1
|
Ge Y, Chen C, Li H, Wang R, Yang Y, Ye L, He C, Chen R, Wang Z, Shao X, Gong Y, Yang L, Wang S, Zhou J, Wu X, Wang S, Ding Y. Altered structural network in temporal lobe epilepsy with focal to bilateral tonic-clonic seizures. Ann Clin Transl Neurol 2024; 11:2277-2288. [PMID: 39152643 PMCID: PMC11537139 DOI: 10.1002/acn3.52135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 08/19/2024] Open
Abstract
OBJECTIVES This study aims to investigate whether alterations in white matter topological networks are associated with focal to bilateral tonic-clonic seizures (FBTCS) in temporal lobe epilepsy (TLE). Additionally, we investigated the variables contributing to memory impairment in TLE. METHODS This cross-sectional study included 88 unilateral people with TLE (45 left/43 right), and 42 healthy controls. Graph theory analysis was employed to compare the FBTCS (+) group (n = 51) with the FBTCS (-) group (n = 37). The FBTCS (+) group was subcategorized into current-FBTCS (n = 31) and remote-FBTCS (n = 20), based on the history of FBTCS within 1 year or longer than 1 year before scanning, respectively. We evaluated the discriminatory power of topological network properties by receiver operating characteristic (ROC) analysis. Generalized linear models (GLMs) were employed to investigate variables associated with memory impairment in TLE. RESULTS Global efficiency (Eg) was significantly reduced in the FBTCS (+) group, especially in the current-FBTCS subgroup. Greater disruption of regional properties in the ipsilateral occipital and temporal association cortices was observed in the FBTCS (+) group. ROC analysis revealed that Eg, normalized characteristic shortest path length, and nodal efficiency of the ipsilateral middle temporal gyrus could distinguish between FBTCS (+) and FBTCS (-) groups. Additionally, GLMs linked the occurrence of current FBTCS with poorer verbal memory outcomes in TLE. INTERPRETATION Our study suggests that abnormal networks could be the structural basis of seizure propagation in FBTCS. Strategies aimed at reducing the occurrence of FBTCS could potentially improve the memory outcomes in people with TLE.
Collapse
Affiliation(s)
- Yi Ge
- Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Cong Chen
- Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Hong Li
- Department of Radiology, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Ruyi Wang
- Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Yuyu Yang
- Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Lingqi Ye
- Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Chenmin He
- Department of Radiology, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Ruotong Chen
- Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Zijian Wang
- Department of Radiology, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Xiaotong Shao
- Department of Radiology, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Yuting Gong
- Department of Radiology, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Linglin Yang
- Department of Psychiatry, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Shan Wang
- Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Jiping Zhou
- Department of NeurologyWayne State University School of MedicineDetroitMichiganUSA
| | - Xunyi Wu
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
| | - Shuang Wang
- Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Yao Ding
- Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| |
Collapse
|
2
|
Kanai S, Oguri M, Okanishi T, Miyamoto Y, Maeda M, Yazaki K, Matsuura R, Tozawa T, Sakuma S, Chiyonobu T, Hamano SI, Maegaki Y. Predictive modeling based on functional connectivity of interictal scalp EEG for infantile epileptic spasms syndrome. Clin Neurophysiol 2024; 167:37-48. [PMID: 39265289 DOI: 10.1016/j.clinph.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 08/20/2024] [Accepted: 08/24/2024] [Indexed: 09/14/2024]
Abstract
OBJECTIVE This study aims to delineate the electrophysiological variances between patients with infantile epileptic spasms syndrome (IESS) and healthy controls and to devise a predictive model for long-term seizure outcomes. METHODS The cohort consisted of 30 individuals in the seizure-free group, 23 in the seizure-residual group, and 20 in the control group. We conducted a comprehensive analysis of pretreatment electroencephalography, including the relative power spectrum (rPS), weighted phase-lag index (wPLI), and network metrics. Follow-up EEGs at 2 years of age were also analyzed to elucidate physiological changes among groups. RESULTS Infants in the seizure-residual group exhibited increased rPS in theta and alpha bands at IESS onset compared to the other groups (all p < 0.0001). The control group showed higher rPS in fast frequency bands, indicating potentially enhanced cognitive function. The seizure-free group presented increased wPLI across all frequency bands (all p < 0.0001). Our predictive model utilizing wPLI anticipated long-term outcomes at IESS onset (area under the curve 0.75). CONCLUSION Our findings demonstrated an initial "hypersynchronous state" in the seizure-free group, which was ameliorated following successful treatment. SIGNIFICANCE This study provides a predictive model utilizing functional connectivity and insights into the diverse electrophysiology observed among outcome groups of IESS.
Collapse
Affiliation(s)
- Sotaro Kanai
- Division of Child Neurology, Institute of Neurological Sciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan.
| | - Masayoshi Oguri
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, 281-1 Mure-cho, Takamatsu 761-0123, Japan
| | - Tohru Okanishi
- Division of Child Neurology, Institute of Neurological Sciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Yosuke Miyamoto
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Masanori Maeda
- Department of Pediatrics, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Kotaro Yazaki
- Department of Pediatrics, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Ryuki Matsuura
- Division of Neurology, Saitama Children's Medical Center, 1-2 Shintoshin, Chuo-ku, Saitama 330-8777, Japan
| | - Takenori Tozawa
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Satoru Sakuma
- Department of Pediatrics, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Tomohiro Chiyonobu
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Shin-Ichiro Hamano
- Division of Neurology, Saitama Children's Medical Center, 1-2 Shintoshin, Chuo-ku, Saitama 330-8777, Japan
| | - Yoshihiro Maegaki
- Division of Child Neurology, Institute of Neurological Sciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| |
Collapse
|
3
|
Rajaraman RR, Smith RJ, Oana S, Daida A, Shrey DW, Nariai H, Lopour BA, Hussain SA. Computational EEG attributes predict response to therapy for epileptic spasms. Clin Neurophysiol 2024; 163:39-46. [PMID: 38703698 DOI: 10.1016/j.clinph.2024.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/10/2024] [Accepted: 03/28/2024] [Indexed: 05/06/2024]
Abstract
OBJECTIVE We set out to evaluate whether response to treatment for epileptic spasms is associated with specific candidate computational EEG biomarkers, independent of clinical attributes. METHODS We identified 50 children with epileptic spasms, with pre- and post-treatment overnight video-EEG. After EEG samples were preprocessed in an automated fashion to remove artifacts, we calculated amplitude, power spectrum, functional connectivity, entropy, and long-range temporal correlations (LRTCs). To evaluate the extent to which each feature is independently associated with response and relapse, we conducted logistic and proportional hazards regression, respectively. RESULTS After statistical adjustment for the duration of epileptic spasms prior to treatment, we observed an association between response and stronger baseline and post-treatment LRTCs (P = 0.042 and P = 0.004, respectively), and higher post-treatment entropy (P = 0.003). On an exploratory basis, freedom from relapse was associated with stronger post-treatment LRTCs (P = 0.006) and higher post-treatment entropy (P = 0.044). CONCLUSION This study suggests that multiple EEG features-especially LRTCs and entropy-may predict response and relapse. SIGNIFICANCE This study represents a step toward a more precise approach to measure and predict response to treatment for epileptic spasms.
Collapse
Affiliation(s)
- Rajsekar R Rajaraman
- Division of Pediatric Neurology, UCLA Mattel Children's Hospital and University of California, Los Angeles, Los Angeles, CA, USA
| | - Rachel J Smith
- Department of Electrical and Computer Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shingo Oana
- Division of Pediatric Neurology, UCLA Mattel Children's Hospital and University of California, Los Angeles, Los Angeles, CA, USA
| | - Atsuro Daida
- Division of Pediatric Neurology, UCLA Mattel Children's Hospital and University of California, Los Angeles, Los Angeles, CA, USA
| | - Daniel W Shrey
- Division of Pediatric Neurology, University of California, Irvine, Irvine, CA, USA; Department of Neurology, Children's Hospital of Orange County, Orange, CA, USA
| | - Hiroki Nariai
- Division of Pediatric Neurology, UCLA Mattel Children's Hospital and University of California, Los Angeles, Los Angeles, CA, USA
| | - Beth A Lopour
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Shaun A Hussain
- Division of Pediatric Neurology, UCLA Mattel Children's Hospital and University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Danthine V, Cottin L, Berger A, Germany Morrison EI, Liberati G, Ferrao Santos S, Delbeke J, Nonclercq A, El Tahry R. Electroencephalogram synchronization measure as a predictive biomarker of Vagus nerve stimulation response in refractory epilepsy: A retrospective study. PLoS One 2024; 19:e0304115. [PMID: 38861500 PMCID: PMC11166337 DOI: 10.1371/journal.pone.0304115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024] Open
Abstract
There are currently no established biomarkers for predicting the therapeutic effectiveness of Vagus Nerve Stimulation (VNS). Given that neural desynchronization is a pivotal mechanism underlying VNS action, EEG synchronization measures could potentially serve as predictive biomarkers of VNS response. Notably, an increased brain synchronization in delta band has been observed during sleep-potentially due to an activation of thalamocortical circuitry, and interictal epileptiform discharges are more frequently observed during sleep. Therefore, investigation of EEG synchronization metrics during sleep could provide a valuable insight into the excitatory-inhibitory balance in a pro-epileptogenic state, that could be pathological in patients exhibiting a poor response to VNS. A 19-channel-standard EEG system was used to collect data from 38 individuals with Drug-Resistant Epilepsy (DRE) who were candidates for VNS implantation. An EEG synchronization metric-the Weighted Phase Lag Index (wPLI)-was extracted before VNS implantation and compared between sleep and wakefulness, and between responders (R) and non-responders (NR). In the delta band, a higher wPLI was found during wakefulness compared to sleep in NR only. However, in this band, no synchronization difference in any state was found between R and NR. During sleep and within the alpha band, a negative correlation was found between wPLI and the percentage of seizure reduction after VNS implantation. Overall, our results suggest that patients exhibiting a poor VNS efficacy may present a more pathological thalamocortical circuitry before VNS implantation. EEG synchronization measures could provide interesting insights into the prerequisites for responding to VNS, in order to avoid unnecessary implantations in patients showing a poor therapeutic efficacy.
Collapse
Affiliation(s)
- Venethia Danthine
- Institute of NeuroScience (IoNS), Université Catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium
| | - Lise Cottin
- Bio- Electro- And Mechanical Systems (BEAMS), Université Libre de Bruxelles, Brussels, Belgium
| | - Alexandre Berger
- Institute of NeuroScience (IoNS), Université Catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium
- Sleep and Chronobiology Lab, GIGA-Cyclotron Research Center-in Vivo Imaging, University of Liège, Liège, Belgium
| | - Enrique Ignacio Germany Morrison
- Institute of NeuroScience (IoNS), Université Catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO) department, WEL Research Institute, Wavre, Belgium
| | - Giulia Liberati
- Institute of NeuroScience (IoNS), Université Catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium
- Institute of Psychology (IPSY), Université Catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium
| | - Susana Ferrao Santos
- Institute of NeuroScience (IoNS), Université Catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium
- Department of Neurology, Cliniques Universitaires Saint Luc, Woluwe-Saint-Lambert, Belgium
| | - Jean Delbeke
- Institute of NeuroScience (IoNS), Université Catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium
| | - Antoine Nonclercq
- Bio- Electro- And Mechanical Systems (BEAMS), Université Libre de Bruxelles, Brussels, Belgium
| | - Riëm El Tahry
- Institute of NeuroScience (IoNS), Université Catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium
- Department of Neurology, Cliniques Universitaires Saint Luc, Woluwe-Saint-Lambert, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO) department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
5
|
Park KM, Park S, Hur YJ. Brain network reconstruction of abnormal functional connectivity in Lennox-Gastaut syndrome according to drug responsiveness: A retrospective study. Epilepsy Res 2024; 200:107312. [PMID: 38309034 DOI: 10.1016/j.eplepsyres.2024.107312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/08/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
OBJECTIVE Functional network effects of resective or palliative epilepsy surgery in Lennox-Gastaut syndrome (LGS) patients are different according to the seizure outcome. This study aimed to clarify whether the response to antiseizure medications (ASM) can affect to alteration of brain network connectivity. METHODS In this retrospective study, 37 patients with LGS who underwent 1st electroencephalography (EEG) and 40 healthy controls were enrolled. Among them, 24 LGS patients had follow-up EEG data and were classified as drug responders and non-responders according to the ASM response. Graphical theoretical analysis was used to assess functional connectivity using resting-state EEG. RESULTS The 1st EEG showed a decreased radius in patients with LGS compared with that in healthy controls (3.987 vs. 4.279, P = 0.003). Follow-up EEG data of patients with LGS revealed significant differences in functional connectivity depending on the ASM response. On follow-up EEG, non-responders (n = 11) demonstrated significant increases in global network parameters, whereas responders (n = 13) showed no significant difference in functional connectivity compared with healthy controls. CONCLUSIONS The functional connectivity patterns in patients with LGS differed from those in healthy controls. Functional connectivity in drug-responsive patients with LGS tended to preserve the network of brain connections in a pattern similar to that in healthy controls, whereas non-responders showed more disrupted functional connectivity.
Collapse
Affiliation(s)
- Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Pusan, Republic of Korea
| | - Soyoung Park
- Department of Pediatrics, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Republic of Korea; Yonsei University College of Medicine, Graduate School, Seoul, Republic of Korea
| | - Yun Jung Hur
- Department of Pediatrics, Haeundae Paik Hospital, Inje University College of Medicine, Pusan, Republic of Korea.
| |
Collapse
|
6
|
Dhamne SC, Modi ME, Gray A, Bonazzi S, Craig L, Bainbridge E, Lalani L, Super CE, Schaeffer S, Capre K, Lubicka D, Liang G, Burdette D, McTighe SM, Gurnani S, Vermudez SAD, Curtis D, Wilson CJ, Hameed MQ, D'Amore A, Rotenberg A, Sahin M. Seizure reduction in TSC2-mutant mouse model by an mTOR catalytic inhibitor. Ann Clin Transl Neurol 2023; 10:1790-1801. [PMID: 37545094 PMCID: PMC10578885 DOI: 10.1002/acn3.51868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/14/2023] [Accepted: 07/23/2023] [Indexed: 08/08/2023] Open
Abstract
OBJECTIVE Tuberous sclerosis complex (TSC) is a neurodevelopmental disorder caused by autosomal-dominant pathogenic variants in either the TSC1 or TSC2 gene, and it is characterized by hamartomas in multiple organs, such as skin, kidney, lung, and brain. These changes can result in epilepsy, learning disabilities, and behavioral complications, among others. The mechanistic link between TSC and the mechanistic target of the rapamycin (mTOR) pathway is well established, thus mTOR inhibitors can potentially be used to treat the clinical manifestations of the disorder, including epilepsy. METHODS In this study, we tested the efficacy of a novel mTOR catalytic inhibitor (here named Tool Compound 1 or TC1) previously reported to be more brain-penetrant compared with other mTOR inhibitors. Using a well-characterized hypomorphic Tsc2 mouse model, which displays a translationally relevant seizure phenotype, we tested the efficacy of TC1. RESULTS Our results show that chronic treatment with this novel mTOR catalytic inhibitor (TC1), which affects both the mTORC1 and mTORC2 signaling complexes, reduces seizure burden, and extends the survival of Tsc2 hypomorphic mice, restoring species typical weight gain over development. INTERPRETATION Novel mTOR catalytic inhibitor TC1 exhibits a promising therapeutic option in the treatment of TSC.
Collapse
Affiliation(s)
- Sameer C. Dhamne
- F.M. Kirby Neurobiology Center, Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Meera E. Modi
- F.M. Kirby Neurobiology Center, Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Audrey Gray
- Novartis Institutes for Biomedical ResearchCambridgeMassachusettsUSA
| | - Simone Bonazzi
- Novartis Institutes for Biomedical ResearchCambridgeMassachusettsUSA
| | - Lucas Craig
- Novartis Institutes for Biomedical ResearchCambridgeMassachusettsUSA
| | - Elizabeth Bainbridge
- F.M. Kirby Neurobiology Center, Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Lahin Lalani
- F.M. Kirby Neurobiology Center, Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Chloe E. Super
- F.M. Kirby Neurobiology Center, Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Samantha Schaeffer
- F.M. Kirby Neurobiology Center, Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Ketthsy Capre
- Novartis Institutes for Biomedical ResearchCambridgeMassachusettsUSA
| | - Danuta Lubicka
- Novartis Institutes for Biomedical ResearchCambridgeMassachusettsUSA
| | - Guiqing Liang
- Novartis Institutes for Biomedical ResearchCambridgeMassachusettsUSA
| | - Doug Burdette
- Novartis Institutes for Biomedical ResearchCambridgeMassachusettsUSA
| | | | - Sarika Gurnani
- F.M. Kirby Neurobiology Center, Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Sheryl Anne D. Vermudez
- F.M. Kirby Neurobiology Center, Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Daniel Curtis
- Novartis Institutes for Biomedical ResearchCambridgeMassachusettsUSA
| | | | - Mustafa Q. Hameed
- F.M. Kirby Neurobiology Center, Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Angelica D'Amore
- F.M. Kirby Neurobiology Center, Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Alexander Rotenberg
- F.M. Kirby Neurobiology Center, Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Mustafa Sahin
- F.M. Kirby Neurobiology Center, Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
7
|
Sun F, Wang Y, Li Y, Li Y, Wang S, Xu F, Wang X. Variation in functional networks between clinical and subclinical discharges in childhood absence epilepsy: A multi-frequency MEG study. Seizure 2023; 111:109-121. [PMID: 37598560 DOI: 10.1016/j.seizure.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 08/22/2023] Open
Abstract
OBJECTIVE Two types of spike-and-wave discharges (SWDs) exist in childhood absence epilepsy (CAE): clinical discharges are prolonged and manifest primarily as impaired consciousness, whereas subclinical discharges are brief with few objectively visible symptoms. This study aimed to compare neural functional network and default mode network (DMN) activity between clinical and subclinical discharges to better understand the underlying mechanism of CAE. METHODS Using magnetoencephalography (MEG) data from 21 patients, we obtained 25 segments each of clinical discharges and subclinical discharges. Amplitude envelope correlation analysis was used to construct functional networks and graph theory was used to calculate network topological data. We then compared differences in functional connectivity within the DMN between clinical and subclinical discharges. All statistical comparisons were performed using paired-sample tests. RESULTS Compared to subclinical discharges, the functional network of clinical discharges exhibited higher synchronization - particularly in the parahippocampal gyrus - as early as 10 s before the seizure. Additionally, the functional network of clinical SWDs presented an anterior shift of key nodes in the alpha frequency band. Regarding clinical discharge progression, there were gradual increases in the parameter node strengths (S), clustering coefficients (C), and global efficiency (E) of the functional networks, while the path lengths (L) decreased. These changes were most prominent at the onset of discharges and followed by some recovery in the high-frequency bands, but no significant change in the low-frequency bands. Furthermore, connections within the DMN during the discharge period were significantly stronger for clinical discharge compared to subclinical discharges. CONCLUSIONS These findings suggest that a more regular network before abnormal discharges in clinical discharges contributes to SWD explosion and that the parahippocampal gyrus plays an important role in maintaining oscillations. An absence seizure is a gradual process and the emergence of SWDs may be accompanied by initiation of inhibitory mechanisms. Enhanced functional connectivity among DMN brain regions may indicate that patients have entered a state of introspection, and functional abnormalities in the parahippocampal gyrus may be associated with patients' transient memory loss.
Collapse
Affiliation(s)
- Fangling Sun
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yingfan Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yihan Li
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yanzhang Li
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Siyi Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Fengyuan Xu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoshan Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
8
|
Kim J, Kim MJ, Kim HJ, Yum MS, Ko TS. Electrophysiological network predicts clinical response to vigabatrin in epileptic spasms. Front Neurol 2023; 14:1209796. [PMID: 37426442 PMCID: PMC10327551 DOI: 10.3389/fneur.2023.1209796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023] Open
Abstract
Purpose This study aimed to discover electrophysiologic markers correlated with clinical responses to vigabatrin-based treatment in infants with epileptic spasms (ES). Method The study involved a descriptive analysis of ES patients from a single institution, as well as electroencephalogram (EEG) analyses of 40 samples and 20 age-matched healthy infants. EEG data were acquired during the interictal sleep state prior to the standard treatment. The weighted phase-lag index (wPLI) functional connectivity was explored across frequency and spatial domains, correlating these results with clinical features. Results Infants with ES exhibited diffuse increases in delta and theta power, differing from healthy controls. For the wPLI analysis, ES subjects exhibited higher global connectivity compared to control subjects. Subjects who responded favorably to treatment were characterized by higher beta connectivity in the parieto-occipital regions, while those with poorer outcomes exhibited lower alpha connectivity in the frontal regions. Individuals with structural neuroimaging abnormalities exhibited correspondingly low functional connectivity, implying that ES patients who maintain adequate structural and functional integrity are more likely to respond favorably to vigabatrin-based treatments. Conclusion This study highlights the potential utility of EEG functional connectivity analysis in predicting early response to treatments in infants with ES.
Collapse
Affiliation(s)
- Junhyung Kim
- Department of Neurosurgery, Asan Medical Center, Seoul, Republic of Korea
| | - Min-Jee Kim
- Department of Pediatrics, Asan Medical Center Children’s Hospital, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyun-Jin Kim
- Department of Pediatrics, Asan Medical Center Children’s Hospital, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Mi-Sun Yum
- Department of Pediatrics, Asan Medical Center Children’s Hospital, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Tae-Sung Ko
- Department of Pediatrics, Asan Medical Center Children’s Hospital, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
9
|
Koster LK, Zamyadi R, Yan L, Payne ET, McBain KL, Dunkley BT, Hahn CD. Brain network properties of clinical versus subclinical seizures among critically ill children. Clin Neurophysiol 2023; 149:33-41. [PMID: 36878028 DOI: 10.1016/j.clinph.2023.02.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 01/16/2023] [Accepted: 02/05/2023] [Indexed: 02/17/2023]
Abstract
OBJECTIVE Electrographic seizures are common among critically ill children, and have been associated with worse outcomes. Despite their often-widespread cortical representation, most of these seizures remain subclinical, a phenomenon which remains poorly understood. We compared the brain network properties of clinical versus subclinical seizures to gain insight into their relative potential deleterious effects. METHODS Functional connectivity (phase lag index) and graph measures (global efficiency and clustering coefficients) were computed for 2178 electrographic seizures recorded during 48-hours of 19-channel continuous EEG monitoring obtained in 20 comatose children. Frequency-specific group differences in clinical versus subclinical seizures were analyzed using a non-parametric ANCOVA, adjusting for age, sex, medication exposure, treatment intensity and seizures per subject. RESULTS Clinical seizures demonstrated greater functional connectivity than subclinical seizures at alpha frequencies, but less connectivity than subclinical seizures at delta frequencies. Clinical seizures also demonstrated significantly higher median global efficiency than subclinical seizures (p < 0.01), and significantly higher median clustering coefficients across all electrodes at alpha frequencies. CONCLUSIONS Clinical expression of seizures correlates with greater alpha synchronization of distributed brain networks. SIGNIFICANCE The stronger global and local alpha-mediated functional connectivity observed during clinical seizures may indicate greater pathological network recruitment. These observations motivate further studies to investigate whether the clinical expression of seizures may influence their potential to cause secondary brain injury.
Collapse
Affiliation(s)
- Laura K Koster
- Division of Neurology, The Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Canada; Neurosciences & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Rouzbeh Zamyadi
- Neurosciences & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Luowei Yan
- Neurosciences & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Eric T Payne
- Department of Pediatrics, Section of Neurology, Alberta Children's Hospital and University of Calgary, Calgary, Canada
| | - Kristin L McBain
- MAP Centre for Urban Health Solutions, Unity Health Toronto, Toronto, Canada
| | - Benjamin T Dunkley
- Neurosciences & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada; Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada; Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Cecil D Hahn
- Division of Neurology, The Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Canada; Neurosciences & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada.
| |
Collapse
|
10
|
Xiong Y, Li J, Wu D, Dong F, Liu J, Jiang L, Cao J, Xu Y. Seizure detection algorithm based on fusion of spatio-temporal network constructed with dispersion index. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Singh A, Hadjinicolaou A, Peters JM, Salussolia CL. Treatment-Resistant Epilepsy and Tuberous Sclerosis Complex: Treatment, Maintenance, and Future Directions. Neuropsychiatr Dis Treat 2023; 19:733-748. [PMID: 37041855 PMCID: PMC10083014 DOI: 10.2147/ndt.s347327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/22/2023] [Indexed: 04/13/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is a neurogenetic disorder that affects multiple organ systems, including the heart, kidneys, eyes, skin, and central nervous system. The neurologic manifestations have the highest morbidity and mortality, in particular in children. Clinically, patients with TSC often present with new-onset seizures within the first year of life. TSC-associated epilepsy is often difficult to treat and refractory to multiple antiseizure medications. Refractory TSC-associated epilepsy is associated with increased risk of neurodevelopmental comorbidities, including developmental delay, intellectual disability, autism spectrum disorder, and attention hyperactivity disorder. An increasing body of research suggests that early, effective treatment of TSC-associated epilepsy during critical neurodevelopmental periods can potentially improve cognitive outcomes. Therefore, it is important to treat TSC-associated epilepsy aggressively, whether it be with pharmacological therapy, surgical intervention, and/or neuromodulation. This review discusses current and future pharmacological treatments for TSC-associated epilepsy, as well as the importance of early surgical evaluation for refractory epilepsy in children with TSC and consideration of neuromodulatory interventions in young adults.
Collapse
Affiliation(s)
- Avantika Singh
- Division of Epilepsy and Neurophysiology, Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Aristides Hadjinicolaou
- Division of Epilepsy and Neurophysiology, Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Jurriaan M Peters
- Division of Epilepsy and Neurophysiology, Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Catherine L Salussolia
- Division of Epilepsy and Neurophysiology, Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
- Correspondence: Catherine L Salussolia, 3 Blackfan Circle, Center for Life Sciences 14060, Boston, MA, 02115, USA, Tel +617-355-7970, Email
| |
Collapse
|
12
|
Goad BS, Lee-Messer C, He Z, Porter BE, Baumer FM. Connectivity increases during spikes and spike-free periods in self-limited epilepsy with centrotemporal spikes. Clin Neurophysiol 2022; 144:123-134. [PMID: 36307364 PMCID: PMC10883644 DOI: 10.1016/j.clinph.2022.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/01/2022] [Accepted: 09/13/2022] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To understand the impact of interictal spikes on brain connectivity in patients with Self-Limited Epilepsy with Centrotemporal Spikes (SeLECTS). METHODS Electroencephalograms from 56 consecutive SeLECTS patients were segmented into periods with and without spikes. Connectivity between electrodes was calculated using the weighted phase lag index. To determine if there are chronic alterations in connectivity in SeLECTS, we compared spike-free connectivity to connectivity in 65 matched controls. To understand the acute impact of spikes, we compared connectivity immediately before, during, and after spikes versus baseline, spike-free connectivity. We explored whether behavioral state, spike laterality, or antiseizure medications affected connectivity. RESULTS Children with SeLECTS had markedly higher connectivity than controls during sleep but not wakefulness, with greatest difference in the right hemisphere. During spikes, connectivity increased globally; before and after spikes, left frontal and bicentral connectivity increased. Right hemisphere connectivity increased more during right-sided than left-sided spikes; left hemisphere connectivity was equally affected by right and left spikes. CONCLUSIONS SeLECTS patient have persistent increased connectivity during sleep; connectivity is further elevated during the spike and perispike periods. SIGNIFICANCE Testing whether increased connectivity impacts cognition or seizure susceptibility in SeLECTS and more severe epilepsies could help determine if spikes should be treated.
Collapse
Affiliation(s)
- Beatrice S Goad
- Department of Neurology, Stanford University School of Medicine, Palo Alto, CA, USA.
| | | | - Zihuai He
- Department of Neurology, Stanford University School of Medicine, Palo Alto, CA, USA.
| | - Brenda E Porter
- Department of Neurology, Stanford University School of Medicine, Palo Alto, CA, USA.
| | - Fiona M Baumer
- Department of Neurology, Stanford University School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
13
|
Neal A, Bouet R, Lagarde S, Ostrowsky‐Coste K, Maillard L, Kahane P, Touraine R, Catenoix H, Montavont A, Isnard J, Arzimanoglou A, Hermier M, Guenot M, Bartolomei F, Rheims S, Jung J. Epileptic spasms are associated with increased stereo-electroencephalography derived functional connectivity in tuberous sclerosis complex. Epilepsia 2022; 63:2359-2370. [PMID: 35775943 PMCID: PMC9796462 DOI: 10.1111/epi.17353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Epileptic spasms (ES) are common in tuberous sclerosis complex (TSC). However, the underlying network alterations and relationship with epileptogenic tubers are poorly understood. We examined interictal functional connectivity (FC) using stereo-electroencephalography (SEEG) in patients with TSC to investigate the relationship between tubers, epileptogenicity, and ES. METHODS We analyzed 18 patients with TSC who underwent SEEG (mean age = 11.5 years). The dominant tuber (DT) was defined as the most epileptogenic tuber using the epileptogenicity index. Epileptogenic zone (EZ) organization was quantitatively separated into focal (isolated DT) and complex (all other patterns). Using a 20-min interictal recording, FC was estimated with nonlinear regression, h2 . We calculated (1) intrazone FC within all sampled tubers and normal-appearing cortical zones, respectively; and (2) interzone FC involving connections between DT, other tubers, and normal cortex. The relationship between FC and (1) presence of ES as a current seizure type at the time of SEEG, (2) EZ organization, and (3) epileptogenicity was analyzed using a mixed generalized linear model. Spike rate and distance between zones were considered in the model as covariates. RESULTS Six patients had ES as a current seizure type at time of SEEG. ES patients had a greater number of tubers with a fluid-attenuated inversion recovery hypointense center (p < .001), and none had TSC1 mutations. The presence of ES was independently associated with increased FC within both intrazone (p = .033) and interzone (p = .011) networks. Post hoc analyses identified that increased FC was associated with ES across tuber and nontuber networks. EZ organization and epileptogenicity biomarkers were not associated with FC. SIGNIFICANCE Increased cortical synchrony among both tuber and nontuber networks is characteristic of patients with ES and independent of both EZ organization and tuber epileptogenicity. This further supports the prospect of FC biomarkers aiding treatment paradigms in TSC.
Collapse
Affiliation(s)
- Andrew Neal
- Eduwell team, Inserm U1028, CNRS UMR5292, UCBL1, UJMLyon Neuroscience Research CenterLyonFrance,Department of Functional Neurology and EpileptologyLyon Civil Hospices, member of the ERN EpiCARE, and Lyon 1 UniversityLyonFrance,Department of Neuroscience, Faculty of Medicine, Nursing, and Health SciencesCentral Clinical School, Monash UniversityMelbourneVictoriaAustralia
| | - Romain Bouet
- Eduwell team, Inserm U1028, CNRS UMR5292, UCBL1, UJMLyon Neuroscience Research CenterLyonFrance
| | - Stanislas Lagarde
- Epileptology Department, Timone HospitalPublic Assistance Hospitals of Marseille, member of the ERN EpiCAREMarseilleFrance,Institute of Systems Neurosciences, National Institute of Health and Medical ResearchAix‐Marseille UniversityMarseilleFrance
| | - Karine Ostrowsky‐Coste
- Eduwell team, Inserm U1028, CNRS UMR5292, UCBL1, UJMLyon Neuroscience Research CenterLyonFrance,Department of Pediatric Clinical Epileptology, Sleep Disorders, and Functional NeurologyLyon Civil Hospices, member of the ERN EpiCARELyonFrance
| | - Louis Maillard
- Neurology DepartmentUniversity Hospital of Nancy, member of the ERN EpiCARENancyFrance
| | - Philippe Kahane
- Grenoble‐Alpes University Hospital Center, collaborating partner of the ERN EpiCAREGrenoble‐Alpes University, Grenoble Institute of Neuroscience, National Institute of Health and Medical ResearchGrenobleFrance
| | - Renaud Touraine
- Department of GeneticsSaint Etienne University Hospital Center–North HospitalSaint‐Priest‐en‐JarezFrance
| | - Helene Catenoix
- Eduwell team, Inserm U1028, CNRS UMR5292, UCBL1, UJMLyon Neuroscience Research CenterLyonFrance,Department of Functional Neurology and EpileptologyLyon Civil Hospices, member of the ERN EpiCARE, and Lyon 1 UniversityLyonFrance
| | - Alexandra Montavont
- Eduwell team, Inserm U1028, CNRS UMR5292, UCBL1, UJMLyon Neuroscience Research CenterLyonFrance,Department of Functional Neurology and EpileptologyLyon Civil Hospices, member of the ERN EpiCARE, and Lyon 1 UniversityLyonFrance
| | - Jean Isnard
- Eduwell team, Inserm U1028, CNRS UMR5292, UCBL1, UJMLyon Neuroscience Research CenterLyonFrance,Department of Functional Neurology and EpileptologyLyon Civil Hospices, member of the ERN EpiCARE, and Lyon 1 UniversityLyonFrance
| | - Alexis Arzimanoglou
- Eduwell team, Inserm U1028, CNRS UMR5292, UCBL1, UJMLyon Neuroscience Research CenterLyonFrance,Department of Pediatric Clinical Epileptology, Sleep Disorders, and Functional NeurologyLyon Civil Hospices, member of the ERN EpiCARELyonFrance
| | - Marc Hermier
- Department of NeuroradiologyLyon Civil HospicesLyonFrance
| | - Marc Guenot
- Eduwell team, Inserm U1028, CNRS UMR5292, UCBL1, UJMLyon Neuroscience Research CenterLyonFrance,Department of Functional NeurosurgeryLyon Civil Hospices, member of the ERN EpiCARE, and Lyon 1 UniversityLyonFrance
| | - Fabrice Bartolomei
- Epileptology Department, Timone HospitalPublic Assistance Hospitals of Marseille, member of the ERN EpiCAREMarseilleFrance,Institute of Systems Neurosciences, National Institute of Health and Medical ResearchAix‐Marseille UniversityMarseilleFrance
| | - Sylvain Rheims
- Eduwell team, Inserm U1028, CNRS UMR5292, UCBL1, UJMLyon Neuroscience Research CenterLyonFrance,Department of Functional Neurology and EpileptologyLyon Civil Hospices, member of the ERN EpiCARE, and Lyon 1 UniversityLyonFrance,Epilepsy InstituteLyonFrance
| | - Julien Jung
- Eduwell team, Inserm U1028, CNRS UMR5292, UCBL1, UJMLyon Neuroscience Research CenterLyonFrance,Department of Functional Neurology and EpileptologyLyon Civil Hospices, member of the ERN EpiCARE, and Lyon 1 UniversityLyonFrance
| |
Collapse
|
14
|
Romero Milà B, Remakanthakurup Sindhu K, Mytinger JR, Shrey DW, Lopour BA. EEG biomarkers for the diagnosis and treatment of infantile spasms. Front Neurol 2022; 13:960454. [PMID: 35968272 PMCID: PMC9366674 DOI: 10.3389/fneur.2022.960454] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Early diagnosis and treatment are critical for young children with infantile spasms (IS), as this maximizes the possibility of the best possible child-specific outcome. However, there are major barriers to achieving this, including high rates of misdiagnosis or failure to recognize the seizures, medication failure, and relapse. There are currently no validated tools to aid clinicians in assessing objective diagnostic criteria, predicting or measuring medication response, or predicting the likelihood of relapse. However, the pivotal role of EEG in the clinical management of IS has prompted many recent studies of potential EEG biomarkers of the disease. These include both visual EEG biomarkers based on human visual interpretation of the EEG and computational EEG biomarkers in which computers calculate quantitative features of the EEG. Here, we review the literature on both types of biomarkers, organized based on the application (diagnosis, treatment response, prediction, etc.). Visual biomarkers include the assessment of hypsarrhythmia, epileptiform discharges, fast oscillations, and the Burden of AmplitudeS and Epileptiform Discharges (BASED) score. Computational markers include EEG amplitude and power spectrum, entropy, functional connectivity, high frequency oscillations (HFOs), long-range temporal correlations, and phase-amplitude coupling. We also introduce each of the computational measures and provide representative examples. Finally, we highlight remaining gaps in the literature, describe practical guidelines for future biomarker discovery and validation studies, and discuss remaining roadblocks to clinical implementation, with the goal of facilitating future work in this critical area.
Collapse
Affiliation(s)
- Blanca Romero Milà
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
- Department of Electronics and Biomedical Engineering, Universitat de Barcelona, Barcelona, Spain
| | | | - John R. Mytinger
- Division of Pediatric Neurology, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University, Columbus, OH, United States
| | - Daniel W. Shrey
- Division of Neurology, Children's Hospital Orange County, Orange, CA, United States
- Department of Pediatrics, University of California, Irvine, Irvine, CA, United States
| | - Beth A. Lopour
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
- *Correspondence: Beth A. Lopour
| |
Collapse
|
15
|
Tsai ML, Wang CC, Lee FC, Peng SJ, Chang H, Tseng SH. Resting-State EEG Functional Connectivity in Children with Rolandic Spikes with or without Clinical Seizures. Biomedicines 2022; 10:biomedicines10071553. [PMID: 35884857 PMCID: PMC9312817 DOI: 10.3390/biomedicines10071553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Alterations in dynamic brain network function are increasingly recognized in epilepsy. Benign childhood epilepsy with centrotemporal spikes (BECTS), or benign rolandic seizures, is the most common idiopathic focal epilepsy in children. In this study, we analyzed EEG functional connectivity (FC) among children with rolandic spikes with or without clinical seizures as compared to controls, to investigate the relationship between FC and clinical parameters in children with rolandic spikes. The FC analysis based on graph theory and network-based statistics in different frequency bands evaluated global efficiency, clustering coefficient, betweenness centrality, and nodal strength in four frequency bands. Similar to BECTS patients with seizures, children with rolandic spikes without seizures had significantly increased global efficiency, mean clustering coefficient, mean nodal strength, and connectivity strength, specifically in the theta frequency band at almost all proportional thresholds, compared with age-matched controls. Decreased mean betweenness centrality was only present in BECTS patients with seizures. Age at seizure onset was significantly positively associated with the strength of EEG-FC. The decreased function of betweenness centrality was only presented in BECTS patients with clinical seizures, suggesting weaker local connectivity may lower the seizure threshold. These findings may affect treatment policy in children with rolandic spikes.
Collapse
Affiliation(s)
- Min-Lan Tsai
- Division of Pediatric Neurology, Department of Pediatrics, Taipei Medical University Hospital, Taipei Medical University, Taipei 110301, Taiwan; (M.-L.T.); (F.-C.L.); (H.C.)
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Chuang-Chin Wang
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
| | - Feng-Chin Lee
- Division of Pediatric Neurology, Department of Pediatrics, Taipei Medical University Hospital, Taipei Medical University, Taipei 110301, Taiwan; (M.-L.T.); (F.-C.L.); (H.C.)
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Syu-Jyun Peng
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Correspondence: ; Tel.: +886-2-66382736; Fax: +886-2-27321956
| | - Hsi Chang
- Division of Pediatric Neurology, Department of Pediatrics, Taipei Medical University Hospital, Taipei Medical University, Taipei 110301, Taiwan; (M.-L.T.); (F.-C.L.); (H.C.)
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Sung-Hui Tseng
- Department of Physical Medicine & Rehabilitation, Taipei Medical University Hospital, Taipei 110301, Taiwan;
- Department of Physical Medicine & Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| |
Collapse
|
16
|
Buller-Peralta I, Maicas-Royo J, Lu Z, Till SM, Wood ER, Kind PC, Escudero J, Gonzalez-Sulser A. Abnormal brain state distribution and network connectivity in a SYNGAP1 rat model. Brain Commun 2022; 4:fcac263. [PMID: 36349120 PMCID: PMC9638780 DOI: 10.1093/braincomms/fcac263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/09/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022] Open
Abstract
Mutations in the SYNGAP1 gene are one of the common predictors of neurodevelopmental disorders, commonly resulting in individuals developing autism, intellectual disability, epilepsy, and sleep deficits. EEG recordings in neurodevelopmental disorders show potential to identify clinically translatable biomarkers to both diagnose and track the progress of novel therapeutic strategies, as well as providing insight into underlying pathological mechanisms. In a rat model of SYNGAP1 haploinsufficiency in which the exons encoding the calcium/lipid binding and GTPase-activating protein domains have been deleted (Syngap+/Δ-GAP ), we analysed the duration and occurrence of wake, non-rapid eye movement and rapid eye movement brain states during 6 h multi-electrode EEG recordings. We find that although Syngap+/Δ-GAP animals spend an equivalent percent time in wake and sleep states, they have an abnormal brain state distribution as the number of wake and non-rapid eye movement bouts are reduced and there is an increase in the average duration of both wake and non-rapid eye movement epochs. We perform connectivity analysis by calculating the average imaginary coherence between electrode pairs at varying distance thresholds during these states. In group averages from pairs of electrodes at short distances from each other, a clear reduction in connectivity during non-rapid eye movement is present between 11.5 Hz and 29.5 Hz, a frequency range that overlaps with sleep spindles, oscillatory phenomena thought to be important for normal brain function and memory consolidation. Sleep abnormalities were mostly uncorrelated to the electrophysiological signature of absence seizures, spike and wave discharges, as was the imaginary coherence deficit. Sleep spindles occurrence, amplitude, power and spread across multiple electrodes were not reduced in Syngap+/Δ-GAP rats, with only a small decrease in duration detected. Nonetheless, by analysing the dynamic imaginary coherence during sleep spindles, we found a reduction in high-connectivity instances between short-distance electrode pairs. Finally comparing the dynamic imaginary coherence during sleep spindles between individual electrode pairs, we identified a group of channels over the right somatosensory, association and visual cortices that have a significant reduction in connectivity during sleep spindles in mutant animals. This matched a significant reduction in connectivity during spindles when averaged regional comparisons were made. These data suggest that Syngap+/Δ-GAP rats have altered brain state dynamics and EEG connectivity, which may have clinical relevance for SYNGAP1 haploinsufficiency in humans.
Collapse
Affiliation(s)
- Ingrid Buller-Peralta
- Simons Initiative for the Developing Brain, Patrick Wild Centre, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, United Kingdom
| | - Jorge Maicas-Royo
- Simons Initiative for the Developing Brain, Patrick Wild Centre, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, United Kingdom
| | - Zhuoen Lu
- School of Engineering, Institute for Digital Communications, University of Edinburgh, EH9 3JL Edinburgh, United Kingdom
| | - Sally M Till
- Simons Initiative for the Developing Brain, Patrick Wild Centre, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, United Kingdom
| | - Emma R Wood
- Simons Initiative for the Developing Brain, Patrick Wild Centre, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, United Kingdom
| | - Peter C Kind
- Simons Initiative for the Developing Brain, Patrick Wild Centre, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, United Kingdom
| | - Javier Escudero
- School of Engineering, Institute for Digital Communications, University of Edinburgh, EH9 3JL Edinburgh, United Kingdom
| | - Alfredo Gonzalez-Sulser
- Simons Initiative for the Developing Brain, Patrick Wild Centre, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, United Kingdom
| |
Collapse
|
17
|
Dong Y, Xu R, Zhang Y, Shi Y, Du K, Jia T, Wang J, Wang F. Different Frequency Bands in Various Regions of the Brain Play Different Roles in the Onset and Wake-Sleep Stages of Infantile Spasms. Front Pediatr 2022; 10:878099. [PMID: 35633963 PMCID: PMC9135356 DOI: 10.3389/fped.2022.878099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE The study aimed to identify the signatures of brain networks using electroencephalogram (EEG) in patients with infantile spasms (IS). METHODS Scalp EEGs of subjects with IS were prospectively collected in the first year of life (n = 8; age range 4-8 months; 3 males, 5 females). Ten minutes of ictal and interictal EEGs were clipped and filtered into different EEG frequency bands. The values of each pair of EEG channels were directly compared between ictal with interictal onsets and the sleep-wake phase to calculate IS brain network attributes: characteristic path length (CPL), node degree (ND), clustering coefficient (CC), and betweenness centrality (BC). RESULTS CPL, ND, and CC of the fast waves decreased while BC increased. CPL and BC of the slow waves decreased, while ND and CC increased during the IS ictal onset (P < 0.05). CPL of the alpha decreased, and BC increased during the waking time (P < 0.05). CONCLUSION The transmission capability of the fast waves, the local connectivity, and the defense capability of the slow waves during the IS ictal onset were enhanced. The alpha band played the most important role in both the global and local networks during the waking time. These may represent the brain network signatures of IS.
Collapse
Affiliation(s)
- Yan Dong
- Henan Provincial Key Laboratory of Child Brain Injury, Department of Pediatrics, Third Associated Hospital of Zheng Zhou University, Zhengzhou, China
| | - Ruijuan Xu
- Henan Provincial Key Laboratory of Child Brain Injury, Department of Pediatrics, Third Associated Hospital of Zheng Zhou University, Zhengzhou, China
| | - Yaodong Zhang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yali Shi
- Henan Provincial Key Laboratory of Child Brain Injury, Department of Pediatrics, Third Associated Hospital of Zheng Zhou University, Zhengzhou, China
| | - Kaixian Du
- Henan Provincial Key Laboratory of Child Brain Injury, Department of Pediatrics, Third Associated Hospital of Zheng Zhou University, Zhengzhou, China
| | - Tianming Jia
- Henan Provincial Key Laboratory of Child Brain Injury, Department of Pediatrics, Third Associated Hospital of Zheng Zhou University, Zhengzhou, China
| | - Jun Wang
- Department of Children's Rehabilitation, Third Associated Hospital of Zheng Zhou University, Zhengzhou, China
| | - Fang Wang
- Department of Medical Record Management, Third Associated Hospital of Zheng Zhou University, Zhengzhou, China
| |
Collapse
|
18
|
|
19
|
Shephard E, McEwen FS, Earnest T, Friedrich N, Mörtl I, Liang H, Woodhouse E, Tye C, Bolton PF. Oscillatory neural network alterations in young people with tuberous sclerosis complex and associations with co-occurring symptoms of autism spectrum disorder and attention-deficit/hyperactivity disorder. Cortex 2021; 146:50-65. [PMID: 34839218 DOI: 10.1016/j.cortex.2021.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/25/2021] [Accepted: 10/20/2021] [Indexed: 12/20/2022]
Abstract
Tuberous sclerosis complex (TSC) is a genetic disorder caused by mutations on the TSC1/TSC2 genes, which result in alterations in molecular signalling pathways involved in neurogenesis and hamartomas in the brain and other organs. TSC carries a high risk for autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD), although the reasons for this are unclear. One proposal is that TSC-related alterations in molecular signalling during neurogenesis lead to atypical development of neural networks, which are involved in the occurrence of ASD and ADHD in TSC. We investigated this proposal in young people with TSC who have been studied longitudinally since their diagnosis in childhood. Electroencephalography (EEG) was used to examine oscillatory connectivity in functional neural networks and local and global network organisation during three tasks (resting-state, attentional and inhibitory control Go/Nogo task, upright and inverted face processing task) in participants with TSC (n = 48) compared to an age- and sex-matched group of typically developing Controls (n = 20). Compared to Controls, the TSC group showed hypoconnected neural networks in the alpha frequency during the resting-state and in the theta and alpha frequencies during the Go/Nogo task (P ≤ .008), as well as reduced local network organisation in the theta and alpha frequencies during the Go/Nogo task (F = 3.95, P = .010). There were no significant group differences in network metrics during the face processing task. Increased connectivity in the hypoconnected alpha-range resting-state network was associated with greater ASD and inattentive ADHD symptoms (rho≥.40, P ≤ .036). Reduced local network organisation in the theta-range during the Go/Nogo task was significantly associated with higher hyperactive/impulsive ADHD symptoms (rho = -.43, P = .041). These findings suggest that TSC is associated with widespread hypoconnectivity in neural networks and support the proposal that altered network function may be involved in the co-occurrence of ASD and ADHD in TSC.
Collapse
Affiliation(s)
- Elizabeth Shephard
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, UK; Department of Psychiatry, University of São Paulo, Brazil.
| | - Fiona S McEwen
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, UK; Department of Psychology, Queen Mary University of London, UK
| | - Thomas Earnest
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, UK
| | - Nina Friedrich
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, UK
| | - Isabelle Mörtl
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, UK
| | - Holan Liang
- Population, Policy and Practice Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Emma Woodhouse
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, UK
| | | | - Charlotte Tye
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, UK; Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, UK
| | - Patrick F Bolton
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, UK; The Maudsley NIHR Biomedical Research Centre in Mental Health, King's College London and South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
20
|
Pagani M, Barsotti N, Bertero A, Trakoshis S, Ulysse L, Locarno A, Miseviciute I, De Felice A, Canella C, Supekar K, Galbusera A, Menon V, Tonini R, Deco G, Lombardo MV, Pasqualetti M, Gozzi A. mTOR-related synaptic pathology causes autism spectrum disorder-associated functional hyperconnectivity. Nat Commun 2021; 12:6084. [PMID: 34667149 PMCID: PMC8526836 DOI: 10.1038/s41467-021-26131-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 09/17/2021] [Indexed: 11/24/2022] Open
Abstract
Postmortem studies have revealed increased density of excitatory synapses in the brains of individuals with autism spectrum disorder (ASD), with a putative link to aberrant mTOR-dependent synaptic pruning. ASD is also characterized by atypical macroscale functional connectivity as measured with resting-state fMRI (rsfMRI). These observations raise the question of whether excess of synapses causes aberrant functional connectivity in ASD. Using rsfMRI, electrophysiology and in silico modelling in Tsc2 haploinsufficient mice, we show that mTOR-dependent increased spine density is associated with ASD -like stereotypies and cortico-striatal hyperconnectivity. These deficits are completely rescued by pharmacological inhibition of mTOR. Notably, we further demonstrate that children with idiopathic ASD exhibit analogous cortical-striatal hyperconnectivity, and document that this connectivity fingerprint is enriched for ASD-dysregulated genes interacting with mTOR or Tsc2. Finally, we show that the identified transcriptomic signature is predominantly expressed in a subset of children with autism, thereby defining a segregable autism subtype. Our findings causally link mTOR-related synaptic pathology to large-scale network aberrations, revealing a unifying multi-scale framework that mechanistically reconciles developmental synaptopathy and functional hyperconnectivity in autism.
Collapse
Affiliation(s)
- Marco Pagani
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @ University of Trento, Rovereto, Italy
- Autism Center, Child Mind Institute, New York, NY, USA
| | - Noemi Barsotti
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa, Italy
| | - Alice Bertero
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @ University of Trento, Rovereto, Italy
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa, Italy
| | - Stavros Trakoshis
- Department of Psychology, University of Cyprus, Nicosia, Cyprus
- Laboratory for Autism and Neurodevelopmental Disorders, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @ University of Trento, Rovereto, Italy
| | - Laura Ulysse
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Barcelona, Spain
| | - Andrea Locarno
- Neuromodulation of Cortical and Subcortical Circuits Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Ieva Miseviciute
- Neuromodulation of Cortical and Subcortical Circuits Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Alessia De Felice
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @ University of Trento, Rovereto, Italy
| | - Carola Canella
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @ University of Trento, Rovereto, Italy
| | | | - Alberto Galbusera
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @ University of Trento, Rovereto, Italy
| | | | - Raffaella Tonini
- Neuromodulation of Cortical and Subcortical Circuits Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Universitat Pompeu Fabra, Barcelona, Spain
| | - Michael V Lombardo
- Laboratory for Autism and Neurodevelopmental Disorders, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @ University of Trento, Rovereto, Italy
- Autism Research Centre, University of Cambridge, Cambridge, UK
| | - Massimo Pasqualetti
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @ University of Trento, Rovereto, Italy
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa, Italy
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @ University of Trento, Rovereto, Italy.
| |
Collapse
|
21
|
Ihnen SKZ, Capal JK, Horn PS, Griffith M, Sahin M, Martina Bebin E, Wu JY, Northrup H, Krueger DA. Epilepsy Is Heterogeneous in Early-Life Tuberous Sclerosis Complex. Pediatr Neurol 2021; 123:1-9. [PMID: 34343869 PMCID: PMC8487620 DOI: 10.1016/j.pediatrneurol.2021.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Epilepsy in tuberous sclerosis complex (TSC) typically presents with early onset, multiple seizure types, and intractability. However, variability is observed among individuals. Here, detailed individual data on seizure characteristics collected prospectively during early life were used to define epilepsy profiles in this population. METHODS Children aged zero to 36 months were followed longitudinally. Caregivers kept daily seizure diaries, including onset and daily counts for each seizure type. Patients with >70% seizure diary completion and >365 diary days were included. Developmental outcomes at 36 months were compared between subgroups. RESULTS Epilepsy was seen in 124 of 156 (79%) participants. Seizure onset occurred from zero to 29.5 months; 93% had onset before age 12 months. Focal seizures and epileptic spasms were most common. Number of seizures (for median 897 days) ranged from 1 to 9128. Hierarchical clustering based on six metrics of seizure burden (age of onset, total seizures, ratio of seizure days to nonseizure days, seizures per seizure day, and worst seven- and 30-day stretches) revealed two distinct groups with broadly favorable and unfavorable epilepsy profiles. Subpopulations within each group showed clinically meaningful differences in seizure burden. Groups with higher seizure burden had worse developmental outcomes at 36 months. CONCLUSIONS Although epilepsy is highly prevalent in TSC, not all young children with TSC have the same epilepsy profile. At least two phenotypic subpopulations are discernible based on seizure burden. Early and aggressive treatments for epilepsy in TSC may be best leveraged by targeting specific subgroups based on phenotype severity.
Collapse
Affiliation(s)
- S. Katie Z. Ihnen
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jamie K. Capal
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Paul S. Horn
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Molly Griffith
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Mustafa Sahin
- Department of Neurology and F.M Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Harvard University, Boston, MA
| | - E. Martina Bebin
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL
| | - Joyce Y. Wu
- Division of Neurology, Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Hope Northrup
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Darcy A. Krueger
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | |
Collapse
|
22
|
Bassetti D, Luhmann HJ, Kirischuk S. Effects of Mutations in TSC Genes on Neurodevelopment and Synaptic Transmission. Int J Mol Sci 2021; 22:7273. [PMID: 34298906 PMCID: PMC8305053 DOI: 10.3390/ijms22147273] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 12/11/2022] Open
Abstract
Mutations in TSC1 or TSC2 genes are linked to alterations in neuronal function which ultimately lead to the development of a complex neurological phenotype. Here we review current research on the effects that reduction in TSC1 or TSC2 can produce on the developing neural network. A crucial feature of the disease pathophysiology appears to be an early deviation from typical neurodevelopment, in the form of structural abnormalities. Epileptic seizures are one of the primary early manifestation of the disease in the CNS, followed by intellectual deficits and autism spectrum disorders (ASD). Research using mouse models suggests that morphological brain alterations might arise from the interaction of different cellular types, and hyperexcitability in the early postnatal period might be transient. Moreover, the increased excitation-to-inhibition ratio might represent a transient compensatory adjustment to stabilize the developing network rather than a primary factor for the development of ASD symptoms. The inhomogeneous results suggest region-specificity as well as an evolving picture of functional alterations along development. Furthermore, ASD symptoms and epilepsy might originate from different but potentially overlapping mechanisms, which can explain recent observations obtained in patients. Potential treatment is determined not only by the type of medicament, but also by the time point of treatment.
Collapse
Affiliation(s)
- Davide Bassetti
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany; (H.J.L.); (S.K.)
| | | | | |
Collapse
|
23
|
Petrasek T, Vojtechova I, Klovrza O, Tuckova K, Vejmola C, Rak J, Sulakova A, Kaping D, Bernhardt N, de Vries PJ, Otahal J, Waltereit R. mTOR inhibitor improves autistic-like behaviors related to Tsc2 haploinsufficiency but not following developmental status epilepticus. J Neurodev Disord 2021; 13:14. [PMID: 33863288 PMCID: PMC8052752 DOI: 10.1186/s11689-021-09357-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/18/2021] [Indexed: 12/18/2022] Open
Abstract
Background Tuberous sclerosis complex (TSC), a multi-system genetic disorder often associated with autism spectrum disorder (ASD), is caused by mutations of TSC1 or TSC2, which lead to constitutive overactivation of mammalian target of rapamycin (mTOR). In several Tsc1+/- and Tsc2+/- animal models, cognitive and social behavior deficits were reversed by mTOR inhibitors. However, phase II studies have not shown amelioration of ASD and cognitive deficits in individuals with TSC during mTOR inhibitor therapy. We asked here if developmental epilepsy, common in the majority of individuals with TSC but absent in most animal models, could explain the discrepancy. Methods At postnatal day P12, developmental status epilepticus (DSE) was induced in male Tsc2+/- (Eker) and wild-type rats, establishing four experimental groups including controls. In adult animals (n = 36), the behavior was assessed in the paradigms of social interaction test, elevated plus-maze, light-dark test, Y-maze, and novel object recognition. The testing was carried out before medication (T1), during a 2-week treatment with the mTOR inhibitor everolimus (T2) and after an 8-week washing-out (T3). Electroencephalographic (EEG) activity was recorded in a separate set of animals (n = 18). Results Both Tsc2+/- mutation and DSE caused social behavior deficits and epileptiform EEG abnormalities (T1). Everolimus led to a persistent improvement of the social deficit induced by Tsc2+/-, while deficits related to DSE did not respond to everolimus (T2, T3). Conclusions These findings may contribute to an explanation why ASD symptoms in individuals with TSC, where comorbid early-onset epilepsy is common, were not reliably ameliorated by mTOR inhibitors in clinical studies. Supplementary Information The online version contains supplementary material available at 10.1186/s11689-021-09357-2.
Collapse
Affiliation(s)
- Tomas Petrasek
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic.
| | - Iveta Vojtechova
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic.,First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ondrej Klovrza
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic.,Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Klara Tuckova
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Cestmir Vejmola
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - Jakub Rak
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - Anna Sulakova
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - Daniel Kaping
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - Nadine Bernhardt
- Department of Psychiatry, University Hospital and Medical Faculty Carl Gustav Carus, Technical University of Dresden, Dresden, Germany
| | - Petrus J de Vries
- Division of Child & Adolescent Psychiatry, University of Cape Town, Cape Town, South Africa
| | - Jakub Otahal
- Department of Developmental Epileptology, Institute of Physiology CAS, Prague, Czech Republic
| | - Robert Waltereit
- Department of Child and Adolescent Psychiatry, University Hospital and Medical Faculty Carl Gustav Carus, Technical University of Dresden, Dresden, Germany. .,Department of Child and Adolescent Psychiatry, University Medical Center Göttingen, Von-Siebold-Str. 5, 37075, Göttingen, Germany.
| |
Collapse
|
24
|
Cohen AL, Mulder BPF, Prohl AK, Soussand L, Davis P, Kroeck MR, McManus P, Gholipour A, Scherrer B, Bebin EM, Wu JY, Northrup H, Krueger DA, Sahin M, Warfield SK, Fox MD, Peters JM. Tuber Locations Associated with Infantile Spasms Map to a Common Brain Network. Ann Neurol 2021; 89:726-739. [PMID: 33410532 PMCID: PMC7969435 DOI: 10.1002/ana.26015] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Approximately 50% of patients with tuberous sclerosis complex develop infantile spasms, a sudden onset epilepsy syndrome associated with poor neurological outcomes. An increased burden of tubers confers an elevated risk of infantile spasms, but it remains unknown whether some tuber locations confer higher risk than others. Here, we test whether tuber location and connectivity are associated with infantile spasms. METHODS We segmented tubers from 123 children with (n = 74) and without (n = 49) infantile spasms from a prospective observational cohort. We used voxelwise lesion symptom mapping to test for an association between spasms and tuber location. We then used lesion network mapping to test for an association between spasms and connectivity with tuber locations. Finally, we tested the discriminability of identified associations with logistic regression and cross-validation as well as statistical mediation. RESULTS Tuber locations associated with infantile spasms were heterogenous, and no single location was significantly associated with spasms. However, >95% of tuber locations associated with spasms were functionally connected to the globi pallidi and cerebellar vermis. These connections were specific compared to tubers in patients without spasms. Logistic regression found that globus pallidus connectivity was a stronger predictor of spasms (odds ratio [OR] = 1.96, 95% confidence interval [CI] = 1.10-3.50, p = 0.02) than tuber burden (OR = 1.65, 95% CI = 0.90-3.04, p = 0.11), with a mean receiver operating characteristic area under the curve of 0.73 (±0.1) during repeated cross-validation. INTERPRETATION Connectivity between tuber locations and the bilateral globi pallidi is associated with infantile spasms. Our findings lend insight into spasm pathophysiology and may identify patients at risk. ANN NEUROL 2021;89:726-739.
Collapse
Affiliation(s)
- Alexander L Cohen
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Laboratory for Brain Network Imaging and Modulation, Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Brechtje P F Mulder
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- VUmc School of Medical Sciences, VU University Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Anna K Prohl
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Louis Soussand
- Laboratory for Brain Network Imaging and Modulation, Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Peter Davis
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Mallory R Kroeck
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Laboratory for Brain Network Imaging and Modulation, Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Peter McManus
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Laboratory for Brain Network Imaging and Modulation, Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Ali Gholipour
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Benoit Scherrer
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - E Martina Bebin
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL
| | - Joyce Y Wu
- Division of Pediatric Neurology, UCLA Mattel Children's Hospital, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Hope Northrup
- Division of Medical Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Darcy A Krueger
- Department of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Mustafa Sahin
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, MA
| | - Simon K Warfield
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Michael D Fox
- Laboratory for Brain Network Imaging and Modulation, Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Jurriaan M Peters
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
25
|
Suzuki H, Otsubo H, Yokota N, Nishijima S, Go C, Carter Snead O, Ochi A, Rutka JT, Moharir M. Epileptogenic modulation index and synchronization in hypsarrhythmia of West syndrome secondary to perinatal arterial ischemic stroke. Clin Neurophysiol 2021; 132:1185-1193. [PMID: 33674213 DOI: 10.1016/j.clinph.2020.12.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/30/2020] [Accepted: 12/14/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Perinatal arterial ischemic stroke (PAIS) is associated with epileptic spasms of West syndrome (WS) and long term Focal epilepsy (FE). The mechanism of epileptogenic network generation causing hypsarrhythmia of WS is unknown. We hypothesized that Modulation index (MI) [strength of phase-amplitude coupling] and Synchronization likelihood (SL) [degree of connectivity] could interrogate the epileptogenic network in hypsarrhythmia of WS secondary to PAIS. METHODS We analyzed interictal scalp electroencephalography (EEG) in 10 WS and 11 FE patients with unilateral PAIS. MI between gamma (30-70 Hz) and slow waves (3-4 Hz) was calculated to measure phase-amplitude coupling. SL between electrode pairs was analyzed in 9-frequency bands (5-delta, theta, alpha, beta, gamma) to examine inter- and intra-hemispheric connectivity. RESULTS MI was higher in affected hemispheres in WS (p = 0.006); no differences observed in FE. Inter-hemispheric SL of 3-delta, theta, alpha, beta, gamma bands was significantly higher in WS (p < 0.001). In WS, modified Z-Score of intra-hemispheric SL values in 3-delta, theta, alpha, beta and gamma in the affected hemispheres were significantly higher than those in the unaffected hemispheres (p < 0.001) as well as 0.5-4 Hz (p = 0.004). CONCLUSIONS The significantly higher modulation in affected hemisphere and stronger inter- and intra-hemispheric connectivity generate hypsarrhythmia of WS secondary to PAIS. SIGNIFICANCE Epileptogenic cortical-subcortical transcallosal networks from affected hemisphere post-PAIS provokes infantile spasms.
Collapse
Affiliation(s)
- Hiroharu Suzuki
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada; Department of Neurosurgery, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Hiroshi Otsubo
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada.
| | - Nanako Yokota
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada.
| | - Sakura Nishijima
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada.
| | - Cristina Go
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada.
| | - O Carter Snead
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada.
| | - Ayako Ochi
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada.
| | - James T Rutka
- Division of Neurosurgery, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada.
| | - Mahendranath Moharir
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada; Children's Stroke Program, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada.
| |
Collapse
|
26
|
Morales Chacón LM, Galan García L, Berrillo Batista S, González González J, Sánchez Coroneaux A. Functional Connectivity Derived From Electroencephalogram in Pharmacoresistant Epileptic Encephalopathy Using Cannabidiol as Adjunctive Antiepileptic Therapy. Front Behav Neurosci 2021; 15:604207. [PMID: 33708077 PMCID: PMC7940673 DOI: 10.3389/fnbeh.2021.604207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/28/2021] [Indexed: 11/13/2022] Open
Abstract
To explore brain function using functional connectivity and network topology derived from electroencephalogram (EEG) in patients with pharmacoresistant epileptic encephalopathy with cannabidiol as adjunctive antiepileptic treatment. Sixteen epileptic patients participated in the study, six of whom had epileptic encephalopathy with a stable dose of cannabidiol Epidiolex (CBD) as adjunctive therapy. Functional connectivity derived from EEG was analyzed based on the synchronization likelihood (SL). The analysis also included reconstructing graph-theoretic measures from the synchronization matrix. Comparison of functional connectivity data between each pathological group with the control group was carried out using a nonparametric permutation test applied to SL values between pairs of electrodes for each frequency band. To compare the association patterns between graph-theoretical properties of each pathological group with the control group, Z Crawford was calculated as a measure of distance. There were differences between pairs of electrodes in all frequency bands evaluated in encephalopathy epileptic patients with CBD adjunctive therapy compared with the control (p < 0.05, permutation test). In the epileptic encephalopathy group without CBD therapy, the SL values were higher than in the control group for the beta, theta, and delta EEG frequency bands, and lower for the alpha frequency band. Interestingly, patients who had CBD as adjunctive therapy demonstrated greater synchronization for all frequency bands, showing less spatial distribution for alpha frequency compared with the control. When comparing both epileptic groups, those patients who had adjunctive CBD treatment also showed increased synchronization for all frequency bands. In epileptic encephalopathy with adjunctive CBD therapy, the pattern of differences for graph-theoretical measures according to Z Crawford indicated less segregation and greater integration suggesting a trend towards the random organization of the network principally for alpha and beta EEG bands. This exploratory study revealed a tendency to an overconnectivity with a random network topology mainly for fast EEG bands in epileptic encephalopathy patients using CBD adjunctive therapy. It can therefore be assumed that the CBD treatment could be related to inhibition of the transition of the interictal to ictal state and/or to the improvement of EEG organization and brain function.
Collapse
Affiliation(s)
- Lilia Maria Morales Chacón
- Department of Clinical Neurophysiology/Video EEG Unit, International Center for Neurological Restoration, Havana, Cuba
| | | | - Sheyla Berrillo Batista
- Department of Clinical Neurophysiology/Video EEG Unit, International Center for Neurological Restoration, Havana, Cuba
| | - Judith González González
- Department of Clinical Neurophysiology/Video EEG Unit, International Center for Neurological Restoration, Havana, Cuba
| | - Abel Sánchez Coroneaux
- Department of Clinical Neurophysiology/Video EEG Unit, International Center for Neurological Restoration, Havana, Cuba
| |
Collapse
|
27
|
Abstract
Epilepsy is characterized by specific alterations in network organization. The main parameters at the basis of epileptogenic network formation are alterations of cortical thickness, development of pathologic hubs, modification of hub distribution, and white matter alterations. The effect is a reinforcement of brain connectivity in both the epileptogenic zone and the propagation zone. Moreover, the epileptogenic network is characterized by some specific neurophysiologic biomarkers that evidence the tendency of the network itself to shift from an interictal state to an ictal one. The recognition of these features is crucial in planning epilepsy surgery.
Collapse
|
28
|
Falsaperla R, Vitaliti G, Marino SD, Praticò AD, Mailo J, Spatuzza M, Cilio MR, Foti R, Ruggieri M. Graph theory in paediatric epilepsy: A systematic review. DIALOGUES IN CLINICAL NEUROSCIENCE 2021; 23:3-13. [PMID: 35860177 PMCID: PMC9286734 DOI: 10.1080/19585969.2022.2043128] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Graph theoretical studies have been designed to investigate network topologies during life. Network science and graph theory methods may contribute to a better understanding of brain function, both normal and abnormal, throughout developmental stages. The degree to which childhood epilepsies exert a significant effect on brain network organisation and cognition remains unclear. The hypothesis suggests that the formation of abnormal networks associated with epileptogenesis early in life causes a disruption in normal brain network development and cognition, reflecting abnormalities in later life. Neurological diseases with onset during critical stages of brain maturation, including childhood epilepsy, may threaten this orderly neurodevelopmental process. According to the hypothesis that the formation of abnormal networks associated with epileptogenesis in early life causes a disruption in normal brain network development, it is then mandatory to perform a proper examination of children with new-onset epilepsy early in the disease course and a deep study of their brain network organisation over time. In regards, graph theoretical analysis could add more information. In order to facilitate further development of graph theory in childhood, we performed a systematic review to describe its application in functional dynamic connectivity using electroencephalographic (EEG) analysis, focussing on paediatric epilepsy.
Collapse
Affiliation(s)
- Raffaele Falsaperla
- Neonatal Intensive Care Unit, San Marco Hospital, University Hospital Policlinico “G. Rodolico-San Marco", Catania, Italy
- Unit of Pediatrics and Pediatric Emergency, University Hospital Policlinico “G. Rodolico-San Marco", Catania, Italy
| | - Giovanna Vitaliti
- Department of Medical Sciences, Unit of Pediatrics, University of Ferrara, Ferrara, Italy
| | - Simona Domenica Marino
- Unit of Pediatrics and Pediatric Emergency, University Hospital Policlinico “G. Rodolico-San Marco", Catania, Italy
| | - Andrea Domenico Praticò
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Janette Mailo
- Division of Pediatric Neurology, University of Alberta, Stollery Children’s Hospital, Edmonton, Alberta, Canada
| | - Michela Spatuzza
- National Council of Research, Institute for Biomedical Research and Innovation (IRIB), Unit of Catania, Catania, Italy
| | - Maria Roberta Cilio
- Institute for Experimental and Clinical Research, Catholic University of Leuven, Brussels, Belgium
| | - Rosario Foti
- Department Chief of Rheumatology Unit, San Marco Hospital, University Hospital Policlinico “G. Rodolico-San Marco", Catania, Italy
| | - Martino Ruggieri
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| |
Collapse
|
29
|
Ueda R, Iwasaki M, Kita Y, Takeichi H, Saito T, Nakagawa E, Sugai K, Okada T, Sasaki M. Improvement of brain function after surgery in infants with posterior quadrant cortical dysplasia. Clin Neurophysiol 2020; 132:332-337. [PMID: 33450555 DOI: 10.1016/j.clinph.2020.11.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/02/2020] [Accepted: 11/10/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To reveal whether neurodevelopmental outcome of infants after epilepsy surgery can be quantitatively assessed by electroencephalography (EEG) functional connectivity analysis. METHODS We enrolled 13 infants with posterior quadrant dysplasia aged <2 years who were treated using posterior quadrantectomy and 21 age-matched infants. EEG was performed both before and one year after surgery. Developmental quotient (DQ) was assessed both before and 3 years after surgery. The phase lag index (PLI) of three different pairs of electrodes in the nonsurgical hemisphere, i.e., the anterior short distance (ASD), posterior short distance (PSD), and long distance (LD) pairs, were calculated as indices of brain connectivity. The relationship between the PLI and DQ was evaluated. RESULTS Overall, 77% infants experienced seizure freedom after surgery. The beta- and gamma- range PLI of PSD pairs increased preoperatively. All these pairs normalized postoperatively. Simple linear regression analysis revealed a significant relationship between the postoperative DQ and the postoperative beta-band PLI of ASD pairs. CONCLUSION Preoperative abnormal hyper-connectivity was normalized to the control level after surgery. The postoperative hyperconnectivity was associated with long-term neurodevelopmental improvement. SIGNIFICANCE PLI quantifies neurodevelopmental improvements after posterior quadrantectomy.
Collapse
Affiliation(s)
- Riyo Ueda
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8551, Japan; Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8553, Japan.
| | - Masaki Iwasaki
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8551, Japan.
| | - Yosuke Kita
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8553, Japan; Cognitive Brain Research Unit (CBRU), Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, FI-00290 Helsinki, Finland; Mori Arinori Center for Higher Education and Global Mobility, Hitotsubashi University, 2-1, Kunitachi, Tokyo 186-8601, Japan.
| | - Hiroshige Takeichi
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8553, Japan.
| | - Takashi Saito
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8551, Japan.
| | - Eiji Nakagawa
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8551, Japan.
| | - Kenji Sugai
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8551, Japan.
| | - Takashi Okada
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8553, Japan.
| | - Masayuki Sasaki
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8551, Japan.
| |
Collapse
|
30
|
Farach LS, Richard MA, Lupo PJ, Sahin M, Krueger DA, Wu JY, Bebin EM, Au KS, Northrup H. Epilepsy Risk Prediction Model for Patients With Tuberous Sclerosis Complex. Pediatr Neurol 2020; 113:46-50. [PMID: 33011641 PMCID: PMC10461434 DOI: 10.1016/j.pediatrneurol.2020.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/29/2020] [Accepted: 07/25/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND Individuals with tuberous sclerosis complex are at increased risk of epilepsy. Early seizure control improves developmental outcomes, making identifying at-risk patients critically important. Despite several identified risk factors, it remains difficult to predict. The purpose of the study was to evaluate the combined risk prediction of previously identified risk factors for epilepsy in individuals with tuberous sclerosis complex. METHODS The study group (n = 333) consisted of individuals with tuberous sclerosis complex who were enrolled in the Tuberous Sclerosis Complex Autism Center of Excellence Research Network and UT TSC Biobank. The outcome was defined as having an epilepsy diagnosis. Potential risk factors included sex, TSC genotype, and tuber presence. Logistic regression was used to calculate the odds ratio and P value for the association between each variable and epilepsy. A clinical risk prediction model incorporating all risk factors was built. Area under the curve was calculated to characterize the full model's ability to discriminate individuals with tuberous sclerosis complex with and without epilepsy. RESULTS The strongest risk for epilepsy was presence of tubers (95% confidence interval: 2.39 to 10.89). Individuals with pathogenic TSC2 variants were three times more likely (95% confidence interval: 1.55 to 6.36) to develop seizures compared with those with tuberous sclerosis complex from other causes. The combination of risk factors resulted in an area under the curve 0.73. CONCLUSIONS Simple characteristics of patients with tuberous sclerosis complex can be combined to successfully predict epilepsy risk. A risk assessment model that incorporates sex, TSC genotype, protective TSC2 missense variant, and tuber presence correctly predicts epilepsy in 73% of patients with tuberous sclerosis complex.
Collapse
Affiliation(s)
- Laura S Farach
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas.
| | - Melissa A Richard
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, Texas
| | - Philip J Lupo
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, Texas
| | - Mustafa Sahin
- Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Darcy A Krueger
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Joyce Y Wu
- Division of Pediatric Neurology, UCLA Mattel Children's Hospital and David Geffen School of Medicine, Los Angeles, California
| | | | - Kit Sing Au
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Hope Northrup
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
31
|
De Ridder J, Lavanga M, Verhelle B, Vervisch J, Lemmens K, Kotulska K, Moavero R, Curatolo P, Weschke B, Riney K, Feucht M, Krsek P, Nabbout R, Jansen AC, Wojdan K, Domanska-Pakieła D, Kaczorowska-Frontczak M, Hertzberg C, Ferrier CH, Samueli S, Benova B, Aronica E, Kwiatkowski DJ, Jansen FE, Jóźwiak S, Van Huffel S, Lagae L. Prediction of Neurodevelopment in Infants With Tuberous Sclerosis Complex Using Early EEG Characteristics. Front Neurol 2020; 11:582891. [PMID: 33178126 PMCID: PMC7596378 DOI: 10.3389/fneur.2020.582891] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/27/2020] [Indexed: 12/31/2022] Open
Abstract
Tuberous Sclerosis Complex (TSC) is a multisystem genetic disorder with a high risk of early-onset epilepsy and a high prevalence of neurodevelopmental comorbidities, including intellectual disability and autism spectrum disorder (ASD). Therefore, TSC is an interesting disease model to investigate early biomarkers of neurodevelopmental comorbidities when interventions are favourable. We investigated whether early EEG characteristics can be used to predict neurodevelopment in infants with TSC. The first recorded EEG of 64 infants with TSC, enrolled in the international prospective EPISTOP trial (recorded at a median gestational age 42 4/7 weeks) was first visually assessed. EEG characteristics were correlated with ASD risk based on the ADOS-2 score, and cognitive, language, and motor developmental quotients (Bayley Scales of Infant and Toddler Development III) at the age of 24 months. Quantitative EEG analysis was used to validate the relationship between EEG background abnormalities and ASD risk. An abnormal first EEG (OR = 4.1, p-value = 0.027) and more specifically a dysmature EEG background (OR = 4.6, p-value = 0.017) was associated with a higher probability of ASD traits at the age of 24 months. This association between an early abnormal EEG and ASD risk remained significant in a multivariable model, adjusting for mutation and treatment (adjusted OR = 4.2, p-value = 0.029). A dysmature EEG background was also associated with lower cognitive (p-value = 0.029), language (p-value = 0.001), and motor (p-value = 0.017) developmental quotients at the age of 24 months. Our findings suggest that early EEG characteristics in newborns and infants with TSC can be used to predict neurodevelopmental comorbidities.
Collapse
Affiliation(s)
- Jessie De Ridder
- Pediatric Neurology, Department of Development and Regeneration, University of Leuven KU Leuven, Leuven, Belgium
| | - Mario Lavanga
- Department of Electrical Engineering (ESAT), STADIUS Centre for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium
| | - Birgit Verhelle
- Pediatric Neurology, Department of Development and Regeneration, University of Leuven KU Leuven, Leuven, Belgium
| | - Jan Vervisch
- Pediatric Neurology, Department of Development and Regeneration, University of Leuven KU Leuven, Leuven, Belgium
| | - Katrien Lemmens
- Pediatric Neurology, Department of Development and Regeneration, University of Leuven KU Leuven, Leuven, Belgium
| | - Katarzyna Kotulska
- Department of Neurology and Epileptology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Romina Moavero
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, Rome, Italy.,Child Neurology Unit, Neuroscience and Neurorehabilitation Department, "Bambino Gesù" Children's Hospital, Rome, Italy
| | - Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, Rome, Italy
| | - Bernhard Weschke
- Department of Child Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Kate Riney
- Neuroscience Unit, Queensland Children's Hospital, Brisbane, QLD, Australia.,University of Queensland School of Clinical Medicine, Brisbane, QLD, Australia
| | - Martha Feucht
- Department of Pediatrics, Medical University Vienna, Vienna, Austria
| | - Pavel Krsek
- Department of Paediatric Neurology, Charles University, Second Faculty of Medicine, Motol University Hospital, Prague, Czechia
| | - Rima Nabbout
- Department of Pediatric Neurology, Reference Centre for Rare Epilepsies, Imagine Institute, Necker- Enfants Malades Hospital, University Paris Descartes, Paris, France
| | - Anna C Jansen
- Pediatric Neurology Unit, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Konrad Wojdan
- Transition Technologies, Warsaw, Poland.,Institute of Heat Engineering, Warsaw University and Technology, Warsaw, Poland
| | - Dorota Domanska-Pakieła
- Department of Neurology and Epileptology, The Children's Memorial Health Institute, Warsaw, Poland
| | | | - Christoph Hertzberg
- Diagnose und Behandlungszentrum für Kinder und Jugendliche, Vivantes Klinikum Neuköln, Berlin, Germany
| | - Cyrille H Ferrier
- Department of Child Neurology, Brain Centre, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Sharon Samueli
- Department of Pediatrics, Medical University Vienna, Vienna, Austria
| | - Barbora Benova
- Department of Paediatric Neurology, Charles University, Second Faculty of Medicine, Motol University Hospital, Prague, Czechia
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam Universitair Medisch Centrum, University of Amsterdam, Amsterdam, Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands
| | - David J Kwiatkowski
- Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Floor E Jansen
- Department of Child Neurology, Brain Centre, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Sergiusz Jóźwiak
- Department of Neurology and Epileptology, The Children's Memorial Health Institute, Warsaw, Poland.,Department of Child Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Sabine Van Huffel
- Department of Electrical Engineering (ESAT), STADIUS Centre for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium
| | - Lieven Lagae
- Pediatric Neurology, Department of Development and Regeneration, University of Leuven KU Leuven, Leuven, Belgium
| |
Collapse
|
32
|
Velíšek L, Velíšková J. Modeling epileptic spasms during infancy: Are we heading for the treatment yet? Pharmacol Ther 2020; 212:107578. [PMID: 32417271 PMCID: PMC7299814 DOI: 10.1016/j.pharmthera.2020.107578] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 05/07/2020] [Indexed: 12/22/2022]
Abstract
Infantile spasms (IS or epileptic spasms during infancy) were first described by Dr. William James West (aka West syndrome) in his own son in 1841. While rare by definition (occurring in 1 per 3200-3400 live births), IS represent a major social and treatment burden. The etiology of IS varies - there are many (>200) different known pathologies resulting in IS and still in about one third of cases there is no obvious reason. With the advancement of genetic analysis, role of certain genes (such as ARX or CDKL5 and others) in IS appears to be important. Current treatment strategies with incomplete efficacy and serious potential adverse effects include adrenocorticotropin (ACTH), corticosteroids (prednisone, prednisolone) and vigabatrin, more recently also a combination of hormones and vigabatrin. Second line treatments include pyridoxine (vitamin B6) and ketogenic diet. Additional treatment approaches use rapamycin, cannabidiol, valproic acid and other anti-seizure medications. Efficacy of these second line medications is variable but usually inferior to hormonal treatments and vigabatrin. Thus, new and effective models of this devastating condition are required for the search of additional treatment options as well as for better understanding the mechanisms of IS. Currently, eight models of IS are reviewed along with the ideas and mechanisms behind these models, drugs tested using the models and their efficacy and usefulness. Etiological variety of IS is somewhat reflected in the variety of the models. However, it seems that for finding precise personalized approaches, this variety is necessary as there is no "one-size-fits-all" approach possible for both IS in particular and epilepsy in general.
Collapse
Affiliation(s)
- Libor Velíšek
- Departments of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA; Departments of Pediatrics, New York Medical College, Valhalla, NY, USA; Departments of Neurology, New York Medical College, Valhalla, NY, USA.
| | - Jana Velíšková
- Departments of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA; Departments of Neurology, New York Medical College, Valhalla, NY, USA; Departments of Obstetrics & Gynecology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
33
|
Carboni M, De Stefano P, Vorderwülbecke BJ, Tourbier S, Mullier E, Rubega M, Momjian S, Schaller K, Hagmann P, Seeck M, Michel CM, van Mierlo P, Vulliemoz S. Abnormal directed connectivity of resting state networks in focal epilepsy. NEUROIMAGE-CLINICAL 2020; 27:102336. [PMID: 32679553 PMCID: PMC7363703 DOI: 10.1016/j.nicl.2020.102336] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Epilepsy diagnosis can be difficult in the absence of interictal epileptic discharges (IED) on scalp EEG. We used high-density EEG to measure connectivity in large-scale functional networks of patients with focal epilepsy (Temporal and Extratemporal Lobe Epilepsy, TLE and ETLE) and tested for network alterations during resting wakefulness without IEDs, compared to healthy controls. We measured global efficiency as a marker of integration within networks. METHODS We analysed 49 adult patients with focal epilepsy and 16 healthy subjects who underwent high-density-EEG and structural MRI. We estimated cortical activity using electric source analysis in 82 atlas-based cortical regions based on the individual MRI. We applied directed connectivity analysis (Partial Directed Coherence) on these sources and performed graph analysis: we computed the Global Efficiency on the whole brain and on each resting state network. We tested these features in different group of patients. RESULTS Compared to controls, efficiency was increased in both TLE and ETLE (p < 0.05). The somato-motor-network, the ventral-attention-network and the default-mode-network had a significantly increased efficiency (p < 0.05) in both TLE and ETLE as well as TLE with hippocampal sclerosis. SIGNIFICANCE During interictal scalp EEG epochs without IED, patients with focal epilepsy show brain functional connectivity alterations in the whole brain and in specific resting-state-networks. This higher integration reflects a chronic effect of pathological activity within these structures and complement previous work on altered information outflow. These findings could increase the diagnostic sensitivity of scalp EEG to identify epileptic activity in the absence of IED.
Collapse
Affiliation(s)
- Margherita Carboni
- EEG and Epilepsy Unit, Clinical Neuroscience Department, University Hospital and Faculty of Medicine of Geneva, Geneva, Switzerland; Functional Brain Mapping Lab, Department of Fundamental Neurosciences, University of Geneva, Geneva, Switzerland.
| | - Pia De Stefano
- EEG and Epilepsy Unit, Clinical Neuroscience Department, University Hospital and Faculty of Medicine of Geneva, Geneva, Switzerland
| | - Bernd J Vorderwülbecke
- EEG and Epilepsy Unit, Clinical Neuroscience Department, University Hospital and Faculty of Medicine of Geneva, Geneva, Switzerland; Epilepsy-Center Berlin-Brandenburg, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastien Tourbier
- Connectomics Lab, Department of Radiology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Emeline Mullier
- Connectomics Lab, Department of Radiology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Maria Rubega
- Functional Brain Mapping Lab, Department of Fundamental Neurosciences, University of Geneva, Geneva, Switzerland; Department of Neurosciences, University of Padova, Padova, Italy
| | - Shahan Momjian
- Department of Neurosurgery, University Hospital and Faculty of Medicine of Geneva, Geneva, Switzerland
| | - Karl Schaller
- Department of Neurosurgery, University Hospital and Faculty of Medicine of Geneva, Geneva, Switzerland
| | - Patric Hagmann
- Connectomics Lab, Department of Radiology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Margitta Seeck
- EEG and Epilepsy Unit, Clinical Neuroscience Department, University Hospital and Faculty of Medicine of Geneva, Geneva, Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Lab, Department of Fundamental Neurosciences, University of Geneva, Geneva, Switzerland
| | - Pieter van Mierlo
- Medical Image and Signal Processing Group, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Serge Vulliemoz
- EEG and Epilepsy Unit, Clinical Neuroscience Department, University Hospital and Faculty of Medicine of Geneva, Geneva, Switzerland
| |
Collapse
|
34
|
Engel J, Pitkänen A. Biomarkers for epileptogenesis and its treatment. Neuropharmacology 2020; 167:107735. [PMID: 31377200 PMCID: PMC6994353 DOI: 10.1016/j.neuropharm.2019.107735] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/18/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023]
Abstract
There are no pharmacological interventions to prevent the development of epilepsy, although many promising compounds have been identified in the animal laboratory. Clinical trials to validate their effectiveness, however, would currently be prohibitively expensive due to the large subject population and duration of follow-up necessary. There is, therefore, the need to identify biomarkers of epileptogenesis that could identify patients at high risk for epilepsy following a potential epileptogenic insult to enrich the subject population, as well as biomarkers that could determine the effectiveness of therapeutic intervention without the need to wait for seizures to occur. Putative biomarkers under investigation for epileptogenesis and its treatment include genetic, molecular, cellular, imaging, and electrophysiological measures that might reliably predict the development or progression of an epileptic condition, the effects of antiepileptogenic treatment, or cure after surgery. To be clinically useful for most purposes, ideal biomarkers should be noninvasive, and it is anticipated that a profile of multiple biomarkers will likely be required. Ongoing animal research involves a number of experimental models of epileptogenesis, with traumatic brain injury, offering the best potential for translational clinical investigations. Collaborative and multicenter research efforts by multidisciplinary teams of basic and clinical neuroscientists with access to robust, well-defined animal models, extensive patient populations, standardized protocols, and cutting-edge analytical methodologies are likely to be most successful. Such biomarker research should also provide insights into fundamental neuronal mechanisms of epileptogenesis suggesting novel targets for antiepileptogenic treatments. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
Collapse
Affiliation(s)
- Jerome Engel
- UCLA Department of Neurology, Neurobiology, and Psychiatry & Behavioral Sciences and the Brain Research Institute, David Geffen School of Medicine at UCLA, USA.
| | - Asla Pitkänen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211, Kuopio, Finland
| |
Collapse
|
35
|
Interictal scalp fast ripple occurrence and high frequency oscillation slow wave coupling in epileptic spasms. Clin Neurophysiol 2020; 131:1433-1443. [PMID: 32387963 DOI: 10.1016/j.clinph.2020.03.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/27/2020] [Accepted: 03/12/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Intracranial high frequency oscillation (HFO) occurrence rate (OR) and slow wave activity (SWA) coupling are potential markers of epileptogenicity in epileptic spasms (ES). Scalp ripple (R) detection and SWA coupling have been described in ES; however, the feasibility of scalp fast ripple (FR) detection and measurement of scalp FR coupling to SWA is not known. We evaluated interictal scalp R and FR OR and SWA coupling in pre-treatment EEG in children with short-term treatment-refractory ES compared to short-term treatment non-refractory ES. METHODS We retrospectively identified children with ES and identified HFOs using a semi-automated HFO detector on pre-treatment scalp EEG during sleep. We evaluated HFO OR and event-triggered modulation index (MI) to quantify R (100-250 Hz) and FR (250-600 Hz) coupling strength with different SWA passbands (0.5-1, 1-2, 2-3, 3-4, and 4-8 Hz). We used HFO phasor transform and circular statistics to evaluate phase coupling angle distributions. RESULTS We identified 15 children with ES with pre-treatment EEG recorded at 2000 Hz. Thirteen out of 15 patients had HFOs and were included for analysis. There were six treatment responders and seven nonresponders three months after treatment initiation. Responders and nonresponders were similar in age (6.1 vs 7.2 mo), ES diagnosis duration (0.7 vs 2.6 mo), and HFO OR (R: 1.07 vs 2.30/min, FR: 0.43 vs 1.96/min). No differences between responders and nonresponders were seen in HFO MI at different SWA. Coupling of R and FR to 2-3 Hz SWA demonstrated increased incidence rate ratio in nonresponders relative to responders at distinct phase coupling angle distributions. CONCLUSIONS This study demonstrates the feasibility of interictal scalp R and FR detection and quantification of scalp R and FR coupling to SWA in ES. SIGNIFICANCE HFO phase coupling with SWA may be useful as a marker of potential treatment refractoriness in patients with ES.
Collapse
|
36
|
van der Poest Clement E, Jansen FE, Braun KPJ, Peters JM. Update on Drug Management of Refractory Epilepsy in Tuberous Sclerosis Complex. Paediatr Drugs 2020; 22:73-84. [PMID: 31912454 DOI: 10.1007/s40272-019-00376-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tuberous sclerosis complex (TSC) is a genetic neurocutaneous disorder with epilepsy as a common and early presenting symptom. The neurological phenotype, however, is variable and unpredictable. Early and refractory seizures, infantile spasms in particular, are associated with a poor neurological outcome. Preliminary data suggests early and aggressive seizure control may mitigate the detrimental neurodevelopmental effects of epilepsy. For infantile spasms, vigabatrin is the first line of treatment, and steroids and classic antiepileptic drugs (AEDs) are suitable for second line. Based on retrospective data, vigabatrin should be considered for other indications, especially in infants with focal seizures, as this may prevent infantile spasms, but also in children and adults with epileptic spasms and tonic seizures. Otherwise, for most seizure types, treatment is similar to that for patients without TSC, including the use of novel AEDs, although limited data are available. Three major developments are changing the field of epilepsy management in TSC. First, final recommendations on preventive treatment with vigabatrin will result from two multicenter trials in the US (PREVeNT, clinicaltrials.gov #NCT02849457) and Europe (EPISTOP, clinicaltrials.gov #NCT02098759). Second, treatment with everolimus, an inhibitor of the mechanistic target of rapamycin (mTOR), reduced seizures when compared to placebo. Further, mTOR inhibitors may have an overall disease-modifying effect. Third, the role of cannabidiol in the treatment of refractory seizures in TSC is yet to be established. With treatment recommendations in TSC, we keep an eye on the prize for the broader field of pediatric epilepsy: the lessons learned from TSC are likely applicable to other epileptic encephalopathies.
Collapse
Affiliation(s)
| | - Floor E Jansen
- Department of Child Neurology, University Medical Center Utrecht Brain Center, Utrecht, The Netherlands
| | - Kees P J Braun
- Department of Child Neurology, University Medical Center Utrecht Brain Center, Utrecht, The Netherlands
| | - Jurriaan M Peters
- Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, FE9, Boston, 02115, USA.
| |
Collapse
|