1
|
DiLeo MF, Nair A, Kardos M, Husby A, Saastamoinen M. Demography and environment modulate the effects of genetic diversity on extinction risk in a butterfly metapopulation. Proc Natl Acad Sci U S A 2024; 121:e2309455121. [PMID: 39116125 PMCID: PMC11331070 DOI: 10.1073/pnas.2309455121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 07/04/2024] [Indexed: 08/10/2024] Open
Abstract
Linking genetic diversity to extinction is a common goal in genomic studies. Recently, a debate has arisen regarding the importance of genetic variation in conservation as some studies have failed to find associations between genome-wide genetic diversity and extinction risk. However, only rarely are genetic diversity and fitness measured together in the wild, and typically demographic history and environment are ignored. It is therefore difficult to infer whether a lack of an association is real or obscured by confounding factors. To address these shortcomings, we analyzed genetic data from 7,501 individuals with extinction data from 279 meadows and mortality of 1,742 larval nests in a butterfly metapopulation. We found a strong negative association between genetic diversity and extinction when considering only heterozygosity in models. However, this association disappeared when accounting for ecological covariates, suggesting a confounding between demography and genetics and a more complex role for heterozygosity in extinction risk. Modeling interactions between heterozygosity and demographic variables revealed that associations between extinction and heterozygosity were context-dependent. For example, extinction declined with increasing heterozygosity in large, but not currently small populations, although negative associations between heterozygosity, extinction, and mortality were detected in small populations with a recent history of decline. We conclude that low genetic diversity is an important predictor of extinction, predicting >25% increase in extinction beyond ecological factors in certain contexts. These results highlight that inferences about the importance of genetic diversity for population viability should not rely on genomic data alone but require investments in obtaining demographic and environmental data from natural populations.
Collapse
Affiliation(s)
- Michelle F. DiLeo
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki00014, Finland
- Wildlife Research and Monitoring Section, Ontario Ministry of Natural Resources, Peterborough, ONK9L 1Z8, Canada
| | - Abhilash Nair
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki00014, Finland
| | - Marty Kardos
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA98112
| | - Arild Husby
- Evolutionary Biology, Department of Ecology and Genetics, Uppsala University, Uppsala75236, Sweden
| | - Marjo Saastamoinen
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki00014, Finland
| |
Collapse
|
2
|
Arnqvist G, Rowe L. Ecology, the pace-of-life, epistatic selection and the maintenance of genetic variation in life-history genes. Mol Ecol 2023; 32:4713-4724. [PMID: 37386734 DOI: 10.1111/mec.17062] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Evolutionary genetics has long struggled with understanding how functional genes under selection remain polymorphic in natural populations. Taking as a starting point that natural selection is ultimately a manifestation of ecological processes, we spotlight an underemphasized and potentially ubiquitous ecological effect that may have fundamental effects on the maintenance of genetic variation. Negative frequency dependency is a well-established emergent property of density dependence in ecology, because the relative profitability of different modes of exploiting or utilizing limiting resources tends to be inversely proportional to their frequency in a population. We suggest that this may often generate negative frequency-dependent selection (NFDS) on major effect loci that affect rate-dependent physiological processes, such as metabolic rate, that are phenotypically manifested as polymorphism in pace-of-life syndromes. When such a locus under NFDS shows stable intermediate frequency polymorphism, this should generate epistatic selection potentially involving large numbers of loci with more minor effects on life-history (LH) traits. When alternative alleles at such loci show sign epistasis with a major effect locus, this associative NFDS will promote the maintenance of polygenic variation in LH genes. We provide examples of the kind of major effect loci that could be involved and suggest empirical avenues that may better inform us on the importance and reach of this process.
Collapse
Affiliation(s)
- Göran Arnqvist
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Locke Rowe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Swedish Collegium of Advanced Study, Uppsala, Sweden
| |
Collapse
|
3
|
Cubry P, Oddou-Muratorio S, Scotti I, Lefèvre F. Interactions between microenvironment, selection and genetic architecture drive multiscale adaptation in a simulation experiment. J Evol Biol 2022; 35:451-466. [PMID: 35170114 PMCID: PMC9306464 DOI: 10.1111/jeb.13988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 11/28/2022]
Abstract
When environmental conditions differ both within and among populations, multiscale adaptation results from processes at both scales and interference across scales. We hypothesize that within-population environmental heterogeneity influences the chance of success of migration events, both within and among populations, and maintains within-population adaptive differentiation. We used a simulation approach to analyze the joint effects of environmental heterogeneity patterns, selection intensity and number of QTL controlling a selected trait on local adaptation in a hierarchical metapopulation design. We show the general effects of within-population environmental heterogeneity: (i) it increases occupancy rate at the margins of distribution ranges, under extreme environments and high levels of selection; (ii) it increases the adaptation lag in all environments; (iii) it impacts the genetic variance in each environment, depending on the ratio of within- to between-populations environmental heterogeneity; (iv) it reduces the selection-induced erosion of adaptive gene diversity. Most often, the smaller the number of QTL involved, the stronger are these effects. We also show that both within- and between-populations phenotypic differentiation (QST ) mainly results from covariance of QTL effects rather than QTL differentiation (FSTq ), that within-population QTL differentiation is negligible, and that stronger divergent selection is required to produce adaptive differentiation within populations than among populations. With a high number of QTL, when the difference between environments within populations exceeds the smallest difference between environments across populations, high levels of within-population differentiation can be reached, reducing differentiation among populations. Our study stresses the need to account for within-population environmental heterogeneity when investigating local adaptation.
Collapse
Affiliation(s)
- Philippe Cubry
- Ecologie des Forêts Méditerranéennes, URFM, INRAE, Avignon, France.,DIADE, Univ Montpellier, CIRAD, IRD, Montpellier, France
| | - Sylvie Oddou-Muratorio
- Ecologie des Forêts Méditerranéennes, URFM, INRAE, Avignon, France.,ECOBIOP, Université de Pau et des Pays de l'Adour, E2S UPPA, INRAE, Saint-Pée-sur-Nivelle, France
| | - Ivan Scotti
- Ecologie des Forêts Méditerranéennes, URFM, INRAE, Avignon, France
| | - François Lefèvre
- Ecologie des Forêts Méditerranéennes, URFM, INRAE, Avignon, France
| |
Collapse
|
4
|
Llanos-Garrido A, Briega-Álvarez A, Pérez-Tris J, Díaz JA. Environmental association modelling with loci under divergent selection predicts the distribution range of a lizard. Mol Ecol 2021; 30:3856-3868. [PMID: 34047420 DOI: 10.1111/mec.16002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 05/05/2021] [Accepted: 05/20/2021] [Indexed: 11/28/2022]
Abstract
During the historical building of a species range, individual colonizers have to confront different ecological challenges, and the capacity of the species to broaden its range may depend on the total amount of adaptive genetic variation supplied by evolution. We set out to increase our understanding of what defines a range and the role of underlying genetics by trying to predict an entire species' range from the geographical distribution of its genetic diversity under selection. We sampled five populations of the western Mediterranean lizard Psammodromus algirus that inhabit a noticeable environmental gradient of temperature and precipitation. We correlated the genotypes of 95 individuals (18-20 individuals per population) for 21 SNPs putatively under selection with environmental scores on a bioclimatic gradient, using 1 × 1 km2 grid cells as sampling units. By extrapolating the resulting model to all possible combinations of alleles, we inferred all the geographic cells that were theoretically suitable for a given amount of genetic variance under selection. The inferred distribution range overlapped to a large extent with the realized range of the species (77.46% of overlap), including an accurate prediction of internal gaps and range borders. Our results suggest an adaptability threshold determined by the amount of genetic variation available that would be required to warrant adaptation beyond a certain limit of environmental variation. These results support the idea that the expansion of a species' range can be ultimately linked to the arising of new variants under selection (either newly selected variants from standing genetic variation or innovative mutations under selection).
Collapse
Affiliation(s)
- Alejandro Llanos-Garrido
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.,Department of Biodiversity, Ecology and Evolution, UCM, Madrid, Spain
| | - Andrea Briega-Álvarez
- Museum für Naturkunde, Leibniz-Institut für Evolutions und Biodiversitätsforschung Berlin, Berlin, Germany
| | - Javier Pérez-Tris
- Department of Biodiversity, Ecology and Evolution, UCM, Madrid, Spain
| | - José A Díaz
- Department of Biodiversity, Ecology and Evolution, UCM, Madrid, Spain
| |
Collapse
|
5
|
Bell DA, Kovach RP, Robinson ZL, Whiteley AR, Reed TE. The ecological causes and consequences of hard and soft selection. Ecol Lett 2021; 24:1505-1521. [PMID: 33931936 DOI: 10.1111/ele.13754] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 02/17/2021] [Accepted: 03/15/2021] [Indexed: 01/01/2023]
Abstract
Interactions between natural selection and population dynamics are central to both evolutionary-ecology and biological responses to anthropogenic change. Natural selection is often thought to incur a demographic cost that, at least temporarily, reduces population growth. However, hard and soft selection clarify that the influence of natural selection on population dynamics depends on ecological context. Under hard selection, an individual's fitness is independent of the population's phenotypic composition, and substantial population declines can occur when phenotypes are mismatched with the environment. In contrast, under soft selection, an individual's fitness is influenced by its phenotype relative to other interacting conspecifics. Soft selection generally influences which, but not how many, individuals survive and reproduce, resulting in little effect on population growth. Despite these important differences, the distinction between hard and soft selection is rarely considered in ecology. Here, we review and synthesize literature on hard and soft selection, explore their ecological causes and implications and highlight their conservation relevance to climate change, inbreeding depression, outbreeding depression and harvest. Overall, these concepts emphasise that natural selection and evolution may often have negligible or counterintuitive effects on population growth-underappreciated outcomes that have major implications in a rapidly changing world.
Collapse
Affiliation(s)
- Donovan A Bell
- Wildlife Biology Program, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, USA
| | | | - Zachary L Robinson
- Wildlife Biology Program, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, USA
| | - Andrew R Whiteley
- Wildlife Biology Program, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, USA
| | - Thomas E Reed
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.,Environmental Research Institute, University College Cork, Lee Road, Cork, Ireland
| |
Collapse
|
6
|
Bell TH, Bell T. Many roads to bacterial generalism. FEMS Microbiol Ecol 2021; 97:6006266. [PMID: 33238305 DOI: 10.1093/femsec/fiaa240] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
The fundamental niches of bacteria can be defined along many environmental axes, including temperature tolerance and resources consumed, while interactions with other organisms can constrain (e.g. competition) or enlarge (e.g. cross-feeding) realized niches. Organisms are often categorized as generalists or specialists, corresponding to broad or narrow niche requirements, which can then be linked to their functional role in an ecosystem. We show how these terms are applied to bacteria, make predictions about how the type and extent of generalism displayed by an organism relates to its functional potential and discuss the value of collecting different types of generalist bacteria. We believe that new approaches that take advantage of both high-throughput sequencing and environmental manipulation can allow us to understand the many types of generalism found within both cultivated and yet-to-be-cultivated bacteria.
Collapse
Affiliation(s)
- Terrence H Bell
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, 16802, USA.,Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Thomas Bell
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
| |
Collapse
|
7
|
Czuppon P, Blanquart F, Uecker H, Débarre F. The Effect of Habitat Choice on Evolutionary Rescue in Subdivided Populations. Am Nat 2021; 197:625-643. [PMID: 33989144 DOI: 10.1086/714034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractEvolutionary rescue is the process by which a population, in response to an environmental change, successfully avoids extinction through adaptation. In spatially structured environments, dispersal can affect the probability of rescue. Here, we model an environment consisting of patches that degrade one after another, and we investigate the probability of rescue by a mutant adapted to the degraded habitat. We focus on the effects of dispersal and of immigration biases. We identify up to three regions delimiting the effect of dispersal on the probability of evolutionary rescue: (i) starting from low dispersal rates, the probability of rescue increases with dispersal; (ii) at intermediate dispersal rates, it decreases; and (iii) at large dispersal rates, it increases again with dispersal, except if mutants are too counterselected in not-yet-degraded patches. The probability of rescue is generally highest when mutant and wild-type individuals preferentially immigrate into patches that have already undergone environmental change. Additionally, we find that mutants that will eventually rescue the population most likely first appear in nondegraded patches. Overall, our results show that habitat choice, compared with the often-studied unbiased immigration scheme, can substantially alter the dynamics of population survival and adaptation to new environments.
Collapse
|
8
|
Ehrlich MA, Wagner DN, Oleksiak MF, Crawford DL. Polygenic Selection within a Single Generation Leads to Subtle Divergence among Ecological NichesINc. Genome Biol Evol 2021; 13:evaa257. [PMID: 33313716 PMCID: PMC7875003 DOI: 10.1093/gbe/evaa257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 09/09/2020] [Accepted: 12/09/2020] [Indexed: 11/23/2022] Open
Abstract
Selection on standing genetic variation may be effective enough to allow for adaptation to distinct niche environments within a single generation. Minor allele frequency changes at multiple, redundant loci of small effect can produce remarkable phenotypic shifts. Yet, demonstrating rapid adaptation via polygenic selection in the wild remains challenging. Here we harness natural replicate populations that experience similar selection pressures and harbor high within-, yet negligible among-population genetic variation. Such populations can be found among the teleost Fundulus heteroclitus that inhabits marine estuaries characterized by high environmental heterogeneity. We identify 10,861 single nucleotide polymorphisms in F. heteroclitus that belong to a single, panmictic population yet reside in environmentally distinct niches (one coastal basin and three replicate tidal ponds). By sampling at two time points within a single generation, we quantify both allele frequency change within as well as spatial divergence among niche subpopulations. We observe few individually significant allele frequency changes yet find that the "number" of moderate changes exceeds the neutral expectation by 10-100%. We find allele frequency changes to be significantly concordant in both direction and magnitude among all niche subpopulations, suggestive of parallel selection. In addition, within-generation allele frequency changes generate subtle but significant divergence among niches, indicative of local adaptation. Although we cannot distinguish between selection and genotype-dependent migration as drivers of within-generation allele frequency changes, the trait/s determining fitness and/or migration likelihood appear to be polygenic. In heterogeneous environments, polygenic selection and polygenic, genotype-dependent migration offer conceivable mechanisms for within-generation, local adaptation to distinct niches.
Collapse
Affiliation(s)
- Moritz A Ehrlich
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, FL, USA
| | - Dominique N Wagner
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, FL, USA
| | - Marjorie F Oleksiak
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, FL, USA
| | - Douglas L Crawford
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, FL, USA
| |
Collapse
|
9
|
Chen P, Kassen R. The evolution and fate of diversity under hard and soft selection. Proc Biol Sci 2020; 287:20201111. [PMID: 32873205 DOI: 10.1098/rspb.2020.1111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
How genetic variation arises and persists over evolutionary time despite the depleting effects of natural selection remains a long-standing question. Here, we investigate the impacts of two extreme forms of population regulation-at the level of the total, mixed population (hard selection) and at the level of local, spatially distinct patches (soft selection)-on the emergence and fate of diversity under strong divergent selection. We find that while the form of population regulation has little effect on rates of diversification, it can modulate the long-term fate of genetic variation, diversity being more readily maintained under soft selection compared to hard selection. The mechanism responsible for coexistence is negative frequency-dependent selection which, while present initially under both forms of population regulation, persists over the long-term only under soft selection. Importantly, coexistence is robust to continued evolution of niche specialist types under soft selection but not hard selection. These results suggest that soft selection could be a general mechanism for the maintenance of ecological diversity over evolutionary time scales.
Collapse
Affiliation(s)
- Patrick Chen
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Rees Kassen
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
10
|
Llanos‐Garrido A, Pérez‐Tris J, Díaz JA. The combined use of raw and phylogenetically independent methods of outlier detection uncovers genome-wide dynamics of local adaptation in a lizard. Ecol Evol 2019; 9:14356-14367. [PMID: 31938524 PMCID: PMC6953648 DOI: 10.1002/ece3.5872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/04/2019] [Accepted: 10/10/2019] [Indexed: 02/06/2023] Open
Abstract
Local adaptation is a dynamic process by which different allele combinations are selected in different populations at different times, and whose genetic signature can be inferred by genome-wide outlier analyses. We combined gene flow estimates with two methods of outlier detection, one of them independent of population coancestry (CIOA) and the other one not (ROA), to identify genetic variants favored when ecology promotes phenotypic convergence. We analyzed genotyping-by-sequencing data from five populations of a lizard distributed over an environmentally heterogeneous range that has been changing since the split of eastern and western lineages ca. 3 mya. Overall, western lizards inhabit forest habitat and are unstriped, whereas eastern ones inhabit shrublands and are striped. However, one population (Lerma) has unstriped phenotype despite its eastern ancestry. The analysis of 73,291 SNPs confirmed the east-west division and identified nonoverlapping sets of outliers (12 identified by ROA and 9 by CIOA). ROA revealed ancestral adaptive variation in the uncovered outliers that were subject to divergent selection and differently fixed for eastern and western populations at the extremes of the environmental gradient. Interestingly, such variation was maintained in Lerma, where we found high levels of heterozygosity for ROA outliers, whereas CIOA uncovered innovative variants that were selected only there. Overall, it seems that both the maintenance of ancestral variation and asymmetric migration have counterbalanced adaptive lineage splitting in our model species. This scenario, which is likely promoted by a changing and heterogeneous environment, could hamper ecological speciation of locally adapted populations despite strong genetic structure between lineages.
Collapse
Affiliation(s)
- Alejandro Llanos‐Garrido
- Informatics GroupFaculty of Arts and SciencesHarvard UniversityCambridgeMAUSA
- Departamento de BiodiversidadUniversidad Complutense de MadridMadridSpain
| | - Javier Pérez‐Tris
- Departamento de BiodiversidadUniversidad Complutense de MadridMadridSpain
| | - José A. Díaz
- Departamento de BiodiversidadUniversidad Complutense de MadridMadridSpain
| |
Collapse
|
11
|
Brady SP, Bolnick DI, Barrett RDH, Chapman L, Crispo E, Derry AM, Eckert CG, Fraser DJ, Fussmann GF, Gonzalez A, Guichard F, Lamy T, Lane J, McAdam AG, Newman AEM, Paccard A, Robertson B, Rolshausen G, Schulte PM, Simons AM, Vellend M, Hendry A. Understanding Maladaptation by Uniting Ecological and Evolutionary Perspectives. Am Nat 2019; 194:495-515. [PMID: 31490718 DOI: 10.1086/705020] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Evolutionary biologists have long trained their sights on adaptation, focusing on the power of natural selection to produce relative fitness advantages while often ignoring changes in absolute fitness. Ecologists generally have taken a different tack, focusing on changes in abundance and ranges that reflect absolute fitness while often ignoring relative fitness. Uniting these perspectives, we articulate various causes of relative and absolute maladaptation and review numerous examples of their occurrence. This review indicates that maladaptation is reasonably common from both perspectives, yet often in contrasting ways. That is, maladaptation can appear strong from a relative fitness perspective, yet populations can be growing in abundance. Conversely, resident individuals can appear locally adapted (relative to nonresident individuals) yet be declining in abundance. Understanding and interpreting these disconnects between relative and absolute maladaptation, as well as the cases of agreement, is increasingly critical in the face of accelerating human-mediated environmental change. We therefore present a framework for studying maladaptation, focusing in particular on the relationship between absolute and relative fitness, thereby drawing together evolutionary and ecological perspectives. The unification of these ecological and evolutionary perspectives has the potential to bring together previously disjunct research areas while addressing key conceptual issues and specific practical problems.
Collapse
|
12
|
Connallon T, Sharma S, Olito C. Evolutionary Consequences of Sex-Specific Selection in Variable Environments: Four Simple Models Reveal Diverse Evolutionary Outcomes. Am Nat 2019; 193:93-105. [DOI: 10.1086/700720] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Jiménez-Mena B, Henriques R. Digest: Untangling the influence of soft and hard selection in experimental populations-from environment to genomics. Evolution 2018; 72:1730-1732. [PMID: 29985522 DOI: 10.1111/evo.13548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 07/05/2018] [Indexed: 11/28/2022]
Abstract
Gallet et al. (2018) studied the effect of two selection regimes on the maintenance of polymorphism in experimental populations. They took two strains of Escherichia coli, each resistant to a different antibiotic, evolved them in culture conditions representing "soft" or "hard" selective regimes, and measured polymorphism levels for three to five transfers. Their results supported theoretical predictions that only "soft" selection maintains polymorphism, highlighting the importance of experimental studies to understand maintenance of variation in nature.
Collapse
Affiliation(s)
- Belén Jiménez-Mena
- National Institute of Aquatic Resources, Danish Technical University of Denmark, Silkeborg, Denmark
| | - Romina Henriques
- National Institute of Aquatic Resources, Danish Technical University of Denmark, Silkeborg, Denmark
| |
Collapse
|