1
|
Shogren EH, Sardell JM, Muirhead CA, Martí E, Cooper EA, Moyle RG, Presgraves DC, Uy JAC. Recent secondary contact, genome-wide admixture, and asymmetric introgression of neo-sex chromosomes between two Pacific island bird species. PLoS Genet 2024; 20:e1011360. [PMID: 39172766 PMCID: PMC11340901 DOI: 10.1371/journal.pgen.1011360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 06/28/2024] [Indexed: 08/24/2024] Open
Abstract
Secondary contact between closely related taxa represents a "moment of truth" for speciation-an opportunity to test the efficacy of reproductive isolation that evolved in allopatry and to identify the genetic, behavioral, and/or ecological barriers that separate species in sympatry. Sex chromosomes are known to rapidly accumulate differences between species, an effect that may be exacerbated for neo-sex chromosomes that are transitioning from autosomal to sex-specific inheritance. Here we report that, in the Solomon Islands, two closely related bird species in the honeyeater family-Myzomela cardinalis and Myzomela tristrami-carry neo-sex chromosomes and have come into recent secondary contact after ~1.1 my of geographic isolation. Hybrids of the two species were first observed in sympatry ~100 years ago. To determine the genetic consequences of hybridization, we use population genomic analyses of individuals sampled in allopatry and in sympatry to characterize gene flow in the contact zone. Using genome-wide estimates of diversity, differentiation, and divergence, we find that the degree and direction of introgression varies dramatically across the genome. For sympatric birds, autosomal introgression is bidirectional, with phenotypic hybrids and phenotypic parentals of both species showing admixed ancestry. In other regions of the genome, however, the story is different. While introgression on the Z/neo-Z-linked sequence is limited, introgression of W/neo-W regions and mitochondrial sequence (mtDNA) is highly asymmetric, moving only from the invading M. cardinalis to the resident M. tristrami. The recent hybridization between these species has thus enabled gene flow in some genomic regions but the interaction of admixture, asymmetric mate choice, and/or natural selection has led to the variation in the amount and direction of gene flow at sex-linked regions of the genome.
Collapse
Affiliation(s)
- Elsie H. Shogren
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Jason M. Sardell
- PrecisionLife Ltd, Hanborough Business Park, Long Hanborough, Witney, Oxon, United Kingdom
| | - Christina A. Muirhead
- Department of Biology, University of Rochester, Rochester, New York, United States of America
- The Ronin Institute, Montclair, New Jersey, United States of America
| | - Emiliano Martí
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Elizabeth A. Cooper
- Department of Bioinformatics & Genomics, University of North Carolina, Charlotte, North Carolina, United States of America
| | - Robert G. Moyle
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Daven C. Presgraves
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - J. Albert C. Uy
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| |
Collapse
|
2
|
Rhodes EM, Yap KN, Mesquita PHC, Parry HA, Kavazis AN, Krause JS, Hill GE, Hood WR. Flexibility underlies differences in mitochondrial respiratory performance between migratory and non-migratory White-crowned Sparrows (Zonotrichia leucophrys). Sci Rep 2024; 14:9456. [PMID: 38658588 PMCID: PMC11043447 DOI: 10.1038/s41598-024-59715-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
Migration is one of the most energy-demanding behaviors observed in birds. Mitochondria are the primary source of energy used to support these long-distance movements, yet how mitochondria meet the energetic demands of migration is scarcely studied. We quantified changes in mitochondrial respiratory performance in the White-crowned Sparrow (Zonotrichia leucophrys), which has a migratory and non-migratory subspecies. We hypothesized that the long-distance migratory Gambel's subspecies (Z. l. gambelii) would show higher mitochondrial respiratory performance compared to the non-migratory Nuttall's subspecies (Z. l. nuttalli). We sampled Gambel's individuals during spring pre-migration, active fall migration, and a period with no migration or breeding (winter). We sampled Nuttall's individuals during periods coinciding with fall migration and the winter period of Gambel's annual cycle. Overall, Gambel's individuals had higher citrate synthase, a proxy for mitochondrial volume, than Nuttall's individuals. This was most pronounced prior to and during migration. We found that both OXPHOS capacity (state 3) and basal respiration (state 4) of mitochondria exhibit high seasonal flexibility within Gambel's individuals, with values highest during active migration. These values in Nuttall's individuals were most similar to Gambel's individuals in winter. Our observations indicate that seasonal changes in mitochondrial respiration play a vital role in migration energetics.
Collapse
Affiliation(s)
- Emma M Rhodes
- Department of Biological Sciences, Auburn University, Auburn, USA.
| | - Kang Nian Yap
- Department of Biological Sciences, Auburn University, Auburn, USA
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Paulo H C Mesquita
- School of Kinesiology, Auburn University, Auburn, USA
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, USA
| | - Hailey A Parry
- School of Kinesiology, Auburn University, Auburn, USA
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, USA
| | | | | | - Geoffrey E Hill
- Department of Biological Sciences, Auburn University, Auburn, USA
| | - Wendy R Hood
- Department of Biological Sciences, Auburn University, Auburn, USA
| |
Collapse
|
3
|
Coulson SZ, Guglielmo CG, Staples JF. Migration increases mitochondrial oxidative capacity without increasing reactive oxygen species emission in a songbird. J Exp Biol 2024; 227:jeb246849. [PMID: 38632979 PMCID: PMC11128287 DOI: 10.1242/jeb.246849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
Birds remodel their flight muscle metabolism prior to migration to meet the physiological demands of migratory flight, including increases in both oxidative capacity and defence against reactive oxygen species. The degree of plasticity mediated by changes in these mitochondrial properties is poorly understood but may be explained by two non-mutually exclusive hypotheses: variation in mitochondrial quantity or in individual mitochondrial function. We tested these hypotheses using yellow-rumped warblers (Setophaga coronata), a Nearctic songbird which biannually migrates 2000-5000 km. We predicted higher flight muscle mitochondrial abundance and substrate oxidative capacity, and decreased reactive oxygen species emission in migratory warblers captured during autumn migration compared with a short-day photoperiod-induced non-migratory phenotype. We assessed mitochondrial abundance via citrate synthase activity and assessed isolated mitochondrial function using high-resolution fluororespirometry. We found 60% higher tissue citrate synthase activity in the migratory phenotype, indicating higher mitochondrial abundance. We also found 70% higher State 3 respiration (expressed per unit citrate synthase) in mitochondria from migratory warblers when oxidizing palmitoylcarnitine, but similar H2O2 emission rates between phenotypes. By contrast, non-phosphorylating respiration was higher and H2O2 emission rates were lower in the migratory phenotype. However, flux through electron transport system complexes I-IV, II-IV and IV was similar between phenotypes. In support of our hypotheses, these data suggest that flight muscle mitochondrial abundance and function are seasonally remodelled in migratory songbirds to increase tissue oxidative capacity without increasing reactive oxygen species formation.
Collapse
Affiliation(s)
- Soren Z. Coulson
- Department of Biology, Western University, London, ON, Canada, N6A 5B7
- Centre for Animals on the Move, Western University, London, ON, Canada, N6A 3K7
| | - Christopher G. Guglielmo
- Department of Biology, Western University, London, ON, Canada, N6A 5B7
- Centre for Animals on the Move, Western University, London, ON, Canada, N6A 3K7
| | - James F. Staples
- Department of Biology, Western University, London, ON, Canada, N6A 5B7
| |
Collapse
|
4
|
Iverson ENK. Conservation Mitonuclear Replacement: Facilitated mitochondrial adaptation for a changing world. Evol Appl 2024; 17:e13642. [PMID: 38468713 PMCID: PMC10925831 DOI: 10.1111/eva.13642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 03/13/2024] Open
Abstract
Most species will not be able to migrate fast enough to cope with climate change, nor evolve quickly enough with current levels of genetic variation. Exacerbating the problem are anthropogenic influences on adaptive potential, including the prevention of gene flow through habitat fragmentation and the erosion of genetic diversity in small, bottlenecked populations. Facilitated adaptation, or assisted evolution, offers a way to augment adaptive genetic variation via artificial selection, induced hybridization, or genetic engineering. One key source of genetic variation, particularly for climatic adaptation, are the core metabolic genes encoded by the mitochondrial genome. These genes influence environmental tolerance to heat, drought, and hypoxia, but must interact intimately and co-evolve with a suite of important nuclear genes. These coadapted mitonuclear genes form some of the important reproductive barriers between species. Mitochondrial genomes can and do introgress between species in an adaptive manner, and they may co-introgress with nuclear genes important for maintaining mitonuclear compatibility. Managers should consider the relevance of mitonuclear genetic variability in conservation decision-making, including as a tool for facilitating adaptation. I propose a novel technique dubbed Conservation Mitonuclear Replacement (CmNR), which entails replacing the core metabolic machinery of a threatened species-the mitochondrial genome and key nuclear loci-with those from a closely related species or a divergent population, which may be better-adapted to climatic changes or carry a lower genetic load. The most feasible route to CmNR is to combine CRISPR-based nuclear genetic editing with mitochondrial replacement and assisted reproductive technologies. This method preserves much of an organism's phenotype and could allow populations to persist in the wild when no other suitable conservation options exist. The technique could be particularly important on mountaintops, where rising temperatures threaten an alarming number of species with almost certain extinction in the next century.
Collapse
Affiliation(s)
- Erik N. K. Iverson
- Department of Integrative BiologyThe University of Texas at AustinAustinTexasUSA
| |
Collapse
|
5
|
Graham AM, Lavretsky P, Wilson RE, McCracken KG. High-altitude adaptation is accompanied by strong signatures of purifying selection in the mitochondrial genomes of three Andean waterfowl. PLoS One 2024; 19:e0294842. [PMID: 38170710 PMCID: PMC10763953 DOI: 10.1371/journal.pone.0294842] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024] Open
Abstract
Evidence from a variety of organisms points to convergent evolution on the mitochondria associated with a physiological response to oxygen deprivation or temperature stress, including mechanisms for high-altitude adaptation. Here, we examine whether demography and/or selection explains standing mitogenome nucleotide diversity in high-altitude adapted populations of three Andean waterfowl species: yellow-billed pintail (Anas georgica), speckled teal (Anas flavirostris), and cinnamon teal (Spatula cyanoptera). We compared a total of 60 mitogenomes from each of these three duck species (n = 20 per species) across low and high altitudes and tested whether part(s) or all of the mitogenome exhibited expected signatures of purifying selection within the high-altitude populations of these species. Historical effective population sizes (Ne) were inferred to be similar between high- and low-altitude populations of each species, suggesting that selection rather than genetic drift best explains the reduced genetic variation found in mitochondrial genes of high-altitude populations compared to low-altitude populations of the same species. Specifically, we provide evidence that establishment of these three Andean waterfowl species in the high-altitude environment, coincided at least in part with a persistent pattern of negative purifying selection acting on oxidative phosphorylation (OXPHOS) function of the mitochondria. Our results further reveal that the extent of gene-specific purifying selection has been greatest in the speckled teal, the species with the longest history of high-altitude occupancy.
Collapse
Affiliation(s)
- Allie M. Graham
- Eccles Institute for Human Genetics, University of Utah, Salt Lake City, UT, United States of America
| | - Philip Lavretsky
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States of America
| | - Robert E. Wilson
- School of Natural Resources and Nebraska State Museum, University of Nebraska–Lincoln, Lincoln, NE, United States of America
| | - Kevin G. McCracken
- Department of Biology, University of Miami, Coral Gables, FL, United States of America
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, United States of America
- Human Genetics and Genomics, University of Miami Miller School of Medicine, Miami, FL, United States of America
- University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, AK, United States of America
| |
Collapse
|
6
|
Claramunt S, Haddrath O. No Signs of Adaptations for High Flight Intensity in the Mitochondrial Genome of Birds. Genome Biol Evol 2023; 15:evad173. [PMID: 37758449 PMCID: PMC10563790 DOI: 10.1093/gbe/evad173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/14/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023] Open
Abstract
Mitochondrial genomes are expected to show adaptations for optimizing aerobic respiration in birds that make intense use of flight. However, there is limited empirical evidence of such a relationship. We here examine correlates of several mitochondrial genome characteristics and flight use across a diverse sample of 597 bird species. We developed an index of flight use intensity that ranged from 0 in flightless species to 9 in migratory hummingbirds and examined its association with nucleobase composition, amino acid class composition, and amino acid site allelic variation using phylogenetic comparative methods. We found no evidence of mitochondrial genome adaptations to flight intensity. Neither nucleotide composition nor amino acid properties showed consistent patterns related to flight use. While specific sites in mitochondrial genes exhibited variation associated with flight intensity, there was limited association between specific amino acid residues and flight intensity levels. Our findings suggest a complex genetic architecture for aerobic performance traits, where multiple genes in both mitochondria and the nucleus may contribute to overall performance. Other factors, such as gene expression regulation and anatomical adaptations, may play a more significant role in influencing flight performance than changes in mitochondrial genes. These findings highlight the need for comprehensive genomic analyses to unravel the intricate relationship between genetic variants and aerobic performance in birds.
Collapse
Affiliation(s)
- Santiago Claramunt
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada
| | - Oliver Haddrath
- Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Elowe CR, Groom DJE, Slezacek J, Gerson AR. Long-duration wind tunnel flights reveal exponential declines in protein catabolism over time in short- and long-distance migratory warblers. Proc Natl Acad Sci U S A 2023; 120:e2216016120. [PMID: 37068245 PMCID: PMC10151508 DOI: 10.1073/pnas.2216016120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/14/2023] [Indexed: 04/19/2023] Open
Abstract
During migration, long-distance migratory songbirds may fly nonstop for days, whereas shorter-distance migrants complete flights of 6 to 10 h. Fat is the primary fuel source, but protein is also assumed to provide a low, consistent amount of energy for flight. However, little is known about how the use of these fuel sources differs among bird species and in response to flight duration. Current models predict that birds can fly until fat stores are exhausted, with little consideration of protein's limits on flight range or duration. We captured two related migratory species-ultra long-distance blackpoll warblers (Setophaga striata) and short-distance yellow-rumped warblers (Setophaga coronata)-during fall migration and flew them in a wind tunnel to examine differences in energy expenditure, overall fuel use, and fuel mixture. We measured fat and fat-free body mass before and after flight using quantitative magnetic resonance and calculated energy expenditure from body composition changes and doubly labeled water. Three blackpolls flew voluntarily for up to 28 h-the longest wind tunnel flight to date-and ended flights with substantial fat reserves but concave flight muscle, indicating that protein loss, rather than fat, may actually limit flight duration. Interestingly, while blackpolls had significantly lower mass-specific metabolic power in flight than that of yellow-rumped warblers and fuel use was remarkably similar in both species, with consistent fat use but exceptionally high rates of protein loss at the start of flight that declined exponentially over time. This suggests that protein may be a critical, dynamic, and often overlooked fuel for long-distance migratory birds.
Collapse
Affiliation(s)
- Cory R. Elowe
- Department of Biology, University of Massachusetts, Amherst, MA01003-9297
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA01003-9297
| | - Derrick J. E. Groom
- Department of Biology, University of Massachusetts, Amherst, MA01003-9297
- Department of Biology, San Francisco State University, San Francisco, CA94132
| | - Julia Slezacek
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna1160, Austria
| | - Alexander R. Gerson
- Department of Biology, University of Massachusetts, Amherst, MA01003-9297
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA01003-9297
| |
Collapse
|
8
|
Hahn S, Emmenegger T, Riello S, Serra L, Spina F, Buttemer WA, Bauer S. Short- and long-distance avian migrants differ in exercise endurance but not aerobic capacity. BMC ZOOL 2022; 7:29. [PMID: 37170374 PMCID: PMC10127025 DOI: 10.1186/s40850-022-00134-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 05/25/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Migratory birds differ markedly in their migration strategies, particularly those performing short- versus long-distance migrations. In preparation for migration, all birds undergo physiological and morphological modifications including enlargement of fat stores and pectoral muscles to fuel and power their flights, as well as cardiovascular and biochemical adjustments that improve lipid and oxygen delivery and uptake by flight muscles. While the magnitude of these changes varies in relation to migration strategy, the consequence of these variations on aerobic performance is unknown. We tested whether the aerobic performance of four Old-world flycatcher species (Muscicapidae) varied according to migration strategy by comparing minimum resting metabolic rates (RMRmin), exercise-induced maximum metabolic rates (MMR), and exercise endurance times of short-distance and long-distance migratory birds.
Results
As expected, RMRmin did not vary between short-distance and long-distance migrants but differed between the species within a migration strategy and between sexes. Unexpectedly, MMR did not vary with migration strategy, but MMR and blood haemoglobin content were positively related among the birds tested. Exercise endurance times differed substantially between migration strategies with long-distance migrants sustaining exercise for > 60% longer than short-distance migrants. Blood haemoglobin content had a significant positive effect on endurance among all birds examined.
Conclusions
The lack of difference in RMRmin and MMR between long- and short-distance migrants during this stage of migration suggests that the attributes favouring the greater aerobic endurance of long-distance migrants did not come at the expense of increased maintenance costs or require greater aerobic capacity.
Collapse
|
9
|
Do habitat and elevation promote hybridization during secondary contact between three genetically distinct groups of warbling vireo (Vireo gilvus)? Heredity (Edinb) 2022; 128:352-363. [PMID: 35396350 PMCID: PMC9076831 DOI: 10.1038/s41437-022-00529-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 11/08/2022] Open
Abstract
Following postglacial expansion, secondary contact can occur between genetically distinct lineages. These genetic lineages may be associated with specific habitat or environmental variables and therefore, their distributions in secondary contact could reflect such conditions within these areas. Here we used mtDNA, microsatellite, and morphological data to study three genetically distinct groups of warbling vireo (Vireo gilvus) and investigate the role that elevation and habitat play in their distributions. We studied two main contact zones and within each contact zone, we examined two separate transects. Across the Great Plains contact zone, we found that hybridization between eastern and western groups occurs along a habitat and elevational gradient, whereas hybridization across the Rocky Mountain contact zone was not as closely associated with habitat or elevation. Hybrids in the Great Plains contact zone were more common in transitional areas between deciduous and mixed-wood forests, and at lower elevations (<1000 m). Hybridization patterns were similar along both Great Plains transects indicating that habitat and elevation play a role in hybridization between distinct eastern and western genetic groups. The observed patterns suggest adaptation to different habitats, perhaps originating during isolation in multiple Pleistocene refugia, is facilitating hybridization in areas where habitat types overlap.
Collapse
|
10
|
Cooper-Mullin C, McWilliams SR. Fat Stores and Antioxidant Capacity Affect Stopover Decisions in Three of Four Species of Migratory Passerines With Different Migration Strategies: An Experimental Approach. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.762146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
During migratory stopovers, birds must make decisions about when and where to travel and these decisions are likely contingent on their fuel stores, food availability, and antioxidant capacity as well as seasonal changes in key environmental factors. We conducted a field experiment on an offshore stopover site (Block Island, Rhode Island, United States: 41°130N, 71°330W) during autumn migration to test the hypothesis that birds with greater fuel stores and non-enzymatic antioxidant capacity have shorter stopovers than lean birds with low antioxidant capacity, and to determine the extent to which this depends on migration strategy. We used a 2 × 2 factorial field experiment (two levels each of available food and dietary polyphenols) with four species of songbirds kept in captivity for 3–5 days to produce experimental groups with different fuel stores and antioxidant capacity. We attached digital VHF transmitters to assess stopover duration and departure direction using automated telemetry. Non-enzymatic antioxidant capacity increased during refueling for Red-eyed Vireos (Vireo olivaceus) and Blackpoll Warblers (Setophaga striata) fed ad lib diets, and for ad lib fed Hermit Thrushes (Catharus guttatus) supplemented with polyphenols, but not for Yellow-rumped Warblers (Setophaga coronata coronata). Glutathione peroxidase (GPx) decreased during captivity and was influenced by dietary treatment only in Red-eyed Vireos. Oxidative damage decreased during captivity for all species except Yellow-rumped Warblers. Stopover duration was shorter for Vireos and Blackpolls fed ad lib as compared to those fed maintenance. Ad lib fed Hermit Thrushes supplemented with polyphenols had shorter stopovers than those fed ad lib, as did thrushes fed at maintenance and supplemented with polyphenols compared with those fed at maintenance alone. There was no influence of condition on stopover duration for Yellow-rumped Warblers. Departure direction was not strongly related to condition, and birds primarily reoriented north when departing Block Island. Thus, fat stores and oxidative status interacted to influence the time passerines spent on stopover, and condition-dependent departure decisions were related to a bird’s migration strategy. Therefore, seasonal variation in macro- and micro-nutrient resources available for refueling at stopover sites can affect body condition and antioxidant capacity and in turn influence the timing and success of migration.
Collapse
|
11
|
Zhang L, Sun K, Csorba G, Hughes AC, Jin L, Xiao Y, Feng J. Complete mitochondrial genomes reveal robust phylogenetic signals and evidence of positive selection in horseshoe bats. BMC Ecol Evol 2021; 21:199. [PMID: 34732135 PMCID: PMC8565063 DOI: 10.1186/s12862-021-01926-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In genus Rhinolophus, species in the Rhinolophus philippinensis and R. macrotis groups are unique because the horseshoe bats in these group have relatively low echolocation frequencies and flight speeds compared with other horseshoe bats with similar body size. The different characteristics among bat species suggest particular evolutionary processes may have occurred in this genus. To study the adaptive evidence in the mitochondrial genomes (mitogenomes) of rhinolophids, especially the mitogenomes of the species with low echolocation frequencies, we sequenced eight mitogenomes and used them for comparative studies of molecular phylogeny and adaptive evolution. RESULTS Phylogenetic analysis using whole mitogenome sequences produced robust results and provided phylogenetic signals that were better than those obtained using single genes. The results supported the recent establishment of the separate macrotis group. The signals of adaptive evolution discovered in the Rhinolophus species were tested for some of the codons in two genes (ND2 and ND6) that encode NADH dehydrogenases in oxidative phosphorylation system complex I. These genes have a background of widespread purifying selection. Signals of relaxed purifying selection and positive selection were found in ND2 and ND6, respectively, based on codon models and physicochemical profiles of amino acid replacements. However, no pronounced overlap was found for non-synonymous sites in the mitogenomes of all the species with low echolocation frequencies. A signal of positive selection for ND5 was found in the branch-site model when R. philippinensis was set as the foreground branch. CONCLUSIONS The mitogenomes provided robust phylogenetic signals that were much more informative than the signals obtained using single mitochondrial genes. Two mitochondrial genes that encoding proteins in the oxidative phosphorylation system showed some evidence of adaptive evolution in genus Rhinolophus and the positive selection signals were tested for ND5 in R. philippinensis. These results indicate that mitochondrial protein-coding genes were targets of adaptive evolution during the evolution of Rhinolophus species, which might have contributed to a diverse range of acoustic adaptations in this genus.
Collapse
Affiliation(s)
- Lin Zhang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, 130117, China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, 130117, China.
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China.
| | - Gábor Csorba
- Department of Zoology, Hungarian Natural History Museum, Budapest, Hungary
| | - Alice Catherine Hughes
- Centre for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla County, 666303, Yunnan, China
| | - Longru Jin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, 130117, China
| | - Yanhong Xiao
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, 130117, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, 130117, China.
- College of Life Science, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
12
|
Taylor RS, Bramwell AC, Clemente-Carvalho R, Cairns NA, Bonier F, Dares K, Lougheed SC. Cytonuclear discordance in the crowned-sparrows, Zonotrichia atricapilla and Zonotrichia leucophrys. Mol Phylogenet Evol 2021; 162:107216. [PMID: 34082131 DOI: 10.1016/j.ympev.2021.107216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 04/27/2021] [Accepted: 05/27/2021] [Indexed: 12/23/2022]
Abstract
The golden-crowned (Zonotrichia atricapilla) and white-crowned (Z. leucophrys) sparrows have been presented as a compelling case for rapid speciation. They display divergence in song and plumage with overlap in their breeding ranges implying reproductive isolation, but have almost identical mitochondrial genomes. Previous research proposed hybridization and subsequent mitochondrial introgression as an alternate explanation, but lacked robust nuclear gene trees to distinguish between introgression and incomplete lineage sorting. We test for signatures of these processes between Z. atricapilla and Z. leucophrys, and investigate the relationships among Z. leucophrys subspecies, using mitochondrial sequencing and a reduced representation nuclear genomic dataset. Contrary to the paraphyly evident in mitochondrial gene trees, we confirmed the reciprocal monophyly of Z. atricapilla and Z. leucophrys using large panels of single nucleotide polymorphisms (SNPs). The pattern of cytonuclear discordance is consistent with limited, historical hybridization and mitochondrial introgression, rather than a recent origin and incomplete lineage sorting between recent sister species. We found evidence of nuclear phylogeographic structure within Z. leucophrys with two distinct clades. Altogether, our results indicate deeper divergences between Z. atricapilla and Z. leucophrys than inferred using mitochondrial markers. Our results demonstrate the limitations of relying solely on mitochondrial DNA for taxonomy, and raise questions about the possibility of selection on the mitochondrial genome during temperature oscillations (e.g. during the Pleistocene). Historical mitochondrial introgression facilitated by past environmental changes could cause erroneous dating of lineage splitting in other taxa when based on mitochondrial DNA alone.
Collapse
Affiliation(s)
- Rebecca S Taylor
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Ashley C Bramwell
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | | | - Nicholas A Cairns
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Frances Bonier
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Katherine Dares
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Stephen C Lougheed
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
13
|
Burskaia V, Artyushin I, Potapova NA, Konovalov K, Bazykin GA. Convergent Adaptation in Mitochondria of Phylogenetically Distant Birds: Does it Exist? Genome Biol Evol 2021; 13:6284172. [PMID: 34037779 PMCID: PMC8271140 DOI: 10.1093/gbe/evab113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2021] [Indexed: 11/24/2022] Open
Abstract
In a wide range of taxa, proteins encoded by mitochondrial genomes are involved in adaptation to lifestyle that requires oxygen starvation or elevation of metabolism rate. It remains poorly understood to what extent adaptation to similar conditions is associated with parallel changes in these proteins. We search for a genetic signal of parallel or convergent evolution in recurrent molecular adaptation to high altitude, migration, diving, wintering, unusual flight abilities, or loss of flight in mitochondrial genomes of birds. Developing on previous work, we design an approach for the detection of recurrent coincident changes in genotype and phenotype, indicative of an association between the two. We describe a number of candidate sites involved in recurrent adaptation in ND genes. However, we find that the majority of convergence events can be explained by random coincidences without invoking adaptation.
Collapse
Affiliation(s)
- Valentina Burskaia
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Moscow Oblast, Russia.,Molecular Evolution Laboratory, Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevitch Institute), Moscow, Russia
| | - Ilja Artyushin
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Nadezhda A Potapova
- Molecular Evolution Laboratory, Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevitch Institute), Moscow, Russia
| | - Kirill Konovalov
- Department of Chemistry, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Georgii A Bazykin
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Moscow Oblast, Russia.,Molecular Evolution Laboratory, Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevitch Institute), Moscow, Russia
| |
Collapse
|
14
|
Szarmach SJ, Brelsford A, Witt CC, Toews DPL. Comparing divergence landscapes from reduced-representation and whole genome resequencing in the yellow-rumped warbler (Setophaga coronata) species complex. Mol Ecol 2021; 30:5994-6005. [PMID: 33934424 DOI: 10.1111/mec.15940] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/23/2021] [Accepted: 04/19/2021] [Indexed: 12/01/2022]
Abstract
Researchers seeking to generate genomic data for non-model organisms are faced with a number of trade-offs when deciding which method to use. The selection of reduced representation approaches versus whole genome resequencing will ultimately affect the marker density, sequencing depth, and the number of individuals that can multiplexed. These factors can affect researchers' ability to accurately characterize certain genomic features, such as landscapes of divergence-how FST varies across the genomes. To provide insight into the effect of sequencing method on the estimation of divergence landscapes, we applied an identical bioinformatic pipeline to three generations of sequencing data (GBS, ddRAD, and WGS) produced for the same system, the yellow-rumped warbler species complex. We compare divergence landscapes generated using each method for the myrtle warbler (Setophaga coronata coronata) and the Audubon's warbler (S. c. auduboni), and for Audubon's warblers with deeply divergent mtDNA resulting from mitochondrial introgression. We found that most high-FST peaks were not detected in the ddRAD data set, and that while both GBS and WGS were able to identify the presence of large peaks, WGS was superior at a finer scale. Comparing Audubon's warblers with divergent mitochondrial haplotypes, only WGS allowed us to identify small (10-20 kb) regions of elevated differentiation, one of which contained the nuclear-encoded mitochondrial gene NDUFAF3. We calculated the cost per base pair for each method and found it was comparable between GBS and WGS, but significantly higher for ddRAD. These comparisons highlight the advantages of WGS over reduced representation methods when characterizing landscapes of divergence.
Collapse
Affiliation(s)
| | - Alan Brelsford
- Evolution, Ecology, and Organismal Biology Department, University of California Riverside, Riverside, CA, USA
| | - Christopher C Witt
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - David P L Toews
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
15
|
Štefánik M, Habel JC, Schmitt T, Eberle J. Geographical disjunction and environmental conditions drive intraspecific differentiation in the chalk-hill blue butterfly. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Drivers of evolution are often related to geographical isolation and/or diverging environmental conditions. Spatial variation in neutral genetic markers mostly reflects past geographical isolation, i.e. long-lasting allopatry, whereas morphology is often driven by local environmental conditions, resulting in more rapid evolution. In Europe, most thermophilic species persisted during the past glacial periods in geographically disjunct refugia, representing long-lasting isolates, frequently with diverging environmental conditions. This situation has driven the evolution of intraspecific signatures in species. Here, we analysed wing shape and wing pigmentation of the chalk-hill blue butterfly, Polyommatus coridon, across its entire distribution range restricted to the western Palaearctic. In addition, we compiled abiotic environmental parameters for each sampling site. Wing colour patterns differentiated a western and an eastern lineage. These lineages might represent two main Pleistocene refugia and differentiation centres, one located on the Italian Peninsula and the other in the Balkan region. The two lineages showed evidence of hybridization across Central Europe, from the Alps and across Germany. The intraspecific differentiation was strongest in the width of the brown band on the outer margin of the wings. The morphological structures obtained are in line with genetic signatures found in previous studies, but the latter are more fine-grained. Current environmental conditions, such as mean temperatures, were only marginally correlated with colour patterns. Our study underlines that Pleistocene range shifts, often resulting in allopatric isolation, shape intraspecific phenotypic structures within species; that pigmentation responds in a more sensitive manner to spatial disjunction than wing shape; and that morphometric and genetic structures in P. coridon provide concordant patterns and thus support identical biogeographical conclusions.
Collapse
Affiliation(s)
- Martin Štefánik
- Evolutionary Zoology, Department of Biosciences, University of Salzburg, Salzburg, Austria
- Department of Environmental Ecology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Jan Christian Habel
- Evolutionary Zoology, Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Thomas Schmitt
- Senckenberg German Entomological Institute, Müncheberg, Germany
- Department of Zoology, Institute of Biology, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Jonas Eberle
- Evolutionary Zoology, Department of Biosciences, University of Salzburg, Salzburg, Austria
| |
Collapse
|
16
|
Andersen MJ, McCullough JM, Gyllenhaal EF, Mapel XM, Haryoko T, Jønsson KA, Joseph L. Complex histories of gene flow and a mitochondrial capture event in a nonsister pair of birds. Mol Ecol 2021; 30:2087-2103. [PMID: 33615597 PMCID: PMC8252742 DOI: 10.1111/mec.15856] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/02/2021] [Accepted: 02/12/2021] [Indexed: 01/03/2023]
Abstract
Hybridization, introgression, and reciprocal gene flow during speciation, specifically the generation of mitonuclear discordance, are increasingly observed as parts of the speciation process. Genomic approaches provide insight into where, when, and how adaptation operates during and after speciation and can measure historical and modern introgression. Whether adaptive or neutral in origin, hybridization can cause mitonuclear discordance by placing the mitochondrial genome of one species (or population) in the nuclear background of another species. The latter, introgressed species may eventually have its own mtDNA replaced or “captured” by other species across its entire geographical range. Intermediate stages in the capture process should be observable. Two nonsister species of Australasian monarch‐flycatchers, Spectacled Monarch (Symposiachrus trivirgatus) mostly of Australia and Indonesia and Spot‐winged Monarch (S. guttula) of New Guinea, present an opportunity to observe this process. We analysed thousands of single nucleotide polymorphisms (SNPs) derived from ultraconserved elements of all subspecies of both species. Mitochondrial DNA sequences of Australian populations of S. trivirgatus form two paraphyletic clades, one being sister to and presumably introgressed by S. guttula despite little nuclear signal of introgression. Population genetic analyses (e.g., tests for modern and historical gene flow and selection) support at least one historical gene flow event between S. guttula and Australian S. trivirgatus. We also uncovered introgression from the Maluku Islands subspecies of S. trivirgatus into an island population of S. guttula, resulting in apparent nuclear paraphyly. We find that neutral demographic processes, not adaptive introgression, are the most likely cause of these complex population histories. We suggest that a Pleistocene extinction of S. guttula from mainland Australia resulted from range expansion by S. trivirgatus.
Collapse
Affiliation(s)
- Michael J Andersen
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Jenna M McCullough
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Ethan F Gyllenhaal
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Xena M Mapel
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, USA.,Animal Genomics, ETH Zürich, Lindau, Switzerland
| | - Tri Haryoko
- Museum Zoologicum Bogoriense, Research Centre for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Knud A Jønsson
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen Ø, Denmark
| | - Leo Joseph
- Australian National Wildlife Collection, CSIRO National Research Collections, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
17
|
Semenov GA, Linck E, Enbody ED, Harris RB, Khaydarov DR, Alström P, Andersson L, Taylor SA. Asymmetric introgression reveals the genetic architecture of a plumage trait. Nat Commun 2021; 12:1019. [PMID: 33589637 PMCID: PMC7884433 DOI: 10.1038/s41467-021-21340-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 01/20/2021] [Indexed: 01/04/2023] Open
Abstract
Genome-wide variation in introgression rates across hybrid zones offers a powerful opportunity for studying population differentiation. One poorly understood pattern of introgression is the geographic displacement of a trait implicated in lineage divergence from genome-wide population boundaries. While difficult to interpret, this pattern can facilitate the dissection of trait genetic architecture because traits become uncoupled from their ancestral genomic background. We studied an example of trait displacement generated by the introgression of head plumage coloration from personata to alba subspecies of the white wagtail. A previous study of their hybrid zone in Siberia revealed that the geographic transition in this sexual signal that mediates assortative mating was offset from other traits and genetic markers. Here we show that head plumage is associated with two small genetic regions. Despite having a simple genetic architecture, head plumage inheritance is consistent with partial dominance and epistasis, which could contribute to its asymmetric introgression. Hybrid zones are windows into the evolutionary process. Semenov et al. find that the head plumage differences between white wagtail subspecies have a simple genetic basis involving two small genetic regions, in which partially dominant and epistatic interactions help to explain how this sexual signal has become decoupled from other plumage traits.
Collapse
Affiliation(s)
- Georgy A Semenov
- Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.
| | - Ethan Linck
- UNM Biology, University of New Mexico, Albuquerque, NM, Mexico
| | - Erik D Enbody
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | | | - Per Alström
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.,Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.,Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Scott A Taylor
- Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| |
Collapse
|
18
|
Kundu S, Tyagi K, Alam I, Maheswaran G, Kumar V, Chandra K. Complete mitochondrial genome of Chroicocephalus brunnicephalus from India: phylogeny with other Larids. Mitochondrial DNA B Resour 2021; 6:339-343. [PMID: 33659671 PMCID: PMC7872550 DOI: 10.1080/23802359.2020.1866448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/13/2020] [Indexed: 11/14/2022] Open
Abstract
The complete mitogenome sequence of the brown-headed gull, Chroicocephalus brunnicephalus was determined in this study. The 16,771 bp genome consists of 13 protein-coding genes (PCGs), two ribosomal RNA (rRNA) genes, and 22 transfer RNA (tRNA) genes, and a control region (CR). The decoded mitogenome was AT-rich (54.77%) with nine overlapping and 17 intergenic spacer regions. Most of the PCGs were started by a typical ATG initiation codon except for cox1 and nad3. Further, the usual termination codons (AGG, TAG, TAA, and AGA) were used by 11 PCGs except for cox3 and nad4. The concatenated PCGs based Bayesian phylogeny clearly discriminates all the Laridae species and reflects the sister relationship of C. brunnicephalus with C. ridibundus. The present mitogenome-based phylogeny was congruent with the earlier hypothesis and confirmed the evolutionary position of the brown-headed gull as masked species. The generated mitogenome of C. brunnicephalus is almost identical to the previously generated mitogenome from China except for two base pairs in CR. To visualize the population structure of this migratory species, we propose more sampling from different geographical locations and the generation of additional molecular data to clarify the reality.
Collapse
Affiliation(s)
- Shantanu Kundu
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, India
| | - Kaomud Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, India
| | - Imran Alam
- Bird Section, Zoological Survey of India, Kolkata, India
| | | | - Vikas Kumar
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, India
| | - Kailash Chandra
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, India
- Bird Section, Zoological Survey of India, Kolkata, India
| |
Collapse
|
19
|
Jin Y, Y C Brandt D, Li J, Wo Y, Tong H, Shchur V. Elevation as a selective force on mitochondrial respiratory chain complexes of the Phrynocephalus lizards in the Tibetan plateau. Curr Zool 2020; 67:191-199. [PMID: 33854537 PMCID: PMC8026157 DOI: 10.1093/cz/zoaa056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/10/2020] [Indexed: 12/02/2022] Open
Abstract
Animals living in extremely high elevations have to adapt to low temperatures and low oxygen availability (hypoxia), but the underlying genetic mechanisms associated with these adaptations are still unclear. The mitochondrial respiratory chain can provide >95% of the ATP in animal cells, and its efficiency is influenced by temperature and oxygen availability. Therefore, the respiratory chain complexes (RCCs) could be important molecular targets for positive selection associated with respiratory adaptation in high-altitude environments. Here, we investigated positive selection in 5 RCCs and their assembly factors by analyzing sequences of 106 genes obtained through RNA-seq of all 15 Chinese Phrynocephalus lizard species, which are distributed from lowlands to the Tibetan plateau (average elevation >4,500 m). Our results indicate that evidence of positive selection on RCC genes is not significantly different from assembly factors, and we found no difference in selective pressures among the 5 complexes. We specifically looked for positive selection in lineages where changes in habitat elevation happened. The group of lineages evolving from low to high altitude show stronger signals of positive selection than lineages evolving from high to low elevations. Lineages evolving from low to high elevation also have more shared codons under positive selection, though the changes are not equivalent at the amino acid level. This study advances our understanding of the genetic basis of animal respiratory metabolism evolution in extreme high environments and provides candidate genes for further confirmation with functional analyses.
Collapse
Affiliation(s)
- Yuanting Jin
- College of Life Science, China Jiliang University, Hangzhou, 310018, China
| | - Débora Y C Brandt
- Department of Integrative Biology, University of California at Berkeley, Berkeley, CA, 94720-3140, USA
| | - Jiasheng Li
- College of Life Science, China Jiliang University, Hangzhou, 310018, China
| | - Yubin Wo
- College of Life Science, China Jiliang University, Hangzhou, 310018, China
| | - Haojie Tong
- College of Life Science, China Jiliang University, Hangzhou, 310018, China
| | - Vladimir Shchur
- International Laboratory of Statistical and Computational Genomics, National Research University Higher School of Economics, Moscow, Russia
| |
Collapse
|
20
|
Leavitt DH, Hollingsworth BD, Fisher RN, Reeder TW. Introgression obscures lineage boundaries and phylogeographic history in the western banded gecko, Coleonyx variegatus (Squamata: Eublepharidae). Zool J Linn Soc 2020. [DOI: 10.1093/zoolinnean/zlz143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
AbstractThe geomorphological formation of the Baja California peninsula and the Gulf of California is a principal driver of diversification for the reptiles of North America’s warm deserts. The western banded gecko, Coleonyx variegatus, is distributed throughout the Mojave, Sonoran and Peninsular deserts. In this study we use multilocus sequence data to address deep phylogeographic structure within C. variegatus. Analyses of mtDNA data recover six divergent clades throughout the range of C. variegatus. Topology of the mtDNA gene tree suggests separate origins of peninsular populations with an older lineage in the south and a younger one in the north. In contrast, analyses of multilocus nuclear data provide support for four lineages, corresponding to the subspecies C. v. abbotti, C. v. peninsularis, C. v. sonoriensis and C. v. variegatus. Phylogenetic analyses of the nuclear data recover C. v. abbotti and C. v. peninsularis as a clade, indicating a single origin of the peninsular populations. Discordance between the nuclear and mtDNA data is largely the result of repeated episodes of mtDNA introgression that have obscured both lineage boundaries and biogeographic history. Dating analyses of the combined nuclear and mtDNA data suggest that the peninsular clade diverged from the continental group in the Late Miocene.
Collapse
Affiliation(s)
| | - Bradford D Hollingsworth
- San Diego State University, San Diego, CA, USA
- San Diego Natural History Museum, El Prado, San Diego, CA, USA
| | | | | |
Collapse
|
21
|
Gangloff EJ, Schwartz TS, Klabacka R, Huebschman N, Liu AY, Bronikowski AM. Mitochondria as central characters in a complex narrative: Linking genomics, energetics, pace-of-life, and aging in natural populations of garter snakes. Exp Gerontol 2020; 137:110967. [DOI: 10.1016/j.exger.2020.110967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/11/2020] [Accepted: 05/01/2020] [Indexed: 12/18/2022]
|
22
|
McElroy K, Black A, Dolman G, Horton P, Pedler L, Campbell CD, Drew A, Joseph L. Robbery in progress: Historical museum collections bring to light a mitochondrial capture within a bird species widespread across southern Australia, the Copperback Quail-thrush Cinclosoma clarum. Ecol Evol 2020; 10:6785-6793. [PMID: 32724551 PMCID: PMC7381587 DOI: 10.1002/ece3.6403] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 01/01/2023] Open
Abstract
We surveyed mitochondrial, autosomal, and Z chromosome diversity within and between the Copperback Quail-thrush Cinclosoma clarum and Chestnut Quail-thrush C. castanotum, which together span the arid and semi-arid zones of southern Australia, and primarily from specimens held in museum collections. We affirm the recent taxonomic separation of the two species and then focus on diversity within the more widespread of the two species, C. clarum. To guide further study of the system and what it offers to understanding the genomics of the differentiation and speciation processes, we develop and present a hypothesis to explain mitonuclear discordance that emerged in ourdata. Following a period of historical allopatry, secondary contact has resulted in an eastern mitochondrial genome replacing the western mitochondrial genome in western populations. This is predicted under a population-level invasion in the opposite direction, that of the western population invading the range of the eastern one. Mitochondrial captures can be driven by neutral, demographic processes, or adaptive mechanisms, and we favor the hypothesized capture being driven by neutral means. We cannot fully reject the adaptive process but suggest how these alternatives may be further tested. We acknowledge an alternative hypothesis, which finds some support in phenotypic data published elsewhere, namely that outcomes of secondary contact have been more complex than our current genomic data suggest. Discriminating and reconciling these two alternative hypotheses, which may not be mutually exclusive, could be tested with closer sampling at levels of population, individual, and nucleotide than has so far been possible. This would be further aided by knowledge of the genetic basis to phenotypic variation described elsewhere.
Collapse
Affiliation(s)
- Kerensa McElroy
- Australian National Wildlife CollectionCSIRO National Research Collections AustraliaCanberraACTAustralia
| | | | - Gaynor Dolman
- Molecular Systematics UnitWestern Australian MuseumWAAustralia
- University of AdelaideAdelaideSAAustralia
| | | | - Lynn Pedler
- South Australian MuseumAdelaideSAAustralia
- KoolungaSAAustralia
| | - Catriona D. Campbell
- Australian National Wildlife CollectionCSIRO National Research Collections AustraliaCanberraACTAustralia
| | - Alex Drew
- Australian National Wildlife CollectionCSIRO National Research Collections AustraliaCanberraACTAustralia
| | - Leo Joseph
- Australian National Wildlife CollectionCSIRO National Research Collections AustraliaCanberraACTAustralia
| |
Collapse
|
23
|
Mao X, Rossiter SJ. Genome-wide data reveal discordant mitonuclear introgression in the intermediate horseshoe bat (Rhinolophus affinis). Mol Phylogenet Evol 2020; 150:106886. [PMID: 32534185 DOI: 10.1016/j.ympev.2020.106886] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 10/24/2022]
Abstract
Closely related taxa often exhibit mitonuclear discordance attributed to introgression of mitochondrial DNA (mtDNA), yet few studies have considered the underlying causes of mtDNA introgression. Here we test for demographic versus adaptive processes as explanations for mtDNA introgression in three subspecies of the intermediate horseshoe bat (Rhinolophus affinis). We generated sequences of 1692 nuclear genes and 13 mitochondrial protein-coding genes for 48 individuals. Phylogenetic reconstructions based on 320 exon sequences and 2217 single nucleotide polymorphisms (SNPs) both revealed conflicts between the species tree and mtDNA tree. These results, together with geographic patterns of mitonuclear discordance, and shared identical or near-identical mtDNA sequences, suggest extensive introgression of mtDNA between the two parapatric mainland subspecies. Under demographic hypotheses, we would also expect to uncover traces of ncDNA introgression, however, population structure and gene flow analyses revealed little nuclear admixture. Furthermore, we found inconsistent estimates of the timing of population expansion and that of the most recent common ancestor for the clade containing introgressed haplotypes. Without a clear demographic explanation, we also examined whether introgression likely arises from adaptation. We found that five mtDNA genes contained fixed amino acid differences between introgressed and non-introgressed individuals, including putative positive selection found in one codon, although this did not show introgression. While our evidence for rejecting demographic hypotheses is arguably stronger than that for rejecting adaptation, we find no definitive support for either explanation. Future efforts will focus on larger-scale resequencing to decipher the underlying causes of discordant mitonuclear introgression in this system.
Collapse
Affiliation(s)
- Xiuguang Mao
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200062, China; Institute of Eco-Chongming (IEC), East China Normal University, Shanghai 200062, China.
| | - Stephen J Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK.
| |
Collapse
|
24
|
McEntee JP, Burleigh JG, Singhal S. Dispersal Predicts Hybrid Zone Widths across Animal Diversity: Implications for Species Borders under Incomplete Reproductive Isolation. Am Nat 2020; 196:9-28. [PMID: 32552108 DOI: 10.1086/709109] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Hybrid zones occur as range boundaries for many animal taxa. One model for how hybrid zones form and stabilize is the tension zone model, a version of which predicts that hybrid zone widths are determined by a balance between random dispersal into hybrid zones and selection against hybrids. Here, we examine whether random dispersal and proxies for selection against hybrids (genetic distances between hybridizing pairs) can explain variation in hybrid zone widths across 131 hybridizing pairs of animals. We show that these factors alone can explain ∼40% of the variation in zone width among animal hybrid zones, with dispersal explaining far more of the variation than genetic distances. Patterns within clades were idiosyncratic. Genetic distances predicted hybrid zone widths particularly well for reptiles, while this relationship was opposite tension zone predictions in birds. Last, the data suggest that dispersal and molecular divergence set lower bounds on hybrid zone widths in animals, indicating that there are geographic restrictions on hybrid zone formation. Overall, our analyses reinforce the fundamental importance of dispersal in hybrid zone formation and more generally in the ecology of range boundaries.
Collapse
|
25
|
Scalercio S, Cini A, Menchetti M, Vodă R, Bonelli S, Bordoni A, Casacci LP, Dincă V, Balletto E, Vila R, Dapporto L. How long is 3 km for a butterfly? Ecological constraints and functional traits explain high mitochondrial genetic diversity between Sicily and the Italian Peninsula. J Anim Ecol 2020; 89:2013-2026. [PMID: 32207150 DOI: 10.1111/1365-2656.13196] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/21/2020] [Indexed: 11/28/2022]
Abstract
Populations inhabiting Mediterranean islands often show contrasting genetic lineages, even on islands that were connected to the mainland during glacial maxima. This pattern is generated by forces acting in historical and contemporary times. Understanding these phenomena requires comparative studies integrating genetic structure, functional traits and dispersal constraints. Using as a model the butterfly species living across the Messina strait (3 km wide) separating Sicily from the Italian Peninsula, we aimed to unravel the mechanisms limiting the dispersal of matrilines and generating genetic differentiation across a narrow sea strait. We analysed the mitochondrial COI gene of 84 butterfly species out of 90 documented in Sicily and compared them with populations from the neighbouring southern Italian Peninsula (1,398 sequences) and from the entire Palaearctic region (8,093 sequences). For each species, we regressed 13 functional traits and 2 ecological constraints to dispersal (winds experienced at the strait and climatic suitability) against genetic differentiation between Sicily and Italian Peninsula to understand the factors limiting dispersal. More than a third of the species showed different haplogroups across the strait and most of them also represented endemic haplogroups for this island. One fifth of Sicilian populations (and 32.3% of endemic lineages) had their closest relatives in distant areas, instead of the neighbouring Italian Peninsula, which suggests high relictuality. Haplotype diversity was significantly explained by the length of the flight period, an intrinsic phenology trait, while genetic differentiation was explained by both intrinsic traits (wingspan and degree of generalism) and contemporary local constraints (winds experienced at the strait and climatic suitability). A relatively narrow sea strait can produce considerable differentiation among butterfly matrilines and this phenomenon showed a largely deterministic fingerprint. Because of unfavourable winds, populations of the less dispersive Sicilian butterflies tended to differentiate into endemic variants or to maintain relict populations. Understanding these phenomena required the integration of DNA sequences, species traits and physical constraints for a large taxon at continental scale. Future studies may reveal if the patterns here shown for mitochondrial DNA are also reflected in the nuclear genome or, alternatively, are the product of limited female dispersal.
Collapse
Affiliation(s)
- Stefano Scalercio
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di Ricerca Foreste e Legno, Contrada Li Rocchi, Rende, Italy
| | - Alessandro Cini
- Dipartimento di Biologia, Università degli Studi di Firenze, Florence, Italy.,Centre for Biodiversity and Environment Research, University College London, London, UK
| | - Mattia Menchetti
- Dipartimento di Biologia, Università degli Studi di Firenze, Florence, Italy
| | - Raluca Vodă
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Turin, Italy
| | - Simona Bonelli
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Turin, Italy
| | - Adele Bordoni
- Dipartimento di Biologia, Università degli Studi di Firenze, Florence, Italy
| | - Luca Pietro Casacci
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Turin, Italy.,Muzeum i Instytut Zoologii, Polskiej Akademii Nauk, Warsaw, Poland
| | - Vlad Dincă
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Emilio Balletto
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Turin, Italy
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Leonardo Dapporto
- Dipartimento di Biologia, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
26
|
Chapdelaine V, Bettinazzi S, Breton S, Angers B. Effects of mitonuclear combination and thermal acclimation on the energetic phenotype. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:264-270. [PMID: 32112539 DOI: 10.1002/jez.2355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/06/2020] [Accepted: 02/17/2020] [Indexed: 01/22/2023]
Abstract
Activity of the oxidative phosphorylation complexes rely on intimately associated subunits encoded by the mitochondrial and nuclear genomes. Given the key role of this system in adenosine triphosphate production, genes from both genomes must coevolve. A combination of northern redbelly dace (Chrosomus eos) or finescale dace (C. neogaeus) mitochondrial genome with a C. eos nuclear genome allows for a close examination of a naturally occurring disruption of mitonuclear coevolution. We, therefore, investigated the combined effect of mitonuclear genotypes, acclimation, and temperature on the activity of enzymes linked with the energy metabolism in a sympatric population of wild type and cybrid. As expected, the activity of the nuclear-encoded citrate synthase was only influenced by temperature while the cytochrome c oxidase (composed of nuclear and mitochondrial subunits from wild type and cybrid individuals) responded differently to temperature. This study provides clear evidence of the extent by which mitonuclear coadaptation could influence aerobic metabolism.
Collapse
Affiliation(s)
- Vincent Chapdelaine
- Department of Biological Sciences, Université de Montréal, Montreal, Quebec, Canada.,Department of Biological Sciences, Université de Montréal, Group for Interuniversity Research in Limnology and Aquatic Environment (GRIL), Montreal, Quebec, Canada
| | - Stefano Bettinazzi
- Department of Biological Sciences, Université de Montréal, Montreal, Quebec, Canada
| | - Sophie Breton
- Department of Biological Sciences, Université de Montréal, Montreal, Quebec, Canada.,Department of Biological Sciences, Université de Montréal, Group for Interuniversity Research in Limnology and Aquatic Environment (GRIL), Montreal, Quebec, Canada
| | - Bernard Angers
- Department of Biological Sciences, Université de Montréal, Montreal, Quebec, Canada.,Department of Biological Sciences, Université de Montréal, Group for Interuniversity Research in Limnology and Aquatic Environment (GRIL), Montreal, Quebec, Canada
| |
Collapse
|
27
|
Wang Y, Xie J, Wu E, Yahuza L, Duan G, Shen L, Liu H, Zhou S, Nkurikiyimfura O, Andersson B, Yang L, Shang L, Zhu W, Zhan J. Lack of gene flow between Phytophthora infestans populations of two neighboring countries with the largest potato production. Evol Appl 2020; 13:318-329. [PMID: 31993079 PMCID: PMC6976962 DOI: 10.1111/eva.12870] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 08/23/2019] [Accepted: 08/29/2019] [Indexed: 12/18/2022] Open
Abstract
Gene flow is an important evolutionary force that enables adaptive responses of plant pathogens in response to changes in the environment and plant disease management strategies. In this study, we made a direct inference concerning gene flow in the Irish famine pathogen Phytophthora infestans between two of its hosts (potato and tomato) as well as between China and India. This was done by comparing sequence characteristics of the eukaryotic translation elongation factor 1 alpha (eEF-1α) gene, generated from 245 P. infestans isolates sampled from two countries and hosts. Consistent with previous results, we found that eEF-1α gene was highly conserved and point mutation was the only mechanism generating any sequence variation. Higher genetic variation was found in the eEF-1α sequences in the P. infestans populations sampled from tomato compared to those sampled from potato. We also found the P. infestans population from India displayed a higher genetic variation in the eEF-1α sequences compared to China. No gene flow was detected between the pathogen populations from the two countries, which is possibly attributed to the geographic barrier caused by Himalaya Plateau and the minimum cross-border trade of potato and tomato products. The implications of these results for a sustainable management of late blight diseases are discussed.
Collapse
Affiliation(s)
- Yan‐Ping Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jia‐Hui Xie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - E‐Jiao Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Lurwanu Yahuza
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Guo‐Hua Duan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Lin‐Lin Shen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Hao Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Shi‐Hao Zhou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Oswald Nkurikiyimfura
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Björn Andersson
- Department of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| | - Li‐Na Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Li‐Ping Shang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Wen Zhu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jiasui Zhan
- Key Lab for Biopesticide and Chemical BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
- Department of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
28
|
Stier A, Bize P, Hsu BY, Ruuskanen S. Plastic but repeatable: rapid adjustments of mitochondrial function and density during reproduction in a wild bird species. Biol Lett 2019; 15:20190536. [PMID: 31718511 DOI: 10.1098/rsbl.2019.0536] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Most of the energy fluxes supporting animal performance flow through mitochondria. Hence, inter-individual differences in performance might be rooted in inter-individual variations in mitochondrial function and density. Furthermore, because the energy required by an individual often changes across life stages, mitochondrial function and density are also expected to show within-individual variation (i.e. plasticity). No study so far has repeatedly measured mitochondrial function and density in the same individuals to simultaneously test for within-individual repeatability and plasticity of mitochondrial traits. Here, we repeatedly measured mitochondrial DNA copy number (a proxy of density) and respiration rates from blood cells of female pied flycatchers (Ficedula hypoleuca) at the incubation and chick-rearing stages. Mitochondrial density and respiration rates were all repeatable (R = [0.45; 0.80]), indicating high within-individual consistency in mitochondrial traits across life-history stages. Mitochondrial traits were also plastic, showing a quick (i.e. 10 days) downregulation from incubation to chick-rearing in mitochondrial density, respiratory activity, and cellular regulation by endogenous substrates and/or ATP demand. These downregulations were partially compensated by an increase in mitochondrial efficiency at the chick-rearing stage. Therefore, our study provides clear evidence for both short-term plasticity and high within-individual consistency in mitochondrial function and density during reproduction in a wild bird species.
Collapse
Affiliation(s)
- Antoine Stier
- Department of Biology, University of Turku, Turku, Finland.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Pierre Bize
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Bin-Yan Hsu
- Department of Biology, University of Turku, Turku, Finland
| | - Suvi Ruuskanen
- Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
29
|
Darschnik S, Leese F, Weiss M, Weigand H. When barcoding fails: development of diagnostic nuclear markers for the sibling caddisfly species Sericostoma personatum (Spence in Kirby & Spence, 1826) and Sericostoma flavicorne Schneider, 1845. Zookeys 2019; 872:57-68. [PMID: 31496886 PMCID: PMC6711935 DOI: 10.3897/zookeys.872.34278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/14/2019] [Indexed: 11/22/2022] Open
Abstract
The larval stages of the central European sibling caddisfly species Sericostomapersonatum (Spence in Kirby and Spence, 1826) and S.flavicorne Schneider, 1845 are morphologically similar and can only be distinguished by differences in coloration in late larval instars. Identification using the mitochondrial barcoding gene, i.e., the Cytochrome c Oxidase 1, is impossible, as both species share the same highly differentiated haplotypes due to introgression. Nuclear gene markers obtained through double digest restriction site associate sequencing (ddRAD seq), however, can reliably distinguish both species, yet the method is expensive as well as time-consuming and therefore not practicable for species determination. To facilitate accurate species identification without sequencing genome-wide markers, we developed nine diagnostic nuclear RFLP markers based on ddRAD seq data. The markers were successfully tested on geographically distinct populations of the two Sericostoma species in western Germany, on known hybrids, and on another sericostomatid caddisfly species, Oecismusmonedula (Hagen, 1859) that sometimes shares the habitat and can be morphologically confounded with Sericostoma. We describe a simple and fast protocol for reliable species identification of S.personatum and S.flavicorne independent of the life cycle stage of the specimens.
Collapse
Affiliation(s)
- Sonja Darschnik
- Aquatic Ecosystem Research, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Florian Leese
- Aquatic Ecosystem Research, Faculty of Biology, University of Duisburg-Essen, Essen, Germany.,Centre for Aquatic and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Martina Weiss
- Aquatic Ecosystem Research, Faculty of Biology, University of Duisburg-Essen, Essen, Germany.,Centre for Aquatic and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Hannah Weigand
- Aquatic Ecosystem Research, Faculty of Biology, University of Duisburg-Essen, Essen, Germany.,Musée National d'Histoire Naturelle, Luxembourg, Luxembourg
| |
Collapse
|
30
|
Dapporto L, Cini A, Vodă R, Dincă V, Wiemers M, Menchetti M, Magini G, Talavera G, Shreeve T, Bonelli S, Casacci LP, Balletto E, Scalercio S, Vila R. Integrating three comprehensive data sets shows that mitochondrial DNA variation is linked to species traits and paleogeographic events in European butterflies. Mol Ecol Resour 2019; 19:1623-1636. [DOI: 10.1111/1755-0998.13059] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/16/2022]
Affiliation(s)
| | - Alessandro Cini
- Dipartimento di Biologia dell'Università di Firenze Firenze Italy
- Centre for Biodiversity and Environment Research University College London London UK
| | - Raluca Vodă
- Department of Life Sciences and Systems Biology University of Turin Turin Italy
| | - Vlad Dincă
- Department of Ecology and Genetics University of Oulu Oulu Finland
| | - Martin Wiemers
- Senckenberg Deutsches Entomologisches Institut Müncheberg Germany
- Department of Community Ecology UFZ – Helmholtz Centre for Environmental Research Halle Germany
| | - Mattia Menchetti
- Dipartimento di Biologia dell'Università di Firenze Firenze Italy
- Institut de Biologia Evolutiva (CSIC‐Universitat Pompeu Fabra) Barcelona Spain
| | - Giulia Magini
- Dipartimento di Biologia dell'Università di Firenze Firenze Italy
| | - Gerard Talavera
- Institut de Biologia Evolutiva (CSIC‐Universitat Pompeu Fabra) Barcelona Spain
| | - Tim Shreeve
- Faculty of Health and Life Sciences, Centre for Ecology, Environment and Conservation Oxford Brookes University Oxford UK
| | - Simona Bonelli
- Department of Life Sciences and Systems Biology University of Turin Turin Italy
| | - Luca Pietro Casacci
- Department of Life Sciences and Systems Biology University of Turin Turin Italy
- Museum and Institute of Zoology Polish Academy of Sciences Warsaw Poland
| | - Emilio Balletto
- Department of Life Sciences and Systems Biology University of Turin Turin Italy
| | - Stefano Scalercio
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria Centro di Ricerca Foreste e Legno Rende Italy
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC‐Universitat Pompeu Fabra) Barcelona Spain
| |
Collapse
|
31
|
Sun JT, Duan XZ, Hoffmann AA, Liu Y, Garvin MR, Chen L, Hu G, Zhou JC, Huang HJ, Xue XF, Hong XY. Mitochondrial variation in small brown planthoppers linked to multiple traits and probably reflecting a complex evolutionary trajectory. Mol Ecol 2019; 28:3306-3323. [PMID: 31183910 DOI: 10.1111/mec.15148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 05/24/2019] [Accepted: 05/31/2019] [Indexed: 12/27/2022]
Abstract
While it has been proposed in several taxa that the mitochondrial genome is associated with adaptive evolution to different climatic conditions, making links between mitochondrial haplotypes and organismal phenotypes remains a challenge. Mitonuclear discordance occurs in the small brown planthopper (SBPH), Laodelphax striatellus, with one mitochondrial haplogroup (HGI) more common in the cold climate region of China relative to another form (HGII) despite strong nuclear gene flow, providing a promising model to investigate climatic adaptation of mitochondrial genomes. We hypothesized that cold adaptation through HGI may be involved, and considered mitogenome evolution, population genetic analyses, and bioassays to test this hypothesis. In contrast to our hypothesis, chill-coma recovery tests and population genetic tests of selection both pointed to HGII being involved in cold adaptation. Phylogenetic analyses revealed that HGII is nested within HGI, and has three nonsynonymous changes in ND2, ND5 and CYTB in comparison to HGI. These molecular changes likely increased mtDNA copy number, cold tolerance and fecundity of SBPH, particularly through a function-altering amino acid change involving M114T in ND2. Nuclear background also influenced fecundity and chill recovery (i.e., mitonuclear epistasis) and protein modelling indicates possible nuclear interactions for the two nonsynonymous changes in ND2 and CYTB. The high occurrence frequency of HGI in the cold climate region of China remains unexplained, but several possible reasons are discussed. Overall, our study points to a link between mtDNA variation and organismal-level evolution and suggests a possible role of mitonuclear interactions in maintaining mtDNA diversity.
Collapse
Affiliation(s)
- Jing-Tao Sun
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Xing-Zhi Duan
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Yan Liu
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Michael R Garvin
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Lei Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Gao Hu
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Jin-Cheng Zhou
- Department of Entomology, Shengyang Agricultural University, Shenyang, China
| | - Hai-Jian Huang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Feng Xue
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
32
|
Benham PM, Cheviron ZA. Divergent mitochondrial lineages arose within a large, panmictic population of the Savannah sparrow (Passerculus sandwichensis). Mol Ecol 2019; 28:1765-1783. [PMID: 30770598 DOI: 10.1111/mec.15049] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 02/06/2019] [Accepted: 02/12/2019] [Indexed: 12/24/2022]
Abstract
Unusual patterns of mtDNA diversity can reveal interesting aspects of a species' biology. However, making such inferences requires discerning among the many alternative scenarios that could underlie any given mtDNA pattern. Next-generation sequencing methods provide large, multilocus data sets with increased power to resolve unusual mtDNA patterns. A mtDNA-based phylogeography of the Savannah sparrow (Passerculus sandwichensis) previously identified two sympatric, but divergent (~2%) clades within the nominate subspecies group and a third clade that consisted of birds sampled from northwest Mexico. We revisited the phylogeography of this species using a population genomic data set to resolve the processes leading to the evolution of sympatric and divergent mtDNA lineages. We identified two genetic clusters in the genomic data set corresponding to (a) the nominate subspecies group and (b) northwestern Mexico birds. Following divergence, the nominate clade maintained a large, stable population, indicating that divergent mitochondrial lineages arose within a panmictic population. Simulations based on parameter estimates from this model further confirmed that this demographic history could produce observed levels of mtDNA diversity. Patterns of divergent, sympatric mtDNA lineages are frequently interpreted as admixture of historically isolated lineages. Our analyses reject this interpretation for Savannah sparrows and underscore the need for genomic data sets to resolve the evolutionary mechanisms behind anomalous, locus-specific patterns.
Collapse
Affiliation(s)
- Phred M Benham
- Division of Biological Sciences, University of Montana, Missoula, Montana
| | - Zachary A Cheviron
- Division of Biological Sciences, University of Montana, Missoula, Montana
| |
Collapse
|
33
|
Kinoshita G, Nunome M, Kryukov AP, Kartavtseva IV, Han SH, Yamada F, Suzuki H. Contrasting phylogeographic histories between the continent and islands of East Asia: Massive mitochondrial introgression and long-term isolation of hares (Lagomorpha: Lepus). Mol Phylogenet Evol 2019; 136:65-75. [PMID: 30951923 DOI: 10.1016/j.ympev.2019.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 03/19/2019] [Accepted: 04/01/2019] [Indexed: 01/16/2023]
Abstract
Hares of the genus Lepus are distributed worldwide, and introgressive hybridization is thought to be pervasive among species, leading to reticulate evolution and taxonomic confusion. Here, we performed phylogeographic analyses of the following species of hare across East Asia: L. timidus, L. mandshuricus, L. coreanus, and L. brachyurus collected from far-eastern Russia, South Korea, and Japan. Nucleotide sequences of one mitochondrial DNA and eight nuclear gene loci were examined, adding sequences of hares in China from databases. All nuclear DNA analyses supported the clear separation of three phylogroups: L. timidus, L. brachyurus, and the L. mandshuricus complex containing L. coreanus. On the other hand, massive mitochondrial introgression from two L. timidus lineages to the L. mandshuricus complex was suggested in continental East Asia. The northern population of the L. mandshuricus complex was mainly associated with introgression from the continental lineage of L. timidus, possibly since the last glacial period, whereas the southern population of the L. mandshuricus complex experienced introgression from another L. timidus lineage related to the Hokkaido population, possibly before the last glacial period. In contrast to continental hares, no evidence of introgression was found in L. brachyurus in the Japanese Archipelago, which showed the oldest divergence amongst East Asian hare lineages. Our findings suggest that glacial-interglacial climate changes in the circum-Japan Sea region promoted distribution shifts and introgressive hybridization among continental hare species, while the geographic structure of the region contributed to long-term isolation of hares on the islands, preventing inter-species gene flow.
Collapse
Affiliation(s)
- Gohta Kinoshita
- Course in Ecological Genetics, Graduate School of Environmental Science, Hokkaido University, N10W5, Kita-ku, Sapporo 060-0810, Japan; Laboratory of Forest Biology Division of Forest & Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwake, Sakyoku, Kyoto 606-8502, Japan.
| | - Mitsuo Nunome
- Laboratory of Animal Genetics, Graduate School of Bioagricultural Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Alexey P Kryukov
- Laboratory of Evolutionary Zoology and Genetics, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far East Branch Russian Academy of Sciences, Vladivostok 690022, Russia
| | - Irina V Kartavtseva
- Laboratory of Evolutionary Zoology and Genetics, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far East Branch Russian Academy of Sciences, Vladivostok 690022, Russia
| | - San-Hoon Han
- Inter-Korea Wildlife Institute, Namtong-dong, Gumi-si, Kyeongsang-Bukdo 39301, Republic of Korea
| | - Fumio Yamada
- Laboratory of Wildlife Ecology, Forestry and Forest Products Research Institute (FFPRI), Matsunosato, Tsukuba, Ibaraki 305-8687, Japan
| | - Hitoshi Suzuki
- Course in Ecological Genetics, Graduate School of Environmental Science, Hokkaido University, N10W5, Kita-ku, Sapporo 060-0810, Japan
| |
Collapse
|
34
|
Ottenburghs J. Exploring the hybrid speciation continuum in birds. Ecol Evol 2018; 8:13027-13034. [PMID: 30619602 PMCID: PMC6308868 DOI: 10.1002/ece3.4558] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 01/03/2023] Open
Abstract
Hybridization is increasingly recognized as a creative evolutionary force contributing to adaptation and speciation. Homoploid hybrid speciation-the process in which hybridization results in a stable, fertile, and reproductively isolated hybrid lineage where there is no change in ploidy-has been documented in several taxa. Hybridization can directly contribute to reproductive isolation or reinforce it at a later stage. Alternatively, hybridization might not be related to the evolution of reproductive isolation. To account for these different scenarios, I propose to discriminate between two types of hybrid speciation: type I where reproductive isolation is a direct consequence of hybridization and type II where it is the by-product of other processes. I illustrate the applicability of this classification scheme with avian examples. To my knowledge, seven hybrid bird species have been proposed: Italian sparrow, Audubon's warbler, Genovesa mockingbird, Hawaiian duck, red-breasted goose, golden-crowned manakin, and a recent lineage of Darwin's finches on the island of Daphne Major ("Big Bird"). All studies provide convincing evidence for hybridization, but do not always confidently discriminate between scenarios of hybrid speciation and recurrent introgressive hybridization. The build-up of reproductive isolation between the hybrid species and their parental taxa is mainly driven by premating isolation mechanisms and comparable to classical speciation events. One hybrid species can be classified as type I ("Big Bird") while three species constitute type II hybrid species (Italian sparrow, Audubon's warbler, and golden-crowned manakin). The diversity in hybrid bird species across a range of divergence times also provides an excellent opportunity to study the evolution of hybrid genomes in terms of genome stabilization and adaptation.
Collapse
Affiliation(s)
- Jente Ottenburghs
- Resource Ecology GroupWageningen UniversityWageningenThe Netherlands
| |
Collapse
|
35
|
Haenel GJ, Del Gaizo Moore V. Functional Divergence of Mitochondria and Coevolution of Genomes: Cool Mitochondria in Hot Lizards. Physiol Biochem Zool 2018; 91:1068-1081. [DOI: 10.1086/699918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
36
|
Väli Ü, Mirski P, Sellis U, Dagys M, Maciorowski G. Genetic determination of migration strategies in large soaring birds: evidence from hybrid eagles. Proc Biol Sci 2018; 285:rspb.2018.0855. [PMID: 30111595 DOI: 10.1098/rspb.2018.0855] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/16/2018] [Indexed: 11/12/2022] Open
Abstract
The relative contributions of genetic and social factors in shaping the living world are a crucial question in ecology. The annual migration of birds to their wintering grounds and back provides significant knowledge in this field of research. Migratory movements are predominantly genetically determined in passerine birds, while in large soaring birds, it is presumed that social (cultural) factors play the largest role. In this study, we show that genetic factors in soaring birds are more important than previously assumed. We used global positioning system (GPS)-telemetry to compare the autumn journeys and wintering ranges of two closely related large raptorial bird species, the greater spotted eagle Clanga clanga and the lesser spotted eagle Clanga pomarina, and hybrids between them. The timing of migration in hybrids was similar to that of one parental species, but the wintering distributions and home range sizes were similar to those of the other. Tracking data were supported by habitat suitability modelling, based on GPS fixes and ring recoveries. These results suggest a strong genetic influence on migration strategy via a trait-dependent dominance effect, although we cannot rule out the contribution of social interactions.
Collapse
Affiliation(s)
- Ülo Väli
- Institute of Agricultural and Environmental Studies, Estonian University of Life Sciences, Kreutzwaldi 5, 51014 Tartu, Estonia .,Eagle Club, 63406 Valgjärve vald, Hauka, Estonia
| | - Paweł Mirski
- Institute of Biology, University of Bialystok, Ciołkowskiego 1 J, 15-245 Białystok, Poland
| | - Urmas Sellis
- Eagle Club, 63406 Valgjärve vald, Hauka, Estonia
| | - Mindaugas Dagys
- Laboratory of Avian Ecology, Nature Research Centre, Akademijos 2, Vilnius 08412, Lithuania
| | - Grzegorz Maciorowski
- Department of Zoology, Poznań University of Life Sciences, Wojska Polskiego 71c, Poznań 60-625, Poland
| |
Collapse
|
37
|
Angers B, Chapdelaine V, Deremiens L, Vergilino R, Leung C, Doucet SL, Glémet H, Angers A. Gene flow prevents mitonuclear co-adaptation: A comparative portrait of sympatric wild types and cybrids in the fish Chrosomus eos. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 27:77-84. [PMID: 29986214 DOI: 10.1016/j.cbd.2018.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 11/26/2022]
Abstract
Allospecific mtDNA can occasionally be beneficial for the fitness of populations. It is, however, difficult to assess the effect of mtDNA in natural conditions due to genetic and/or environmental interactions. In the fish Chrosomus eos, the transfer of C. neogaeus mitochondria occurs in a single generation and results in natural cybrids. For a few lakes in Quebec, C. eos can harbor either a C. eos mtDNA (wild types) or a C. neogaeus mtDNA (cybrids). Moreover, mtDNA of cybrids originated either from Mississippian or Atlantic glacial refuges. Such diversity provides a useful system for in situ assessment of allospecific mtDNA effects. We determined genetic, epigenetic and transcriptomic variation as well as mitochondrial enzymatic activity (complex IV) changes among wild types and cybrids either in sympatry or allopatry. Wild types and cybrids did not segregate spatially within a lake. Moreover, no significant genetic differentiation was detected among wild types and cybrids indicating sustained gene flow. Mitochondrial complex IV activity was higher for cybrids in both sympatry and allopatry while no difference was detected among cybrid haplotypes. Epigenetic and transcriptomic analyses revealed only subtle differences between sympatric wild types and cybrids compared to differences between sites. Altogether, these results indicate a limited influence of allospecific mtDNA in nuclear gene expression when controlling for genetic and environmental effects. The absence of a reproductive barrier between wild types and cybrids results in random association of either C. eos or C. neogaeus mtDNA with C. eos nDNA at each generation, and prevents mitonuclear co-adaptation in sympatry.
Collapse
Affiliation(s)
- Bernard Angers
- Department of biological sciences, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada.
| | - Vincent Chapdelaine
- Department of biological sciences, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Léo Deremiens
- Department of biological sciences, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Roland Vergilino
- Department of biological sciences, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Christelle Leung
- Department of biological sciences, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Simon-Luc Doucet
- Department of biological sciences, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Hélène Glémet
- Department of environmental sciences, Université du Québec à Trois-Rivières, C.P. 500, Trois-Rivières, Québec G9A 5H7, Canada
| | - Annie Angers
- Department of biological sciences, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
38
|
Semenov GA, Koblik EA, Red'kin YA, Badyaev AV. Extensive phenotypic diversification coexists with little genetic divergence and a lack of population structure in the White Wagtail subspecies complex (Motacilla alba). J Evol Biol 2018; 31:1093-1108. [PMID: 29873425 DOI: 10.1111/jeb.13305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 03/27/2018] [Accepted: 05/28/2018] [Indexed: 02/01/2023]
Abstract
Geographically clustered phenotypes often demonstrate consistent patterns in molecular markers, particularly mitochondrial DNA (mtDNA) traditionally used in phylogeographic studies. However, distinct evolutionary trajectories among traits and markers can lead to their discordance. First, geographic structure in phenotypic traits and nuclear molecular markers can be co-aligned but inconsistent with mtDNA (mito-nuclear discordance). Alternatively, phenotypic variation can have little to do with patterns in neither mtDNA nor nuclear markers. Disentangling between these distinct patterns can provide insight into the role of selection, demography and gene flow in population divergence. Here, we examined a previously reported case of strong inconsistency between geographic structure in mtDNA and plumage traits in a widespread polytypic bird species, the White Wagtail (Motacilla alba). We tested whether this pattern is due to mito-nuclear discordance or discrepancy between morphological evolution and both nuclear and mtDNA markers. We analysed population differentiation and structure across six out of nine commonly recognized subspecies using 17 microsatellite loci and a combination of microsatellites and plumage indices in a comprehensively sampled region of a contact between two subspecies. We did not find support for the mito-nuclear discordance hypothesis: nuclear markers indicated a subtle signal of genetic clustering only partially consistent with plumage groups, similar to previous findings that relied on mtDNA. We discuss evolutionary factors that could have shaped the intricate patterns of phenotypic diversification in the White wagtail and the role that repeated selection on plumage 'hotspots' and hybridization may have played.
Collapse
Affiliation(s)
- Georgy A Semenov
- Department of Ecology & Evolutionary Biology, University of Colorado, Boulder, CO, USA.,Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ, USA.,Institute of Systematics and Ecology of Animals, Novosibirsk, Russia
| | - Evgeniy A Koblik
- Department of Ornithology, Zoological Museum of Moscow State University, Moscow, Russia
| | - Yaroslav A Red'kin
- Department of Ornithology, Zoological Museum of Moscow State University, Moscow, Russia
| | - Alexander V Badyaev
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
39
|
Irwin DE. Sex chromosomes and speciation in birds and other ZW systems. Mol Ecol 2018; 27:3831-3851. [PMID: 29443419 DOI: 10.1111/mec.14537] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 02/03/2018] [Accepted: 02/06/2018] [Indexed: 01/01/2023]
Abstract
Theory and empirical patterns suggest a disproportionate role for sex chromosomes in evolution and speciation. Focusing on ZW sex determination (females ZW, males ZZ; the system in birds, many snakes, and lepidopterans), I review how evolutionary dynamics are expected to differ between the Z, W and the autosomes, discuss how these differences may lead to a greater role of the sex chromosomes in speciation and use data from birds to compare relative evolutionary rates of sex chromosomes and autosomes. Neutral mutations, partially or completely recessive beneficial mutations, and deleterious mutations under many conditions are expected to accumulate faster on the Z than on autosomes. Sexually antagonistic polymorphisms are expected to arise on the Z, raising the possibility of the spread of preference alleles. The faster accumulation of many types of mutations and the potential for complex evolutionary dynamics of sexually antagonistic traits and preferences contribute to a role for the Z chromosome in speciation. A quantitative comparison among a wide variety of bird species shows that the Z tends to have less within-population diversity and greater between-species differentiation than the autosomes, likely due to both adaptive evolution and a greater rate of fixation of deleterious alleles. The W chromosome also shows strong potential to be involved in speciation, in part because of its co-inheritance with the mitochondrial genome. While theory and empirical evidence suggest a disproportionate role for sex chromosomes in speciation, the importance of sex chromosomes is moderated by their small size compared to the whole genome.
Collapse
Affiliation(s)
- Darren E Irwin
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
40
|
Angers B, Leung C, Vétil R, Deremiens L, Vergilino R. The effects of allospecific mitochondrial genome on the fitness of northern redbelly dace ( Chrosomus eos). Ecol Evol 2018; 8:3311-3321. [PMID: 29607026 PMCID: PMC5869299 DOI: 10.1002/ece3.3922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 01/17/2018] [Accepted: 01/23/2018] [Indexed: 11/07/2022] Open
Abstract
Instantaneous mitochondrial introgression events allow the disentangling of the effects of hybridization from those of allospecific mtDNA. Such process frequently occurred in the fish Chrosomus eos, resulting in cybrid individuals composed of a C. eos nuclear genome but with a C. neogaeus mtDNA. This provides a valuable model to address the fundamental question: How well do introgressed individuals perform in their native environment? We infer where de novo production of cybrids occurred to discriminate native environments from those colonized by cybrids in 25 sites from two regions (West-Qc and East-Qc) in Quebec (Canada). We then compared the relative abundance of wild types and cybrids as a measure integrating both fitness and de novo production of cybrids. According to mtDNA variation, 12 introgression events are required to explain the diversity of cybrids. Five cybrid lineages could not be associated with in situ introgression events. This includes one haplotype carried by 93% of the cybrids expected to have colonized West-Qc. These cybrids also displayed a nearly complete allopatric distribution with wild types. We still inferred de novo production of cybrids at seven sites, that accounted for 70% of the cybrids in East-Qc. Wild-type and cybrid individuals coexist in all East-Qc sites while cybrids were less abundant. Allopatry of cybrids restricted to the postglacial expansion suggests the existence of higher fitness for cybrids in specific conditions, allowing for the colonization of different environments and expanding the species' range. However, allospecific mtDNA does not provide a higher fitness to cybrids in their native environment compared to wild types, making the success of an introgressed lineage uncertain.
Collapse
Affiliation(s)
- Bernard Angers
- Department of Biological Sciences Université de Montréal Montreal QC Canada
| | - Christelle Leung
- Department of Biological Sciences Université de Montréal Montreal QC Canada
| | - Romain Vétil
- Department of Biological Sciences Université de Montréal Montreal QC Canada
| | - Léo Deremiens
- Department of Biological Sciences Université de Montréal Montreal QC Canada
| | - Roland Vergilino
- Department of Biological Sciences Université de Montréal Montreal QC Canada
| |
Collapse
|
41
|
Lamb AM, Gan HM, Greening C, Joseph L, Lee Y, Morán‐Ordóñez A, Sunnucks P, Pavlova A. Climate‐driven mitochondrial selection: A test in Australian songbirds. Mol Ecol 2018; 27:898-918. [DOI: 10.1111/mec.14488] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 11/29/2017] [Accepted: 12/08/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Annika Mae Lamb
- School of Biological Sciences Monash University Melbourne Vic. Australia
| | - Han Ming Gan
- School of Science Monash University Malaysia Bandar Sunway Selangor Malaysia
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Waurn Ponds Vic. Australia
| | - Chris Greening
- School of Biological Sciences Monash University Melbourne Vic. Australia
| | - Leo Joseph
- Australian National Wildlife Collection CSIRO National Research Collections Canberra ACT Australia
| | - Yin Peng Lee
- School of Science Monash University Malaysia Bandar Sunway Selangor Malaysia
| | - Alejandra Morán‐Ordóñez
- InForest Joint Research Unit (CTFC‐CREAF) Forest Science Centre of Catalonia Solsona Catalonia Spain
| | - Paul Sunnucks
- School of Biological Sciences Monash University Melbourne Vic. Australia
| | - Alexandra Pavlova
- School of Biological Sciences Monash University Melbourne Vic. Australia
| |
Collapse
|
42
|
Dhillon RS, Richards JG. Hypoxia induces selective modifications to the acetylome in the brain of zebrafish (Danio rerio). Comp Biochem Physiol B Biochem Mol Biol 2018; 224:79-87. [PMID: 29309913 DOI: 10.1016/j.cbpb.2017.12.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 10/18/2022]
Abstract
Reversible protein acetylation is an important regulatory mechanism for modulating protein function. The cellular protein acetylome is in large part dictated by the cellular redox balance, and in particular [NAD+]. While the relationship between hypoxia, redox balance, energy charge and resulting mitochondrial dysfunction has been examined in the context of hypoxia-linked pathologies, little is known about the direct effects of decreases in environmental oxygen on reversible lysine acetylation, and the resulting modifications to mitochondrial metabolism. To address this knowledge gap, we exposed zebrafish (Danio rerio) to 16 h of hypoxia (2.21 kPa) and quantified acetylation levels of 1220 proteins using whole-cell proteomics in samples of brain taken from normoxic and hypoxic zebrafish. In addition, we examined the effects of hypoxia on cytoplasmic and mitochondrial redox status, whole-cell energetics, the activity of the mitochondrial NAD+-dependent deacetylase SIRT3, and electron transport chain complex activities to determine if there is an association between hypoxia-induced metabolic disturbances, protein acetylation, and mitochondrial function. Our results (1) reveal several key changes in the acetylation status of proteins in the brain, primarily within the mitochondria; (2) show significant fluctuations in cytoplasmic and mitochondrial redox status within the brain during hypoxia exposure; and (3) provide evidence that lysine acetylation may be related to large changes in electron transport and ATP-synthase complex activities and adenylate status in zebrafish exposed to hypoxic stress. Together, these data provide new insights into the role of protein modifications in mitochondrial metabolism during hypoxia.
Collapse
Affiliation(s)
- Rashpal S Dhillon
- Wisconsin Institute for Discovery, Department of Biomolecular Chemistry, University of Wisconsin-Madison, 330 North Orchard Street, Madison, WI 53715, USA; Department of Zoology, The University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada.
| | - Jeffrey G Richards
- Department of Zoology, The University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
43
|
Weigand H, Weiss M, Cai H, Li Y, Yu L, Zhang C, Leese F. Deciphering the origin of mito-nuclear discordance in two sibling caddisfly species. Mol Ecol 2017; 26:5705-5715. [PMID: 28792677 DOI: 10.1111/mec.14292] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/20/2017] [Accepted: 08/03/2017] [Indexed: 01/15/2023]
Abstract
An increasing number of phylogenetic studies have reported discordances among nuclear and mitochondrial markers. These discrepancies are highly relevant to widely used biodiversity assessment approaches, such as DNA barcoding, that rely almost exclusively on mitochondrial markers. Although the theoretical causes of mito-nuclear discordances are well understood, it is often extremely challenging to determine the principal underlying factor in a given study system. In this study, we uncovered significant mito-nuclear discordances in a pair of sibling caddisfly species. Application of genome sequencing, ddRAD and DNA barcoding revealed ongoing hybridization, as well as historical hybridization in Pleistocene refugia, leading us to identify introgression as the ultimate cause of the observed discordance pattern. Our novel genomic data, the discovery of a European-wide hybrid zone and the availability of established techniques for laboratory breeding make this species pair an ideal model system for studying species boundaries with ongoing gene flow.
Collapse
Affiliation(s)
- Hannah Weigand
- Aquatic Ecosystem Research, University of Duisburg-Essen, Essen, Germany
| | - Martina Weiss
- Aquatic Ecosystem Research, University of Duisburg-Essen, Essen, Germany
| | - Huimin Cai
- BGI-Shenzhen, Shenzhen, China.,Department of Computer Science, City University of Hong Kong, Hong Kong, China
| | | | - Lili Yu
- BGI-Shenzhen, Shenzhen, China
| | | | - Florian Leese
- Aquatic Ecosystem Research, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
44
|
Bonnet T, Leblois R, Rousset F, Crochet PA. A reassessment of explanations for discordant introgressions of mitochondrial and nuclear genomes. Evolution 2017; 71:2140-2158. [DOI: 10.1111/evo.13296] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/23/2017] [Accepted: 06/05/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Timothée Bonnet
- Department of Evolutionary Biology and Environmental Studies (IEU); University of Zurich; Zurich Switzerland
- Research School of Biology; The Australian National University; Canberra Australia
| | - Raphaël Leblois
- Institut National de la Recherche Agronomique, UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro); Campus International de Baillarguet; Montferrier-sur-Lez France
- Institut de Biologie Computationnelle; Université de Montpellier; 860 rue St Priest 34095 Montpellier Cedex 5 34095 Montpellier France
| | - François Rousset
- Institut de Biologie Computationnelle; Université de Montpellier; 860 rue St Priest 34095 Montpellier Cedex 5 34095 Montpellier France
- Institut des Sciences de l'Évolution (UM2-CNRS); Université Montpellier 2; Montpellier France
| | - Pierre-André Crochet
- CEFE UMR 5175; CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE; 1919 route de Mende 34293 Montpellier cedex 5 France
| |
Collapse
|
45
|
Toews DPL, Delmore KE, Osmond MM, Taylor PD, Irwin DE. Migratory orientation in a narrow avian hybrid zone. PeerJ 2017; 5:e3201. [PMID: 28439469 PMCID: PMC5398278 DOI: 10.7717/peerj.3201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 03/18/2017] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Zones of contact between closely related taxa with divergent migratory routes, termed migratory divides, have been suggested as areas where hybrid offspring may have intermediate and inferior migratory routes, resulting in low fitness of hybrids and thereby promoting speciation. In the Rocky Mountains of Canada there is a narrow hybrid zone between Audubon's and myrtle warblers that is likely maintained by selection against hybrids. Band recoveries and isotopic studies indicate that this hybrid zone broadly corresponds to the location of a possible migratory divide, with Audubon's warblers migrating south-southwest and myrtle warblers migrating southeast. We tested a key prediction of the migratory divide hypothesis: that genetic background would be predictive of migratory orientation among warblers in the center of the hybrid zone. METHODS We recorded fall migratory orientation of wild-caught migrating warblers in the center of the hybrid zone as measured by video-based monitoring of migratory restlessness in circular orientation chambers. We then tested whether there was a relationship between migratory orientation and genetic background, as measured using a set of species-specific diagnostic genetic markers. RESULTS We did not detect a significant association between orientation and genetic background. There was large variation among individuals in orientation direction. Mean orientation was towards the NE, surprising for birds on fall migration, but aligned with the mountain valley in which the study took place. CONCLUSIONS Only one other study has directly analyzed migratory orientation among naturally-produced hybrids in a migratory divide. While the other study showed an association between genetic background and orientation, we did not observe such an association in yellow-rumped warblers. We discuss possible reasons, including the possibility of a lack of a strong migratory divide in this hybrid zone and/or methodological limitations that may have prevented accurate measurements of long-distance migratory orientation.
Collapse
Affiliation(s)
- David P L Toews
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada.,Current Address: Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Ithaca, NY, United States of America
| | - Kira E Delmore
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada.,Current Address: Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Matthew M Osmond
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Philip D Taylor
- Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada
| | - Darren E Irwin
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
46
|
LeBlanc NM, Stewart DT, Pálsson S, Elderkin MF, Mittelhauser G, Mockford S, Paquet J, Robertson GJ, Summers RW, Tudor L, Mallory ML. Population structure of Purple Sandpipers ( Calidris maritima) as revealed by mitochondrial DNA and microsatellites. Ecol Evol 2017; 7:3225-3242. [PMID: 28480021 PMCID: PMC5415539 DOI: 10.1002/ece3.2927] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 11/14/2016] [Accepted: 12/21/2016] [Indexed: 11/16/2022] Open
Abstract
The Purple Sandpiper (Calidris maritima) is a medium‐sized shorebird that breeds in the Arctic and winters along northern Atlantic coastlines. Migration routes and affiliations between breeding grounds and wintering grounds are incompletely understood. Some populations appear to be declining, and future management policies for this species will benefit from understanding their migration patterns. This study used two mitochondrial DNA markers and 10 microsatellite loci to analyze current population structure and historical demographic trends. Samples were obtained from breeding locations in Nunavut (Canada), Iceland, and Svalbard (Norway) and from wintering locations along the coast of Maine (USA), Nova Scotia, New Brunswick, and Newfoundland (Canada), and Scotland (UK). Mitochondrial haplotypes displayed low genetic diversity, and a shallow phylogeny indicating recent divergence. With the exception of the two Canadian breeding populations from Nunavut, there was significant genetic differentiation among samples from all breeding locations; however, none of the breeding populations was a monophyletic group. We also found differentiation between both Iceland and Svalbard breeding populations and North American wintering populations. This pattern of divergence is consistent with a previously proposed migratory pathway between Canadian breeding locations and wintering grounds in the United Kingdom, but argues against migration between breeding grounds in Iceland and Svalbard and wintering grounds in North America. Breeding birds from Svalbard also showed a genetic signature intermediate between Canadian breeders and Icelandic breeders. Our results extend current knowledge of Purple Sandpiper population genetic structure and present new information regarding migration routes to wintering grounds in North America.
Collapse
Affiliation(s)
| | | | - Snaebjörn Pálsson
- Department of Life and Environmental Sciences University of Iceland Reykjavík Iceland
| | - Mark F Elderkin
- Department of Natural Resources Government of Nova Scotia Kentville NS Canada
| | | | | | - Julie Paquet
- Canadian Wildlife Service, Environment and Climate Change Canada Sackville NB Canada
| | - Gregory J Robertson
- Wildlife Research Division, Environment and Climate Change Canada Mount Pearl NL Canada
| | - Ron W Summers
- Lismore, 7 Mill Crescent North Kessock Ross-shire UK
| | - Lindsay Tudor
- Maine Department of Inland Fisheries and Wildlife Bangor ME USA
| | - Mark L Mallory
- Department of Biology Acadia University Wolfville NS Canada
| |
Collapse
|
47
|
Sunnucks P, Morales HE, Lamb AM, Pavlova A, Greening C. Integrative Approaches for Studying Mitochondrial and Nuclear Genome Co-evolution in Oxidative Phosphorylation. Front Genet 2017; 8:25. [PMID: 28316610 PMCID: PMC5334354 DOI: 10.3389/fgene.2017.00025] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 02/17/2017] [Indexed: 01/24/2023] Open
Abstract
In animals, interactions among gene products of mitochondrial and nuclear genomes (mitonuclear interactions) are of profound fitness, evolutionary, and ecological significance. Most fundamentally, the oxidative phosphorylation (OXPHOS) complexes responsible for cellular bioenergetics are formed by the direct interactions of 13 mitochondrial-encoded and ∼80 nuclear-encoded protein subunits in most animals. It is expected that organisms will develop genomic architecture that facilitates co-adaptation of these mitonuclear interactions and enhances biochemical efficiency of OXPHOS complexes. In this perspective, we present principles and approaches to understanding the co-evolution of these interactions, with a novel focus on how genomic architecture might facilitate it. We advocate that recent interdisciplinary advances assist in the consolidation of links between genotype and phenotype. For example, advances in genomics allow us to unravel signatures of selection in mitochondrial and nuclear OXPHOS genes at population-relevant scales, while newly published complete atomic-resolution structures of the OXPHOS machinery enable more robust predictions of how these genes interact epistatically and co-evolutionarily. We use three case studies to show how integrative approaches have improved the understanding of mitonuclear interactions in OXPHOS, namely those driving high-altitude adaptation in bar-headed geese, allopatric population divergence in Tigriopus californicus copepods, and the genome architecture of nuclear genes coding for mitochondrial functions in the eastern yellow robin.
Collapse
Affiliation(s)
- Paul Sunnucks
- School of Biological Sciences, Monash University, ClaytonVIC, Australia
| | - Hernán E. Morales
- School of Biological Sciences, Monash University, ClaytonVIC, Australia
- Department of Marine Sciences, University of GothenburgGothenburg, Sweden
| | - Annika M. Lamb
- School of Biological Sciences, Monash University, ClaytonVIC, Australia
| | - Alexandra Pavlova
- School of Biological Sciences, Monash University, ClaytonVIC, Australia
| | - Chris Greening
- School of Biological Sciences, Monash University, ClaytonVIC, Australia
| |
Collapse
|
48
|
Stier A, Romestaing C, Schull Q, Lefol E, Robin J, Roussel D, Bize P. How to measure mitochondrial function in birds using red blood cells: a case study in the king penguin and perspectives in ecology and evolution. Methods Ecol Evol 2017. [DOI: 10.1111/2041-210x.12724] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Antoine Stier
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Glasgow UK
| | - Caroline Romestaing
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés CNRS UMR 5023 Université de Lyon Lyon France
| | - Quentin Schull
- Université de Strasbourg CNRS IPHC UMR 7178 F‐67000 Strasbourg France
| | - Emilie Lefol
- Université de Strasbourg CNRS IPHC UMR 7178 F‐67000 Strasbourg France
- Département de biologie Université de Sherbrooke 2500 boul. de l'Université Sherbrooke QC Canada J1K 2R1
| | | | - Damien Roussel
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés CNRS UMR 5023 Université de Lyon Lyon France
| | - Pierre Bize
- Institute of Biological and Environmental Sciences University of Aberdeen Aberdeen UK
| |
Collapse
|
49
|
Healy TM, Bryant HJ, Schulte PM. Mitochondrial genotype and phenotypic plasticity of gene expression in response to cold acclimation in killifish. Mol Ecol 2017; 26:814-830. [DOI: 10.1111/mec.13945] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 11/11/2016] [Accepted: 11/16/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Timothy M. Healy
- Department of Zoology; The University of British Columbia; 6270 University Blvd Vancouver BC Canada V6T 1Z4
| | - Heather J. Bryant
- Department of Zoology; The University of British Columbia; 6270 University Blvd Vancouver BC Canada V6T 1Z4
| | - Patricia M. Schulte
- Department of Zoology; The University of British Columbia; 6270 University Blvd Vancouver BC Canada V6T 1Z4
| |
Collapse
|
50
|
Costa MC, Oliveira PRR, Davanço PV, de Camargo C, Laganaro NM, Azeredo RA, Simpson J, Silveira LF, Francisco MR. Recovering the Genetic Identity of an Extinct-in-the-Wild Species: The Puzzling Case of the Alagoas Curassow. PLoS One 2017; 12:e0169636. [PMID: 28056082 PMCID: PMC5215914 DOI: 10.1371/journal.pone.0169636] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 12/16/2016] [Indexed: 01/18/2023] Open
Abstract
The conservation of many endangered taxa relies on hybrid identification, and when hybrids become morphologically indistinguishable from the parental species, the use of molecular markers can assign individual admixture levels. Here, we present the puzzling case of the extinct in the wild Alagoas Curassow (Pauxi mitu), whose captive population descends from only three individuals. Hybridization with the Razor-billed Curassow (P. tuberosa) began more than eight generations ago, and admixture uncertainty affects the whole population. We applied an analysis framework that combined morphological diagnostic traits, Bayesian clustering analyses using 14 microsatellite loci, and mtDNA haplotypes to assess the ancestry of all individuals that were alive from 2008 to 2012. Simulated data revealed that our microsatellites could accurately assign an individual a hybrid origin until the second backcross generation, which permitted us to identify a pure group among the older, but still reproductive animals. No wild species has ever survived such a severe bottleneck, followed by hybridization, and studying the recovery capability of the selected pure Alagoas Curassow group might provide valuable insights into biological conservation theory.
Collapse
Affiliation(s)
- Mariellen C. Costa
- Programa de Pós Graduação em Ecologia e Recursos Naturais, Universidade Federal de São Carlos, Rod. Washington Luís, CEP, São Carlos, SP, Brazil
| | - Paulo R. R. Oliveira
- Programa de Pós Graduação em Diversidade Biológica e Conservação, Universidade Federal de São Carlos, campus de Sorocaba, Rod. João Leme dos Santos, CEP, Sorocaba, SP, Brazil
| | - Paulo V. Davanço
- Programa de Pós Graduação em Diversidade Biológica e Conservação, Universidade Federal de São Carlos, campus de Sorocaba, Rod. João Leme dos Santos, CEP, Sorocaba, SP, Brazil
| | - Crisley de Camargo
- Departamento de Ciências Ambientais, Universidade Federal de São Carlos, Campus de Sorocaba, Rod. João Leme dos Santos, CEP, Sorocaba, SP, Brazil
| | - Natasha M. Laganaro
- Programa de Pós Graduação em Diversidade Biológica e Conservação, Universidade Federal de São Carlos, campus de Sorocaba, Rod. João Leme dos Santos, CEP, Sorocaba, SP, Brazil
| | - Roberto A. Azeredo
- CRAX—Sociedade de Pesquisa do Manejo e da Reprodução da Fauna Silvestre, rua Jarbas Camargo, Chácara Campestre, Contagem, MG, Brazil
| | - James Simpson
- CRAX—Sociedade de Pesquisa do Manejo e da Reprodução da Fauna Silvestre, rua Jarbas Camargo, Chácara Campestre, Contagem, MG, Brazil
| | - Luis F. Silveira
- Seção de Aves, Museu de Zoologia da Universidade de São Paulo, CEP, São Paulo, SP, Brazil
| | - Mercival R. Francisco
- Departamento de Ciências Ambientais, Universidade Federal de São Carlos, Campus de Sorocaba, Rod. João Leme dos Santos, CEP, Sorocaba, SP, Brazil
- * E-mail:
| |
Collapse
|