1
|
Guo Z, Mo J, Zhang J, Hu W, Zhang C, Wang X, Zhao B, Zhang K. Altered Metabolic Networks in Mesial Temporal Lobe Epilepsy with Focal to Bilateral Seizures. Brain Sci 2023; 13:1239. [PMID: 37759840 PMCID: PMC10526398 DOI: 10.3390/brainsci13091239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
This study was designed to identify whether the metabolic network changes in mesial temporal lobe epilepsy (MTLE) patients with focal to bilateral tonic-clonic seizures (FBTCS) differ from changes in patients without FBTCS. This retrospective analysis enrolled 30 healthy controls and 54 total MTLE patients, of whom 27 had FBTCS. Fluorodeoxyglucose positron emission tomography (FDG-PET) data and graph theoretical analyses were used to examine metabolic connectivity. The differences in metabolic networks between the three groups were compared. Significant changes in both local and global network topology were evident in FBTCS+ patients as compared to healthy controls, with a lower assortative coefficient and altered betweenness centrality in 15 brain regions. While global network measures did not differ significantly when comparing FBTCS- patients to healthy controls, alterations in betweenness centrality were evident in 13 brain regions. Significantly altered betweenness centrality was also observed in four brain regions when comparing patients with and without FBTCS. The study revealed greater metabolic network abnormalities in MTLE patients with FBTCS as compared to FBTCS- patients, indicating the existence of distinct epileptogenic networks. These findings can provide insight into the pathophysiological basis of FBTCS.
Collapse
Affiliation(s)
- Zhihao Guo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (Z.G.); (J.M.); (J.Z.); (W.H.); (C.Z.); (X.W.); (B.Z.)
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Jiajie Mo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (Z.G.); (J.M.); (J.Z.); (W.H.); (C.Z.); (X.W.); (B.Z.)
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (Z.G.); (J.M.); (J.Z.); (W.H.); (C.Z.); (X.W.); (B.Z.)
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Wenhan Hu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (Z.G.); (J.M.); (J.Z.); (W.H.); (C.Z.); (X.W.); (B.Z.)
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Chao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (Z.G.); (J.M.); (J.Z.); (W.H.); (C.Z.); (X.W.); (B.Z.)
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Xiu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (Z.G.); (J.M.); (J.Z.); (W.H.); (C.Z.); (X.W.); (B.Z.)
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Baotian Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (Z.G.); (J.M.); (J.Z.); (W.H.); (C.Z.); (X.W.); (B.Z.)
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (Z.G.); (J.M.); (J.Z.); (W.H.); (C.Z.); (X.W.); (B.Z.)
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| |
Collapse
|
2
|
Zhao H, Long L, Xiao B. Advances in sudden unexpected death in epilepsy. Acta Neurol Scand 2022; 146:716-722. [DOI: 10.1111/ane.13715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022]
Affiliation(s)
- Haiting Zhao
- Department of Neurology Xiangya Hospital, Central South University Changsha China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha China
- Clinical Research Center for Epileptic Disease of Hunan Province Central South University Changsha China
| | - Lili Long
- Department of Neurology Xiangya Hospital, Central South University Changsha China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha China
- Clinical Research Center for Epileptic Disease of Hunan Province Central South University Changsha China
| | - Bo Xiao
- Department of Neurology Xiangya Hospital, Central South University Changsha China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha China
- Clinical Research Center for Epileptic Disease of Hunan Province Central South University Changsha China
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW Sudden unexpected death in epilepsy (SUDEP) is a major contributor to premature mortality in people with epilepsy. This review provides an update on recent findings on the epidemiology of SUDEP, clinical risk factors and potential mechanisms. RECENT FINDINGS The overall risk rate of SUDEP is approximately 1 per 1000 patients per year in the general epilepsy population and that children and older adults have a similar incidence. Generalized convulsive seizures (GCS), perhaps through their effects on brainstem cardiopulmonary networks, can cause significant postictal respiratory and autonomic dysfunction though other mechanisms likely exist as well. Work in animal models of SUDEP has identified multiple neurotransmitter systems, which may be future targets for pharmacological intervention. There are also chronic functional and structural changes in autonomic function in patients who subsequently die from SUDEP suggesting that some SUDEP risk is dynamic. Modifiable risks for SUDEP include GCS seizure frequency, medication adherence and nighttime supervision. SUMMARY Current knowledge of SUDEP risk factors has identified multiple targets for SUDEP prevention today as we await more specific therapeutic targets that are emerging from translational research studies.
Collapse
Affiliation(s)
- Daniel Friedman
- NYU Grossman School of Medicine, Department of Neurology, 223 East 34th Street, New York, New York, USA
| |
Collapse
|
4
|
Khateb M, Bosak N, Herskovitz M. The Effect of Anti-seizure Medications on the Propagation of Epileptic Activity: A Review. Front Neurol 2021; 12:674182. [PMID: 34122318 PMCID: PMC8191738 DOI: 10.3389/fneur.2021.674182] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/09/2021] [Indexed: 11/13/2022] Open
Abstract
The propagation of epileptiform events is a highly interesting phenomenon from the pathophysiological point of view, as it involves several mechanisms of recruitment of neural networks. Extensive in vivo and in vitro research has been performed, suggesting that multiple networks as well as cellular candidate mechanisms govern this process, including the co-existence of wave propagation, coupled oscillator dynamics, and more. The clinical importance of seizure propagation stems mainly from the fact that the epileptic manifestations cannot be attributed solely to the activity in the seizure focus itself, but rather to the propagation of epileptic activity to other brain structures. Propagation, especially when causing secondary generalizations, poses a risk to patients due to recurrent falls, traumatic injuries, and poor neurological outcome. Anti-seizure medications (ASMs) affect propagation in diverse ways and with different potencies. Importantly, for drug-resistant patients, targeting seizure propagation may improve the quality of life even without a major reduction in simple focal events. Motivated by the extensive impact of this phenomenon, we sought to review the literature regarding the propagation of epileptic activity and specifically the effect of commonly used ASMs on it. Based on this body of knowledge, we propose a novel classification of ASMs into three main categories: major, minor, and intermediate efficacy in reducing the propagation of epileptiform activity.
Collapse
Affiliation(s)
- Mohamed Khateb
- Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Noam Bosak
- Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Moshe Herskovitz
- Department of Neurology, Rambam Health Care Campus, Haifa, Israel.,The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
5
|
Cutillo G, Tolba H, Hirsch LJ. Anti-seizure medications and efficacy against focal to bilateral tonic-clonic seizures: A systematic review with relevance for SUDEP prevention. Epilepsy Behav 2021; 117:107815. [PMID: 33640562 DOI: 10.1016/j.yebeh.2021.107815] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 11/17/2022]
Abstract
We conducted a systematic review of anti-seizure medications (ASMs) and their efficacy for the control of focal to bilateral tonic-clonic seizures (FBTCS). FBTCS, especially when nocturnal, are recognized as one of the major risk factors for Sudden Unexpected Death in Epilepsy (SUDEP). We searched different online databases for all the randomized, double-blinded, and placebo-controlled clinical trials of ASMs that were FDA-approved after 1990 and that reported specifically on the reduction in FBTCS; when possible, this was compared to reduction in focal impaired awareness (FIA) seizures. The ASMs that yielded the most data (3 or more studies) were topiramate (TPM), followed by tiagabine (TGB), brivaracetam (BRV), and lamotrigine (LTG). TPM trials showed a reduction in FBTCS of 44.8% to 100% (4.5-99% over placebo); TGB 21.8% to 46.7% (21.8-61% over placebo); BRV 33.9% to 82.1% (11.6-57.4% over placebo); and LTG 55.2% (20.3-52% over placebo). Promising results, but with data from only one or two studies, were seen with cenobamate (18-59% efficacy above placebo), lacosamide (45.1-78.7%), levetiracetam (40.1-60.3%), oxcarbazepine (58.5-81.5%), and gabapentin (50-53.8%). Higher responses were often seen at higher doses, including at doses above those currently approved by the FDA. Results specific to nocturnal FBTCS were never reported for any ASM. Moreover, complete freedom from FBTCS specifically was very rarely reported, despite its relevance for SUDEP prevention. In conclusion, there are few data specifically comparing the efficacy of ASMs for prevention of FBTCS despite the known strong association of BTCS with SUDEP. This review was our attempt at filling a gap in the literature and calling for universal reporting of data specific to BTC seizure reduction in all future studies, preferably including specific reporting on nocturnal BTCS. This will help enable rational ASM selection to minimize BTC seizures and thereby decrease the risk of SUDEP.
Collapse
Affiliation(s)
- Gianni Cutillo
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, MA 02215, USA
| | - Hatem Tolba
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA; Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Lawrence J Hirsch
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
6
|
Lattanzi S, Rinaldi C, Cagnetti C, Foschi N, Norata D, Broggi S, Rocchi C, Silvestrini M. Predictors of Pharmaco-Resistance in Patients with Post-Stroke Epilepsy. Brain Sci 2021; 11:brainsci11040418. [PMID: 33810310 PMCID: PMC8066362 DOI: 10.3390/brainsci11040418] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 12/31/2022] Open
Abstract
Objectives: The study aimed to explore the clinical predictors of pharmaco-resistance in patients with post-stroke epilepsy (PSE). Methods: Patients with epilepsy secondary to cerebral infarct or spontaneous intracerebral hemorrhage were included. The study outcome was the occurrence of pharmaco-resistance defined as the failure of adequate trials of two tolerated and appropriately chosen and used antiseizure medication schedules, whether as monotherapies or in combination, to achieve sustained seizure freedom. Results: One-hundred and fifty-nine patients with PSE and a median follow-up of 5 (3–9) years were included. The mean age of the patients at stroke onset was 56.7 (14.9) years, and 104 (65.4%) were males. In the study cohort, 29 participants were pharmaco-resistant. Age at stroke onset [odds ratio (OR) 0.97, 95% confidence interval (CI) 0.93–0.99; p = 0.044], history of intracerebral hemorrhage (OR 2.95, 95% CI 1.06–8.24; p = 0.039), severe stroke (OR 5.43, 95% CI 1.82–16.16; p = 0.002), status epilepticus as initial presentation of PSE (OR 7.90, 1.66–37.55; p = 0.009), and focal to bilateral tonic-clonic seizures (OR 3.19, 95% CI 1.16–8.79; p = 0.025) were independent predictors of treatment refractoriness. Conclusions: Pharmaco-resistance developed in approximately 20% of patients with PSE and was associated with younger age at stroke onset, stroke type and severity, status epilepticus occurrence, and seizure types.
Collapse
Affiliation(s)
- Simona Lattanzi
- Correspondence: ; Tel.: +39-071-5964438; Fax: +39-071-887262
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Bruno E, Biondi A, Richardson MP, Consortium OBOTRC. Digital semiology and time-evolution pattern of bio-signals in focal onset motor seizures. Seizure 2021; 87:114-120. [PMID: 33773333 DOI: 10.1016/j.seizure.2021.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/11/2021] [Accepted: 03/14/2021] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Focal seizures constitute the most common seizure type and are associated with poor control. One of the major difficulties in detecting focal onset with wearable devices seizures is related to their phenomenological complexity. We aimed at capturing focal onset seizures with motor manifestations with a multimodal wearable device to identify the digital semiology and the evolution pattern of ictal manifestations. METHODS Participants were asked to wear a multimodal wearable device (IMEC) aimed at seizure detection while admitted to an epilepsy monitoring unit. Seizures were labelled by a neurologist and start and offset time were noted. The signals captured by the device during the seizure window were plotted and a visual inspection was performed for focal motor seizures with impaired awareness and for focal motor aware seizures. RESULTS Fifty-three seizures from twelve patients with focal seizures with motor manifestations recorded with the device were visually inspected. Overall, a common pattern presented across focal motor seizures with impaired awareness and it was characterized by early cardiac manifestations followed by motor phenomena and final EDA response. Motor seizures with retained awareness appeared to be characterized by brief motor events not associated with major autonomic manifestations Conclusion: an overall common digital phenotype and time-evolution pattern was demonstrated for focal motor seizures with impaired awareness. The identification of the evolution pattern could more precisely inform the development of highly preforming algorithms opening the possibility to a more precise, and potentially customizable way to optimize focal seizure detection.
Collapse
Affiliation(s)
- Elisa Bruno
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK.
| | - Andrea Biondi
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Mark P Richardson
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | | |
Collapse
|
8
|
Rahim F, Azizimalamiri R, Sayyah M, Malayeri A. Experimental Therapeutic Strategies in Epilepsies Using Anti-Seizure Medications. J Exp Pharmacol 2021; 13:265-290. [PMID: 33732031 PMCID: PMC7959000 DOI: 10.2147/jep.s267029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/10/2021] [Indexed: 02/02/2023] Open
Abstract
Epilepsies are among the most common neurological problems. The disease burden in patients with epilepsy is significantly high, and epilepsy has a huge negative impact on patients' quality of life with epilepsy and their families. Anti-seizure medications are the mainstay treatment in patients with epilepsy, and around 70% of patients will ultimately control with a combination of at least two appropriately selected anti-seizure medications. However, in one-third of patients, seizures are resistant to drugs, and other measures will be needed. The primary goal in using experimental therapeutic medication strategies in patients with epilepsy is to prevent recurrent seizures and reduce the rate of traumatic events that may occur during seizures. So far, various treatments using medications have been offered for patients with epilepsies, which have been classified according to the type of epilepsy, the effectiveness of the medications, and the adverse effects. Medications such as Levetiracetam, valproic acid, and lamotrigine are at the forefront of these patients' treatment. Epilepsy surgery, neuro-stimulation, and the ketogenic diet are the main measures in patients with medication-resistant epilepsies. In this paper, we will review the therapeutic approach using anti-seizure medications in patients with epilepsy. However, it should be noted that some of these patients still do not respond to existing treatments; therefore, the limited ability of current therapies has fueled research efforts for the development of novel treatment strategies. Thus, it seems that in addition to surgical measures, we should look for more specific agents that have less adverse events and have a greater effect in stopping seizures.
Collapse
Affiliation(s)
- Fakher Rahim
- Molecular Medicine and Bioinformatics, Research Center of Thalassemia & Hemoglobinopathy, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Azizimalamiri
- Department of Pediatrics, Division of Pediatric Neurology, Golestan Medical, Educational, and Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Sayyah
- Education Development Center (EDC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Malayeri
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
9
|
Sinha N, Peternell N, Schroeder GM, de Tisi J, Vos SB, Winston GP, Duncan JS, Wang Y, Taylor PN. Focal to bilateral tonic-clonic seizures are associated with widespread network abnormality in temporal lobe epilepsy. Epilepsia 2021; 62:729-741. [PMID: 33476430 PMCID: PMC8600951 DOI: 10.1111/epi.16819] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Our objective was to identify whether the whole-brain structural network alterations in patients with temporal lobe epilepsy (TLE) and focal to bilateral tonic-clonic seizures (FBTCS) differ from alterations in patients without FBTCS. METHODS We dichotomized a cohort of 83 drug-resistant patients with TLE into those with and without FBTCS and compared each group to 29 healthy controls. For each subject, we used diffusion-weighted magnetic resonance imaging to construct whole-brain structural networks. First, we measured the extent of alterations by performing FBTCS-negative (FBTCS-) versus control and FBTCS-positive (FBTCS+) versus control comparisons, thereby delineating altered subnetworks of the whole-brain structural network. Second, by standardizing each patient's networks using control networks, we measured the subject-specific abnormality at every brain region in the network, thereby quantifying the spatial localization and the amount of abnormality in every patient. RESULTS Both FBTCS+ and FBTCS- patient groups had altered subnetworks with reduced fractional anisotropy and increased mean diffusivity compared to controls. The altered subnetwork in FBTCS+ patients was more widespread than in FBTCS- patients (441 connections altered at t > 3, p < .001 in FBTCS+ compared to 21 connections altered at t > 3, p = .01 in FBTCS-). Significantly greater abnormalities-aggregated over the entire brain network as well as assessed at the resolution of individual brain areas-were present in FBTCS+ patients (p < .001, d = .82, 95% confidence interval = .32-1.3). In contrast, the fewer abnormalities present in FBTCS- patients were mainly localized to the temporal and frontal areas. SIGNIFICANCE The whole-brain structural network is altered to a greater and more widespread extent in patients with TLE and FBTCS. We suggest that these abnormal networks may serve as an underlying structural basis or consequence of the greater seizure spread observed in FBTCS.
Collapse
Affiliation(s)
- Nishant Sinha
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK.,Computational Neuroscience, Neurology, and Psychiatry Lab, Interdisciplinary Computing and Complex BioSystems Research Group, School of Computing, Newcastle University, Newcastle Upon Tyne, UK
| | - Natalie Peternell
- Computational Neuroscience, Neurology, and Psychiatry Lab, Interdisciplinary Computing and Complex BioSystems Research Group, School of Computing, Newcastle University, Newcastle Upon Tyne, UK
| | - Gabrielle M Schroeder
- Computational Neuroscience, Neurology, and Psychiatry Lab, Interdisciplinary Computing and Complex BioSystems Research Group, School of Computing, Newcastle University, Newcastle Upon Tyne, UK
| | - Jane de Tisi
- National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London Queen Square Institute of Neurology, London, UK
| | - Sjoerd B Vos
- National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London Queen Square Institute of Neurology, London, UK.,Centre for Medical Image Computing, University College London, London, UK.,Neuroradiological Academic Unit, University College London Queen Square Institute of Neurology, University College London, London, UK
| | - Gavin P Winston
- National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London Queen Square Institute of Neurology, London, UK.,Epilepsy Society MRI Unit, Chalfont St Peter, UK.,Division of Neurology, Department of Medicine, Queen's University, Kingston, ON, Canada
| | - John S Duncan
- National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London Queen Square Institute of Neurology, London, UK.,Epilepsy Society MRI Unit, Chalfont St Peter, UK
| | - Yujiang Wang
- Computational Neuroscience, Neurology, and Psychiatry Lab, Interdisciplinary Computing and Complex BioSystems Research Group, School of Computing, Newcastle University, Newcastle Upon Tyne, UK.,National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London Queen Square Institute of Neurology, London, UK
| | - Peter N Taylor
- Computational Neuroscience, Neurology, and Psychiatry Lab, Interdisciplinary Computing and Complex BioSystems Research Group, School of Computing, Newcastle University, Newcastle Upon Tyne, UK.,National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London Queen Square Institute of Neurology, London, UK
| |
Collapse
|
10
|
Guery D, Rheims S. Clinical Management of Drug Resistant Epilepsy: A Review on Current Strategies. Neuropsychiatr Dis Treat 2021; 17:2229-2242. [PMID: 34285484 PMCID: PMC8286073 DOI: 10.2147/ndt.s256699] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Drug resistant epilepsy (DRE) is defined as the persistence of seizures despite at least two syndrome-adapted antiseizure drugs (ASD) used at efficacious daily dose. Despite the increasing number of available ASD, about a third of patients with epilepsy still suffer from drug resistance. Several factors are associated with the risk of evolution to DRE in patients with newly diagnosed epilepsy, including epilepsy onset in the infancy, intellectual disability, symptomatic epilepsy and abnormal neurological exam. Pharmacological management often consists in ASD polytherapy. However, because quality of life is driven by several factors in patients with DRE, including the tolerability of the treatment, ASD management should try to optimize efficacy while anticipating the risks of drug-related adverse events. All patients with DRE should be evaluated at least once in a tertiary epilepsy center, especially to discuss eligibility for non-pharmacological therapies. This is of paramount importance in patients with drug resistant focal epilepsy in whom epilepsy surgery can result in long-term seizure freedom. Vagus nerve stimulation, deep brain stimulation or cortical stimulation can also improve seizure control. Lastly, considering the effect of DRE on psychologic status and social integration, comprehensive care adaptations are always needed in order to improve patients' quality of life.
Collapse
Affiliation(s)
- Deborah Guery
- Department of Functional Neurology and Epileptology, Hospices Civils De Lyon and University of Lyon, Lyon, France
| | - Sylvain Rheims
- Department of Functional Neurology and Epileptology, Hospices Civils De Lyon and University of Lyon, Lyon, France.,Lyon's Neuroscience Research Center, INSERM U1028/CNRS UMR 5292, Lyon, France.,Epilepsy Institute, Lyon, France
| |
Collapse
|
11
|
Ryvlin P, Cammoun L, Hubbard I, Ravey F, Beniczky S, Atienza D. Noninvasive detection of focal seizures in ambulatory patients. Epilepsia 2020; 61 Suppl 1:S47-S54. [PMID: 32484920 PMCID: PMC7754288 DOI: 10.1111/epi.16538] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/20/2020] [Accepted: 04/26/2020] [Indexed: 02/02/2023]
Abstract
Reliably detecting focal seizures without secondary generalization during daily life activities, chronically, using convenient portable or wearable devices, would offer patients with active epilepsy a number of potential benefits, such as providing more reliable seizure count to optimize treatment and seizure forecasting, and triggering alarms to promote safeguarding interventions. However, no generic solution is currently available to reach these objectives. A number of biosignals are sensitive to specific forms of focal seizures, in particular heart rate and its variability for seizures affecting the neurovegetative system, and accelerometry for those responsible for prominent motor activity. However, most studies demonstrate high rates of false detection or poor sensitivity, with only a minority of patients benefiting from acceptable levels of accuracy. To tackle this challenging issue, several lines of technological progress are envisioned, including multimodal biosensing with cross‐modal analytics, a combination of embedded and distributed self‐aware machine learning, and ultra–low‐power design to enable appropriate autonomy of such sophisticated portable solutions.
Collapse
Affiliation(s)
- Philippe Ryvlin
- Department of Clinical Neurosciences, Vaud University Hospital, Lausanne, Switzerland
| | - Leila Cammoun
- Department of Clinical Neurosciences, Vaud University Hospital, Lausanne, Switzerland
| | - Ilona Hubbard
- Department of Clinical Neurosciences, Vaud University Hospital, Lausanne, Switzerland
| | - France Ravey
- Department of Clinical Neurosciences, Vaud University Hospital, Lausanne, Switzerland
| | - Sandor Beniczky
- Department of Clinical Neurophysiology, Danish Epilepsy Center, Dianalund, Denmark.,Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | - David Atienza
- Department of Clinical Neurosciences, Vaud University Hospital, Lausanne, Switzerland.,Embedded Systems Laboratory, Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| |
Collapse
|
12
|
Pensel MC, Nass RD, Taubøll E, Aurlien D, Surges R. Prevention of sudden unexpected death in epilepsy: current status and future perspectives. Expert Rev Neurother 2020; 20:497-508. [PMID: 32270723 DOI: 10.1080/14737175.2020.1754195] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Introduction: Sudden unexpected death in epilepsy (SUDEP) affects about 1 in 1000 people with epilepsy, and even more in medically refractory epilepsy. As most people are between 20 and 40 years when dying suddenly, SUDEP leads to a considerable loss of potential life years. The most important risk factors are nocturnal and tonic-clonic seizures, underscoring that supervision and effective seizure control are key elements for SUDEP prevention. The question of whether specific antiepileptic drugs are linked to SUDEP is still controversially discussed. Knowledge and education about SUDEP among health-care professionals, patients, and relatives are of outstanding importance for preventive measures to be taken, but still poor and widely neglected.Areas covered: This article reviews epidemiology, pathophysiology, risk factors, assessment of individual SUDEP risk and available measures for SUDEP prevention. Literature search was done using Medline and Pubmed in October 2019.Expert opinion: Significant advances in the understanding of SUDEP were made in the last decade which allow testing of novel strategies to prevent SUDEP. Promising current strategies target neuronal mechanisms of brain stem dysfunction, cardiac susceptibility for fatal arrhythmias, and reliable detection of tonic-clonic seizures using mobile health technologies.Abbreviations: AED, antiepileptic drug; CBZ, carbamazepine; cLQTS, congenital long QT syndrome; EMU, epilepsy monitoring unit; FBTCS, focal to bilateral tonic-clonic seizures; GTCS, generalized tonic-clonic seizures; ICA, ictal central apnea; LTG, lamotrigine; PCCA, postconvulsive central apnea; PGES, postictal generalized EEG suppression; SRI, serotonin reuptake inhibitor; SUDEP, sudden unexpected death in epilepsy; TCS, tonic-clonic seizures.
Collapse
Affiliation(s)
| | | | - Erik Taubøll
- Department of Neurology, Oslo University Hospital, Nydalen, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Dag Aurlien
- Neuroscience Research Group and Department of Neurology, Stavanger University Hospital, Stavanger, Norway
| | - Rainer Surges
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
13
|
Pensel MC, Schnuerch M, Elger CE, Surges R. Predictors of focal to bilateral tonic‐clonic seizures during long‐term video‐EEG monitoring. Epilepsia 2020; 61:489-497. [DOI: 10.1111/epi.16454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 01/24/2020] [Accepted: 01/30/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Max C. Pensel
- Department of Psychiatry University Hospital of Bonn Bonn Germany
- Department of Epileptology University Hospital of Bonn Bonn Germany
| | - Martin Schnuerch
- RTG Statistical Modeling in Psychology Department of Psychology University of Mannheim Mannheim Germany
| | | | - Rainer Surges
- Department of Epileptology University Hospital of Bonn Bonn Germany
| |
Collapse
|
14
|
Gil‐Nagel A, Álvarez Carriles J, Bermejo P, Carreño M, García‐Morales I, García Peñas JJ, López‐González FJ, Ruíz‐Falcó M, Sánchez JC, Tato C. Consensus statement for the management of generalized tonic-clonic seizures in Spain. Acta Neurol Scand 2020; 141:22-32. [PMID: 31529468 DOI: 10.1111/ane.13169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/08/2019] [Accepted: 09/10/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To develop recommendations for the management of patients with primary or secondary generalized tonic-clonic seizures (GTCS) based on best evidence and experience. METHODS The Delphi methodology was followed. A multidisciplinary panel of 10 experts was established, who defined the scope, users and preliminary recommendations. Systematic and narrative reviews of the current literature were performed to assess data on the risk of sudden unexpected death in epilepsy and the efficacy and safety of add-on therapy in patients with GTCS. Twenty-five definitive recommendations were generated which were then graded on a scale of 1 (totally disagree) to 10 (totally agree) by the experts and 45 neurologists. Consensus was reached if at least 70% of the participants applied a score of ≥7. Each recommendation was then assigned a level of evidence, a grade of agreement and a grade of recommendation. The entire process was supervised by an expert methodologist. RESULTS Overall, 24 out of 25 recommendations achieved consensus. These included specific recommendations on diagnosis, evaluation and treatment. The recommendations also emphasized the importance of proper psychological evaluation and effective communication between patients and health professionals, and the importance of patient and family education and support. SIGNIFICANCE The recommendations generated by this consensus can be used as a guide for the diagnosis and management of patients with GTCS.
Collapse
Affiliation(s)
| | | | | | - Mar Carreño
- Hospital Clinic de Barcelona Barcelona Spain
| | | | | | | | | | - Juan Carlos Sánchez
- Complejo Hospitalario Universitario Parque Tecnológico de la Salud Granada Spain
| | | |
Collapse
|
15
|
Efficacy and impact on cognitive functions and quality of life of perampanel as first add-on therapy in patients with epilepsy: A retrospective study. Epilepsy Behav 2019; 98:139-144. [PMID: 31374469 DOI: 10.1016/j.yebeh.2019.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/30/2019] [Accepted: 07/03/2019] [Indexed: 01/17/2023]
Abstract
Cognitive dysfunctions are frequent in patients with epilepsy. This comorbidity significantly alters their quality of life and plays an important role in their therapeutic management. Perampanel is a noncompetitive antagonist of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptors and is considered a new generation AED (antiepileptic drug) with limited impact on cognitive functions.The aims of this study were to evaluate the efficacy of perampanel as first add-on therapy and its impact on cognitive functions and quality of life in patients with epilepsy followed for 6 months at the Neurology Division of "A. Cardarelli" Hospital in Naples (Italy).
Collapse
|
16
|
Charokopou M, Harvey R, Srivastava K, Brandt C, Borghs S. Relative performance of brivaracetam as adjunctive treatment of focal seizures in adults: a network meta-analysis. Curr Med Res Opin 2019; 35:1345-1354. [PMID: 30799639 DOI: 10.1080/03007995.2019.1584501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Objective: To estimate the relative efficacy, safety and tolerability of adjunctive brivaracetam and other antiepileptic drugs (AEDs) using a Bayesian network meta-analysis (NMA) approach. Methods: A systematic literature review (SLR) identified randomized controlled trials of AEDs treating focal (partial-onset) seizures for ≥8 weeks and assessed them for inclusion in the NMA. Bayesian random-effects NMA was performed for several outcomes. All interventions within the licensed dose range were included in the network of evidence. Results: The SLR identified 82 studies; 65 were included in the NMA. These studies had baseline mean age 33.1-38.0 years, mean duration of epilepsy 18.7-23.0 years and median seizure frequency/28 days 8.1-11.8. All AEDs had significantly higher odds than placebo of achieving ≥50% responder rates (odds ratios 1.83-3.58) and all AEDs had a trend of higher odds than placebo of achieving seizure freedom (odds ratios 1.36-5.73), most being statistically significant. Tolerability outcomes were comparable between AEDs; most AEDs had higher odds than placebo of treatment-emergent adverse events leading to discontinuation, serious AEs, nausea, fatigue, dizziness and somnolence. Conclusions: This NMA would appear to show relative equivalence in efficacy, safety and tolerability outcomes of the included AEDs. However, patient heterogeneity within trials and in clinical practice should be considered when interpreting these results. While NMAs are based on the best available evidence the authors suggest that, due to the inability of NMAs to capture unmeasured confounding factors and population heterogeneity, NMAs must not be the sole basis for comparative treatment recommendations.
Collapse
Affiliation(s)
| | | | | | - Christian Brandt
- d Department of General Epileptology , Bethel Epilepsy Centre, Mara Hospital , Bielefeld , Germany
| | | |
Collapse
|
17
|
Wang D, Hu B, Dai Y, Sun J, Liu Z, Feng Y, Cheng F, Zhang X. Serum Uric Acid Is Highly Associated with Epilepsy Secondary to Cerebral Infarction. Neurotox Res 2018; 35:63-70. [PMID: 30022372 DOI: 10.1007/s12640-018-9930-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 06/07/2018] [Accepted: 06/26/2018] [Indexed: 01/20/2023]
Abstract
In this study, we examined the association between serum uric acid levels and epilepsy secondary to cerebral infarction. Clinical data including age, gender, epileptic seizure type, imaging, and serum uric acid levels before and after seizures in patients with cerebral infarction that were collected and analyzed. One hundred patients with cerebral infarction but without epilepsy, 147 patients with epilepsy secondary to cerebral infarction, and 55 patients with status epilepticus secondary to cerebral infarction were recruited. Interestingly, epilepsy secondary to cerebral infarction was associated with both reduced uric acid (adjusted OR 2.09; 95% CI 1.07-4.08) and increased uric acid (adjusted OR 4.05; 95% CI 1.99-8.25); however, status epilepsy secondary to cerebral infarction was only associated with increased uric acid (adjusted OR 2.60; 95% CI 1.05-6.45). A U-shaped association between uric acid levels and seizures was observed by using a multivariable logistic regression model with restricted cubic spline. Serum uric acid levels are associated with both epilepsy secondary to cerebral infarction and status epilepticus secondary to cerebral infarction in patients with cerebral infarction. The appropriate intervention of serum uric acid level might be a therapeutic strategy to reduce epileptic seizures or inhibit the development of status epilepticus.
Collapse
Affiliation(s)
- Dongxing Wang
- Department of Neurology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215000, China
| | - Bo Hu
- Department of Internal Medicine, Zhou Shi People's Hospital, Kunshan, Suzhou, 215004, China
| | - Yongping Dai
- Department of Neurology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215000, China
| | - Jing Sun
- Department of Neurology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215000, China
| | - Zhaoxia Liu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215000, China
| | - Yu Feng
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215000, China.
| | - Feng Cheng
- Department of Neurology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215000, China.
| | - Xia Zhang
- Department of Neurology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215000, China.
| |
Collapse
|
18
|
Potschka H, Trinka E. Perampanel: Does it have broad-spectrum potential? Epilepsia 2018; 60 Suppl 1:22-36. [PMID: 29953584 DOI: 10.1111/epi.14456] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2017] [Indexed: 12/26/2022]
Abstract
This article reviews the profile of perampanel, a novel noncompetitive α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptor antagonist, and its role as a potential broad-spectrum antiepileptic drug in the treatment of epilepsy. For this narrative review, data were collected using specified search criteria. Articles reporting the evidence for perampanel's efficacy from preclinical models, phase 3 clinical studies, observational studies, and descriptive evidence were included. AMPA receptors play a key role in mediating the action of glutamate at the excitatory synapse. Preclinical research showed the AMPA receptor blockade to constitute a promising target for antiepileptic drug therapy. In animal models, perampanel proved to be protective against seizures and reduce seizure severity and duration. Four phase-3 randomized controlled trials (3 in patients with focal seizures and one in primary generalized tonic-clonic seizures in idiopathic generalized epilepsy) have been completed. In focal (partial) onset seizures, perampanel (4, 8, and 12 mg) significantly reduced seizure frequency per 28 days (23.3%-28.8% vs 12.8%; P < .01) and responder rates (≥50% reduction in seizures) (28.5%-35.3% vs 19.3%; P < .05) compared with placebo. In primary generalized tonic-clonic seizures, perampanel 8 mg resulted in greater reduction in seizure frequency per 28 days (-76.5% vs -38.4%; P < .0001) and responder rate (64.2% vs 39.5%; P = .0019) than placebo. The efficacy, safety, and tolerability of perampanel have been reproduced in real-world clinical practice, and the agent has been shown to be effective in other epilepsy syndromes. Perampanel is a potentially broad-spectrum antiepileptic drug with a novel mechanism of action that may be a useful addition for patients with epilepsy with various seizure types. The availability of novel antiepileptic drugs for epilepsy treatment enables more individualized treatment for these patients.
Collapse
Affiliation(s)
- Heidrun Potschka
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Eugen Trinka
- Department of Neurology, Christian Doppler Klinik, University Hospital Paracelsus Medical University, Salzburg, Austria.,Institute of Public Health, Medical Decision Making and Health Technology Assessment, University for Health Sciences, Medical Informatics and Technology, UMIT, Hall in Tyrol, Austria
| |
Collapse
|
19
|
Shorvon SD, Bermejo PE, Gibbs AA, Huberfeld G, Kälviäinen R. Antiepileptic drug treatment of generalized tonic-clonic seizures: An evaluation of regulatory data and five criteria for drug selection. Epilepsy Behav 2018; 82:91-103. [PMID: 29602083 DOI: 10.1016/j.yebeh.2018.01.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/28/2018] [Accepted: 01/29/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND A generalized tonic-clonic seizure (GTCS) is the most severe form of common epileptic seizure and carries the greatest risk of harm. The aim of this review is to provide an evidence-based guide for the selection of antiepileptic drugs (AEDs) for patients with GTCSs. Eight AEDs are approved in Europe and the USA for the treatment of both primarily GTCSs (PGTCSs) and secondarily GTCSs (SGTCSs) and are considered in this paper. METHODS Each AED is evaluated using five criteria: (1) efficacy, by seizure type (a: PGTCSs and b: SGTCSs); (2) adverse effects; (3) interactions; (4) adherence and dosing; and (5) mechanism of action (MOA). To ensure the inclusions of robust data, only efficacy data accepted by regulatory authorities were considered, and data related to adverse effects, interactions, adherence, and MOA were all extracted from UK Summaries of Product Characteristics (SPCs). RESULTS (1a) There is class 1 evidence of the efficacy of only four AEDs in controlling PGTCSs (lamotrigine, levetiracetam, perampanel, and topiramate). (1b) There is no class 1 evidence of the efficacy of any AED in SGTCSs although some evidence from pooled/subgroup analyses or meta-analyses supports the use of the four AEDs (levetiracetam, perampanel, topiramate, and with less robust data for lamotrigine). (2) AEDs are associated with different, but to some extent overlapping, common adverse effect profiles but have differing idiosyncratic adverse effects. (3) Pharmacokinetic interactions are seen with most, but not all, AEDs and are most common with carbamazepine and phenytoin. (4) Good adherence is important for seizure control and is influenced by frequency of dosing, among other factors. (5) Mechanism of action is also a consideration in rationalising AED selection when switching or combining AEDs. CONCLUSION Ultimately, the choice of AED depends on all these factors but particularly on efficacy and adverse effects. Different patients will weigh the various factors differently, and the role of the treating physician is to provide accurate information to allow patients to make informed choices.
Collapse
Affiliation(s)
- Simon D Shorvon
- UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, WC1N 3BG, UK.
| | - Pedro E Bermejo
- Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda, Spain
| | | | - Gilles Huberfeld
- Sorbonne Université, Pitié-Salpêtrière Hospital, Neurophysiology Department, Paris, France; INSERM U1129 "Infantile Epilepsies and Brain Plasticity", Paris Descartes University, PRES Sorbonne Paris Cité, Paris, France
| | - Reetta Kälviäinen
- Epilepsy Center/Neurocenter, Kuopio University Hospital, Kuopio, Finland; Faculty of Health Sciences, School of Medicine, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
20
|
Tsai JJ, Wu T, Leung H, Desudchit T, Tiamkao S, Lim KS, Dash A. Perampanel, an AMPA receptor antagonist: From clinical research to practice in clinical settings. Acta Neurol Scand 2018; 137:378-391. [PMID: 29214650 DOI: 10.1111/ane.12879] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2017] [Indexed: 12/21/2022]
Abstract
Epileptic seizures are refractory to treatment in approximately one-third of patients despite the recent introduction of many newer antiepileptic drugs (AEDs). Development of novel AEDs therefore remains a high priority. Perampanel is a first-in-class non-competitive selective AMPA receptor antagonist with a unique mechanism of action. Clinical efficacy and safety of perampanel as adjunctive treatment for focal seizures with/without secondary generalization (±SG) and primary generalized tonic-clonic (PGTC) seizures have been established in five phase 3 randomized controlled trials (RCTs), and a long-term extension study, and perampanel is approved as monotherapy for focal seizures ±SG in the USA. In patients with focal seizures ±SG, add-on perampanel resulted in median percent reduction in seizure frequency 23.3%-34.5% and ≥50% responder rate 28.5%-37.6%; in PGTC seizures, these results were 76.5% and 64.2%, respectively. Efficacy among adolescents (reduction in seizure frequency 34.8%-35.6%; ≥50% responder rate 40.9%-45.0%) and elderly people (reduction in seizure frequency 12.5%-16.9%; ≥50% responder rate 22.2%-42.9%) is similar to those in adults, and results remain comparable between Asian (reduction in seizure frequency 17.3%-38.0%) and global populations. Perampanel has been extensively studied in real-world clinical practice, with similar efficacy and safety results to the RCTs (≥50% responder rate 12.8%-75.0%; adverse events of somnolence/sedation, dizziness, ataxia, and behavioral changes). Real-world observational studies suggest that perampanel tolerability can be improved by slow titration (2 mg every 2-4 weeks), and bedtime administration can mitigate somnolence and dizziness. Counseling about the potential for behavioral changes and close monitoring are recommended.
Collapse
Affiliation(s)
- J.-J. Tsai
- Department of Neurology; National Cheng Kung University Hospital and School of Medicine; National Cheng Kung University; Tainan Taiwan
| | - T. Wu
- Department of Neurology; Chang Gung Memorial Hospital; Chang Gung University; Taoyuan City Taiwan
| | - H. Leung
- Department of Medicine and Therapeutics; Faculty of Medicine; Prince of Wales Hospital; Hong Kong Hong Kong
| | - T. Desudchit
- Department of Paediatrics; King Chulalongkorn Memorial Hospital; Bangkok Thailand
| | - S. Tiamkao
- Integrated Epilepsy Research Group; Department of Medicine; Faculty of Medicine; Khon Kaen University; Khon Kaen Thailand
| | - K.-S. Lim
- Division of Neurology; Department of Medicine; Faculty of Medicine; University of Malaya; Kuala Lumpur Malaysia
| | - A. Dash
- Eisai Singapore Pte. Ltd.; Singapore
| |
Collapse
|
21
|
Goldenholz DM, Goldenholz SR, Moss R, French J, Lowenstein D, Kuzniecky R, Haut S, Cristofaro S, Detyniecki K, Hixson J, Karoly P, Cook M, Strashny A, Theodore WH, Pieper C. Does accounting for seizure frequency variability increase clinical trial power? Epilepsy Res 2017; 137:145-151. [PMID: 28781216 DOI: 10.1016/j.eplepsyres.2017.07.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/28/2017] [Accepted: 07/21/2017] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Seizure frequency variability is associated with placebo responses in randomized controlled trials (RCT). Increased variability can result in drug misclassification and, hence, decreased statistical power. We investigated a new method that directly incorporated variability into RCT analysis, ZV. METHODS Two models were assessed: the traditional 50%-responder rate (RR50), and the variability-corrected score, ZV. Each predicted seizure frequency upper and lower limits using prior seizures. Accuracy was defined as percentage of time-intervals when the observed seizure frequencies were within the predicted limits. First, we tested the ZV method on three datasets (SeizureTracker: n=3016, Human Epilepsy Project: n=107, and NeuroVista: n=15). An additional independent SeizureTracker validation dataset was used to generate a set of 200 simulated trials each for 5 different sample sizes (total N=100 to 500 by 100), assuming 20% dropout and 30% drug efficacy. "Power" was determined as the percentage of trials successfully distinguishing placebo from drug (p<0.05). RESULTS Prediction accuracy across datasets was, ZV: 91-100%, RR50: 42-80%. Simulated RCT ZV analysis achieved >90% power at N=100 per arm while RR50 required N=200 per arm. SIGNIFICANCE ZV may increase the statistical power of an RCT relative to the traditional RR50.
Collapse
Affiliation(s)
- Daniel M Goldenholz
- Clinical Epilepsy Section, NINDS, NIH, United States; Division of Epilepsy, Beth Israel Deaconess Medical Center.
| | | | | | | | | | | | - Sheryl Haut
- Department of Neurology, Montefiore Medical Center/Albert Einstein College of Medicine, United States.
| | | | | | - John Hixson
- Department of Neurology, UCSF, United States.
| | | | | | - Alex Strashny
- Department of Neurology, Centers for Disease Control, United States.
| | | | - Carl Pieper
- Duke University Medical Center, Dept. of Biostatistics and Bioinformatics, United States.
| |
Collapse
|
22
|
Zhao T, Feng X, Liu J, Gao J, Zhou C. Evaluate the Efficacy and Safety of Anti-Epileptic Medications for Partial Seizures of Epilepsy: A Network Meta-Analysis. J Cell Biochem 2017; 118:2850-2864. [PMID: 28214290 DOI: 10.1002/jcb.25936] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/16/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Teng Zhao
- Department of Neurology; The First Teaching Hospital of Jilin University; Changchun Jilin 130021 China
| | - Xuemin Feng
- Department of Neurology; The First Teaching Hospital of Jilin University; Changchun Jilin 130021 China
| | - Jingyao Liu
- Department of Neurology; The First Teaching Hospital of Jilin University; Changchun Jilin 130021 China
| | - Jiguo Gao
- Department of Neurology; The First Teaching Hospital of Jilin University; Changchun Jilin 130021 China
| | - Chunkui Zhou
- Department of Neurology; The First Teaching Hospital of Jilin University; Changchun Jilin 130021 China
| |
Collapse
|
23
|
Kurth C, Kockelmann E, Steinhoff BJ. Clinical outcomes of perampanel vs. lacosamide in cohorts of consecutive patients with severely refractory epilepsies — A monocentric retrospective analysis of systematically collected data from the German Kork Epilepsy Center. Seizure 2017; 45:47-51. [DOI: 10.1016/j.seizure.2016.11.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/14/2016] [Accepted: 11/17/2016] [Indexed: 12/20/2022] Open
|
24
|
Can Matching-Adjusted Indirect Comparison Methods Mitigate Placebo Response Differences Among Patient Populations in Adjunctive Trials of Brivaracetam and Levetiracetam? CNS Drugs 2017; 31:899-910. [PMID: 28856580 PMCID: PMC5658476 DOI: 10.1007/s40263-017-0462-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVE Patients with focal seizures recruited into adjunctive antiepileptic drug (AED) trials have become more refractory and severe over time; concurrently, placebo responses have increased. To attempt to account for heterogeneity among trials, propensity-score weighted patient-level data were used to indirectly compare placebo responses reported in brivaracetam and levetiracetam trials. METHODS Patient-level data from randomised, placebo-controlled brivaracetam (recruited 2007-2014) and levetiracetam (1993-1998) trials were pooled. Consistent inclusion/exclusion criteria were applied and outcomes were defined consistently. Potentially confounding baseline characteristics were adjusted for using propensity score weighting. Weighting success was assessed using placebo response. RESULTS In total, 707 and 473 active drug and 399 and 253 placebo patients comprised the brivaracetam and levetiracetam groups, respectively. Before weighting, several baseline variables were significantly different between groups; after weighting, prior vagal nerve stimulation, co-morbid depression and co-morbid anxiety remained different. Before weighting, median seizure frequency reduction was 21.7 and 3.9% in the brivaracetam and levetiracetam placebo arms, respectively; after weighting, median reduction was 15.0 and 6.0%. The comparison of non-randomised groups could be biased by unobserved confounding factors and region of residence. Lifetime AED history was unavailable in the brivaracetam trials and excluded from analysis. CONCLUSIONS Placebo responses remained different between brivaracetam and levetiracetam trials after propensity score weighting, indicating the presence of residual confounding factors associated with placebo response in these trials. It therefore remains problematic to conduct reliable indirect comparisons of brivaracetam and levetiracetam given the current evidence base, which may apply to comparisons between other AED trials.
Collapse
|
25
|
Abstract
Perampanel (Fycompa®), an orally-active, selective, noncompetitive α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist, is a first-in-class antiepileptic drug (AED) offering the convenience of once-daily administration. In the EU and US, perampanel is approved in patients with epilepsy aged ≥12 years for the adjunctive treatment of primary generalized tonic-clonic seizures (GTCS) and partial-onset seizures (POS; with or without secondary generalization). In phase III trials of 17 or 19 weeks' duration, add-on perampanel ≤12 mg/day significantly improved seizure control in patients aged ≥12 years who were experiencing either primary GTCS or POS (with or without secondary generalization), despite ongoing treatment with stable dosages of one to three AEDs. Improvements in seizure control were maintained for up to 2 years in extensions of these core studies. Perampanel also provided sustained seizure control for up to ≈4 years in an extension of two phase II studies in patients aged ≥18 years with drug-resistant POS. Adjunctive perampanel therapy was generally well tolerated. Treatment-emergent adverse events were most commonly CNS-related (e.g. dizziness, somnolence, fatigue and irritability) and dose-related; however, most were of mild to moderate intensity. Clinical experience with perampanel is accumulating, although comparative studies and pharmacoeconomic data that could assist in positioning it relative to other AEDS that are approved and/or recommended as adjunctive therapy are lacking. Nonetheless, on the basis of its overall clinical profile and unique mechanism of action, perampanel is a useful additional adjunctive treatment option for patients with drug-resistant POS, with or without secondary generalization, and primary GTCS.
Collapse
Affiliation(s)
- James E Frampton
- Springer, Private Bag 65901, Mairangi Bay 0754, Auckland, New Zealand.
| |
Collapse
|
26
|
Shafer PO, Buchhalter J. Patient Education: Identifying Risks and Self-Management Approaches for Adherence and Sudden Unexpected Death in Epilepsy. Neurol Clin 2016; 34:443-56, ix. [PMID: 27086989 DOI: 10.1016/j.ncl.2016.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Patient education in epilepsy is one part of quality epilepsy care and is an evolving and growing field. Health outcomes, patient satisfaction, safety, patient/provider communication, and quality of life may all be affected by what people are taught (or not taught), what they understand, and how they use this information to make decisions and manage their health. Data regarding learning needs and interventions to address medication adherence and sudden unexpected death in epilepsy education can be used to guide clinicians in health care or community settings.
Collapse
Affiliation(s)
- Patricia Osborne Shafer
- Beth Israel Deaconess Medical Center, 330 Brookline Avenue KS 457, Boston, MA 02215, USA; Epilepsy Foundation, Landover, MD 20785-2353, USA.
| | - Jeffrey Buchhalter
- Comprehensive Children's Epilepsy Centre, Alberta Children's Hospital, Cumming School of Medicine, University of Calgary, 2888 Shaganappi Trail Northwest, Calgary, Alberta T3B 6A8, Canada
| |
Collapse
|
27
|
Thyrion L, Raedt R, Portelli J, Van Loo P, Wadman WJ, Glorieux G, Lambrecht BN, Janssens S, Vonck K, Boon P. Uric acid is released in the brain during seizure activity and increases severity of seizures in a mouse model for acute limbic seizures. Exp Neurol 2016; 277:244-251. [PMID: 26774005 DOI: 10.1016/j.expneurol.2016.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 12/15/2015] [Accepted: 01/04/2016] [Indexed: 11/08/2022]
Abstract
Recent evidence points at an important role of endogenous cell-damage induced pro-inflammatory molecules in the generation of epileptic seizures. Uric acid, under the form of monosodium urate crystals, has shown to have pro-inflammatory properties in the body, but less is known about its role in seizure generation. This study aimed to unravel the contribution of uric acid to seizure generation in a mouse model for acute limbic seizures. We measured extracellular levels of uric acid in the brain and modulated them using complementary pharmacological and genetic tools. Local extracellular uric acid levels increased three to four times during acute limbic seizures and peaked between 50 and 100 min after kainic acid infusion. Manipulating uric acid levels through administration of allopurinol or knock-out of urate oxidase significantly altered the number of generalized seizures, decreasing and increasing them by a twofold respectively. Taken together, our results consistently show that uric acid is released during limbic seizures and suggest that uric acid facilitates seizure generalization.
Collapse
Affiliation(s)
- Lisa Thyrion
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology (LCEN3), Department of Neurology, Institute for Neuroscience, Ghent University Hospital, De Pintelaan 185, 2 Blok B, 9000 Ghent, Belgium.
| | - Robrecht Raedt
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology (LCEN3), Department of Neurology, Institute for Neuroscience, Ghent University Hospital, De Pintelaan 185, 2 Blok B, 9000 Ghent, Belgium.
| | - Jeanelle Portelli
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology (LCEN3), Department of Neurology, Institute for Neuroscience, Ghent University Hospital, De Pintelaan 185, 2 Blok B, 9000 Ghent, Belgium; Center for Neurosciences C4N, Department of Pharmaceutical Chemistry, Drug Analysis & Drug Information, Vrije Universiteit Brussel, Building G, Room G.103, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Pieter Van Loo
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology (LCEN3), Department of Neurology, Institute for Neuroscience, Ghent University Hospital, De Pintelaan 185, 2 Blok B, 9000 Ghent, Belgium.
| | - Wytse J Wadman
- Swammerdam Institute of Life Sciences, University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, The Netherlands.
| | - Griet Glorieux
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, De Pintelaan 185, 0K12, 9000 Ghent, Belgium.
| | - Bart N Lambrecht
- Unit Immunoregulation and Mucosal Immunology, VIB Inflammation Research Center, 'Fiers-Schell-Van Montagu' Building, Technologiepark 927, Zwijnaarde, 9052 Ghent, Belgium; Department of Internal Medicine, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands.
| | - Sophie Janssens
- Unit Immunoregulation and Mucosal Immunology, VIB Inflammation Research Center, 'Fiers-Schell-Van Montagu' Building, Technologiepark 927, Zwijnaarde, 9052 Ghent, Belgium; Department of Internal Medicine, Ghent University, Ghent, Belgium.
| | - Kristl Vonck
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology (LCEN3), Department of Neurology, Institute for Neuroscience, Ghent University Hospital, De Pintelaan 185, 2 Blok B, 9000 Ghent, Belgium.
| | - Paul Boon
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology (LCEN3), Department of Neurology, Institute for Neuroscience, Ghent University Hospital, De Pintelaan 185, 2 Blok B, 9000 Ghent, Belgium.
| |
Collapse
|
28
|
Strzelczyk A, Willems LM, Willig S, Rosenow F, Bauer S. Perampanel in the treatment of focal and idiopathic generalized epilepsies and of status epilepticus. Expert Rev Clin Pharmacol 2015; 8:733-40. [DOI: 10.1586/17512433.2015.1091303] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|