Quattrini
- Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neurology and Neurorehabilitation Unit; Neurophysiology Unit, IRCCS San Raffaele Scientific Institute; Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute; Vita-Salute San Rafaele University, Milan, Italy
| | - Nilo Riva
- Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute; Neurology and Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
48
|
Barro C, Chitnis T, Weiner HL. Blood neurofilament light: a critical review of its application to neurologic disease. Ann Clin Transl Neurol 2020; 7:2508-2523. [PMID: 33146954 PMCID: PMC7732243 DOI: 10.1002/acn3.51234] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Neuronal injury is a universal event that occurs in disease processes that affect both the central and peripheral nervous systems. A blood biomarker linked to neuronal injury would provide a critical measure to understand and treat neurologic diseases. Neurofilament light chain (NfL), a cytoskeletal protein expressed only in neurons, has emerged as such a biomarker. With the ability to quantify neuronal damage in blood, NfL is being applied to a wide range of neurologic conditions to investigate and monitor disease including assessment of treatment efficacy. Blood NfL is not specific for one disease and its release can also be induced by physiological processes. Longitudinal studies in multiple sclerosis, traumatic brain injury, and stroke show accumulation of NfL over days followed by elevated levels over months. Therefore, it may be hard to determine with a single measurement when the peak of NfL is reached and when the levels are normalized. Nonetheless, measurement of blood NfL provides a new blood biomarker for neurologic diseases overcoming the invasiveness of CSF sampling that restricted NfL clinical application. In this review, we examine the use of blood NfL as a biologic test for neurologic disease.
Collapse
Affiliation(s)
- Christian Barro
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tanuja Chitnis
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
49
|
Zucchi E, Bonetto V, Sorarù G, Martinelli I, Parchi P, Liguori R, Mandrioli J. Neurofilaments in motor neuron disorders: towards promising diagnostic and prognostic biomarkers. Mol Neurodegener 2020; 15:58. [PMID: 33059698 PMCID: PMC7559190 DOI: 10.1186/s13024-020-00406-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Motor neuron diseases (MNDs) are etiologically and biologically heterogeneous diseases. The pathobiology of motor neuron degeneration is still largely unknown, and no effective therapy is available. Heterogeneity and lack of specific disease biomarkers have been appointed as leading reasons for past clinical trial failure, and biomarker discovery is pivotal in today's MND research agenda.In the last decade, neurofilaments (NFs) have emerged as promising biomarkers for the clinical assessment of neurodegeneration. NFs are scaffolding proteins with predominant structural functions contributing to the axonal cytoskeleton of myelinated axons. NFs are released in CSF and peripheral blood as a consequence of axonal degeneration, irrespective of the primary causal event. Due to the current availability of highly-sensitive automated technologies capable of precisely quantify proteins in biofluids in the femtomolar range, it is now possible to reliably measure NFs not only in CSF but also in blood.In this review, we will discuss how NFs are impacting research and clinical management in ALS and other MNDs. Besides contributing to the diagnosis at early stages by differentiating between MNDs with different clinical evolution and severity, NFs may provide a useful tool for the early enrolment of patients in clinical trials. Due to their stability across the disease, NFs convey prognostic information and, on a larger scale, help to stratify patients in homogenous groups. Shortcomings of NFs assessment in biofluids will also be discussed according to the available literature in the attempt to predict the most appropriate use of the biomarker in the MND clinic.
Collapse
Affiliation(s)
- Elisabetta Zucchi
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Valentina Bonetto
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Gianni Sorarù
- Neuromuscular Center, Department of Neurosciences, University of Padova, Padua, Italy.,Clinica Neurologica, Azienda Ospedaliera di Padova, Padua, Italy
| | - Ilaria Martinelli
- Department of Neurosciences, Azienda Ospedaliero Universitaria Modena, Modena, Italy
| | - Piero Parchi
- IRCCS Istituto delle Scienze Neurologiche, Ospedale Bellaria, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche, Ospedale Bellaria, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Jessica Mandrioli
- Department of Neurosciences, Azienda Ospedaliero Universitaria Modena, Modena, Italy.
| |
Collapse
|
50
|
Sun Q, Zhao X, Li S, Yang F, Wang H, Cui F, Huang X. CSF Neurofilament Light Chain Elevation Predicts ALS Severity and Progression. Front Neurol 2020; 11:919. [PMID: 32982935 PMCID: PMC7484044 DOI: 10.3389/fneur.2020.00919] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022] Open
Abstract
Objectives: This study compared neurofilament light chain (NFL) levels in the cerebrospinal fluid (CSF) of patients with sporadic amyotrophic lateral sclerosis (sALS) with levels in patients with other neurological diseases and healthy controls and assessed correlations between NFL levels and clinical indicators of sALS. Methods: We used enzyme-linked immunosorbent assays to determine the NFL levels in the CSF of 45 patients with sALS, 21 patients with other central nervous system diseases (OCNSDs), 18 with immune-mediated peripheral neuropathy (IMPN), 14 with non-immune-mediated peripheral neuropathy (NIMPN), and 19 healthy controls (HCs). Results: The median NFL levels in the CSF of the sALS, OCNSD, IMPN, NIMPN, and HC groups were 6510, 5372, 4320, 1477, and 756 pg/mL, respectively. The CSF NFL levels did not differ significantly among the sALS, IMPN, and OCNSD groups, but were significantly higher than those of the NIMPN and HC groups. The NFL CSF levels were significantly higher in the NIMPN group than the HCs. There was a negative correlation between the NFL level and ALS function score (ALSFRS-R), and a positive correlation with the disease progression rate in patients with sALS. Conclusion: CSF NFL may not be sufficient to distinguish ALS from other central nervous system diseases or peripheral neuropathy, but it predicts ALS severity and progression.
Collapse
Affiliation(s)
- Qionghua Sun
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, Beijing, China.,College of Medicine, Nankai University, Tianjin, China
| | - Xue Zhao
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, Beijing, China.,College of Medicine, Nankai University, Tianjin, China
| | - Siyuan Li
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Fei Yang
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hongfen Wang
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Fang Cui
- Neurological Department of Hainan Hospital, Chinese PLA General Hospital, Sanya, China
| | - Xusheng Huang
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, Beijing, China.,College of Medicine, Nankai University, Tianjin, China
| |
Collapse
|