1
|
Lin L, Hu X, Hong W, Pan T, Wang Z, Wang E, Wu G. A novel animal model of spontaneous epilepsy: Cdk5 knockout in pericyte-specific mice. Front Cell Neurosci 2024; 18:1474231. [PMID: 39479522 PMCID: PMC11521856 DOI: 10.3389/fncel.2024.1474231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/02/2024] [Indexed: 11/02/2024] Open
Abstract
Changes in neurovascular unit components and their interactions play a crucial role in epileptogenesis and the pathological process of epilepsy. Currently, there is a lack of animal models that can accurately reflect the etiological impact of cerebrovascular lesions on epilepsy. In this study, we constructed cyclin-dependent kinase 5 conditional knockout mice in Cspg4 (pericyte marker)-positive cells using the Cre-LoxP system. The results revealed that this strain of mice exhibited significant seizure behaviors and epileptiform brain waves, loss of hippocampal and amygdala neurons, astrogliosis, decreased pericyte coverage, and reduced AQP4 polar distribution. Herein, we have developed a novel mouse model of spontaneous epilepsy, providing a critical animal model for studying the involvement of neurovascular unit factors in the development and progression of epilepsy.
Collapse
Affiliation(s)
- Lin Lin
- Department of Pharmacy, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaofei Hu
- Department of Neurology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Weijun Hong
- Department of Neurology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Tengwei Pan
- Department of Neurology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Zhiren Wang
- Department of Pharmacy, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - En Wang
- Department of Neurology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Gang Wu
- Department of Pharmacy, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Taizhou Key Laboratory of Pharmaceuticals Therapy and Translation Research, Linhai, Zhejiang, China
| |
Collapse
|
2
|
Casella C, Vecchiato K, Cromb D, Guo Y, Winkler AM, Hughes E, Dillon L, Green E, Colford K, Egloff A, Siddiqui A, Price A, Grande LC, Wood TC, Malik S, Teixeira RPA, Carmichael DW, O’Muircheartaigh J. Widespread, depth-dependent cortical microstructure alterations in pediatric focal epilepsy. Epilepsia 2024; 65:739-752. [PMID: 38088235 PMCID: PMC7616339 DOI: 10.1111/epi.17861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/27/2023]
Abstract
OBJECTIVE Tissue abnormalities in focal epilepsy may extend beyond the presumed focus. The underlying pathophysiology of these broader changes is unclear, and it is not known whether they result from ongoing disease processes or treatment-related side effects, or whether they emerge earlier. Few studies have focused on the period of onset for most focal epilepsies, childhood. Fewer still have utilized quantitative magnetic resonance imaging (MRI), which may provide a more sensitive and interpretable measure of tissue microstructural change. Here, we aimed to determine common spatial modes of changes in cortical architecture in children with heterogeneous drug-resistant focal epilepsy and, secondarily, whether changes were related to disease severity. METHODS To assess cortical microstructure, quantitative T1 and T2 relaxometry (qT1 and qT2) was measured in 43 children with drug-resistant focal epilepsy (age range = 4-18 years) and 46 typically developing children (age range = 2-18 years). We assessed depth-dependent qT1 and qT2 values across the neocortex, as well as their gradient of change across cortical depths. We also determined whether global changes seen in group analyses were driven by focal pathologies in individual patients. Finally, as a proof-of-concept, we trained a classifier using qT1 and qT2 gradient maps from patients with radiologically defined abnormalities (MRI positive) and healthy controls, and tested whether this could classify patients without reported radiological abnormalities (MRI negative). RESULTS We uncovered depth-dependent qT1 and qT2 increases in widespread cortical areas in patients, likely representing microstructural alterations in myelin or gliosis. Changes did not correlate with disease severity measures, suggesting they may represent antecedent neurobiological alterations. Using a classifier trained with MRI-positive patients and controls, sensitivity was 71.4% at 89.4% specificity on held-out MRI-negative patients. SIGNIFICANCE These findings suggest the presence of a potential imaging endophenotype of focal epilepsy, detectable irrespective of radiologically identified abnormalities.
Collapse
Affiliation(s)
- Chiara Casella
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Department for Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Katy Vecchiato
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Department for Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Daniel Cromb
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Yourong Guo
- Department for Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Anderson M. Winkler
- Department of Human Genetics, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Emer Hughes
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Louise Dillon
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Elaine Green
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Kathleen Colford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Alexia Egloff
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Ata Siddiqui
- Department of Radiology, Guy’s and Saint Thomas’ Hospitals NHS Trust, London, UK
| | - Anthony Price
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Lucilio Cordero Grande
- Department of Biomedical Engineering, King’s College London, London, UK
- Biomedical Image Technologies, Telecommunication Engineering School (ETSIT), Technical University of Madrid, Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre, National Institute of Health Carlos III, Madrid, Spain
| | - Tobias C. Wood
- Department of Neuroimaging, King’s College London, London, UK
| | - Shaihan Malik
- Department of Biomedical Engineering, King’s College London, London, UK
| | | | | | - Jonathan O’Muircheartaigh
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Department for Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
- Medical Research Council (MRC) Centre for Neurodevelopmental Disorders, London, UK
| |
Collapse
|
3
|
Çarçak N, Onat F, Sitnikova E. Astrocytes as a target for therapeutic strategies in epilepsy: current insights. Front Mol Neurosci 2023; 16:1183775. [PMID: 37583518 PMCID: PMC10423940 DOI: 10.3389/fnmol.2023.1183775] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/12/2023] [Indexed: 08/17/2023] Open
Abstract
Astrocytes are specialized non-neuronal glial cells of the central nervous system, contributing to neuronal excitability and synaptic transmission (gliotransmission). Astrocytes play a key roles in epileptogenesis and seizure generation. Epilepsy, as a chronic disorder characterized by neuronal hyperexcitation and hypersynchronization, is accompanied by substantial disturbances of glial cells and impairment of astrocytic functions and neuronal signaling. Anti-seizure drugs that provide symptomatic control of seizures primarily target neural activity. In epileptic patients with inadequate control of seizures with available anti-seizure drugs, novel therapeutic candidates are needed. These candidates should treat epilepsy with anti-epileptogenic and disease-modifying effects. Evidence from human and animal studies shows that astrocytes have value for developing new anti-seizure and anti-epileptogenic drugs. In this review, we present the key functions of astrocytes contributing to neuronal hyperexcitability and synaptic activity following an etiology-based approach. We analyze the role of astrocytes in both development (epileptogenesis) and generation of seizures (ictogenesis). Several promising new strategies that attempted to modify astroglial functions for treating epilepsy are being developed: (1) selective targeting of glia-related molecular mechanisms of glutamate transport; (2) modulation of tonic GABA release from astrocytes; (3) gliotransmission; (4) targeting the astrocytic Kir4.1-BDNF system; (5) astrocytic Na+/K+/ATPase activity; (6) targeting DNA hypo- or hypermethylation of candidate genes in astrocytes; (7) targeting astrocytic gap junction regulators; (8) targeting astrocytic adenosine kinase (the major adenosine-metabolizing enzyme); and (9) targeting microglia-astrocyte communication and inflammatory pathways. Novel disease-modifying therapeutic strategies have now been developed, such as astroglia-targeted gene therapy with a broad spectrum of genetic constructs to target astroglial cells.
Collapse
Affiliation(s)
- Nihan Çarçak
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
- Institute of Health Sciences, Department of Neuroscience, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Filiz Onat
- Institute of Health Sciences, Department of Neuroscience, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Department of Medical Pharmacology, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Evgenia Sitnikova
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
4
|
Hamid C, Maiworm M, Wagner M, Knake S, Nöth U, Deichmann R, Gracien RM, Seiler A. Focal epilepsy without overt epileptogenic lesions: no evidence of microstructural brain tissue damage in multi-parametric quantitative MRI. Front Neurol 2023; 14:1175971. [PMID: 37528856 PMCID: PMC10389268 DOI: 10.3389/fneur.2023.1175971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/03/2023] [Indexed: 08/03/2023] Open
Abstract
Background and purpose In patients with epilepsies of structural origin, brain atrophy and pathological alterations of the tissue microstructure extending beyond the putative epileptogenic lesion have been reported. However, in patients without any evidence of epileptogenic lesions on diagnostic magnetic resonance imaging (MRI), impairment of the brain microstructure has been scarcely elucidated. Using multiparametric quantitative (q) magnetic resonance imaging MRI, we aimed to investigate diffuse impairment of the microstructural tissue integrity in MRI-negative focal epilepsy patients. Methods 27 MRI-negative patients with focal epilepsy (mean age 33.1 ± 14.2 years) and 27 matched healthy control subjects underwent multiparametric qMRI including T1, T2, and PD mapping at 3 T. After tissue segmentation based on synthetic anatomies, mean qMRI parameter values were extracted from the cerebral cortex, the white matter (WM) and the deep gray matter (GM) and compared between patients and control subjects. Apart from calculating mean values for the qMRI parameters across the respective compartments, voxel-wise analyses were performed for each tissue class. Results There were no significant differences for mean values of quantitative T1, T2, and PD obtained from the cortex, the WM and the deep GM between the groups. Furthermore, the voxel-wise analyses did not reveal any clusters indicating significant differences between patients and control subjects for the qMRI parameters in the respective compartments. Conclusions Based on the employed methodology, no indication for an impairment of the cerebral microstructural tissue integrity in MRI-negative patients with focal epilepsy was found in this study. Further research will be necessary to identify relevant factors and mechanisms contributing to microstructural brain tissue damage in various subgroups of patients with epilepsy.
Collapse
Affiliation(s)
- Celona Hamid
- Department of Neurology, Goethe University Hospital, Frankfurt, Germany
- Brain Imaging Center, Goethe University Frankfurt, Frankfurt, Germany
- Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Frankfurt, Germany
| | - Michelle Maiworm
- Department of Neurology, Goethe University Hospital, Frankfurt, Germany
- Brain Imaging Center, Goethe University Frankfurt, Frankfurt, Germany
| | - Marlies Wagner
- Brain Imaging Center, Goethe University Frankfurt, Frankfurt, Germany
- Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Frankfurt, Germany
- Institute of Neuroradiology, Goethe University Hospital, Frankfurt, Germany
| | - Susanne Knake
- Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Frankfurt, Germany
- Epilepsy Center Hessen and Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | - Ulrike Nöth
- Brain Imaging Center, Goethe University Frankfurt, Frankfurt, Germany
- Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Frankfurt, Germany
| | - Ralf Deichmann
- Brain Imaging Center, Goethe University Frankfurt, Frankfurt, Germany
- Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Frankfurt, Germany
| | - René-Maxime Gracien
- Department of Neurology, Goethe University Hospital, Frankfurt, Germany
- Brain Imaging Center, Goethe University Frankfurt, Frankfurt, Germany
- Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Frankfurt, Germany
| | - Alexander Seiler
- Department of Neurology, Goethe University Hospital, Frankfurt, Germany
- Brain Imaging Center, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
5
|
Altered Extracellular Matrix as an Alternative Risk Factor for Epileptogenicity in Brain Tumors. Biomedicines 2022; 10:biomedicines10102475. [PMID: 36289737 PMCID: PMC9599244 DOI: 10.3390/biomedicines10102475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Seizures are one of the most common symptoms of brain tumors. The incidence of seizures differs among brain tumor type, grade, location and size, but paediatric-type diffuse low-grade gliomas/glioneuronal tumors are often highly epileptogenic. The extracellular matrix (ECM) is known to play a role in epileptogenesis and tumorigenesis because it is involved in the (re)modelling of neuronal connections and cell-cell signaling. In this review, we discuss the epileptogenicity of brain tumors with a focus on tumor type, location, genetics and the role of the extracellular matrix. In addition to functional problems, epileptogenic tumors can lead to increased morbidity and mortality, stigmatization and life-long care. The health advantages can be major if the epileptogenic properties of brain tumors are better understood. Surgical resection is the most common treatment of epilepsy-associated tumors, but post-surgery seizure-freedom is not always achieved. Therefore, we also discuss potential novel therapies aiming to restore ECM function.
Collapse
|
6
|
Zhang M, Huang H, Liu W, Tang L, Li Q, Wang J, Huang X, Lin X, Meng H, Wang J, Zhan S, Li B, Luo J. Combined quantitative T2 mapping and [ 18F]FDG PET could improve lateralization of mesial temporal lobe epilepsy. Eur Radiol 2022; 32:6108-6117. [PMID: 35347363 PMCID: PMC9381472 DOI: 10.1007/s00330-022-08707-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/15/2022] [Accepted: 03/01/2022] [Indexed: 01/19/2023]
Abstract
OBJECTIVES To investigate whether quantitative T2 mapping is complementary to [18F]FDG PET in epileptogenic zone detection, thus improving the lateralization accuracy for drug-resistant mesial temporal lobe epilepsy (MTLE) using hybrid PET/MR. METHODS We acquired routine structural MRI, T2-weighted FLAIR, whole brain T2 mapping, and [18F]FDG PET in 46 MTLE patients and healthy controls on a hybrid PET/MR scanner, followed with computing voxel-based z-score maps of patients in reference to healthy controls. Asymmetry indexes of the hippocampus were calculated for each imaging modality, which then enter logistic regression models as univariate or multivariate for lateralization. Stereoelectroencephalography (SEEG) recordings and clinical decisions were collected as gold standard. RESULTS Routine structural MRI and T2w-FLAIR lateralized 47.8% (22/46) of MTLE patients, and FDG PET lateralized 84.8% (39/46). T2 mapping combined with [18F]FDG PET improved the lateralization accuracy by correctly lateralizing 95.6% (44/46) of MTLE patients. The asymmetry indexes of hippocampal T2 relaxometry and PET exhibit complementary tendency in detecting individual laterality, especially for MR-negative patients. In the quantitative analysis of z-score maps, the ipsilateral hippocampus had significantly lower SUVR (LTLE, p < 0.001; RTLE, p < 0.001) and higher T2 value (LTLE, p < 0.001; RTLE, p = 0.001) compared to the contralateral hippocampus. In logistic regression models, PET/T2 combination resulted in the highest AUC of 0.943 in predicting lateralization for MR-negative patients, followed by PET (AUC = 0.857) and T2 (AUC = 0.843). CONCLUSIONS The combination of quantitative T2 mapping and [18F]FDG PET could improve lateralization for temporal lobe epilepsy. KEY POINTS • Quantitative T2 mapping and18F-FDG PET are complementary in the characterization of hippocampal alterations of MR-negative temporal lobe epilepsy patients. • The combination of quantitative T2 and18F-FDG PET obtained from hybrid PET/MR could improve lateralization for temporal lobe epilepsy.
Collapse
Affiliation(s)
- Miao Zhang
- grid.16821.3c0000 0004 0368 8293Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Hui Huang
- grid.16821.3c0000 0004 0368 8293School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Wei Liu
- grid.16821.3c0000 0004 0368 8293Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Lihong Tang
- grid.16821.3c0000 0004 0368 8293School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Qikang Li
- grid.16821.3c0000 0004 0368 8293School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Jia Wang
- grid.16821.3c0000 0004 0368 8293School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Xinyun Huang
- grid.16821.3c0000 0004 0368 8293Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Xiaozhu Lin
- grid.16821.3c0000 0004 0368 8293Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Hongping Meng
- grid.16821.3c0000 0004 0368 8293Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Jin Wang
- grid.16821.3c0000 0004 0368 8293Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Shikun Zhan
- grid.16821.3c0000 0004 0368 8293Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Biao Li
- grid.16821.3c0000 0004 0368 8293Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China ,Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Ruijin Center, Shanghai, 200025 China
| | - Jie Luo
- grid.16821.3c0000 0004 0368 8293School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
7
|
Wu Z, Li J, Chen L, Chen S, Zhuang W. Establishing an in vitro model of MR-T1ρ imaging technology to quantify nucleus pulposus tissue proteoglycans: a preliminary study. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1528. [PMID: 34790734 PMCID: PMC8576651 DOI: 10.21037/atm-21-4297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/02/2021] [Indexed: 11/11/2022]
Abstract
Background The aim of the present study was to construct an in vitro model of degenerated nucleus pulposus with different combinations of biochemical components, and to find an in vitro model for the early degeneration of nucleus pulposus suitable for the detection of magnetic resonance T1rho (MR-T1ρ) sequence for the early diagnosis of degeneration of lumbar intervertebral disc. Methods The proteoglycan concentration gradient in the first experimental group was 5%, with a concentration range of 7 samples in vitro models from 5% to 35%. The second experimental group had 15 samples with a 1% concentration gradient of proteoglycan (range, 10–24%), with a higher water content compared with the first group. The third experimental group contained 20 samples with a concentration gradient of 1% proteoglycan (range, 10–29%), with 75% water content. All of the in vitro models were scanned using a 3.0T GE MR. To analyze the correlation between the proteoglycan content of the in vitro model and the T1ρ value, we investigated the feasibility and stability of modeling. Results There was no correlation between the in vitro model proteoglycan concentration and T1ρ value in the first experimental group; however, there was a significant negative correlation between the proteoglycan concentration and T1ρ value in the second experimental group (Y=–3.02X+131.8, R2=0.852, P<0.05). In the third experimental group, the proteoglycan concentration was significantly positively correlated with T1ρ value (Y=3.05X+11.99, R2=0.834, P<0.05). The comparison of the T1ρ values in the third experimental group before and 3 months after yielded an intraclass correlation coefficient value of 0.980, indicating that the biochemical components in the third experimental group were still stable after 3 months of storage. The slope of the regression equation between the Pfirrmann grading and T1ρ value in the third experimental group was not statistically different from the volunteer group (F=0.54, P=0.814), suggesting that the lumbar disc nucleus pulposus tissue of in vitro model samples fitted well with the volunteer group. Conclusions In this experiment, we successfully constructed an in vitro model of nucleus pulposus tissue proteoglycan that can be used for the quantitative evaluation of the MR-T1ρ imaging.
Collapse
Affiliation(s)
- Zhiqiang Wu
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jianqi Li
- Department of Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ludan Chen
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Song Chen
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenquan Zhuang
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Caldairou B, Foit NA, Mutti C, Fadaie F, Gill R, Lee HM, Demerath T, Urbach H, Schulze-Bonhage A, Bernasconi A, Bernasconi N. MRI-Based Machine Learning Prediction Framework to Lateralize Hippocampal Sclerosis in Patients With Temporal Lobe Epilepsy. Neurology 2021; 97:e1583-e1593. [PMID: 34475125 DOI: 10.1212/wnl.0000000000012699] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 07/30/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND OBJECTIVES MRI fails to reveal hippocampal pathology in 30% to 50% of temporal lobe epilepsy (TLE) surgical candidates. To address this clinical challenge, we developed an automated MRI-based classifier that lateralizes the side of covert hippocampal pathology in TLE. METHODS We trained a surface-based linear discriminant classifier that uses T1-weighted (morphology) and T2-weighted and fluid-attenuated inversion recovery (FLAIR)/T1 (intensity) features. The classifier was trained on 60 patients with TLE (mean age 35.6 years, 58% female) with histologically verified hippocampal sclerosis (HS). Images were deemed to be MRI negative in 42% of cases on the basis of neuroradiologic reading (40% based on hippocampal volumetry). The predictive model automatically labeled patients as having left or right TLE. Lateralization accuracy was compared to electroclinical data, including side of surgery. Accuracy of the classifier was further assessed in 2 independent TLE cohorts with similar demographics and electroclinical characteristics (n = 57, 58% MRI negative). RESULTS The overall lateralization accuracy was 93% (95% confidence interval 92%-94%), regardless of HS visibility. In MRI-negative TLE, the combination of T2 and FLAIR/T1 intensities provided the highest accuracy in both the training (84%, area under the curve [AUC] 0.95 ± 0.02) and validation (cohort 1 90%, AUC 0.99; cohort 2 76%, AUC 0.94) cohorts. DISCUSSION This prediction model for TLE lateralization operates on readily available conventional MRI contrasts and offers gain in accuracy over visual radiologic assessment. The combined contribution of decreased T1- and increased T2-weighted intensities makes the synthetic FLAIR/T1 contrast particularly effective in MRI-negative HS, setting the basis for broad clinical translation. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that in people with TLE and MRI-negative HS, an automated MRI-based classifier accurately determines the side of pathology.
Collapse
Affiliation(s)
- Benoit Caldairou
- From the Neuroimaging of Epilepsy Laboratory (B.C., N.A.F., C.M., F.F., R.G., H.M.L., A.B., N.B.), McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Quebec, Canada; and Departments of Neurosurgery (N.A.F.) and Neuroradiology (T.D., H.U.), Freiburg Medical Center, and Department of Neurology (A.S.-B.), University of Freiburg, Germany
| | - Niels A Foit
- From the Neuroimaging of Epilepsy Laboratory (B.C., N.A.F., C.M., F.F., R.G., H.M.L., A.B., N.B.), McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Quebec, Canada; and Departments of Neurosurgery (N.A.F.) and Neuroradiology (T.D., H.U.), Freiburg Medical Center, and Department of Neurology (A.S.-B.), University of Freiburg, Germany
| | - Carlotta Mutti
- From the Neuroimaging of Epilepsy Laboratory (B.C., N.A.F., C.M., F.F., R.G., H.M.L., A.B., N.B.), McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Quebec, Canada; and Departments of Neurosurgery (N.A.F.) and Neuroradiology (T.D., H.U.), Freiburg Medical Center, and Department of Neurology (A.S.-B.), University of Freiburg, Germany
| | - Fatemeh Fadaie
- From the Neuroimaging of Epilepsy Laboratory (B.C., N.A.F., C.M., F.F., R.G., H.M.L., A.B., N.B.), McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Quebec, Canada; and Departments of Neurosurgery (N.A.F.) and Neuroradiology (T.D., H.U.), Freiburg Medical Center, and Department of Neurology (A.S.-B.), University of Freiburg, Germany
| | - Ravnoor Gill
- From the Neuroimaging of Epilepsy Laboratory (B.C., N.A.F., C.M., F.F., R.G., H.M.L., A.B., N.B.), McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Quebec, Canada; and Departments of Neurosurgery (N.A.F.) and Neuroradiology (T.D., H.U.), Freiburg Medical Center, and Department of Neurology (A.S.-B.), University of Freiburg, Germany
| | - Hyo Min Lee
- From the Neuroimaging of Epilepsy Laboratory (B.C., N.A.F., C.M., F.F., R.G., H.M.L., A.B., N.B.), McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Quebec, Canada; and Departments of Neurosurgery (N.A.F.) and Neuroradiology (T.D., H.U.), Freiburg Medical Center, and Department of Neurology (A.S.-B.), University of Freiburg, Germany
| | - Theo Demerath
- From the Neuroimaging of Epilepsy Laboratory (B.C., N.A.F., C.M., F.F., R.G., H.M.L., A.B., N.B.), McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Quebec, Canada; and Departments of Neurosurgery (N.A.F.) and Neuroradiology (T.D., H.U.), Freiburg Medical Center, and Department of Neurology (A.S.-B.), University of Freiburg, Germany
| | - Horst Urbach
- From the Neuroimaging of Epilepsy Laboratory (B.C., N.A.F., C.M., F.F., R.G., H.M.L., A.B., N.B.), McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Quebec, Canada; and Departments of Neurosurgery (N.A.F.) and Neuroradiology (T.D., H.U.), Freiburg Medical Center, and Department of Neurology (A.S.-B.), University of Freiburg, Germany
| | - Andreas Schulze-Bonhage
- From the Neuroimaging of Epilepsy Laboratory (B.C., N.A.F., C.M., F.F., R.G., H.M.L., A.B., N.B.), McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Quebec, Canada; and Departments of Neurosurgery (N.A.F.) and Neuroradiology (T.D., H.U.), Freiburg Medical Center, and Department of Neurology (A.S.-B.), University of Freiburg, Germany
| | - Andrea Bernasconi
- From the Neuroimaging of Epilepsy Laboratory (B.C., N.A.F., C.M., F.F., R.G., H.M.L., A.B., N.B.), McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Quebec, Canada; and Departments of Neurosurgery (N.A.F.) and Neuroradiology (T.D., H.U.), Freiburg Medical Center, and Department of Neurology (A.S.-B.), University of Freiburg, Germany.
| | - Neda Bernasconi
- From the Neuroimaging of Epilepsy Laboratory (B.C., N.A.F., C.M., F.F., R.G., H.M.L., A.B., N.B.), McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Quebec, Canada; and Departments of Neurosurgery (N.A.F.) and Neuroradiology (T.D., H.U.), Freiburg Medical Center, and Department of Neurology (A.S.-B.), University of Freiburg, Germany.
| |
Collapse
|
9
|
Abstract
BACKGROUND A large number of patients have epilepsy that is intractable and adversely affects a child's lifelong experience with addition societal burden that is disabling and expensive. The last two decades have seen a major explosion of new antiseizure medication options. Despite these advances, children with epilepsy continue to have intractable seizures. An option that has been long available but little used is epilepsy surgery to control intractable epilepsy. METHODS This article is a review of the literature as well as published opinions. RESULTS Epilepsy surgery in pediatrics is an underused modality to effectively treat children with epilepsy. Adverse effects of medication should be weighed against risks of surgery as well as risks of nonefficacy. CONCLUSIONS We discuss an approach to selecting the appropriate pediatric patient for consideration, a detailed evaluation including necessary evaluation, and the creation of an algorithm to approach patients with both generalized and focal epilepsy. We then discuss surgical options available including outcome data. New modalities are also addressed including high-frequency ultrasound and co-registration techniques including magnetic resonance imaging-guided laser therapy.
Collapse
|
10
|
Peixoto-Santos JE, Blumcke I. Neuropathology of the 21st century for the Latin American epilepsy community. Seizure 2021; 90:51-59. [DOI: 10.1016/j.seizure.2021.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/18/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
|
11
|
Leite JP, Peixoto-Santos JE. Glia and extracellular matrix molecules: What are their importance for the electrographic and MRI changes in the epileptogenic zone? Epilepsy Behav 2021; 121:106542. [PMID: 31884121 DOI: 10.1016/j.yebeh.2019.106542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/22/2022]
Abstract
Glial cells and extracellular matrix (ECM) molecules are crucial for the maintenance of brain homeostasis. Especially because of their actions regarding neurotransmitter and ionic control, and synaptic function, these cells can potentially contribute to the hyperexcitability seen in the epileptogenic, while ECM changes are linked to synaptic reorganization. The present review will explore glial and ECM homeostatic roles and their potential contribution to tissue plasticity. Finally, we will address how glial, and ECM changes in the epileptogenic zone can be seen in magnetic resonance imaging (MRI), pointing out their importance as markers for the extension of the epileptogenic area. This article is part of the Special Issue "NEWroscience 2018".
Collapse
Affiliation(s)
- Joao Pereira Leite
- Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.
| | - Jose Eduardo Peixoto-Santos
- Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil; Department of Neurology and Neurosurgery, Paulista School of Medicine, UNIFESP, Sao Paulo, Brazil
| |
Collapse
|
12
|
Saute RL, Peixoto-Santos JE, Velasco TR, Leite JP. Improving surgical outcome with electric source imaging and high field magnetic resonance imaging. Seizure 2021; 90:145-154. [PMID: 33608134 DOI: 10.1016/j.seizure.2021.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/26/2021] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
While most patients with focal epilepsy present with clear structural abnormalities on standard, 1.5 or 3 T MRI, some patients are MRI-negative. For those, quantitative MRI techniques, such as volumetry, voxel-based morphometry, and relaxation time measurements can aid in finding the epileptogenic focus. High-field MRI, just recently approved for clinical use by the FDA, increases the resolution and, in several publications, was shown to improve the detection of focal cortical dysplasias and mild cortical malformations. For those cases without any tissue abnormality in neuroimaging, even at 7 T, scalp EEG alone is insufficient to delimitate the epileptogenic zone. They may benefit from the use of high-density EEG, in which the increased number of electrodes helps improve spatial sampling. The spatial resolution of even low-density EEG can benefit from electric source imaging techniques, which map the source of the recorded abnormal activity, such as interictal epileptiform discharges, focal slowing, and ictal rhythm. These EEG techniques help localize the irritative, functional deficit, and seizure-onset zone, to better estimate the epileptogenic zone. Combining those technologies allows several drug-resistant cases to be submitted to surgery, increasing the odds of seizure freedom and providing a must needed hope for patients with epilepsy.
Collapse
Affiliation(s)
- Ricardo Lutzky Saute
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Brazil
| | - Jose Eduardo Peixoto-Santos
- Discipline of Neuroscience, Department of Neurology and Neurosurgery, Paulista School of Medicine, Unifesp, Brazil
| | - Tonicarlo R Velasco
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Brazil
| | - Joao Pereira Leite
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Brazil.
| |
Collapse
|
13
|
Ueno H, Shimada A, Suemitsu S, Murakami S, Kitamura N, Wani K, Takahashi Y, Matsumoto Y, Okamoto M, Ishihara T. Alpha-pinene and dizocilpine (MK-801) attenuate kindling development and astrocytosis in an experimental mouse model of epilepsy. IBRO Rep 2020; 9:102-114. [PMID: 32760846 PMCID: PMC7390835 DOI: 10.1016/j.ibror.2020.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/11/2020] [Indexed: 12/12/2022] Open
Abstract
Understanding the molecular and cellular mechanisms involved during the onset of epilepsy is crucial for elucidating the overall mechanism of epileptogenesis and therapeutic strategies. Previous studies, using a pentylenetetrazole (PTZ)-induced kindling mouse model, showed that astrocyte activation and an increase in perineuronal nets (PNNs) and extracellular matrix (ECM) molecules occurred within the hippocampus. However, the mechanisms of initiation and suppression of these changes, remain unclear. Herein, we analyzed the attenuation of astrocyte activation caused by dizocilpine (MK-801) administration, as well as the anticonvulsant effect of α-pinene on seizures and production of ECM molecules. Our results showed that MK-801 significantly reduced kindling acquisition, while α-pinene treatment prevented an increase in seizures incidences. Both MK-801 and α-pinene administration attenuated astrocyte activation by PTZ and significantly attenuated the increase in ECM molecules. Our results indicate that astrocyte activation and an increase in ECM may contribute to epileptogenesis and suggest that MK-801 and α-pinene may prevent epileptic seizures by suppressing astrocyte activation and ECM molecule production.
Collapse
Affiliation(s)
- Hiroshi Ueno
- Department of Medical Technology, Kawasaki University of Medical Welfare, Okayama, 701-0193, Japan
| | - Atsumi Shimada
- Division of Food and Nutrition, Nakamura Gakuen University Junior College, Fukuoka, 814-0198, Japan
| | - Shunsuke Suemitsu
- Department of Psychiatry, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Shinji Murakami
- Department of Psychiatry, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Naoya Kitamura
- Department of Psychiatry, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Kenta Wani
- Department of Psychiatry, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Yu Takahashi
- Department of Psychiatry, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Yosuke Matsumoto
- Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Motoi Okamoto
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Takeshi Ishihara
- Department of Psychiatry, Kawasaki Medical School, Okayama, 701-0192, Japan
| |
Collapse
|
14
|
Peixoto-Santos JE, Velasco TR, Carlotti CG, Assirati JA, Rezende GHDSE, Kobow K, Coras R, Blümcke I, Salmon CEG, Santos ACD, Leite JP. Histological correlates of hippocampal magnetization transfer images in drug-resistant temporal lobe epilepsy patients. NEUROIMAGE-CLINICAL 2020; 28:102463. [PMID: 33395959 PMCID: PMC7586233 DOI: 10.1016/j.nicl.2020.102463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/01/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Temporal lobe epilepsy patients (TLE) often present with hippocampal atrophy, increased T2 relaxation, and reduced magnetization transfer ratio (MTR) in magnetic resonance images (MRI). The histological correlates of the reduced hippocampal MTR are so far unknown. Since MTR is dependent on the tissue's macromolecules, our aim was to evaluate the correlations between cellular populations, extracellular matrix molecules and the MTR in TLE patients. METHODS Patients with TLE (n = 26) and voluntaries (=20) were scanned in a 3 Tesla MRI scanner, and MTR images were calculated from 3DT1 sequences with magnetization pulse on resonance. Immunohistochemistry for neurons, reactive astrocytes, activated microglia, and extracellular matrix chondroitin sulfate were performed in formalin fixed, paraffin embedded tissues of TLE and autopsy controls (n = 10). Results were considered significant with adjusted p < 0.05. RESULTS Compared to the respective controls, TLE patients had reduced hippocampal MTR, increased reactive astrocytes and activated microglia, increased extracellular chondroitin sulfate, and reduced neuron density, compares to controls. MTR correlated positively with neuron density in CA3 and with chondroitin sulfate in CA3 and CA1. Multiple linear regressions reinforced the correlations between chondroitin sulfate and MTR. SIGNIFICANCE Our data indicate that extracellular matrix molecules are the most significant histological correlates of magnetization transfer ratio in the hippocampus of TLE patients.
Collapse
Affiliation(s)
- Jose Eduardo Peixoto-Santos
- Department of Neurology and Neurosurgery, Paulista Medical School, UNIFESP, Sao Paulo, Brazil; Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.
| | - Tonicarlo R Velasco
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.
| | - Carlos Gilberto Carlotti
- Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.
| | - Joao Alberto Assirati
- Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.
| | - Gustavo Henrique de Souza E Rezende
- Center for Technology and Research in Magneto-Resonance (CTPMAG), Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Katja Kobow
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany.
| | - Roland Coras
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany.
| | - Ingmar Blümcke
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany.
| | - Carlos Ernesto Garrido Salmon
- Department of Physics and Mathematics, Faculty of Philosophy, Science and Languages of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil.
| | - Antonio Carlos Dos Santos
- Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.
| | - Joao Pereira Leite
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.
| |
Collapse
|
15
|
Chaves J, Martins-Ferreira R, Ferreira AM, Brás S, Carvalho C, Bettencourt A, Samões R, Monteiro F, Freitas J, Chorão R, Lopes J, Ramalheira J, da Silva BM, Costa PP, da Silva AM, Leal B. Immunogenetic protective factors in Genetic Generalized Epilepsy. Epilepsy Res 2020; 166:106396. [DOI: 10.1016/j.eplepsyres.2020.106396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/02/2020] [Accepted: 06/10/2020] [Indexed: 11/25/2022]
|
16
|
Goodkin O, Pemberton HG, Vos SB, Prados F, Das RK, Moggridge J, De Blasi B, Bartlett P, Williams E, Campion T, Haider L, Pearce K, Bargallό N, Sanchez E, Bisdas S, White M, Ourselin S, Winston GP, Duncan JS, Cardoso J, Thornton JS, Yousry TA, Barkhof F. Clinical evaluation of automated quantitative MRI reports for assessment of hippocampal sclerosis. Eur Radiol 2020; 31:34-44. [PMID: 32749588 PMCID: PMC7755617 DOI: 10.1007/s00330-020-07075-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/07/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Hippocampal sclerosis (HS) is a common cause of temporal lobe epilepsy. Neuroradiological practice relies on visual assessment, but quantification of HS imaging biomarkers-hippocampal volume loss and T2 elevation-could improve detection. We tested whether quantitative measures, contextualised with normative data, improve rater accuracy and confidence. METHODS Quantitative reports (QReports) were generated for 43 individuals with epilepsy (mean age ± SD 40.0 ± 14.8 years, 22 men; 15 histologically unilateral HS; 5 bilateral; 23 MR-negative). Normative data was generated from 111 healthy individuals (age 40.0 ± 12.8 years, 52 men). Nine raters with different experience (neuroradiologists, trainees, and image analysts) assessed subjects' imaging with and without QReports. Raters assigned imaging normal, right, left, or bilateral HS. Confidence was rated on a 5-point scale. RESULTS Correct designation (normal/abnormal) was high and showed further trend-level improvement with QReports, from 87.5 to 92.5% (p = 0.07, effect size d = 0.69). Largest magnitude improvement (84.5 to 93.8%) was for image analysts (d = 0.87). For bilateral HS, QReports significantly improved overall accuracy, from 74.4 to 91.1% (p = 0.042, d = 0.7). Agreement with the correct diagnosis (kappa) tended to increase from 0.74 ('fair') to 0.86 ('excellent') with the report (p = 0.06, d = 0.81). Confidence increased when correctly assessing scans with the QReport (p < 0.001, η2p = 0.945). CONCLUSIONS QReports of HS imaging biomarkers can improve rater accuracy and confidence, particularly in challenging bilateral cases. Improvements were seen across all raters, with large effect sizes, greatest for image analysts. These findings may have positive implications for clinical radiology services and justify further validation in larger groups. KEY POINTS • Quantification of imaging biomarkers for hippocampal sclerosis-volume loss and raised T2 signal-could improve clinical radiological detection in challenging cases. • Quantitative reports for individual patients, contextualised with normative reference data, improved diagnostic accuracy and confidence in a group of nine raters, in particular for bilateral HS cases. • We present a pre-use clinical validation of an automated imaging assessment tool to assist clinical radiology reporting of hippocampal sclerosis, which improves detection accuracy.
Collapse
Affiliation(s)
- Olivia Goodkin
- Centre for Medical Image Computing (CMIC), University College London, London, UK. .,Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK.
| | - Hugh G Pemberton
- Centre for Medical Image Computing (CMIC), University College London, London, UK.,Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Sjoerd B Vos
- Centre for Medical Image Computing (CMIC), University College London, London, UK.,Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK.,Epilepsy Society MRI Unit, Chalfont St Peter, UK
| | - Ferran Prados
- Centre for Medical Image Computing (CMIC), University College London, London, UK.,Universitat Oberta de Catalunya, Barcelona, Spain
| | - Ravi K Das
- Clinical, Educational and Health Psychology, University College London, London, UK
| | - James Moggridge
- Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK.,Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, UK
| | - Bianca De Blasi
- Department of Medical Physics and Bioengineering, University College London, London, UK
| | - Philippa Bartlett
- Epilepsy Society MRI Unit, Chalfont St Peter, UK.,Department of Clinical and Experimental Epilepsy, University College London, London, UK
| | - Elaine Williams
- Wellcome Trust Centre for Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Thomas Campion
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, UK
| | - Lukas Haider
- Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Vienna, Austria.,NMR Research Unit, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Kirsten Pearce
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, UK
| | - Nuria Bargallό
- Radiology Department, Hospital Clínic de Barcelona and Magnetic Resonance Image Core Facility, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Esther Sanchez
- Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Sotirios Bisdas
- Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK.,Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, UK
| | - Mark White
- Digital Services, University College London Hospital, London, UK
| | - Sebastien Ourselin
- Department of Medical Physics and Bioengineering, University College London, London, UK.,School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Gavin P Winston
- Epilepsy Society MRI Unit, Chalfont St Peter, UK.,Department of Clinical and Experimental Epilepsy, University College London, London, UK.,Department of Medicine, Division of Neurology, Queen's University, Kingston, Ontario, Canada
| | - John S Duncan
- Epilepsy Society MRI Unit, Chalfont St Peter, UK.,Department of Clinical and Experimental Epilepsy, University College London, London, UK
| | - Jorge Cardoso
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - John S Thornton
- Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK.,Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, UK
| | - Tarek A Yousry
- Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK.,Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, UK
| | - Frederik Barkhof
- Centre for Medical Image Computing (CMIC), University College London, London, UK.,Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK.,Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, UK.,Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Dombroski TCD, Peixoto-Santos JE, Maciel K, Baqui MMA, Velasco TR, Sakamoto AC, Assirati JA, Carlotti CG, Machado HR, Sousa GKD, Hanamura K, Leite JP, Costa da Costa J, Palmini AL, Paglioli E, Neder L, Spreafico R, Shirao T, Garbelli R, Martins AR. Drebrin expression patterns in patients with refractory temporal lobe epilepsy and hippocampal sclerosis. Epilepsia 2020; 61:1581-1594. [PMID: 32662890 DOI: 10.1111/epi.16595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/08/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Drebrins are crucial for synaptic function and dendritic spine development, remodeling, and maintenance. In temporal lobe epilepsy (TLE) patients, a significant hippocampal synaptic reorganization occurs, and synaptic reorganization has been associated with hippocampal hyperexcitability. This study aimed to evaluate, in TLE patients, the hippocampal expression of drebrin using immunohistochemistry with DAS2 or M2F6 antibodies that recognize adult (drebrin A) or adult and embryonic (pan-drebrin) isoforms, respectively. METHODS Hippocampal sections from drug-resistant TLE patients with hippocampal sclerosis (HS; TLE, n = 33), of whom 31 presented with type 1 HS and two with type 2 HS, and autopsy control cases (n = 20) were assayed by immunohistochemistry and evaluated for neuron density, and drebrin A and pan-drebrin expression. Double-labeling immunofluorescences were performed to localize drebrin A-positive spines in dendrites (MAP2), and to evaluate whether drebrin colocalizes with inhibitory (GAD65) and excitatory (VGlut1) presynaptic markers. RESULTS Compared to controls, TLE patients had increased pan-drebrin in all hippocampal subfields and increased drebrin A-immunopositive area in all hippocampal subfields but CA1. Drebrin-positive spine density followed the same pattern as total drebrin quantification. Confocal microscopy indicated juxtaposition of drebrin-positive spines with VGlut1-positive puncta, but not with GAD65-positive puncta. Drebrin expression in the dentate gyrus of TLE cases was associated negatively with seizure frequency and positively with verbal memory. TLE patients with lower drebrin-immunopositive area in inner molecular layer (IML) than in outer molecular layer (OML) had a lower seizure frequency than those with higher or comparable drebrin-immunopositive area in IML compared with OML. SIGNIFICANCE Our results suggest that changes in drebrin-positive spines and drebrin expression in the dentate gyrus of TLE patients are associated with lower seizure frequency, more preserved verbal memory, and a better postsurgical outcome.
Collapse
Affiliation(s)
| | - Jose Eduardo Peixoto-Santos
- Discipline of Neuroscience, Department of Neurology and Neurosurgery, Paulista Medical School, UNIFESP, São Paulo, Brazil
| | - Karina Maciel
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Munira Muhammad Abdel Baqui
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Tonicarlo Rodrigues Velasco
- Ribeirao Preto Epilepsy Surgery Center, Clinics Hospital, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Americo Ceiki Sakamoto
- Ribeirao Preto Epilepsy Surgery Center, Clinics Hospital, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - João Alberto Assirati
- Department of Surgery, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Carlos Gilberto Carlotti
- Department of Surgery, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Hélio Rubens Machado
- Department of Surgery, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Gleice Kelly de Sousa
- Graduate Program of Health Sciences, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Kenji Hanamura
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - João Pereira Leite
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jaderson Costa da Costa
- Department of Internal Medicine, School of Medicine, Epilepsy Surgery Program and Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - André Luiz Palmini
- Department of Internal Medicine, School of Medicine, Epilepsy Surgery Program and Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Eliseu Paglioli
- Department of Surgery, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Luciano Neder
- Department of Pathology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Roberto Spreafico
- Clinical Epileptology and Experimental Neurophysiology Unit, Scientific Institute for Research and Health Care Foundation Carlo Besta Neurological Institute, Milan, Italy
| | - Tomoaki Shirao
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Rita Garbelli
- Clinical Epileptology and Experimental Neurophysiology Unit, Scientific Institute for Research and Health Care Foundation Carlo Besta Neurological Institute, Milan, Italy
| | - Antonio Roberto Martins
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Institute for Neuroscience and Behavior, Ribeirão Preto, Brazil
| |
Collapse
|
18
|
Ahmad R, Maiworm M, Nöth U, Seiler A, Hattingen E, Steinmetz H, Rosenow F, Deichmann R, Wagner M, Gracien RM. Cortical Changes in Epilepsy Patients With Focal Cortical Dysplasia: New Insights With T 2 Mapping. J Magn Reson Imaging 2020; 52:1783-1789. [PMID: 32383241 DOI: 10.1002/jmri.27184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND In epilepsy patients with focal cortical dysplasia (FCD) as the epileptogenic focus, global cortical signal changes are generally not visible on conventional MRI. However, epileptic seizures or antiepileptic medication might affect normal-appearing cerebral cortex and lead to subtle damage. PURPOSE To investigate cortical properties outside FCD regions with T2 -relaxometry. STUDY TYPE Prospective study. SUBJECTS Sixteen patients with epilepsy and FCD and 16 age-/sex-matched healthy controls. FIELD STRENGTH/SEQUENCE 3T, fast spin-echo T2 -mapping, fluid-attenuated inversion recovery (FLAIR), and synthetic T1 -weighted magnetization-prepared rapid acquisition of gradient-echoes (MP-RAGE) datasets derived from T1 -maps. ASSESSMENT Reconstruction of the white matter and cortical surfaces based on MP-RAGE structural images was performed to extract cortical T2 values, excluding lesion areas. Three independent raters confirmed that morphological cortical/juxtacortical changes in the conventional FLAIR datasets outside the FCD areas were definitely absent for all patients. Averaged global cortical T2 values were compared between groups. Furthermore, group comparisons of regional cortical T2 values were performed using a surface-based approach. Tests for correlations with clinical parameters were carried out. STATISTICAL TESTS General linear model analysis, permutation simulations, paired and unpaired t-tests, and Pearson correlations. RESULTS Cortical T2 values were increased outside FCD regions in patients (83.4 ± 2.1 msec, control group 81.4 ± 2.1 msec, P = 0.01). T2 increases were widespread, affecting mainly frontal, but also parietal and temporal regions of both hemispheres. Significant correlations were not observed (P ≥ 0.55) between cortical T2 values in the patient group and the number of seizures in the last 3 months or the number of anticonvulsive drugs in the medical history. DATA CONCLUSION Widespread increases in cortical T2 in FCD-associated epilepsy patients were found, suggesting that structural epilepsy in patients with FCD is not only a symptom of a focal cerebral lesion, but also leads to global cortical damage not visible on conventional MRI. EVIDENCE LEVEL 21 TECHNICAL EFFICACY STAGE: 3 J. MAGN. RESON. IMAGING 2020;52:1783-1789.
Collapse
Affiliation(s)
- Rida Ahmad
- Department of Neurology, Goethe University, Frankfurt/Main, Germany.,Department of Neuroradiology, Goethe University, Frankfurt/Main, Germany.,Brain Imaging Center, Goethe University, Frankfurt/Main, Germany.,Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Germany
| | - Michelle Maiworm
- Department of Neurology, Goethe University, Frankfurt/Main, Germany.,Department of Neuroradiology, Goethe University, Frankfurt/Main, Germany.,Brain Imaging Center, Goethe University, Frankfurt/Main, Germany.,Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Germany
| | - Ulrike Nöth
- Brain Imaging Center, Goethe University, Frankfurt/Main, Germany.,Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Germany
| | - Alexander Seiler
- Department of Neurology, Goethe University, Frankfurt/Main, Germany.,Brain Imaging Center, Goethe University, Frankfurt/Main, Germany
| | - Elke Hattingen
- Department of Neuroradiology, Goethe University, Frankfurt/Main, Germany.,Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Germany
| | - Helmuth Steinmetz
- Department of Neurology, Goethe University, Frankfurt/Main, Germany.,Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Germany
| | - Felix Rosenow
- Department of Neurology, Goethe University, Frankfurt/Main, Germany.,Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Germany.,Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe University, Frankfurt/Main, Germany
| | - Ralf Deichmann
- Brain Imaging Center, Goethe University, Frankfurt/Main, Germany.,Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Germany
| | - Marlies Wagner
- Department of Neuroradiology, Goethe University, Frankfurt/Main, Germany.,Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Germany
| | - René-Maxime Gracien
- Department of Neurology, Goethe University, Frankfurt/Main, Germany.,Brain Imaging Center, Goethe University, Frankfurt/Main, Germany.,Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Germany
| |
Collapse
|
19
|
Alteration of Extracellular Matrix Molecules and Perineuronal Nets in the Hippocampus of Pentylenetetrazol-Kindled Mice. Neural Plast 2019; 2019:8924634. [PMID: 31827499 PMCID: PMC6885262 DOI: 10.1155/2019/8924634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/25/2019] [Accepted: 10/08/2019] [Indexed: 01/01/2023] Open
Abstract
The pathophysiological processes leading to epilepsy are poorly understood. Understanding the molecular and cellular mechanisms involved in the onset of epilepsy is crucial for drug development. Epileptogenicity is thought to be associated with changes in synaptic plasticity; however, whether extracellular matrix molecules—known regulators of synaptic plasticity—are altered during epileptogenesis is unknown. To test this, we used a pentylenetetrazole- (PTZ-) kindling model mouse to investigate changes to hippocampal parvalbumin- (PV-) positive neurons, extracellular matrix molecules, and perineuronal nets (PNNs) after the last kindled seizure. We found an increase in Wisteria floribunda agglutinin- (WFA-) and Cat-315-positive PNNs and a decrease in PV-positive neurons not surrounded by PNNs, in the hippocampus of PTZ-kindled mice compared to control mice. Furthermore, the expression of WFA- and Cat-315-positive molecules increased in the extracellular space of PTZ-kindled mice. In addition, consistent with previous studies, astrocytes were activated in PTZ-kindled mice. We propose that the increase in PNNs after kindling decreases neuroplasticity in the hippocampus and helps maintain the neural circuit for recurrent seizures. This study shows that possibility of changes in extracellular matrix molecules due to astrocyte activation is associated with epilepticus in PTZ-kindled mice.
Collapse
|
20
|
Avakyan GN, Blinov DV, Alikhanov AA, Perepelova EM, Perepelov VA, Burd SG, Lebedeva AV, Avakyan GG. Recommendations of the Russian League Against Epilepsy (RLAE) on the use of magnetic resonance imaging in the diagnosis of epilepsy. ACTA ACUST UNITED AC 2019. [DOI: 10.17749/2077-8333.2019.11.3.208-232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Introduction. The MRI method has revolutionized the diagnosis of epilepsy. However, the widespread adoption of MRI in clinical practice is slowed by an insufficient number of high-field MRI scanners, a shortage of trained specialists, and the lack of standard examination protocols. The aim of this article is to present the Recommendations of the Russian League Against Epilepsy (RLAE) on the use of magnetic resonance imaging in the diagnosis of epilepsy.Materials and methods. As a structural element of the International League Against Epilepsy (ILAE), the RLAE considers it important to adapt the Protocol developed by ILAE for specialists in Russia and EAEU countries. The working group analyzed and generalized the clinical practice existing in the Russian Federation, the Republic of Kazakhstan, the Republic of Belarus and the Republic of Uzbekistan. These recommendations are intended for doctors in specialized centers of epilepsy surgery, and for doctors in general medical centers. The recommendations are applicable primarily to adult patients, but the general principles are relevant to children as well.Results. In all patients with convulsive seizures shortly after the first seizure, or patients diagnosed with epilepsy who have an unexplained increase in the frequency of seizures, rapid decrease in cognitive functions or the appearance / worsening of neuropsychiatric symptoms, the RLAE recommends using a unified MR protocol for the neuroimaging of structural sequences in epilepsy with three-dimensional pulse sequences T1 and T2 FLAIR with isotropic voxel 1 × 1 × 1 mm3 and two-dimensional T2- weighted pulse sequences with a pixel size of 1 × 1 mm2 or less. The MRI examination should be combined with EEG or EEG-video monitoring. Using this protocol allows one to set a unified standard for examining patients with epilepsy in order to detect (with high sensitivity) brain lesions playing a key role in the occurrence of seizures. Here, all 13 recommendations are presented.Conclusion. Implementation of these recommendations in clinical practice will improve the access to high-tech medical care and optimize health care costs.
Collapse
Affiliation(s)
- G. N. Avakyan
- Pirogov Russian National Research Medical University
| | - D. V. Blinov
- Institute for Preventive and Social Medicine;
Moscow Haass Medical – Social Institute;
Lapino Clinic Hospital, MD Medical Group
| | | | | | | | - S. G. Burd
- Pirogov Russian National Research Medical University
| | | | - G. G. Avakyan
- Pirogov Russian National Research Medical University
| |
Collapse
|
21
|
Bernasconi A, Cendes F, Theodore WH, Gill RS, Koepp MJ, Hogan RE, Jackson GD, Federico P, Labate A, Vaudano AE, Blümcke I, Ryvlin P, Bernasconi N. Recommendations for the use of structural magnetic resonance imaging in the care of patients with epilepsy: A consensus report from the International League Against Epilepsy Neuroimaging Task Force. Epilepsia 2019; 60:1054-1068. [PMID: 31135062 DOI: 10.1111/epi.15612] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 01/01/2023]
Abstract
Structural magnetic resonance imaging (MRI) is of fundamental importance to the diagnosis and treatment of epilepsy, particularly when surgery is being considered. Despite previous recommendations and guidelines, practices for the use of MRI are variable worldwide and may not harness the full potential of recent technological advances for the benefit of people with epilepsy. The International League Against Epilepsy Diagnostic Methods Commission has thus charged the 2013-2017 Neuroimaging Task Force to develop a set of recommendations addressing the following questions: (1) Who should have an MRI? (2) What are the minimum requirements for an MRI epilepsy protocol? (3) How should magnetic resonance (MR) images be evaluated? (4) How to optimize lesion detection? These recommendations target clinicians in established epilepsy centers and neurologists in general/district hospitals. They endorse routine structural imaging in new onset generalized and focal epilepsy alike and describe the range of situations when detailed assessment is indicated. The Neuroimaging Task Force identified a set of sequences, with three-dimensional acquisitions at its core, the harmonized neuroimaging of epilepsy structural sequences-HARNESS-MRI protocol. As these sequences are available on most MR scanners, the HARNESS-MRI protocol is generalizable, regardless of the clinical setting and country. The Neuroimaging Task Force also endorses the use of computer-aided image postprocessing methods to provide an objective account of an individual's brain anatomy and pathology. By discussing the breadth and depth of scope of MRI, this report emphasizes the unique role of this noninvasive investigation in the care of people with epilepsy.
Collapse
Affiliation(s)
- Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Fernando Cendes
- Department of Neurology, University of Campinas, Campinas, Brazil
| | - William H Theodore
- Clinical Epilepsy Section, National Institutes of Health, Bethesda, Maryland
| | - Ravnoor S Gill
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | | | - Robert Edward Hogan
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - Graeme D Jackson
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Paolo Federico
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Angelo Labate
- Institute of Neurology, University of Catanzaro, Catanzaro, Italy
| | - Anna Elisabetta Vaudano
- Neurology Unit, Azienda Ospedaliero Universitaria, University of Modena and Reggio Emilia, Modena, Italy
| | - Ingmar Blümcke
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Philippe Ryvlin
- Clinical Neurosciences, Lausanne University Hospital, Lausanne, Switzerland
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
22
|
Peixoto-Santos JE, de Carvalho LED, Kandratavicius L, Diniz PRB, Scandiuzzi RC, Coras R, Blümcke I, Assirati JA, Carlotti CG, Matias CCMS, Salmon CEG, Dos Santos AC, Velasco TR, Moraes MFD, Leite JP. Manual Hippocampal Subfield Segmentation Using High-Field MRI: Impact of Different Subfields in Hippocampal Volume Loss of Temporal Lobe Epilepsy Patients. Front Neurol 2018; 9:927. [PMID: 30524352 PMCID: PMC6256705 DOI: 10.3389/fneur.2018.00927] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/12/2018] [Indexed: 11/17/2022] Open
Abstract
In patients with temporal lobe epilepsy (TLE), presurgical magnetic resonance imaging (MRI) often reveals hippocampal atrophy, while neuropathological assessment indicates the different types of hippocampal sclerosis (HS). Different HS types are not discriminated in MRI so far. We aimed to define the volume of each hippocampal subfield on MRI manually and to compare automatic and manual segmentations for the discrimination of HS types. The T2-weighted images from 14 formalin-fixed age-matched control hippocampi were obtained with 4.7T MRI to evaluate the volume of each subfield at the anatomical level of the hippocampal head, body, and tail. Formalin-fixed coronal sections at the level of the body of 14 control cases, as well as tissue samples from 24 TLE patients, were imaged with a similar high-resolution sequence at 3T. Presurgical three-dimensional (3D) T1-weighted images from TLE went through a FreeSurfer 6.0 hippocampal subfield automatic assessment. The manual delineation with the 4.7T MRI was identified using Luxol Fast Blue stained 10-μm-thin microscopy slides, collected at every millimeter. An additional section at the level of the body from controls and TLE cases was submitted to NeuN immunohistochemistry for neuronal density estimation. All TLE cases were classified according to the International League Against Epilepsy's (ILAE's) HS classification. Manual volumetry in controls revealed that the dentate gyrus (DG)+CA4 region, CA1, and subiculum accounted for almost 90% of the hippocampal volume. The manual 3T volumetry showed that all TLE patients with type 1 HS (TLE-HS1) had lower volumes for DG+CA4, CA2, and CA1, whereas those TLE patients with HS type 2 (TLE-HS2) had lower volumes only in CA1 (p ≤ 0.038). Neuronal cell densities always decreased in CA4, CA3, CA2, and CA1 of TLE-HS1 but only in CA1 of TLE-HS2 (p ≤ 0.003). In addition, TLE-HS2 had a higher volume (p = 0.016) and higher neuronal density (p < 0.001) than the TLE-HS1 in DG + CA4. Automatic segmentation failed to match the manual or histological findings and was unable to differentiate TLE-HS1 from TLE-HS2. Total hippocampal volume correlated with DG+CA4 and CA1 volumes and neuronal density. For the first time, we also identified subfield-specific pathology patterns in the manual evaluation of volumetric MRI scans, showing the importance of manual segmentation to assess subfield-specific pathology patterns.
Collapse
Affiliation(s)
- Jose Eduardo Peixoto-Santos
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.,Neuropathology Institute, University Hospitals Erlangen and Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | | | - Ludmyla Kandratavicius
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | | | - Renata Caldo Scandiuzzi
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Roland Coras
- Neuropathology Institute, University Hospitals Erlangen and Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Ingmar Blümcke
- Neuropathology Institute, University Hospitals Erlangen and Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Joao Alberto Assirati
- Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Carlos Gilberto Carlotti
- Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | | | - Carlos Ernesto Garrido Salmon
- Department of Physics and Mathematics, Faculty of Philosophy, Science and Languages of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Antonio Carlos Dos Santos
- Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Tonicarlo R Velasco
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Marcio Flavio D Moraes
- Department of Physiology and Biophysics, Center for Technology and Research in Magneto-Resonance, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Joao Pereira Leite
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
23
|
Adler S, Blackwood M, Northam GB, Gunny R, Hong SJ, Bernhardt BC, Bernasconi A, Bernasconi N, Jacques T, Tisdall M, Carmichael DW, Cross JH, Baldeweg T. Multimodal computational neocortical anatomy in pediatric hippocampal sclerosis. Ann Clin Transl Neurol 2018; 5:1200-1210. [PMID: 30349855 PMCID: PMC6186946 DOI: 10.1002/acn3.634] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/16/2022] Open
Abstract
Objective In contrast to adult cohorts, neocortical changes in epileptic children with hippocampal damage are not well characterized. Here, we mapped multimodal neocortical markers of epilepsy‐related structural compromise in a pediatric cohort of temporal lobe epilepsy and explored how they relate to clinical factors. Methods We measured cortical thickness, gray–white matter intensity contrast and intracortical FLAIR intensity in 22 patients with hippocampal sclerosis (HS) and 30 controls. Surface‐based linear models assessed between‐group differences in morphological and MR signal intensity markers. Structural integrity of the hippocampus was measured by quantifying atrophy and FLAIR patterns. Linear models were used to evaluate the relationships between hippocampal and neocortical MRI markers and clinical factors. Results In the hippocampus, patients demonstrated ipsilateral atrophy and bilateral FLAIR hyperintensity. In the neocortex, patients showed FLAIR signal hyperintensities and gray–white matter boundary blurring in the ipsilesional mesial and lateral temporal neocortex. In contrast, cortical thinning was minimal and restricted to a small area of the ipsilesional temporal pole. Furthermore, patients with a history of febrile convulsions demonstrated more pronounced FLAIR hyperintensity in the ipsilesional temporal neocortex. Interpretation Pediatric HS patients do not yet demonstrate the widespread cortical thinning present in adult cohorts, which may reflect consequences of a protracted disease process. However, pronounced temporal neocortical FLAIR hyperintensity and blurring of the gray–white matter boundary are already detectable, suggesting that alterations in MR signal intensities may reflect a different underlying pathophysiology that is detectable earlier in the disease and more pervasive in patients with a history of febrile convulsions.
Collapse
Affiliation(s)
- Sophie Adler
- Developmental Neurosciences UCL Great Ormond Street Institute of Child Health University College London London United Kingdom.,Great Ormond Street Hospital for Children London United Kingdom
| | - Mallory Blackwood
- Institute of Neurology University College London London United Kingdom
| | - Gemma B Northam
- Developmental Neurosciences UCL Great Ormond Street Institute of Child Health University College London London United Kingdom
| | - Roxana Gunny
- Great Ormond Street Hospital for Children London United Kingdom
| | - Seok-Jun Hong
- Neuroimaging of Epilepsy Laboratory McConnell Brain Imaging Centre Montreal Neurological Institute and Hospital McGill University Montreal Quebec Canada
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Lab McConnell Brain Imaging Centre Montreal Neurological Institute McGill University Montreal Quebec Canada
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory McConnell Brain Imaging Centre Montreal Neurological Institute and Hospital McGill University Montreal Quebec Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory McConnell Brain Imaging Centre Montreal Neurological Institute and Hospital McGill University Montreal Quebec Canada
| | - Thomas Jacques
- Developmental Biology and Cancer Programme UCL Great Ormond Street Institute of Child Health University College London London United Kingdom.,Department of Histopathology Great Ormond Street Hospital for Children NHS Foundation Trust London United Kingdom
| | - Martin Tisdall
- Developmental Neurosciences UCL Great Ormond Street Institute of Child Health University College London London United Kingdom.,Great Ormond Street Hospital for Children London United Kingdom
| | - David W Carmichael
- Developmental Neurosciences UCL Great Ormond Street Institute of Child Health University College London London United Kingdom.,Great Ormond Street Hospital for Children London United Kingdom
| | - J Helen Cross
- Developmental Neurosciences UCL Great Ormond Street Institute of Child Health University College London London United Kingdom.,Great Ormond Street Hospital for Children London United Kingdom
| | - Torsten Baldeweg
- Developmental Neurosciences UCL Great Ormond Street Institute of Child Health University College London London United Kingdom.,Great Ormond Street Hospital for Children London United Kingdom
| |
Collapse
|
24
|
Blood-Brain Barrier Leakage during Early Epileptogenesis Is Associated with Rapid Remodeling of the Neurovascular Unit. eNeuro 2018; 5:eN-NWR-0123-18. [PMID: 29854942 PMCID: PMC5975718 DOI: 10.1523/eneuro.0123-18.2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 04/01/2018] [Indexed: 01/26/2023] Open
Abstract
Increased permeability of the blood-brain barrier (BBB) following cerebral injury results in regional extravasation of plasma proteins and can critically contribute to the pathogenesis of epilepsy. Here, we comprehensively explore the spatiotemporal evolution of a main extravasation component, albumin, and illuminate associated responses of the neurovascular unit (NVU) contributing to early epileptogenic neuropathology. We applied translational in vivo MR imaging and complementary immunohistochemical analyses in the widely used rat pilocarpine post-status epilepticus (SE) model. The observed rapid BBB leakage affected major epileptogenesis-associated brain regions, peaked between 1 and 2 d post-SE, and rapidly declined thereafter, accompanied by cerebral edema generally following the same time course. At peak of BBB leakage, serum albumin colocalized with NVU constituents, such as vascular components, neurons, and brain immune cells. Surprisingly, astroglial markers did not colocalize with albumin, and aquaporin-4 (AQP4) was clearly reduced in areas of leaky BBB, indicating a severe disturbance of astrocyte-mediated endothelial-neuronal coupling. In addition, a distinct adaptive reorganization process of the NVU vasculature apparently takes place at sites of albumin presence, substantiated by reduced immunoreactivity of endothelial and changes in vascular basement membrane markers. Taken together, degenerative events at the level of the NVU, affecting vessels, astrocytes, and neurons, seem to outweigh reconstructive processes. Considering the rapidly occurring BBB leakage and subsequent impairment of the NVU, our data support the necessity of a prompt BBB-restoring treatment as one component of rational therapeutic intervention to prevent epileptogenesis and the development of other detrimental sequelae of SE.
Collapse
|
25
|
Gillmann C, Coras R, Rössler K, Doerfler A, Uder M, Blümcke I, Bäuerle T. Ultra-high field MRI of human hippocampi: Morphological and multiparametric differentiation of hippocampal sclerosis subtypes. PLoS One 2018; 13:e0196008. [PMID: 29668721 PMCID: PMC5906020 DOI: 10.1371/journal.pone.0196008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 04/04/2018] [Indexed: 12/23/2022] Open
Abstract
The aim of the present study is to differentiate subtypes of hippocampal sclerosis (HS) using ex vivo ultra-high field magnetic resonance imaging (MRI). Included were 14 surgically resected hippocampi of patients with medically intractable temporal lobe epilepsy. The resected hippocampi were histologically categorized into subtypes of hippocampal sclerosis (HS type 1 (n = 10), HS type 2 (n = 2) and no-HS (n = 2)) and subsequently scanned on a preclinical 7T MRI acquiring T2-weighted morphology, relaxometry and diffusion tensor imaging. On the morphological images, the pyramidal cell layer (PCL) of the hippocampus was segmented and the following parameters were derived: T2 signal intensity, T1-, T2- and T2*-relaxation times, apparent diffusion coefficient (ADC), fractional anisotropy (FA) and mean diffusivity (MD). Furthermore, the area of the PCL was determined, as well as the parameter product which refers to the widths of the PCL parallel and perpendicular to the stratum moleculare. Spearman correlation coefficient was used to demonstrate relationships between MR-parameters and type of sclerosis. In comparison to no-HS specimens, the PCL was significantly narrower in HS type 1 and HS type 2 hippocampi. This narrowing affected the entire cornu ammonis sector (CA) 1 in HS type 1, while it was limited to the upper half of CA1 in direction to CA2 in HS type 2. The parameter product median increased from 0.43 to 1.67 and 2.91 mm2 for HS type 1, HS type 2 and no-HS, respectively. Correlation coefficients were significant for the PCL parameters product (0.73), area (0.71), T2*-time (-0.67), FA (0.65) and ADC (0.55). Our initial results suggest that HS type 1, HS type 2 and no-HS subtypes can be distinguished from each other using ex vivo UHF MRI based on T2-weighted morphologic images and the assessment of the parameter product. Upon clinical translation, UHF-MRI may provide a promising technique for the preoperative differentiation of HS subtypes in patients.
Collapse
Affiliation(s)
- Clarissa Gillmann
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
- * E-mail:
| | - Roland Coras
- Institute of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Karl Rössler
- Department of Neurosurgery, University Hospital Erlangen, Erlangen, Germany
| | - Arnd Doerfler
- Department of Neuroradiology, University Hospital Erlangen, Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Ingmar Blümcke
- Institute of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Tobias Bäuerle
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
26
|
Interaction between hippocampal-prefrontal plasticity and thalamic-prefrontal activity. Sci Rep 2018; 8:1382. [PMID: 29358657 PMCID: PMC5778003 DOI: 10.1038/s41598-018-19540-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 01/04/2018] [Indexed: 11/08/2022] Open
Abstract
The prefrontal cortex integrates a variety of cognition-related inputs, either unidirectional, e.g., from the hippocampal formation, or bidirectional, e.g., with the limbic thalamus. While the former is usually implicated in synaptic plasticity, the latter is better known for regulating ongoing activity. Interactions between these processes via prefrontal neurons are possibly important for linking mnemonic and executive functions. Our work further elucidates such dynamics using in vivo electrophysiology in rats. First, we report that electrical pulses into CA1/subiculum trigger late-onset (>400 ms) firing responses in the medial prefrontal cortex, which are increased after induction of long-term potentiation. Then, we show these responses to be attenuated by optogenetic control of the paraventricular/mediodorsal thalamic area. This suggests that recruitment and plasticity of the hippocampal-prefrontal pathway is partially related to the thalamic-prefrontal loop. When dysfunctional, this interaction may contribute to cognitive deficits, psychotic symptoms, and seizure generalization, which should motivate future studies combining behavioural paradigms and long-range circuit assessment.
Collapse
|
27
|
Hattingen E, Enkirch SJ, Jurcoane A, Kruse M, Delev D, Grote A, Becker A. Hippocampal "gliosis only" on MR imaging represents a distinct entity in epilepsy patients. Neuroradiology 2017; 60:161-168. [PMID: 29085967 DOI: 10.1007/s00234-017-1939-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/17/2017] [Indexed: 10/18/2022]
Abstract
PURPOSE The purpose of this study is to evaluate whether patients with drug-resistant mesial temporal lobe epilepsy (TLE) due to hippocampal "gliosis only" have different MRI features than those with hippocampal sclerosis (HS). Most TLE patients have HS corresponding to severe neuronal loss and gliosis, but a few have "gliosis only" without significant reduction of neuronal density. METHODS We analyzed the morphology of cerebral 3 T MRIs (T1, T2, and FLAIR) of 103 patients with HS and 20 with "gliosis only" concerning hippocampal and amygdala aspect, volumes, and signal intensity (SI) using Fisher's exact test, Student's t test, and principal component analysis. RESULTS Visually, the ipsilateral hippocampus was hyperintense in both groups, but SI was markedly increased in 74% of HS and in 25% of "gliosis only" patients; the ipsilateral hippocampus was smaller in 92% of HS and in 50% of "gliosis only" patients, and its internal architecture was lost in 57% of HS and 5% of "gliosis only" patients; the contralateral hippocampal SI was altered in 25% of HS and in 70% of "gliosis only" patients (all p < 0.001). Ipsilateral hippocampus of HS patients had lower volume (mean ± SD 2.86 ± 0.87 ml) compared with that of "gliosis only" patients (3.4 ± 1.02 ml) and had higher SI than the contralateral hippocampus of HS patients and then the hippocampus of "gliosis only" patients (all p < 0.01). CONCLUSION "Gliosis only" has different MRI hippocampal characteristics than HS: less volume loss, less increase of the T2-w signal intensity, preservation of internal architecture, and more contralateral affection.
Collapse
Affiliation(s)
- Elke Hattingen
- Neuroradiology, Department of Radiology, University Clinics Bonn, Sigmund Freud Str. 25, 53105, Bonn, Germany.
| | - Simon Jonas Enkirch
- Neuroradiology, Department of Radiology, University Clinics Bonn, Sigmund Freud Str. 25, 53105, Bonn, Germany
| | - Alina Jurcoane
- Neuroradiology, Department of Radiology, University Clinics Bonn, Sigmund Freud Str. 25, 53105, Bonn, Germany
| | - Maximilian Kruse
- Neuroradiology, Department of Radiology, University Clinics Bonn, Sigmund Freud Str. 25, 53105, Bonn, Germany
| | - Daniel Delev
- Department of Neurosurgery, University Clinics Bonn, Bonn, Germany.,Department of Neurosurgery, University Clinics Freiburg, Freiburg, Germany
| | - Alexander Grote
- Department of Neurosurgery, University Clinics Bonn, Bonn, Germany.,Department of Neurosurgery, Evangelic Hospital of Bethel, Bielefeld, Germany
| | - Albert Becker
- Institute of Neuropathology, University Clinics Bonn, Bonn, Germany
| |
Collapse
|
28
|
Born JPL, Matos HDC, de Araujo MA, Castro OW, Duzzioni M, Peixoto-Santos JE, Leite JP, Garcia-Cairasco N, Paçó-Larson ML, Gitaí DLG. Using Postmortem hippocampi tissue can interfere with differential gene expression analysis of the epileptogenic process. PLoS One 2017; 12:e0182765. [PMID: 28783762 PMCID: PMC5544225 DOI: 10.1371/journal.pone.0182765] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 07/24/2017] [Indexed: 12/21/2022] Open
Abstract
Neuropathological studies often use autopsy brain tissue as controls to evaluate changes in protein or RNA levels in several diseases. In mesial temporal lobe epilepsy (MTLE), several genes are up or down regulated throughout the epileptogenic and chronic stages of the disease. Given that postmortem changes in several gene transcripts could impact the detection of changes in case-control studies, we evaluated the effect of using autopsy specimens with different postmortem intervals (PMI) on differential gene expression of the Pilocarpine (PILO)induced Status Epilepticus (SE) of MTLE. For this, we selected six genes (Gfap, Ppia, Gad65, Gad67, Npy, and Tnf-α) whose expression patterns in the hippocampus of PILO-injected rats are well known. Initially, we compared hippocampal expression of naïve rats whose hippocampi were harvested immediately after death (0h-PMI) with those harvested at 6h postmortem interval (6h-PMI): Npy and Ppia transcripts increased and Tnf-α transcripts decreased in the 6h-PMI group (p<0.05). We then investigated if these PMI-related changes in gene expression have the potential to adulterate or mask RT-qPCR results obtained with PILO-injected rats euthanized at acute or chronic phases. In the acute group, Npy transcript was significantly higher when compared with 0h-PMI rats, whereas Ppia transcript was lower than 6h-PMI group. When we used epileptic rats (chronic group), the RT-qPCR results showed higher Tnf-α only when compared to 6h-PMI group. In conclusion, our study demonstrates that PMI influences gene transcription and can mask changes in gene transcription seen during epileptogenesis in the PILO-SE model. Thus, to avoid erroneous conclusions, we strongly recommend that researchers account for changes in postmortem gene expression in their experimental design.
Collapse
Affiliation(s)
- João Paulo Lopes Born
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | - Heloisa de Carvalho Matos
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | - Mykaella Andrade de Araujo
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | - Olagide Wagner Castro
- Department of Physiology and Pharmacology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | - Marcelo Duzzioni
- Department of Physiology and Pharmacology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | - José Eduardo Peixoto-Santos
- Division of Neurology, Department of Neurosciences and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - João Pereira Leite
- Division of Neurology, Department of Neurosciences and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Norberto Garcia-Cairasco
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Maria Luisa Paçó-Larson
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Daniel Leite Góes Gitaí
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
- * E-mail:
| |
Collapse
|
29
|
Do Val-da Silva RA, Peixoto-Santos JE, Kandratavicius L, De Ross JB, Esteves I, De Martinis BS, Alves MNR, Scandiuzzi RC, Hallak JEC, Zuardi AW, Crippa JA, Leite JP. Protective Effects of Cannabidiol against Seizures and Neuronal Death in a Rat Model of Mesial Temporal Lobe Epilepsy. Front Pharmacol 2017; 8:131. [PMID: 28367124 PMCID: PMC5355474 DOI: 10.3389/fphar.2017.00131] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/02/2017] [Indexed: 11/30/2022] Open
Abstract
The present study reports the behavioral, electrophysiological, and neuropathological effects of cannabidiol (CBD), a major non-psychotropic constituent of Cannabis sativa, in the intrahippocampal pilocarpine-induced status epilepticus (SE) rat model. CBD was administered before pilocarpine-induced SE (group SE+CBDp) or before and after SE (group SE+CBDt), and compared to rats submitted only to SE (SE group), CBD, or vehicle (VH group). Groups were evaluated during SE (behavioral and electrophysiological analysis), as well as at days one and three post-SE (exploratory activity, electrophysiological analysis, neuron density, and neuron degeneration). Compared to SE group, SE+CBD groups (SE+CBDp and SE+CBDt) had increased SE latency, diminished SE severity, increased contralateral afterdischarge latency and decreased relative powers in delta (0.5–4 Hz) and theta (4–10 Hz) bands. Only SE+CBDp had increased vertical exploratory activity 1-day post SE and decreased contralateral relative power in delta 3 days after SE, when compared to SE group. SE+CBD groups also showed decreased neurodegeneration in the hilus and CA3, and higher neuron density in granule cell layer, hilus, CA3, and CA1, when compared to SE group. Our findings demonstrate anticonvulsant and neuroprotective effects of CBD preventive treatment in the intrahippocampal pilocarpine epilepsy model, either as single or multiple administrations, reinforcing the potential role of CBD in the treatment of epileptic disorders.
Collapse
Affiliation(s)
- Raquel A Do Val-da Silva
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of São Paulo São Paulo, Brazil
| | - Jose E Peixoto-Santos
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of São Paulo São Paulo, Brazil
| | - Ludmyla Kandratavicius
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of São PauloSão Paulo, Brazil; National Institute of Science and Technology for Translational Medicine, Conselho Nacional de Desenvolvimento Cientifico e TecnologicoBrasília, Brazil
| | - Jana B De Ross
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of São Paulo São Paulo, Brazil
| | - Ingrid Esteves
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of São Paulo São Paulo, Brazil
| | - Bruno S De Martinis
- National Institute of Science and Technology for Translational Medicine, Conselho Nacional de Desenvolvimento Cientifico e TecnologicoBrasília, Brazil; Department of Chemistry, Faculty of Philosophy, Science and Languages of Ribeirao Preto, University of São PauloSão Paulo, Brazil
| | - Marcela N R Alves
- Department of Chemistry, Faculty of Philosophy, Science and Languages of Ribeirao Preto, University of São Paulo São Paulo, Brazil
| | - Renata C Scandiuzzi
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of São Paulo São Paulo, Brazil
| | - Jaime E C Hallak
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of São PauloSão Paulo, Brazil; National Institute of Science and Technology for Translational Medicine, Conselho Nacional de Desenvolvimento Cientifico e TecnologicoBrasília, Brazil
| | - Antonio W Zuardi
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of São PauloSão Paulo, Brazil; National Institute of Science and Technology for Translational Medicine, Conselho Nacional de Desenvolvimento Cientifico e TecnologicoBrasília, Brazil
| | - Jose A Crippa
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of São PauloSão Paulo, Brazil; National Institute of Science and Technology for Translational Medicine, Conselho Nacional de Desenvolvimento Cientifico e TecnologicoBrasília, Brazil
| | - Joao P Leite
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of São PauloSão Paulo, Brazil; National Institute of Science and Technology for Translational Medicine, Conselho Nacional de Desenvolvimento Cientifico e TecnologicoBrasília, Brazil
| |
Collapse
|