1
|
Jeong JW, Lee MH, Behen M, Uda H, Gjolaj N, Luat A, Asano E, Juhász C. Quantitative phenotyping of verbal and non-verbal cognitive impairment using diffusion-weighted MRI connectome: Preliminary study of the crowding effect in children with left hemispheric epilepsy. Epilepsy Behav 2024; 160:110009. [PMID: 39241639 PMCID: PMC11560517 DOI: 10.1016/j.yebeh.2024.110009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/22/2024] [Accepted: 08/20/2024] [Indexed: 09/09/2024]
Abstract
The "crowding" effect (CE), wherein verbal functions are preserved presumably at the expense of nonverbal functions, which diminish following inter-hemispheric transfer of language functions, is recognized as a specific aspect of functional reorganization, offering an insight about neural plasticity in children with neural insult to the dominant hemisphere. CE is hypothesized as a marker for language preservation or improvement after left-hemispheric injury, yet it remains challenging to fully discern it in preoperative evaluation. We present a novel DWI connectome (DWIC) approach to predict the presence of CE in 24 drug-resistant epilepsy (DRE) patients with a left-hemispheric focus and 29 young healthy controls. Psychometry-driven DWIC analysis was applied to create verbal and non-verbal modular networks. Local efficiency (LE) was assessed at individual regions of the two networks and its Z-score was compared to predict the presence of CE. Compared with a traditional organization (TO) group, wherein verbal functions are adversely affected, while non-verbal functions are preserved, the CE group showed significantly higher Z-scores in verbal network and significantly lower Z-scores in non-verbal network, corresponding to network reorganization in CE. A larger number of antiseizure drugs was significantly associated with more decreased Z-score in the right non-verbal network of the CE group and left verbal network of the TO group. These findings hold great potential to identify DRE patients whose verbal/language skills may over time be preserved due to effective inter-hemispheric reorganization and identify those whose verbal/language impairments may persist due to lack of inter-hemispheric reorganization.
Collapse
Affiliation(s)
- Jeong-Won Jeong
- Department of Pediatrics, Wayne State University, Detroit, MI, United States; Translational Imaging Laboratory, University Health Center, Detroit, MI, United States; Department of Neurology, Wayne State University, Detroit, MI, United States; Translational Neuroscience Program, Wayne State University, Detroit, MI, United States.
| | - Min-Hee Lee
- Department of Pediatrics, Wayne State University, Detroit, MI, United States; Translational Imaging Laboratory, University Health Center, Detroit, MI, United States
| | - Michael Behen
- Department of Pediatrics, Wayne State University, Detroit, MI, United States; Department of Neurology, Wayne State University, Detroit, MI, United States
| | - Hiroshi Uda
- Department of Pediatrics, Wayne State University, Detroit, MI, United States
| | - Nore Gjolaj
- Department of Pediatrics, Wayne State University, Detroit, MI, United States
| | - Aimee Luat
- Department of Neurology, Wayne State University, Detroit, MI, United States; Department of Pediatrics, Central Michigan University, Mt. Pleasant, MI, United States
| | - Eishi Asano
- Department of Pediatrics, Wayne State University, Detroit, MI, United States; Translational Imaging Laboratory, University Health Center, Detroit, MI, United States; Department of Neurology, Wayne State University, Detroit, MI, United States; Translational Neuroscience Program, Wayne State University, Detroit, MI, United States
| | - Csaba Juhász
- Department of Pediatrics, Wayne State University, Detroit, MI, United States; Translational Imaging Laboratory, University Health Center, Detroit, MI, United States; Department of Neurology, Wayne State University, Detroit, MI, United States; Translational Neuroscience Program, Wayne State University, Detroit, MI, United States
| |
Collapse
|
2
|
Ervin B, Kargol C, Byars AW, Buroker J, Rozhkov L, Skoch J, Mangano FT, Greiner HM, Horn PS, Holland K, Arya R. High-gamma modulation language mapping and cognitive outcomes after epilepsy surgery. Epilepsia 2024; 65:3052-3063. [PMID: 39162748 PMCID: PMC11495990 DOI: 10.1111/epi.18096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/21/2024]
Abstract
OBJECTIVE We evaluated changes in cognitive domains after neurosurgical lesioning of cortical sites with significant high-gamma power modulations (HGM) during a visual naming task, although these sites were found language-negative on standard-of-care electrical stimulation mapping (ESM). METHODS In drug-resistant epilepsy patients who underwent resection/ablation after stereo-electroencephalography (SEEG), we computed reliable change indices (RCIs) from a battery of presurgical and 1-year postsurgical neuropsychological assessments. We modeled RCIs as a function of lesioning even one HGM language site, number of HGM language sites lesioned, and the magnitude of naming-related HGM. The analyses were adjusted for 1-year seizure freedom, operated hemispheres, and the volumes of surgical lesions. RESULTS In 37 patients with 4455 SEEG electrode contacts (1839 and 2616 contacts in right and left hemispheres, respectively), no ESM language sites were lesioned. Patients with lesioning of even one HGM language site showed significantly lower RCIs for Peabody Picture Vocabulary Test (PPVT), working memory, and verbal learning immediate (VLI) scores. RCI declines with higher number of HGM language sites lesioned were seen in PPVT (slope [β] = -.10), working memory (β = -.10), VLI (β = -.14), and letter-word identification (LWI; β = -.14). No neuropsychological domains improved after lesioning of HGM language sites. Significant effects of the HGM magnitude at lesioned sites were seen on working memory (β = -.31), story memory immediate (β = -.27), verbal learning recognition (β = -.18), LWI (β = -.16), spelling (β = -.49), and passage comprehension (β = -.33). Because working memory was significantly affected in all three analyses, patients with maximal working memory decline were examined post hoc, revealing that all such patients had HGM naming sites lesioned in the posterior quadrants of either hemisphere. SIGNIFICANCE HGM language mapping should be used as an adjunct to ESM in clinical practice and may help counsel patients/families about postsurgical cognitive deficits.
Collapse
Affiliation(s)
- Brian Ervin
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, U.S.A
| | - Christina Kargol
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, U.S.A
| | - Anna W. Byars
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, U.S.A
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, U.S.A
| | - Jason Buroker
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, U.S.A
| | - Leonid Rozhkov
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, U.S.A
| | - Jesse Skoch
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, U.S.A
- Division of Neurosurgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, U.S.A
| | - Francesco T. Mangano
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, U.S.A
- Division of Neurosurgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, U.S.A
| | - Hansel M. Greiner
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, U.S.A
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, U.S.A
| | - Paul S. Horn
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, U.S.A
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, U.S.A
| | - Katherine Holland
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, U.S.A
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, U.S.A
| | - Ravindra Arya
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, U.S.A
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, U.S.A
| |
Collapse
|
3
|
Ueda R, Sakakura K, Mitsuhashi T, Sonoda M, Firestone E, Kuroda N, Kitazawa Y, Uda H, Luat AF, Johnson EL, Ofen N, Asano E. Cortical and white matter substrates supporting visuospatial working memory. Clin Neurophysiol 2024; 162:9-27. [PMID: 38552414 PMCID: PMC11102300 DOI: 10.1016/j.clinph.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/24/2024] [Accepted: 03/11/2024] [Indexed: 05/19/2024]
Abstract
OBJECTIVE In tasks involving new visuospatial information, we rely on working memory, supported by a distributed brain network. We investigated the dynamic interplay between brain regions, including cortical and white matter structures, to understand how neural interactions change with different memory loads and trials, and their subsequent impact on working memory performance. METHODS Patients undertook a task of immediate spatial recall during intracranial EEG monitoring. We charted the dynamics of cortical high-gamma activity and associated functional connectivity modulations in white matter tracts. RESULTS Elevated memory loads were linked to enhanced functional connectivity via occipital longitudinal tracts, yet decreased through arcuate, uncinate, and superior-longitudinal fasciculi. As task familiarity grew, there was increased high-gamma activity in the posterior inferior-frontal gyrus (pIFG) and diminished functional connectivity across a network encompassing frontal, parietal, and temporal lobes. Early pIFG high-gamma activity was predictive of successful recall. Including this metric in a logistic regression model yielded an accuracy of 0.76. CONCLUSIONS Optimizing visuospatial working memory through practice is tied to early pIFG activation and decreased dependence on irrelevant neural pathways. SIGNIFICANCE This study expands our knowledge of human adaptation for visuospatial working memory, showing the spatiotemporal dynamics of cortical network modulations through white matter tracts.
Collapse
Affiliation(s)
- Riyo Ueda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan 48201, USA; National Center Hospital, National Center of Neurology and Psychiatry, Tokyo 1878551, Japan.
| | - Kazuki Sakakura
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan 48201, USA; Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois 60612, USA; Department of Neurosurgery, University of Tsukuba, Tsukuba 3058575, Japan.
| | - Takumi Mitsuhashi
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan 48201, USA; Department of Neurosurgery, Juntendo University, School of Medicine, Tokyo 1138421, Japan.
| | - Masaki Sonoda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan 48201, USA; Department of Neurosurgery, Yokohama City University, Yokohama 2360004, Japan.
| | - Ethan Firestone
- Department of Physiology, Wayne State University, Detroit, Michigan 48202, USA.
| | - Naoto Kuroda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan 48201, USA; Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai 9808575, Japan.
| | - Yu Kitazawa
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan 48201, USA; Department of Neurology and Stroke Medicine, Yokohama City University, Yokohama 2360004, Japan.
| | - Hiroshi Uda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan 48201, USA; Department of Neurosurgery, Osaka Metropolitan University Graduate School of Medicine, Osaka 5458585, Japan.
| | - Aimee F Luat
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan 48201, USA; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan 48201, USA; Department of Pediatrics, Central Michigan University, Mt. Pleasant, Michigan 48858, USA.
| | - Elizabeth L Johnson
- Departments of Medical Social Sciences, Pediatrics, and Psychology, Northwestern University, Chicago, Illinois 60611, USA.
| | - Noa Ofen
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology and Merrill Palmer Skillman Institute, Wayne State University, Detroit, Michigan 48202, USA; Department of Psychology, Wayne State University, Detroit, Michigan 48202, USA.
| | - Eishi Asano
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan 48201, USA; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan 48201, USA; Translational Neuroscience Program, Wayne State University, Detroit, Michigan 48201, USA.
| |
Collapse
|
4
|
Yu L, Dugan P, Doyle W, Devinsky O, Friedman D, Flinker A. A left-lateralized dorsolateral prefrontal network for naming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594403. [PMID: 38798614 PMCID: PMC11118423 DOI: 10.1101/2024.05.15.594403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The ability to connect the form and meaning of a concept, known as word retrieval, is fundamental to human communication. While various input modalities could lead to identical word retrieval, the exact neural dynamics supporting this convergence relevant to daily auditory discourse remain poorly understood. Here, we leveraged neurosurgical electrocorticographic (ECoG) recordings from 48 patients and dissociated two key language networks that highly overlap in time and space integral to word retrieval. Using unsupervised temporal clustering techniques, we found a semantic processing network located in the middle and inferior frontal gyri. This network was distinct from an articulatory planning network in the inferior frontal and precentral gyri, which was agnostic to input modalities. Functionally, we confirmed that the semantic processing network encodes word surprisal during sentence perception. Our findings characterize how humans integrate ongoing auditory semantic information over time, a critical linguistic function from passive comprehension to daily discourse.
Collapse
Affiliation(s)
- Leyao Yu
- Department of Biomedical Engineering, New York University, New York, 10016, New York, the United States
- Department of Neurology, School of Medicine, New York University, New York, 10016, New York, the United States
| | - Patricia Dugan
- Department of Neurology, School of Medicine, New York University, New York, 10016, New York, the United States
| | - Werner Doyle
- Department of Neurosurgery, School of Medicine, New York University, New York, 10016, New York, the United States
| | - Orrin Devinsky
- Department of Neurology, School of Medicine, New York University, New York, 10016, New York, the United States
| | - Daniel Friedman
- Department of Neurology, School of Medicine, New York University, New York, 10016, New York, the United States
| | - Adeen Flinker
- Department of Biomedical Engineering, New York University, New York, 10016, New York, the United States
- Department of Neurology, School of Medicine, New York University, New York, 10016, New York, the United States
| |
Collapse
|
5
|
Tan H, Nugent JG, Fecker A, Richie EA, Maanum KA, Nerison C, Bowden SG, Yaylali I, Han SJ, Colgan DD, Oken B, Raslan AM. Rapid Passive Gamma Mapping as an Adjunct to Electrical Stimulation Mapping for Functional Localization in Resection of Primary Brain Neoplasms. World Neurosurg 2024; 181:e483-e492. [PMID: 37871691 DOI: 10.1016/j.wneu.2023.10.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/25/2023]
Abstract
OBJECTIVE We examined the utility of passive high gamma mapping (HGM) as an adjunct to conventional awake brain mapping during glioma resection. We compared functional and survival outcomes before and after implementing intraoperative HGM. METHODS This was a retrospective cohort study of 75 patients who underwent a first-time, awake craniotomy for glioma resection. Patients were stratified by whether their operation occurred before or after the implementation of a U.S. Food and Drug Administration-approved high-gamma mapping tool in July 2017. RESULTS The preimplementation and postimplementation cohorts included 28 and 47 patients, respectively. Median intraoperative time (261 vs. 261 minutes, P = 0.250) and extent of resection (97.14% vs. 98.19%, P = 0.481) were comparable between cohorts. Median Karnofsky performance status at initial follow-up was similar between cohorts (P = 0.650). Multivariable Cox regression models demonstrated an adjusted hazard ratio for overall survival of 0.10 (95% confidence interval: 0.02-0.43, P = 0.002) for the postimplementation cohort relative to the preimplementation cohort. Progression-free survival adjusted for insular involvement showed an adjusted hazard ratio of 1.00 (95% confidence interval: 0.49-2.06, P = 0.999) following HGM implementation. Falling short of statistical significance, prevalence of intraoperative seizures and/or afterdischarges decreased after HGM implementation as well (12.7% vs. 25%, P = 0.150). CONCLUSIONS Our results tentatively indicate that passive HGM is a safe and potentially useful adjunct to electrical stimulation mapping for awake cortical mapping, conferring at least comparable functional and survival outcomes with a nonsignificant lower rate of intraoperative epileptiform events. Considering the limitations of our study design and patient cohort, further investigation is needed to better identify optimal use cases for HGM.
Collapse
Affiliation(s)
- Hao Tan
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Joseph G Nugent
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Adeline Fecker
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Emma A Richie
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Kayla A Maanum
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Caleb Nerison
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Stephen G Bowden
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Ilker Yaylali
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Seunggu J Han
- Department of Neurosurgery, Stanford Medicine, Palo Alto, California, USA
| | - Dana D Colgan
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Barry Oken
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Ahmed M Raslan
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA.
| |
Collapse
|
6
|
Kitazawa Y, Sonoda M, Sakakura K, Mitsuhashi T, Firestone E, Ueda R, Kambara T, Iwaki H, Luat AF, Marupudi NI, Sood S, Asano E. Intra- and inter-hemispheric network dynamics supporting object recognition and speech production. Neuroimage 2023; 270:119954. [PMID: 36828156 PMCID: PMC10112006 DOI: 10.1016/j.neuroimage.2023.119954] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
We built normative brain atlases that animate millisecond-scale intra- and inter-hemispheric white matter-level connectivity dynamics supporting object recognition and speech production. We quantified electrocorticographic modulations during three naming tasks using event-related high-gamma activity from 1,114 nonepileptogenic intracranial electrodes (i.e., non-lesional areas unaffected by epileptiform discharges). Using this electrocorticography data, we visualized functional connectivity modulations defined as significant naming-related high-gamma modulations occurring simultaneously at two sites connected by direct white matter streamlines on diffusion-weighted imaging tractography. Immediately after stimulus onset, intra- and inter-hemispheric functional connectivity enhancements were confined mainly across modality-specific perceptual regions. During response preparation, left intra-hemispheric connectivity enhancements propagated in a posterior-to-anterior direction, involving the left precentral and prefrontal areas. After overt response onset, inter- and intra-hemispheric connectivity enhancements mainly encompassed precentral, postcentral, and superior-temporal (STG) gyri. We found task-specific connectivity enhancements during response preparation as follows. Picture naming enhanced activity along the left arcuate fasciculus between the inferior-temporal and precentral/posterior inferior-frontal (pIFG) gyri. Nonspeech environmental sound naming augmented functional connectivity via the left inferior longitudinal and fronto-occipital fasciculi between the medial-occipital and STG/pIFG. Auditory descriptive naming task enhanced usage of the left frontal U-fibers, involving the middle-frontal gyrus. Taken together, the commonly observed network enhancements include inter-hemispheric connectivity optimizing perceptual processing exerted in each hemisphere, left intra-hemispheric connectivity supporting semantic and lexical processing, and inter-hemispheric connectivity for symmetric oral movements during overt speech. Our atlases improve the currently available models of object recognition and speech production by adding neural dynamics via direct intra- and inter-hemispheric white matter tracts.
Collapse
Affiliation(s)
- Yu Kitazawa
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, 48201, USA; Department of Neurology and Stroke Medicine, Yokohama City University, Yokohama, 2360004, Japan
| | - Masaki Sonoda
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, 48201, USA; Department of Neurosurgery, Yokohama City University, Yokohama, 2360004, Japan
| | - Kazuki Sakakura
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, 48201, USA; Department of Neurosurgery, University of Tsukuba, Tsukuba, 3058575, Japan
| | - Takumi Mitsuhashi
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, 48201, USA; Department of Neurosurgery, Juntendo University, Tokyo, 1138421, Japan
| | - Ethan Firestone
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, 48201, USA; Department of Physiology, Wayne State University, Detroit, 48201, USA
| | - Riyo Ueda
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, 48201, USA
| | - Toshimune Kambara
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, 48201, USA; Department of Psychology, Hiroshima University, Hiroshima, 7398524, Japan
| | - Hirotaka Iwaki
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, 48201, USA; Department of Psychiatry, Hachinohe City Hospital, Hachinohe, 0318555, Japan
| | - Aimee F Luat
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, 48201, USA; Department of Neurology, Children's Hospital of Michigan, Wayne State University, Detroit, 48201, USA; Department of Pediatrics, Central Michigan University, Mount Pleasant, 48858, USA
| | - Neena I Marupudi
- Department of Neurosurgery, Children's Hospital of Michigan, Wayne State University, Detroit, 48201, USA
| | - Sandeep Sood
- Department of Neurosurgery, Children's Hospital of Michigan, Wayne State University, Detroit, 48201, USA
| | - Eishi Asano
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, 48201, USA; Department of Neurology, Children's Hospital of Michigan, Wayne State University, Detroit, 48201, USA.
| |
Collapse
|
7
|
Ono H, Sonoda M, Sakakura K, Kitazawa Y, Mitsuhashi T, Firestone E, Jeong JW, Luat AF, Marupudi NI, Sood S, Asano E. Dynamic cortical and tractography atlases of proactive and reactive alpha and high-gamma activities. Brain Commun 2023; 5:fcad111. [PMID: 37228850 PMCID: PMC10204271 DOI: 10.1093/braincomms/fcad111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/15/2022] [Accepted: 04/03/2023] [Indexed: 05/27/2023] Open
Abstract
Alpha waves-posterior dominant rhythms at 8-12 Hz reactive to eye opening and closure-are among the most fundamental EEG findings in clinical practice and research since Hans Berger first documented them in the early 20th century. Yet, the exact network dynamics of alpha waves in regard to eye movements remains unknown. High-gamma activity at 70-110 Hz is also reactive to eye movements and a summary measure of local cortical activation supporting sensorimotor or cognitive function. We aimed to build the first-ever brain atlases directly visualizing the network dynamics of eye movement-related alpha and high-gamma modulations, at cortical and white matter levels. We studied 28 patients (age: 5-20 years) who underwent intracranial EEG and electro-oculography recordings. We measured alpha and high-gamma modulations at 2167 electrode sites outside the seizure onset zone, interictal spike-generating areas and MRI-visible structural lesions. Dynamic tractography animated white matter streamlines modulated significantly and simultaneously beyond chance, on a millisecond scale. Before eye-closure onset, significant alpha augmentation occurred at the occipital and frontal cortices. After eye-closure onset, alpha-based functional connectivity was strengthened, while high gamma-based connectivity was weakened extensively in both intra-hemispheric and inter-hemispheric pathways involving the central visual areas. The inferior fronto-occipital fasciculus supported the strengthened alpha co-augmentation-based functional connectivity between occipital and frontal lobe regions, whereas the posterior corpus callosum supported the inter-hemispheric functional connectivity between the occipital lobes. After eye-opening offset, significant high-gamma augmentation and alpha attenuation occurred at occipital, fusiform and inferior parietal cortices. High gamma co-augmentation-based functional connectivity was strengthened, whereas alpha-based connectivity was weakened in the posterior inter-hemispheric and intra-hemispheric white matter pathways involving central and peripheral visual areas. Our results do not support the notion that eye closure-related alpha augmentation uniformly reflects feedforward or feedback rhythms propagating from lower to higher order visual cortex, or vice versa. Rather, proactive and reactive alpha waves involve extensive, distinct white matter networks that include the frontal lobe cortices, along with low- and high-order visual areas. High-gamma co-attenuation coupled to alpha co-augmentation in shared brain circuitry after eye closure supports the notion of an idling role for alpha waves during eye closure. These normative dynamic tractography atlases may improve understanding of the significance of EEG alpha waves in assessing the functional integrity of brain networks in clinical practice; they also may help elucidate the effects of eye movements on task-related brain network measures observed in cognitive neuroscience research.
Collapse
Affiliation(s)
- Hiroya Ono
- Department of Pediatrics, Children’s Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
- Department of Pediatric Neurology, National Center of Neurology and Psychiatry, Joint Graduate School of Tohoku University, Tokyo 1878551, Japan
- Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Masaki Sonoda
- Department of Pediatrics, Children’s Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama 2360004, Japan
| | - Kazuki Sakakura
- Department of Pediatrics, Children’s Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
- Department of Neurosurgery, University of Tsukuba, Tsukuba 3058575, Japan
| | - Yu Kitazawa
- Department of Pediatrics, Children’s Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
- Department of Neurology and Stroke Medicine, Yokohama City University, Yokohama, Kanagawa 2360004, Japan
| | - Takumi Mitsuhashi
- Department of Pediatrics, Children’s Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
- Department of Neurosurgery, Juntendo University, School of Medicine, Tokyo 1138421, Japan
| | - Ethan Firestone
- Department of Physiology, Wayne State University, Detroit, MI 48201, USA
| | - Jeong-Won Jeong
- Department of Pediatrics, Children’s Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
- Department of Neurology, Children’s Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
| | - Aimee F Luat
- Department of Pediatrics, Children’s Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
- Department of Neurology, Children’s Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
- Department of Pediatrics, Central Michigan University, Mount Pleasant, MI 48858, USA
| | - Neena I Marupudi
- Department of Neurosurgery, Children’s Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
| | - Sandeep Sood
- Department of Neurosurgery, Children’s Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
| | - Eishi Asano
- Department of Pediatrics, Children’s Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
- Department of Neurology, Children’s Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
8
|
Mercier MR, Dubarry AS, Tadel F, Avanzini P, Axmacher N, Cellier D, Vecchio MD, Hamilton LS, Hermes D, Kahana MJ, Knight RT, Llorens A, Megevand P, Melloni L, Miller KJ, Piai V, Puce A, Ramsey NF, Schwiedrzik CM, Smith SE, Stolk A, Swann NC, Vansteensel MJ, Voytek B, Wang L, Lachaux JP, Oostenveld R. Advances in human intracranial electroencephalography research, guidelines and good practices. Neuroimage 2022; 260:119438. [PMID: 35792291 PMCID: PMC10190110 DOI: 10.1016/j.neuroimage.2022.119438] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/23/2022] [Accepted: 06/30/2022] [Indexed: 12/11/2022] Open
Abstract
Since the second-half of the twentieth century, intracranial electroencephalography (iEEG), including both electrocorticography (ECoG) and stereo-electroencephalography (sEEG), has provided an intimate view into the human brain. At the interface between fundamental research and the clinic, iEEG provides both high temporal resolution and high spatial specificity but comes with constraints, such as the individual's tailored sparsity of electrode sampling. Over the years, researchers in neuroscience developed their practices to make the most of the iEEG approach. Here we offer a critical review of iEEG research practices in a didactic framework for newcomers, as well addressing issues encountered by proficient researchers. The scope is threefold: (i) review common practices in iEEG research, (ii) suggest potential guidelines for working with iEEG data and answer frequently asked questions based on the most widespread practices, and (iii) based on current neurophysiological knowledge and methodologies, pave the way to good practice standards in iEEG research. The organization of this paper follows the steps of iEEG data processing. The first section contextualizes iEEG data collection. The second section focuses on localization of intracranial electrodes. The third section highlights the main pre-processing steps. The fourth section presents iEEG signal analysis methods. The fifth section discusses statistical approaches. The sixth section draws some unique perspectives on iEEG research. Finally, to ensure a consistent nomenclature throughout the manuscript and to align with other guidelines, e.g., Brain Imaging Data Structure (BIDS) and the OHBM Committee on Best Practices in Data Analysis and Sharing (COBIDAS), we provide a glossary to disambiguate terms related to iEEG research.
Collapse
Affiliation(s)
- Manuel R Mercier
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix-Marseille University, Marseille, France.
| | | | - François Tadel
- Signal & Image Processing Institute, University of Southern California, Los Angeles, CA United States of America
| | - Pietro Avanzini
- Institute of Neuroscience, National Research Council of Italy, Parma, Italy
| | - Nikolai Axmacher
- Department of Neuropsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Universitätsstraße 150, Bochum 44801, Germany; State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, 19 Xinjiekou Outer St, Beijing 100875, China
| | - Dillan Cellier
- Department of Cognitive Science, University of California, La Jolla, San Diego, United States of America
| | - Maria Del Vecchio
- Institute of Neuroscience, National Research Council of Italy, Parma, Italy
| | - Liberty S Hamilton
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States of America; Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States of America; Department of Speech, Language, and Hearing Sciences, Moody College of Communication, The University of Texas at Austin, Austin, TX, United States of America
| | - Dora Hermes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States of America
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Robert T Knight
- Department of Psychology and the Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States of America
| | - Anais Llorens
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
| | - Pierre Megevand
- Department of Clinical neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Lucia Melloni
- Department of Neuroscience, Max Planck Institute for Empirical Aesthetics, Grüneburgweg 14, Frankfurt am Main 60322, Germany; Department of Neurology, NYU Grossman School of Medicine, 145 East 32nd Street, Room 828, New York, NY 10016, United States of America
| | - Kai J Miller
- Department of Neurosurgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Vitória Piai
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands; Department of Medical Psychology, Radboudumc, Donders Centre for Medical Neuroscience, Nijmegen, the Netherlands
| | - Aina Puce
- Department of Psychological & Brain Sciences, Programs in Neuroscience, Cognitive Science, Indiana University, Bloomington, IN, United States of America
| | - Nick F Ramsey
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, UMC Utrecht, the Netherlands
| | - Caspar M Schwiedrzik
- Neural Circuits and Cognition Lab, European Neuroscience Institute Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, Göttingen, Germany; Perception and Plasticity Group, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Sydney E Smith
- Neurosciences Graduate Program, University of California, La Jolla, San Diego, United States of America
| | - Arjen Stolk
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands; Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States of America
| | - Nicole C Swann
- University of Oregon in the Department of Human Physiology, United States of America
| | - Mariska J Vansteensel
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, UMC Utrecht, the Netherlands
| | - Bradley Voytek
- Department of Cognitive Science, University of California, La Jolla, San Diego, United States of America; Neurosciences Graduate Program, University of California, La Jolla, San Diego, United States of America; Halıcıoğlu Data Science Institute, University of California, La Jolla, San Diego, United States of America; Kavli Institute for Brain and Mind, University of California, La Jolla, San Diego, United States of America
| | - Liang Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jean-Philippe Lachaux
- Lyon Neuroscience Research Center, EDUWELL Team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon F-69000, France
| | - Robert Oostenveld
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands; NatMEG, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Liégeois‐Chauvel C, Dubarry A, Wang I, Chauvel P, Gonzalez‐Martinez JA, Alario F. Inter-individual variability in dorsal stream dynamics during word production. Eur J Neurosci 2022; 56:5070-5089. [PMID: 35997580 PMCID: PMC9804493 DOI: 10.1111/ejn.15807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/10/2022] [Accepted: 08/14/2022] [Indexed: 01/05/2023]
Abstract
The current standard model of language production involves a sensorimotor dorsal stream connecting areas in the temporo-parietal junction with those in the inferior frontal gyrus and lateral premotor cortex. These regions have been linked to various aspects of word production such as phonological processing or articulatory programming, primarily through neuropsychological and functional imaging group studies. Most if not all the theoretical descriptions of this model imply that the same network should be identifiable across individual speakers. We tested this hypothesis by quantifying the variability of activation observed across individuals within each dorsal stream anatomical region. This estimate was based on electrical activity recorded directly from the cerebral cortex with millisecond accuracy in awake epileptic patients clinically implanted with intracerebral depth electrodes for pre-surgical diagnosis. Each region's activity was quantified using two different metrics-intra-cerebral evoked related potentials and high gamma activity-at the level of the group, the individual and the recording contact. The two metrics show simultaneous activation of parietal and frontal regions during a picture naming task, in line with models that posit interactive processing during word retrieval. They also reveal different levels of between-patient variability across brain regions, except in core auditory and motor regions. The independence and non-uniformity of cortical activity estimated through the two metrics push the current model towards sub-second and sub-region explorations focused on individualized language speech production. Several hypotheses are considered for this within-region heterogeneity.
Collapse
Affiliation(s)
- Catherine Liégeois‐Chauvel
- Epilepsy Center, Neurological InstituteCleveland Clinic FoundationClevelandOhioUSA,Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance,Present address:
Department of Neurological Surgery, School of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | | | - Irene Wang
- Epilepsy Center, Neurological InstituteCleveland Clinic FoundationClevelandOhioUSA
| | | | - Jorge A. Gonzalez‐Martinez
- Present address:
Department of Neurological Surgery, School of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - F.‐Xavier Alario
- Present address:
Department of Neurological Surgery, School of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA,Aix Marseille Univ, CNRS, LPCMarseilleFrance
| |
Collapse
|
10
|
Arya R, Ervin B, Buroker J, Greiner HM, Byars AW, Rozhkov L, Skoch J, Horn PS, Frink C, Scholle C, Leach JL, Mangano FT, Glauser TA, Holland KD. Neuronal Circuits Supporting Development of Visual Naming Revealed by Intracranial Coherence Modulations. Front Neurosci 2022; 16:867021. [PMID: 35663562 PMCID: PMC9160526 DOI: 10.3389/fnins.2022.867021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background Improvement in visual naming abilities throughout the childhood and adolescence supports development of higher-order linguistic skills. We investigated neuronal circuits underlying improvement in the speed of visual naming with age, and age-related dynamics of these circuits. Methods Response times were electronically measured during an overt visual naming task in epilepsy patients undergoing stereo-EEG monitoring. Coherence modulations among pairs of neuroanatomic parcels were computed and analyzed for relationship with response time and age. Results During the overt visual naming task, mean response time (latency) significantly decreased from 4 to 23 years of age. Coherence modulations during visual naming showed that increased connectivity between certain brain regions, particularly that between left fusiform gyrus/left parahippocampal gyrus and left frontal operculum, is associated with improvement in naming speed. Also, decreased connectivity in other brain regions, particularly between left angular and supramarginal gyri, is associated with decreased mean response time. Further, coherence modulations between left frontal operculum and both left fusiform and left posterior cingulate gyri significantly increase, while that between left angular and supramarginal gyri significantly decrease, with age. Conclusion Naming speed continues to improve from pre-school years into young adulthood. This age-related improvement in efficiency of naming environmental objects occurs likely because of strengthened direct connectivity between semantic and phonological nodes, and elimination of intermediate higher-order cognitive steps.
Collapse
Affiliation(s)
- Ravindra Arya
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
| | - Brian Ervin
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
| | - Jason Buroker
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Hansel M. Greiner
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Anna W. Byars
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Leonid Rozhkov
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Jesse Skoch
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Pediatric Neurosurgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Paul S. Horn
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Clayton Frink
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Craig Scholle
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - James L. Leach
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Pediatric Neuroradiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Francesco T. Mangano
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Pediatric Neurosurgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Tracy A. Glauser
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Katherine D. Holland
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
11
|
Sonoda M, Rothermel R, Carlson A, Jeong JW, Lee MH, Hayashi T, Luat AF, Sood S, Asano E. Naming-related spectral responses predict neuropsychological outcome after epilepsy surgery. Brain 2022; 145:517-530. [PMID: 35313351 PMCID: PMC9014727 DOI: 10.1093/brain/awab318] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/14/2021] [Accepted: 07/28/2021] [Indexed: 11/12/2022] Open
Abstract
This prospective study determined the use of intracranially recorded spectral responses during naming tasks in predicting neuropsychological performance following epilepsy surgery. We recruited 65 patients with drug-resistant focal epilepsy who underwent preoperative neuropsychological assessment and intracranial EEG recording. The Clinical Evaluation of Language Fundamentals evaluated the baseline and postoperative language function. During extra-operative intracranial EEG recording, we assigned patients to undergo auditory and picture naming tasks. Time-frequency analysis determined the spatiotemporal characteristics of naming-related amplitude modulations, including high gamma augmentation at 70-110 Hz. We surgically removed the presumed epileptogenic zone based on the intracranial EEG and MRI abnormalities while maximally preserving the eloquent areas defined by electrical stimulation mapping. The multivariate regression model incorporating auditory naming-related high gamma augmentation predicted the postoperative changes in Core Language Score with r2 of 0.37 and in Expressive Language Index with r2 of 0.32. Independently of the effects of epilepsy and neuroimaging profiles, higher high gamma augmentation at the resected language-dominant hemispheric area predicted a more severe postoperative decline in Core Language Score and Expressive Language Index. Conversely, the model incorporating picture naming-related high gamma augmentation predicted the change in Receptive Language Index with an r2 of 0.50. Higher high gamma augmentation independently predicted a more severe postoperative decline in Receptive Language Index. Ancillary regression analysis indicated that naming-related low gamma augmentation and alpha/beta attenuation likewise independently predicted a more severe Core Language Score decline. The machine learning-based prediction model suggested that naming-related high gamma augmentation, among all spectral responses used as predictors, most strongly contributed to the improved prediction of patients showing a >5-point Core Language Score decline (reflecting the lower 25th percentile among patients). We generated the model-based atlas visualizing sites, which, if resected, would lead to such a language decline. With a 5-fold cross-validation procedure, the auditory naming-based model predicted patients who had such a postoperative language decline with an accuracy of 0.80. The model indicated that virtual resection of an electrical stimulation mapping-defined language site would have increased the relative risk of the Core Language Score decline by 5.28 (95% confidence interval: 3.47-8.02). Especially, that of an electrical stimulation mapping-defined receptive language site would have maximized it to 15.90 (95% confidence interval: 9.59-26.33). In summary, naming-related spectral responses predict neuropsychological outcomes after epilepsy surgery. We have provided our prediction model as an open-source material, which will indicate the postoperative language function of future patients and facilitate external validation at tertiary epilepsy centres.
Collapse
Affiliation(s)
- Masaki Sonoda
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Department of Neurosurgery, Yokohama City University, Yokohama, Kanagawa 2360004, Japan
| | - Robert Rothermel
- Department of Psychiatry, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Alanna Carlson
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Department of Psychiatry, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Jeong-Won Jeong
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Department of Neurology, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Min-Hee Lee
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Takahiro Hayashi
- Department of Neurosurgery, Yokohama City University, Yokohama, Kanagawa 2360004, Japan
| | - Aimee F Luat
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Department of Neurology, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Department of Pediatrics, Central Michigan University, Mount Pleasant, MI 48858, USA
| | - Sandeep Sood
- Department of Neurosurgery, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Eishi Asano
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Department of Neurology, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Correspondence to: Eishi Asano, MD, PhD, MS (CRDSA) Division of Pediatric Neurology, Children’s Hospital of Michigan Wayne State University. 3901 Beaubien St., Detroit, MI 48201, USA E-mail:
| |
Collapse
|
12
|
Significance of event related causality (ERC) in eloquent neural networks. Neural Netw 2022; 149:204-216. [PMID: 35248810 PMCID: PMC9029701 DOI: 10.1016/j.neunet.2022.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 01/28/2022] [Accepted: 02/03/2022] [Indexed: 11/20/2022]
Abstract
Neural activity emerges and propagates swiftly between brain areas. Investigation of these transient large-scale flows requires sophisticated statistical models. We present a method for assessing the statistical confidence of event-related neural propagation. Furthermore, we propose a criterion for statistical model selection, based on both goodness of fit and width of confidence intervals. We show that event-related causality (ERC) with two-dimensional (2D) moving average, is an efficient estimator of task-related neural propagation and that it can be used to determine how different cognitive task demands affect the strength and directionality of neural propagation across human cortical networks. Using electrodes surgically implanted on the surface of the brain for clinical testing prior to epilepsy surgery, we recorded electrocorticographic (ECoG) signals as subjects performed three naming tasks: naming of ambiguous and unambiguous visual objects, and as a contrast, naming to auditory description. ERC revealed robust and statistically significant patterns of high gamma activity propagation, consistent with models of visually and auditorily cued word production. Interestingly, ambiguous visual stimuli elicited more robust propagation from visual to auditory cortices relative to unambiguous stimuli, whereas naming to auditory description elicited propagation in the opposite direction, consistent with recruitment of modalities other than those of the stimulus during object recognition and naming. The new method introduced here is uniquely suitable to both research and clinical applications and can be used to estimate the statistical significance of neural propagation for both cognitive neuroscientific studies and functional brain mapping prior to resective surgery for epilepsy and brain tumors.
Collapse
|
13
|
Sonoda M, Silverstein BH, Jeong JW, Sugiura A, Nakai Y, Mitsuhashi T, Rothermel R, Luat AF, Sood S, Asano E. Six-dimensional dynamic tractography atlas of language connectivity in the developing brain. Brain 2021; 144:3340-3354. [PMID: 34849596 PMCID: PMC8677551 DOI: 10.1093/brain/awab225] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/23/2021] [Accepted: 06/05/2021] [Indexed: 11/12/2022] Open
Abstract
During a verbal conversation, our brain moves through a series of complex linguistic processing stages: sound decoding, semantic comprehension, retrieval of semantically coherent words, and overt production of speech outputs. Each process is thought to be supported by a network consisting of local and long-range connections bridging between major cortical areas. Both temporal and extratemporal lobe regions have functional compartments responsible for distinct language domains, including the perception and production of phonological and semantic components. This study provides quantitative evidence of how directly connected inter-lobar neocortical networks support distinct stages of linguistic processing across brain development. Novel six-dimensional tractography was used to intuitively visualize the strength and temporal dynamics of direct inter-lobar effective connectivity between cortical areas activated during each linguistic processing stage. We analysed 3401 non-epileptic intracranial electrode sites from 37 children with focal epilepsy (aged 5-20 years) who underwent extra-operative electrocorticography recording. Principal component analysis of auditory naming-related high-gamma modulations determined the relative involvement of each cortical area during each linguistic processing stage. To quantify direct effective connectivity, we delivered single-pulse electrical stimulation to 488 temporal and 1581 extratemporal lobe sites and measured the early cortico-cortical spectral responses at distant electrodes. Mixed model analyses determined the effects of naming-related high-gamma co-augmentation between connecting regions, age, and cerebral hemisphere on the strength of effective connectivity independent of epilepsy-related factors. Direct effective connectivity was strongest between extratemporal and temporal lobe site pairs, which were simultaneously activated between sentence offset and verbal response onset (i.e. response preparation period); this connectivity was approximately twice more robust than that with temporal lobe sites activated during stimulus listening or overt response. Conversely, extratemporal lobe sites activated during overt response were equally connected with temporal lobe language sites. Older age was associated with increased strength of inter-lobar effective connectivity especially between those activated during response preparation. The arcuate fasciculus supported approximately two-thirds of the direct effective connectivity pathways from temporal to extratemporal auditory language-related areas but only up to half of those in the opposite direction. The uncinate fasciculus consisted of <2% of those in the temporal-to-extratemporal direction and up to 6% of those in the opposite direction. We, for the first time, provided an atlas which quantifies and animates the strength, dynamics, and direction specificity of inter-lobar neural communications between language areas via the white matter pathways. Language-related effective connectivity may be strengthened in an age-dependent manner even after the age of 5.
Collapse
Affiliation(s)
- Masaki Sonoda
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Department of Neurosurgery, Yokohama City University, Yokohama, Kanagawa 2360004, Japan
| | - Brian H Silverstein
- Translational Neuroscience Program, Wayne State University, Detroit, MI 48201, USA
| | - Jeong-Won Jeong
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Translational Neuroscience Program, Wayne State University, Detroit, MI 48201, USA
- Department of Neurology, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Ayaka Sugiura
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Yasuo Nakai
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Department of Neurological Surgery, Wakayama Medical University, Wakayama, Wakayama 6418509, Japan
| | - Takumi Mitsuhashi
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Department of Neurosurgery, Juntendo University, School of Medicine, Tokyo, 1138421, Japan
| | - Robert Rothermel
- Department of Psychiatry, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Aimee F Luat
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Department of Neurology, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Department of Pediatrics, Central Michigan University, Mount Pleasant, MI 48858, USA
| | - Sandeep Sood
- Department of Neurosurgery, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Eishi Asano
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Translational Neuroscience Program, Wayne State University, Detroit, MI 48201, USA
- Department of Neurology, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
14
|
A distributed network supports spatiotemporal cerebral dynamics of visual naming. Clin Neurophysiol 2021; 132:2948-2958. [PMID: 34715419 DOI: 10.1016/j.clinph.2021.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/31/2021] [Accepted: 09/18/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Cerebral spatiotemporal dynamics of visual naming were investigated in epilepsy patients undergoing stereo-electroencephalography (SEEG) monitoring. METHODS Brain networks were defined by Parcel-Activation-Resection-Symptom matching (PARS) approach by matching high-gamma (50-150 Hz) modulations (HGM) in neuroanatomic parcels during visual naming, with neuropsychological outcomes after resection/ablation of those parcels. Brain parcels with >50% electrode contacts simultaneously showing significant HGM were aligned, to delineate spatiotemporal course of naming-related HGM. RESULTS In 41 epilepsy patients, neuroanatomic parcels showed sequential yet temporally overlapping HGM course during visual naming. From bilateral occipital lobes, HGM became increasingly left lateralized, coursing through limbic system. Bilateral superior temporal HGM was noted around response time, and right frontal HGM thereafter. Correlations between resected/ablated parcels, and post-surgical neuropsychological outcomes showed specific regional groupings. CONCLUSIONS Convergence of data from spatiotemporal course of HGM during visual naming, and functional role of specific parcels inferred from neuropsychological deficits after resection/ablation of those parcels, support a model with six cognitive subcomponents of visual naming having overlapping temporal profiles. SIGNIFICANCE Cerebral substrates supporting visual naming are bilaterally distributed with relative hemispheric contribution dependent on cognitive demands at a specific time. PARS approach can be extended to study other cognitive and functional brain networks.
Collapse
|
15
|
Spontaneous modulations of high-frequency cortical activity. Clin Neurophysiol 2021; 132:2391-2403. [PMID: 34454266 DOI: 10.1016/j.clinph.2021.06.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/15/2021] [Accepted: 06/01/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE We clarified the clinical and mechanistic significance of physiological modulations of high-frequency broadband cortical activity associated with spontaneous saccadic eye movements during a resting state. METHODS We studied 30 patients who underwent epilepsy surgery following extraoperative electrocorticography and electrooculography recordings. We determined whether high-gamma activity at 70-110 Hz preceding saccade onset would predict upcoming ocular behaviors. We assessed how accurately the model incorporating saccade-related high-gamma modulations would localize the primary visual cortex defined by electrical stimulation. RESULTS The dynamic atlas demonstrated transient high-gamma suppression in the striatal cortex before saccade onset and high-gamma augmentation subsequently involving the widespread posterior brain regions. More intense striatal high-gamma suppression predicted the upcoming saccade directed to the ipsilateral side and lasting longer in duration. The bagged-tree-ensemble model demonstrated that intense saccade-related high-gamma modulations localized the visual cortex with an accuracy of 95%. CONCLUSIONS We successfully animated the neural dynamics supporting saccadic suppression, a principal mechanism minimizing the perception of blurred vision during rapid eye movements. The primary visual cortex per se may prepare actively in advance for massive image motion expected during upcoming prolonged saccades. SIGNIFICANCE Measuring saccade-related electrocorticographic signals may help localize the visual cortex and avoid misperceiving physiological high-frequency activity as epileptogenic.
Collapse
|
16
|
Sato N, Matsumoto R, Shimotake A, Matsuhashi M, Otani M, Kikuchi T, Kunieda T, Mizuhara H, Miyamoto S, Takahashi R, Ikeda A. Frequency-Dependent Cortical Interactions during Semantic Processing: An Electrocorticogram Cross-spectrum Analysis Using a Semantic Space Model. Cereb Cortex 2021; 31:4329-4339. [PMID: 33942078 DOI: 10.1093/cercor/bhab089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Convergent evidence has demonstrated that semantics are represented by the interaction between a multimodal semantic hub at the anterior temporal lobe (ATL) and other modality-specific association cortical areas. Electrocorticogram (ECoG) recording with high spatiotemporal resolutions is efficient in evaluating such cortical interactions; however, this has not been a focus of preceding studies. The present study evaluated cortical interactions during picture naming using a novel ECoG cross-spectrum analysis, which was formulated from a computational simulation of neuronal networks and combined with a vector space model of semantics. The results clarified three types of frequency-dependent cortical networks: 1) an earlier-period (0.2-0.8 s from stimulus onset) high-gamma-band (90-150 Hz) network with a hub at the posterior fusiform gyrus, 2) a later-period (0.4-1.0 s) beta-band (15-40 Hz) network with multiple hubs at the ventral ATL and posterior middle temporal gyrus, and 3) a pre-articulation theta-band (4-7 Hz) network distributed over widely located cortical regions. These results suggest that frequency-dependent cortical interactions can characterize the underlying processes of semantic cognition, and the beta-band network with a hub at the ventral ATL is especially associated with the formation of semantic representation.
Collapse
Affiliation(s)
- Naoyuki Sato
- Department of Complex and Intelligent Systems, School of Systems Information Science, Future University Hakodate, Hakodate, Hokkaido 041-8655, Japan
| | - Riki Matsumoto
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan.,Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto University Hospital, Sakyo, Kyoto 606-8507, Japan
| | - Akihiro Shimotake
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto University Hospital, Sakyo, Kyoto 606-8507, Japan.,Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Sakyo, Kyoto 606-8507, Japan
| | - Masao Matsuhashi
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Sakyo, Kyoto 606-8507, Japan.,Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Mayumi Otani
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto University Hospital, Sakyo, Kyoto 606-8507, Japan
| | - Takayuki Kikuchi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto University Hospital, Sakyo, Kyoto 606-8507, Japan
| | - Takeharu Kunieda
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto University Hospital, Sakyo, Kyoto 606-8507, Japan.,Department of Neurosurgery, Ehime University Graduate School of Medicine, Shizukawa Toon City, Ehime 791-0295, Japan
| | - Hiroaki Mizuhara
- Kyoto University Graduate School of Informatics, Sakyo, Kyoto 606-8501, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto University Hospital, Sakyo, Kyoto 606-8507, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto University Hospital, Sakyo, Kyoto 606-8507, Japan
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Sakyo, Kyoto 606-8507, Japan
| |
Collapse
|
17
|
Hirsch JA, Cuesta GM, Fonzetti P, Comaty J, Jordan BD, Cirio R, Levin L, Abrahams A, Fry KM. Expanded Exploration of the Auditory Naming Test in Patients with Dementia. J Alzheimers Dis 2021; 81:1763-1779. [PMID: 33998546 DOI: 10.3233/jad-210322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Auditory naming tests are superior to visual confrontation naming tests in revealing word-finding difficulties in many neuropathological conditions. OBJECTIVE To delineate characteristics of auditory naming most likely to reveal anomia in patients with dementia, and possibly improve diagnostic utility, we evaluated a large sample of patients referred with memory impairment complaints. METHODS Patients with dementia (N = 733) or other cognitive impairments and normal individuals (N = 69) were evaluated for frequency of impairment on variables of the Auditory Naming Test (ANT) of Hamberger & Seidel versus the Boston Naming Test (BNT). RESULTS Naming impairment occurred more frequently using the ANT total score (φ= 0.41) or ANT tip-of-the tongue score (TOT; φ= 0.19) but not ANT mean response time compared to the BNT in patients with dementia (p < 0.001). Significantly more patients were impaired on ANT variables than on the BNT in Alzheimer's disease (AD), vascular dementia (VaD), mixed AD/VaD, and multiple domain mild cognitive impairment (mMCI) but not in other dementias or amnestic MCI (aMCI). This differential performance of patients on auditory versus visual naming tasks was most pronounced in older, well-educated, male patients with the least cognitive impairment. Impaired verbal comprehension was not contributory. Inclusion of an ANT index score increased sensitivity in the dementia sample (92%). Poor specificity (41%) may be secondary to the inherent limitation of using the BNT as a control variable. CONCLUSION The ANT index score adds diagnostic utility to the assessment of naming difficulties in patients with suspected dementia.
Collapse
Affiliation(s)
- Joseph A Hirsch
- Department of Psychiatry, Lenox Hill Hospital, Northwell Health, New York, NY, USA.,Department of Psychology, Pace University, New York, NY, USA
| | - George M Cuesta
- New York Harbor Healthcare System, Veterans Health Administration, New York, NY, USA.,New York University Langone Medical Center, New York, NY, USA
| | | | | | - Barry D Jordan
- Rancho Los Amigos National Rehabilitation Hospital, Downey, CA, USA
| | | | - Leanne Levin
- New York Medical College, Department of Medicine, Valhalla, NY, USA
| | | | - Kathleen M Fry
- George E. Wahlen Department of Veterans Affairs Medical Center, Department of Psychology, Salt Lake City, UT, USA
| |
Collapse
|
18
|
Prediction of baseline expressive and receptive language function in children with focal epilepsy using diffusion tractography-based deep learning network. Epilepsy Behav 2021; 117:107909. [PMID: 33740493 PMCID: PMC8035310 DOI: 10.1016/j.yebeh.2021.107909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 11/21/2022]
Abstract
PURPOSE Focal epilepsy is a risk factor for language impairment in children. We investigated whether the current state-of-the-art deep learning network on diffusion tractography connectome can accurately predict expressive and receptive language scores of children with epilepsy. METHODS We studied 37 children with a diagnosis of drug-resistant focal epilepsy (age: 11.8 ± 3.1 years) using 3 T MRI and diffusion tractography connectome: G = (S, Ω), where S is an adjacency matrix of edges representing the connectivity strength (number of white-matter tract streamlines) between each pair of brain regions, and Ω reflects a set of brain regions. A convolutional neural network (CNN) was trained to learn the nonlinear relationship between 'S (input)' and 'language score (output)'. Repeated hold-out validation was then employed to measure the Pearson correlation and mean absolute error (MAE) between CNN-predicted and actual language scores. RESULTS We found that CNN-predicted and actual scores were significantly correlated (i.e., Pearson's R/p-value: 0.82/<0.001 and 0.75/<0.001), yielding MAE: 7.77 and 7.40 for expressive and receptive scores, respectively. Specifically, sparse connectivity not only within the left cortico-cortical network but also involving the right subcortical structures was predictive of language impairment of expressive or receptive domain. Subsequent subgroup analyses inferred that the effectiveness of diffusion tractography-based prediction of language outcome was independent of clinical variables. Intrinsic diffusion tractography connectome properties may be useful for predicting the severity of baseline language dysfunction and possibly provide a better understanding of the biological mechanisms of epilepsy-related language impairment in children.
Collapse
|
19
|
Aron O, Jonas J, Colnat-Coulbois S, Maillard L. Language Mapping Using Stereo Electroencephalography: A Review and Expert Opinion. Front Hum Neurosci 2021; 15:619521. [PMID: 33776668 PMCID: PMC7987679 DOI: 10.3389/fnhum.2021.619521] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/11/2021] [Indexed: 11/25/2022] Open
Abstract
Stereo-electroencephalography (sEEG) is a method that uses stereotactically implanted depth electrodes for extra-operative mapping of epileptogenic and functional networks. sEEG derived functional mapping is achieved using electrical cortical stimulations (ECS) that are currently the gold standard for delineating eloquent cortex. As this stands true especially for primary cortices (e.g., visual, sensitive, motor, etc.), ECS applied to higher order brain areas determine more subtle behavioral responses. While anterior and posterior language areas in the dorsal language stream seem to share characteristics with primary cortices, basal temporal language area (BTLA) in the ventral temporal cortex (VTC) behaves as a highly associative cortex. After a short introduction and considerations about methodological aspects of ECS using sEEG, we review the sEEG language mapping literature in this perspective. We first establish the validity of this technique to map indispensable language cortices in the dorsal language stream. Second, we highlight the contrast between the growing empirical ECS experience and the lack of understanding regarding the fundamental mechanisms underlying ECS behavioral effects, especially concerning the dispensable language cortex in the VTC. Evidences for considering network architecture as determinant for ECS behavioral response complexities are discussed. Further, we address the importance of designing new research in network organization of language as this could enhance ECS ability to map interindividual variability, pathology driven reorganization, and ultimately identify network resilience markers in order to better predict post-operative language deficit. Finally, based on a whole body of available studies, we believe there is strong evidence to consider sEEG as a valid, safe and reliable method for defining eloquent language cortices although there have been no proper comparisons between surgical resections with or without extra-operative or intra-operative language mapping.
Collapse
Affiliation(s)
- Olivier Aron
- Department of Neurology, Nancy University Hospital Center, Nancy, France
- CRAN, Université́ de Lorraine, CNRS, Nancy, France
| | - Jacques Jonas
- Department of Neurology, Nancy University Hospital Center, Nancy, France
- CRAN, Université́ de Lorraine, CNRS, Nancy, France
| | | | - Louis Maillard
- Department of Neurology, Nancy University Hospital Center, Nancy, France
- CRAN, Université́ de Lorraine, CNRS, Nancy, France
| |
Collapse
|
20
|
Iwaki H, Sonoda M, Osawa SI, Silverstein BH, Mitsuhashi T, Ukishiro K, Takayama Y, Kambara T, Kakinuma K, Suzuki K, Tominaga T, Nakasato N, Iwasaki M, Asano E. Your verbal questions beginning with 'what' will rapidly deactivate the left prefrontal cortex of listeners. Sci Rep 2021; 11:5257. [PMID: 33664359 PMCID: PMC7933162 DOI: 10.1038/s41598-021-84610-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 02/15/2021] [Indexed: 12/31/2022] Open
Abstract
The left prefrontal cortex is essential for verbal communication. It remains uncertain at what timing, to what extent, and what type of phrase initiates left-hemispheric dominant prefrontal activation during comprehension of spoken sentences. We clarified this issue by measuring event-related high-gamma activity during a task to respond to three-phrase questions configured in different orders. Questions beginning with a wh-interrogative deactivated the left posterior prefrontal cortex right after the 1st phrase offset and the anterior prefrontal cortex after the 2nd phrase offset. Left prefrontal high-gamma activity augmented subsequently and maximized around the 3rd phrase offset. Conversely, questions starting with a concrete phrase deactivated the right orbitofrontal region and then activated the left posterior prefrontal cortex after the 1st phrase offset. Regardless of sentence types, high-gamma activity emerged earlier, by one phrase, in the left posterior prefrontal than anterior prefrontal region. Sentences beginning with a wh-interrogative may initially deactivate the left prefrontal cortex to prioritize the bottom-up processing of upcoming auditory information. A concrete phrase may obliterate the inhibitory function of the right orbitofrontal region and facilitate top-down lexical prediction by the left prefrontal cortex. The left anterior prefrontal regions may be recruited for semantic integration of multiple concrete phrases.
Collapse
Affiliation(s)
- Hirotaka Iwaki
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI, 48201, USA.,Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai, 9808575, Japan
| | - Masaki Sonoda
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI, 48201, USA.,Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Kanagawa, 2360004, Japan
| | - Shin-Ichiro Osawa
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, 9808575, Japan.
| | - Brian H Silverstein
- Translational Neuroscience Program, Wayne State University, Detroit, MI, 48201, USA
| | - Takumi Mitsuhashi
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI, 48201, USA.,Department of Neurosurgery, School of Medicine, Juntendo University, Tokyo, 1138421, Japan
| | - Kazushi Ukishiro
- Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai, 9808575, Japan.,Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Kanagawa, 2360004, Japan
| | - Yutaro Takayama
- Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai, 9808575, Japan.,Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Kanagawa, 2360004, Japan.,Department of Neurosurgery, National Center of Neurology and Psychiatry, National Center Hospital, Tokyo, 1878551, Japan
| | - Toshimune Kambara
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI, 48201, USA.,Department of Psychology, Hiroshima University, Hiroshima, 7398524, Japan
| | - Kazuo Kakinuma
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai, 9808575, Japan
| | - Kyoko Suzuki
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai, 9808575, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, 9808575, Japan
| | - Nobukazu Nakasato
- Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai, 9808575, Japan
| | - Masaki Iwasaki
- Department of Neurosurgery, National Center of Neurology and Psychiatry, National Center Hospital, Tokyo, 1878551, Japan.
| | - Eishi Asano
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI, 48201, USA. .,Department of Neurology, Children's Hospital of Michigan, Wayne State University, Detroit, MI, 48201, USA.
| |
Collapse
|
21
|
Bu L, Lu J, Zhang J, Wu J. Intraoperative Cognitive Mapping Tasks for Direct Electrical Stimulation in Clinical and Neuroscientific Contexts. Front Hum Neurosci 2021; 15:612891. [PMID: 33762913 PMCID: PMC7982856 DOI: 10.3389/fnhum.2021.612891] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
Direct electrical stimulation (DES) has been widely applied in both guidance of lesion resection and scientific research; however, the design and selection of intraoperative cognitive mapping tasks have not been updated in a very long time. We introduce updated mapping tasks for language and non-language functions and provide recommendations for optimal design and selection of intraoperative mapping tasks. In addition, with DES becoming more critical in current neuroscientific research, a task design that has not been widely used in DES yet (subtraction and conjunction paradigms) was introduced for more delicate mapping of brain functions especially for research purposes. We also illustrate the importance of designing a common task series for DES and other non-invasive mapping techniques. This review gives practical updated guidelines for advanced application of DES in clinical and neuroscientific research.
Collapse
Affiliation(s)
- Linghao Bu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Brain Function Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China.,Zhangjiang Lab, Institute of Brain-Intelligence Technology, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Junfeng Lu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Brain Function Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China.,Zhangjiang Lab, Institute of Brain-Intelligence Technology, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Jie Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Brain Function Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China.,Zhangjiang Lab, Institute of Brain-Intelligence Technology, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Jinsong Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Brain Function Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China.,Zhangjiang Lab, Institute of Brain-Intelligence Technology, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| |
Collapse
|
22
|
Banerjee S, Dong M, Lee MH, O'Hara N, Juhasz C, Asano E, Jeong JW. Deep Relational Reasoning for the Prediction of Language Impairment and Postoperative Seizure Outcome Using Preoperative DWI Connectome Data of Children With Focal Epilepsy. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:793-804. [PMID: 33166251 PMCID: PMC8544001 DOI: 10.1109/tmi.2020.3036933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Prolonged seizures in children with focal epilepsy (FE) may impair language functions and often reoccur after surgical intervention. This study is aimed at developing a novel deep relational reasoning network to investigate whether conventional diffusion-weighted imaging connectome analysis can be improved when predicting expressive and receptive scores of preoperative language impairments and classifying postoperative seizure outcomes (seizure freedom or recurrence) in individual FE children. To deeply reason the dependencies of axonal connections that are sparsely distributed in the whole brain, this study proposes the "dilated CNN + RN", a dilated convolutional neural network (CNN) combined with a relation network (RN). The performance of the dilated CNN + RN was evaluated using whole brain connectome data from 51 FE children. It was found that when compared with other state-of-the-art algorithms, the dilated CNN + RN led to an average improvement of 90.2% and 97.3% in predicting expressive and receptive language scores, and 2.2% and 4% improvement in classifying seizure freedom and seizure recurrence, respectively. These improvements were independent of the prefixed connectome densities. Also, the dilated CNN + RN could provide an explainable artificial intelligence (AI) model by computing gradient-based regression/classification activation maps. This mapping analysis revealed left superior-medial frontal cortex, bilateral hippocampi, and cerebellum as crucial hubs, facilitating important connections that were most predictive of language function and seizure refractoriness after surgery.
Collapse
|
23
|
Morshed RA, Young JS, Lee AT, Berger MS, Hervey-Jumper SL. Clinical Pearls and Methods for Intraoperative Awake Language Mapping. Neurosurgery 2020; 89:143-153. [PMID: 33289505 DOI: 10.1093/neuros/nyaa440] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/12/2020] [Indexed: 12/12/2022] Open
Abstract
Intraoperative language mapping of tumor and peritumor tissue is a well-established technique for avoiding permanent neurological deficits and maximizing extent of resection. Although there are several components of language that may be tested intraoperatively (eg, naming, writing, reading, and repetition), there is a lack of consistency in how patients are tested intraoperatively as well as the techniques involved to ensure safety during an awake procedure. Here, we review appropriate patient selection, neuroanesthetic techniques, cortical and subcortical language mapping stimulation paradigms, and selection of intraoperative language tasks used during awake craniotomies. We also expand on existing language mapping reviews by considering how intensity and timing of electrical stimulation may impact interpretation of mapping results.
Collapse
|
24
|
Trimmel K, Caciagli L, Xiao F, van Graan LA, Koepp MJ, Thompson PJ, Duncan JS. Impaired naming performance in temporal lobe epilepsy: language fMRI responses are modulated by disease characteristics. J Neurol 2020; 268:147-160. [PMID: 32747979 PMCID: PMC7815622 DOI: 10.1007/s00415-020-10116-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To investigate alterations of language networks and their relation to impaired naming performance in temporal lobe epilepsy (TLE) using functional MRI. METHODS Seventy-two adult TLE patients (41 left) and 36 controls were studied with overt auditory and picture naming fMRI tasks to assess temporal lobe language areas, and a covert verbal fluency task to probe frontal lobe language regions. Correlation of fMRI activation with clinical naming scores, and alteration of language network patterns in relation to epilepsy duration, age at onset and seizure frequency, were investigated with whole-brain multiple regression analyses. RESULTS Auditory and picture naming fMRI activated the left posterior temporal lobe, and stronger activation correlated with better clinical naming scores. Verbal fluency MRI mainly activated frontal lobe regions. In left and right TLE, a later age of epilepsy onset related to stronger temporal lobe activations, while earlier age of onset was associated with impaired deactivation of extratemporal regions. In left TLE patients, longer disease duration and higher seizure frequency were associated with reduced deactivation. Frontal lobe language networks were unaffected by disease characteristics. CONCLUSIONS While frontal lobe language regions appear spared, temporal lobe language areas are susceptible to dysfunction and reorganisation, particularly in left TLE. Early onset and long duration of epilepsy, and high seizure frequency, were associated with compromised activation and deactivation patterns of task-associated regions, which might account for impaired naming performance in individuals with TLE.
Collapse
Affiliation(s)
- Karin Trimmel
- Epilepsy Society MRI Unit, Chalfont Centre for Epilepsy, Chalfont St Peter, SL9 0LR, UK. .,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK. .,Department of Neurology, Medical University of Vienna, 1090, Vienna, Austria.
| | - Lorenzo Caciagli
- Epilepsy Society MRI Unit, Chalfont Centre for Epilepsy, Chalfont St Peter, SL9 0LR, UK.,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Fenglai Xiao
- Epilepsy Society MRI Unit, Chalfont Centre for Epilepsy, Chalfont St Peter, SL9 0LR, UK.,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Louis A van Graan
- Epilepsy Society MRI Unit, Chalfont Centre for Epilepsy, Chalfont St Peter, SL9 0LR, UK.,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Matthias J Koepp
- Epilepsy Society MRI Unit, Chalfont Centre for Epilepsy, Chalfont St Peter, SL9 0LR, UK.,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Pamela J Thompson
- Epilepsy Society MRI Unit, Chalfont Centre for Epilepsy, Chalfont St Peter, SL9 0LR, UK.,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - John S Duncan
- Epilepsy Society MRI Unit, Chalfont Centre for Epilepsy, Chalfont St Peter, SL9 0LR, UK.,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| |
Collapse
|
25
|
Abstract
People occasionally use filler phrases or pauses, such as “uh”, “um”, or “y’know,” that interrupt the flow of a sentence and fill silent moments between ordinary (non-filler) phrases. It remains unknown which brain networks are engaged during the utterance of fillers. We addressed this question by quantifying event-related cortical high gamma activity at 70–110 Hz. During extraoperative electrocorticography recordings performed as part of the presurgical evaluation, patients with drug-resistant focal epilepsy were instructed to overtly explain, in a sentence, ‘what is in the image (subject)’, ‘doing what (verb)’, ‘where (location)’, and ‘when (time)’. Time–frequency analysis revealed that the utterance of fillers, compared to that of ordinary words, was associated with a greater magnitude of high gamma augmentation in association and visual cortex of either hemisphere. Our preliminary results raise the hypothesis that filler utterance would often occur when large-scale networks across the association and visual cortex are engaged in cognitive processing, including lexical retrieval as well as verbal working memory and visual scene scanning.
Collapse
|
26
|
Proskovec AL, Spooner RK, Wiesman AI, Wilson TW. Local cortical thickness predicts somatosensory gamma oscillations and sensory gating: A multimodal approach. Neuroimage 2020; 214:116749. [PMID: 32199953 DOI: 10.1016/j.neuroimage.2020.116749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 02/26/2020] [Accepted: 03/13/2020] [Indexed: 12/24/2022] Open
Abstract
Two largely distinct bodies of research have demonstrated age-related alterations and disease-specific aberrations in both local gamma oscillations and patterns of cortical thickness. However, seldom has the relationship between gamma activity and cortical thickness been investigated. Herein, we combine the spatiotemporal precision of magnetoencephalography (MEG) with high-resolution magnetic resonance imaging and surface-based morphometry to characterize the relationships between somatosensory gamma oscillations and the thickness of the cortical tissue generating the oscillations in 94 healthy adults (age range: 22-72). Specifically, a series of regressions were computed to assess the relationships between thickness of the primary somatosensory cortex (S1), S1 gamma response power, peak gamma frequency, and somatosensory gating of identical stimuli. Our results indicated that increased S1 thickness significantly predicted greater S1 gamma response power, reduced peak gamma frequency, and improved somatosensory gating. Furthermore, peak gamma frequency significantly and partially mediated the relationship between S1 thickness and the magnitude of the S1 gamma response. Finally, advancing age significantly predicted reduced S1 thickness and decreased gating of redundant somatosensory stimuli. Notably, this is the first study to directly link somatosensory gamma oscillations to local cortical thickness. Our results demonstrate a multi-faceted relationship between structure and function, and have important implications for understanding age- and disease-related deficits in basic sensory processing and higher-order inhibitory function.
Collapse
Affiliation(s)
- Amy L Proskovec
- Center for Magnetoencephalography, University of Nebraska Medical Center (UNMC), Omaha, NE, 68198, USA; Department of Neurological Sciences, UNMC, Omaha, NE, 68198, USA; Department of Psychology, University of Nebraska - Omaha, Omaha, NE, 68182, USA; Magnetoencephalography Center of Excellence, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Rachel K Spooner
- Center for Magnetoencephalography, University of Nebraska Medical Center (UNMC), Omaha, NE, 68198, USA; Department of Neurological Sciences, UNMC, Omaha, NE, 68198, USA
| | - Alex I Wiesman
- Center for Magnetoencephalography, University of Nebraska Medical Center (UNMC), Omaha, NE, 68198, USA; Department of Neurological Sciences, UNMC, Omaha, NE, 68198, USA
| | - Tony W Wilson
- Center for Magnetoencephalography, University of Nebraska Medical Center (UNMC), Omaha, NE, 68198, USA; Department of Neurological Sciences, UNMC, Omaha, NE, 68198, USA; Department of Psychology, University of Nebraska - Omaha, Omaha, NE, 68182, USA
| |
Collapse
|
27
|
Sugiura A, Silverstein BH, Jeong JW, Nakai Y, Sonoda M, Motoi H, Asano E. Four-dimensional map of direct effective connectivity from posterior visual areas. Neuroimage 2020; 210:116548. [PMID: 31958582 DOI: 10.1016/j.neuroimage.2020.116548] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 12/17/2022] Open
Abstract
Lower- and higher-order visual cortices in the posterior brain, ranging from the medial- and lateral-occipital to fusiform regions, are suggested to support visual object recognition, whereas the frontal eye field (FEF) plays a role in saccadic eye movements which optimize visual processing. Previous studies using electrophysiology and functional MRI techniques have reported that tasks requiring visual object recognition elicited cortical activation sequentially in the aforementioned posterior visual regions and FEFs. The present study aims to provide unique evidence of direct effective connectivity outgoing from the posterior visual regions by measuring the early component (10-50 ms) of cortico-cortical spectral responses (CCSRs) elicited by weak single-pulse direct cortical electrical stimulation. We studied 22 patients who underwent extraoperative intracranial EEG recording for clinical localization of seizure foci and functionally-important brain regions. We used animations to visualize the spatiotemporal dynamics of gamma band CCSRs elicited by stimulation of three different posterior visual regions. We quantified the strength of CCSR-defined effective connectivity between the lower- and higher-order posterior visual regions as well as from the posterior visual regions to the FEFs. We found that effective connectivity within the posterior visual regions was larger in the feedforward (i.e., lower-to higher-order) direction compared to the opposite direction. Specifically, connectivity from the medial-occipital region was largest to the lateral-occipital region, whereas that from the lateral-occipital region was largest to the fusiform region. Among the posterior visual regions, connectivity to the FEF was largest from the lateral-occipital region and the mean peak latency of CCSR propagation from the lateral-occipital region to FEF was 26 ms. Our invasive study of the human brain using a stimulation-based intervention supports the model that the posterior visual regions have direct cortico-cortical connectivity pathways in which neural activity is transferred preferentially from the lower-to higher-order areas. The human brain has direct cortico-cortical connectivity allowing a rapid transfer of neural activity from the lateral-occipital region to the FEF.
Collapse
Affiliation(s)
- Ayaka Sugiura
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI, 48201, USA
| | - Brian H Silverstein
- Translational Neuroscience Program, Wayne State University, Detroit, MI, 48201, USA
| | - Jeong-Won Jeong
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI, 48201, USA; Department of Neurology, Children's Hospital of Michigan, Wayne State University, Detroit, MI, 48201, USA
| | - Yasuo Nakai
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI, 48201, USA; Department of Neurological Surgery, Wakayama Medical University, Wakayama-shi, 6418509, Japan
| | - Masaki Sonoda
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI, 48201, USA
| | - Hirotaka Motoi
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI, 48201, USA
| | - Eishi Asano
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI, 48201, USA; Department of Neurology, Children's Hospital of Michigan, Wayne State University, Detroit, MI, 48201, USA.
| |
Collapse
|
28
|
Arya R, Babajani-Feremi A, Byars AW, Vannest J, Greiner HM, Wheless JW, Mangano FT, Holland KD. A model for visual naming based on spatiotemporal dynamics of ECoG high-gamma modulation. Epilepsy Behav 2019; 99:106455. [PMID: 31419636 DOI: 10.1016/j.yebeh.2019.106455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 11/30/2022]
Abstract
OBJECTIVE We studied spatiotemporal dynamics of electrocorticographic (ECoG) high-gamma modulation (HGM) during visual naming. METHODS In 8 patients, aged 4-19 years, with left hemisphere subdural electrodes, propagation of ECoG HGM during overt visual naming was mapped with trial-averaged time-frequency analysis. Group-level synthesis was performed by transforming all electrodes to a standard space and assigning cortical parcels based on a reference atlas. RESULTS After image display following cortical parcels were activated: inferior occipital, caudal angular, fusiform, and middle temporal gyri, and superior temporal sulcus [0-400 ms]; rostral pars triangularis (A45r), inferior frontal sulcus, caudal dorsolateral premotor cortex (A6cdl) [300-600 ms]; caudal ventrolateral premotor cortex (A6cvl), caudal pars triangularis (A45c), pars opercularis (A44) [400-800 ms]; primary sensorimotor cortex [600-1400 ms], with most prominent HGM in glossolaryngeal region (A4tl). Lastly, auditory cortex (A41/A42) and superior temporal gyrus (A22) were activated [900 ms-1.4 s]. After 1.5 s, HGM decreased globally, except in ventrolateral premotor cortex. CONCLUSIONS During visual naming, ECoG HGM shows a sequential but overlapping spatiotemporal course through cortical regions. We provide neurophysiologic validation for a model of visual naming incorporating both modular and distributed cortical processing. This may explain cognitive deficits seen in some patients after surgery involving HGM naming sites outside perisylvian language cortex.
Collapse
Affiliation(s)
- Ravindra Arya
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America.
| | - Abbas Babajani-Feremi
- Department of Pediatrics, The University of Tennessee Health Science Center, Memphis, TN, United States of America; Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, United States of America; Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Anna W Byars
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Jennifer Vannest
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America; Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Hansel M Greiner
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - James W Wheless
- Department of Pediatrics, The University of Tennessee Health Science Center, Memphis, TN, United States of America; Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, United States of America
| | - Francesco T Mangano
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Katherine D Holland
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| |
Collapse
|
29
|
Arya R, Ervin B, Dudley J, Buroker J, Rozhkov L, Scholle C, Horn PS, Vannest J, Byars AW, Leach JL, Mangano FT, Greiner HM, Holland KD, Glauser TA. Electrical stimulation mapping of language with stereo-EEG. Epilepsy Behav 2019; 99:106395. [PMID: 31422309 DOI: 10.1016/j.yebeh.2019.06.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 11/19/2022]
Abstract
OBJECTIVE We prospectively validated stereo-electroencephalography (EEG) electrical stimulation mapping (ESM) of language against a reference standard of meta-analytic functional magnetic resonance imaging (fMRI) framework (Neurosynth). METHODS Language ESM was performed using 50 Hz, biphasic, bipolar, stimulation at 1-8 mA, with a picture naming task. Electrode contacts (ECs) were scored as ESM+ if ESM interfered with speech/language function. For each patient, presurgical MRI was transformed to a standard space and coregistered with computed tomographic (CT) scan to obtain EC locations. After whole-brain parcellation, this fused image data were intersected with three-dimensional language fMRI (Neurosynth), and each EC was classified as lying within/outside the fMRI language parcel. Diagnostic odds ratio (DOR) and other indices were estimated. Current thresholds for language inhibition and after-discharges (ADs) were analyzed using multivariable linear mixed models. RESULTS In 10 patients (5 females), aged 5.4-21.2 years, speech/language inhibition was noted with ESM on 87/304 (29%) ECs. Stereo-EEG language ESM was a valid classifier of fMRI (Neurosynth) language sites (DOR: 9.02, p < 0.0001), with high specificity (0.87) but poor sensitivity (0.57). Similar diagnostic indices were seen for ECs in frontal or posterior regions, and gray or white matter. Language threshold (3.1 ± 1.5 mA) was lower than AD threshold (4.0 ± 2.0 mA, p = 0.0001). Language and AD thresholds decreased with age and intelligence quotient. Electrical stimulation mapping triggered seizures/auras represented patients' habitual semiology with 1 Hz stimulation. CONCLUSIONS Stereo-EEG ESM can reliably identify cerebral parcels with/without language function but may under detect all language sites. We suggest a 50-Hz stimulation protocol for language ESM with stereo-EEG.
Collapse
Affiliation(s)
- Ravindra Arya
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Brian Ervin
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Electrical Engineering and Computing Systems, University of Cincinnati, Cincinnati, OH, USA
| | - Jonathan Dudley
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jason Buroker
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Clinical Engineering, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Leonid Rozhkov
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Craig Scholle
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Paul S Horn
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jennifer Vannest
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Anna W Byars
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - James L Leach
- Division of Pediatric Neuro-radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Francesco T Mangano
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hansel M Greiner
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Katherine D Holland
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Tracy A Glauser
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
30
|
Ikegaya N, Motoi H, Iijima K, Takayama Y, Kambara T, Sugiura A, Silverstein BH, Iwasaki M, Asano E. Spatiotemporal dynamics of auditory and picture naming-related high-gamma modulations: A study of Japanese-speaking patients. Clin Neurophysiol 2019; 130:1446-1454. [PMID: 31056408 DOI: 10.1016/j.clinph.2019.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/03/2019] [Accepted: 04/15/2019] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To characterize the spatiotemporal dynamics of auditory and picture naming-related cortical activation in Japanese-speaking patients. METHODS Ten patients were assigned auditory naming and picture naming tasks during extraoperative intracranial EEG recording in a tertiary epilepsy center. Time-frequency analysis determined at what electrode sites and at what time windows during each task the amplitude of high-gamma activity (65-95 Hz) was modulated. RESULTS The superior-temporal gyrus on each hemisphere showed high-gamma augmentation during sentence listening, whereas the left middle-temporal and inferior-frontal gyri showed high-gamma augmentation peaking around stimulus offset. Auditory naming-specific high-gamma augmentation was noted in the bilateral superior-temporal gyri as well as left frontal-parietal-temporal perisylvian network regions, whereas picture naming-specific augmentation was noted in the occipital-fusiform regions, bilaterally. The inferior pre- and postcentral gyri on each hemisphere showed modality-common high-gamma augmentation time-locked to overt responses. CONCLUSIONS The spatiotemporal dynamics of auditory and picture naming-related high-gamma augmentation in Japanese-speaking patients were qualitatively similar to those previously reported in studies of English-speaking patients. SIGNIFICANCE The cortical dynamics for auditory sentence recognition are at least partly shared by cohorts speaking two distinct languages. Multicenter studies regarding the clinical utility of high-gamma language mapping across Eastern and Western hemispheres may be feasible.
Collapse
Affiliation(s)
- Naoki Ikegaya
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo 1878551, Japan; Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama 2360004, Japan
| | - Hirotaka Motoi
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University, Yokohama 2360004, Japan; Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit, MI 48201, USA
| | - Keiya Iijima
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo 1878551, Japan
| | - Yutaro Takayama
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo 1878551, Japan; Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama 2360004, Japan
| | - Toshimune Kambara
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit, MI 48201, USA; Department of Psychology, Hiroshima University, Hiroshima 7398524, Japan
| | - Ayaka Sugiura
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit, MI 48201, USA
| | - Brian H Silverstein
- Translational Neuroscience Program, Wayne State University, Detroit, MI 48202, USA
| | - Masaki Iwasaki
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo 1878551, Japan.
| | - Eishi Asano
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit, MI 48201, USA; Department of Neurology, Wayne State University, Children's Hospital of Michigan, Detroit, MI 48201, USA.
| |
Collapse
|