1
|
Baker L, Taylor C, Gilbert F, Reader T. How does viewing angle affect the perceived accuracy of Batesian mimicry in hoverflies? Behav Ecol 2024; 35:arae054. [PMID: 39034972 PMCID: PMC11259850 DOI: 10.1093/beheco/arae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/12/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024] Open
Abstract
Despite Batesian mimicry often eliciting predator avoidance, many Batesian mimics, such as some species of hoverfly (Syrphidae), are considered to have an "imperfect" resemblance to their model. One possible explanation for the persistence of apparently imperfect mimicry is that human perceptions of mimicry are different from those of natural predators. Natural predators of hoverflies have different visual and cognitive systems from humans, and they may encounter mimics in a different way. For example, whilst humans often encounter hoverflies at rest on vegetation, or in photographs or textbooks, where they are typically viewed from above, natural predators may approach hoverflies from the side or below. To test how viewing angle affects the perception of mimicry, images of mimetic hoverflies and their models (wasps and bees) were shown from different angles in an online survey. Participants were asked to distinguish between the images of models and mimics. The results show that the viewing angle does affect perceived mimicry in some species, although it does not provide a complete explanation for the persistence of imperfect mimicry in nature. The effect is also highly species-specific. This suggests that to understand better how selection has shaped mimetic accuracy in hoverflies and other taxa, further study is required of the viewing angles that predators utilize most commonly in nature.
Collapse
Affiliation(s)
- Lucy Baker
- School of Life Sciences, University Park, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Chris Taylor
- School of Life Sciences, University Park, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Francis Gilbert
- School of Life Sciences, University Park, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Tom Reader
- School of Life Sciences, University Park, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
2
|
Stark T, Ştefan V, Wurm M, Spanier R, Taubenböck H, Knight TM. YOLO object detection models can locate and classify broad groups of flower-visiting arthropods in images. Sci Rep 2023; 13:16364. [PMID: 37773202 PMCID: PMC10541899 DOI: 10.1038/s41598-023-43482-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023] Open
Abstract
Develoment of image recognition AI algorithms for flower-visiting arthropods has the potential to revolutionize the way we monitor pollinators. Ecologists need light-weight models that can be deployed in a field setting and can classify with high accuracy. We tested the performance of three deep learning light-weight models, YOLOv5nano, YOLOv5small, and YOLOv7tiny, at object recognition and classification in real time on eight groups of flower-visiting arthropods using open-source image data. These eight groups contained four orders of insects that are known to perform the majority of pollination services in Europe (Hymenoptera, Diptera, Coleoptera, Lepidoptera) as well as other arthropod groups that can be seen on flowers but are not typically considered pollinators (e.g., spiders-Araneae). All three models had high accuracy, ranging from 93 to 97%. Intersection over union (IoU) depended on the relative area of the bounding box, and the models performed best when a single arthropod comprised a large portion of the image and worst when multiple small arthropods were together in a single image. The model could accurately distinguish flies in the family Syrphidae from the Hymenoptera that they are known to mimic. These results reveal the capability of existing YOLO models to contribute to pollination monitoring.
Collapse
Affiliation(s)
- Thomas Stark
- German Remote Sensing Data Center (DFD), German Aerospace Center (DLR), Oberpfaffenhofen, Germany.
| | - Valentin Ştefan
- Department of Community Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Michael Wurm
- German Remote Sensing Data Center (DFD), German Aerospace Center (DLR), Oberpfaffenhofen, Germany
| | - Robin Spanier
- German Remote Sensing Data Center (DFD), German Aerospace Center (DLR), Oberpfaffenhofen, Germany
| | - Hannes Taubenböck
- German Remote Sensing Data Center (DFD), German Aerospace Center (DLR), Oberpfaffenhofen, Germany
- Institute of Geography and Geology, University of Würzburg, Würzburg, Germany
| | - Tiffany M Knight
- Department of Community Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
3
|
Rubin JJ, Kawahara AY. A framework for understanding post-detection deception in predator-prey interactions. PeerJ 2023; 11:e15389. [PMID: 37377786 PMCID: PMC10292197 DOI: 10.7717/peerj.15389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/19/2023] [Indexed: 06/29/2023] Open
Abstract
Predators and prey exist in persistent conflict that often hinges on deception-the transmission of misleading or manipulative signals-as a means for survival. Deceptive traits are widespread across taxa and sensory systems, representing an evolutionarily successful and common strategy. Moreover, the highly conserved nature of the major sensory systems often extends these traits past single species predator-prey interactions toward a broader set of perceivers. As such, deceptive traits can provide a unique window into the capabilities, constraints and commonalities across divergent and phylogenetically-related perceivers. Researchers have studied deceptive traits for centuries, but a unified framework for categorizing different types of post-detection deception in predator-prey conflict still holds potential to inform future research. We suggest that deceptive traits can be distinguished by their effect on object formation processes. Perceptual objects are composed of physical attributes (what) and spatial (where) information. Deceptive traits that operate after object formation can therefore influence the perception and processing of either or both of these axes. We build upon previous work using a perceiver perspective approach to delineate deceptive traits by whether they closely match the sensory information of another object or create a discrepancy between perception and reality by exploiting the sensory shortcuts and perceptual biases of their perceiver. We then further divide this second category, sensory illusions, into traits that distort object characteristics along either the what or where axes, and those that create the perception of whole novel objects, integrating the what/where axes. Using predator-prey examples, we detail each step in this framework and propose future avenues for research. We suggest that this framework will help organize the many forms of deceptive traits and help generate predictions about selective forces that have driven animal form and behavior across evolutionary time.
Collapse
Affiliation(s)
- Juliette J. Rubin
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Akito Y. Kawahara
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
4
|
Tsz Long Wong D, Norman H, Creedy TJ, Jordaens K, Moran KM, Young A, Mengual X, Skevington JH, Vogler AP. The phylogeny and evolutionary ecology of hoverflies (Diptera: Syrphidae) inferred from mitochondrial genomes. Mol Phylogenet Evol 2023; 184:107759. [PMID: 36921697 DOI: 10.1016/j.ympev.2023.107759] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023]
Abstract
Hoverflies (Diptera: Syrphidae) are a diverse group of pollinators and a major research focus in ecology, but their phylogenetic relationships remain incompletely known. Using a genome skimming approach we generated mitochondrial genomes for 91 species, capturing a wide taxonomic diversity of the family. To reduce the required amount of input DNA and overall cost of the library construction, sequencing and assembly was conducted on mixtures of specimens, which raises the problem of chimera formation of mitogenomes. We present a novel chimera detection test based on gene tree incongruence, but identified only a single mitogenome of chimeric origin. Together with existing data for a final set of 127 taxa, phylogenetic analysis on nucleotide and amino acid sequences using Maximum Likelihood and Bayesian Inference revealed a basal split of Microdontinae from all other syrphids. The remainder consists of several deep clades assigned to the subfamily Eristalinae in the current classification, including a clade comprising the subfamily Syrphinae (plus Pipizinae). These findings call for a re-definition of subfamilies, but basal nodes had insufficient support to allow such action. Molecular-clock dating placed the origin of the Syrphidae crown group in the mid-Cretaceous while the Eristalinae-Syrphinae clade likely originated near the K/Pg boundary. Transformation of larval life history characters on the tree suggests that Syrphidae initially had sap feeding larvae, which diversified greatly in diet and habitat association during the Eocene and Oligocene, coinciding with the diversification of angiosperms and the evolution of various insect groups used as larval host, prey, or mimicry models. Mitogenomes proved to be a powerful phylogenetic marker for studies of Syrphidae at subfamily and tribe levels, allowing dense taxon sampling that provided insight into the great ecological diversity and rapid evolution of larval life history traits of the hoverflies.
Collapse
Affiliation(s)
- Daniel Tsz Long Wong
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2BX, U.K; Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, U.K.
| | - Hannah Norman
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2BX, U.K; Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, U.K.
| | - Thomas J Creedy
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2BX, U.K; Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, U.K.
| | - Kurt Jordaens
- Department of Biology-Invertebrates Unit, Royal Museum for Central Africa, Joint Experimental Molecular Unit Leuvensesteenweg 13, B-3080 Tervuren, Belgium.
| | - Kevin M Moran
- Canadian National Collection of Insects, Arachnids and Nematodes, Agriculture and Agri-Food Canada, K.W. Neatby Building, 960 Carling Avenue, Ottawa, Ontario, ON K1A 0C6, Canada; Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, ON K1S 5B6, Canada.
| | - Andrew Young
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, ON N1G 2W1, Canada.
| | - Ximo Mengual
- Zoologisches Forschungsmuseum Alexander Koenig, Leibniz Institute for the Analysis of Biodiversity Change, Adenauerallee 127, 53113 Bonn, Germany.
| | - Jeffrey H Skevington
- Canadian National Collection of Insects, Arachnids and Nematodes, Agriculture and Agri-Food Canada, K.W. Neatby Building, 960 Carling Avenue, Ottawa, Ontario, ON K1A 0C6, Canada; Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, ON K1S 5B6, Canada.
| | - Alfried P Vogler
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2BX, U.K; Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, U.K.
| |
Collapse
|
5
|
Taylor CH. Body size in Batesian mimicry. Evol Ecol 2022. [DOI: 10.1007/s10682-022-10204-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractA variety of traits is available for predators to distinguish unpalatable prey from palatable Batesian mimics. Among them, body size has received little attention as a possible mimetic trait. Size should influence predator behaviour if it shows variation between models and mimics, is detectable by the predator in question, and is not overshadowed by other traits more salient to the predator. Simple predictions within mimetic populations are that perfect mimics receive the lowest predation rate. However, prey body size is typically tightly linked to the nutritional yield and handling time for a successful predator, as well as likely being correlated with a model’s levels of defence. In certain circumstances, these confounding factors might mean that (a) selection pressures on a mimic’s size either side of the model’s phenotype are not symmetrical, (b) the optimal body size for a mimic is not necessarily equal to that of the model, and/or (c) for predators, attacking better mimics of a model’s body size more readily is adaptive. I discuss promising avenues for improving our understanding of body size as a mimetic trait, including the importance of treatments that range in both directions from the model’s size. Further work is required to understand how body size ranks in saliency against other mimetic traits such as pattern. Comparative studies could investigate whether mimics are limited to resembling only models that are already similar in size.
Collapse
|
6
|
Hawkes W, Wotton K, Smith M. The genome sequence of the two-banded wasp hoverfly, Chrysotoxum bicinctum (Linnaeus, 1758). Wellcome Open Res 2021; 6:321. [PMID: 36866282 PMCID: PMC9971694 DOI: 10.12688/wellcomeopenres.17382.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2021] [Indexed: 11/20/2022] Open
Abstract
We present a genome assembly from an individual female Chrysotoxum bicinctum (the two-banded wasp hoverfly; Arthropoda; Insecta; Diptera; Syriphidae). The genome sequence is 913 megabases in span. The majority of the assembly (98.81%) is scaffolded into five chromosomal pseudomolecules, with the X sex chromosome assembled.
Collapse
Affiliation(s)
- William Hawkes
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Karl Wotton
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | | | | | | | | | | | | | | | | |
Collapse
|