1
|
Park H, Ha H, Lee H, Lee G, Go GW, Yoon TM, Kim TY, Kim W. Alleviation of Menopausal Symptoms by Yam (Dioscorea japonica Thunb.) and Gromwell (Lithospermum erythrorhizon Sieb. Et Zucc.) Extracts in Ovariectomized Mice. Mol Nutr Food Res 2024; 68:e2400158. [PMID: 38934532 DOI: 10.1002/mnfr.202400158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/12/2024] [Indexed: 06/28/2024]
Abstract
SCOPE The decline in estrogen during menopause contributes to a variety of menopausal symptoms, for which hormone replacement therapy (HRT) has been extensively applied. Regarding side effects and limited effectiveness of HRT for specific individuals, there is a growing interest in safe alternatives such as phytoestrogens which are structurally analogous to estrogens. This study aims to investigate the efficacy of yam and gromwell extracts, rich in bioactive compounds, and the synergistic effect of extracts on symptoms induced by estrogen deficiency in ovariectomized (OVX) mice. METHODS AND RESULTS OVX mice receive dietary intervention of either yam, gromwell extract, or their mixture for 14 weeks. Sham-operated mice and E2-injected OVX mice serve as positive controls. Following 14 weeks of oral administration, blood, adipose tissue, vagina, uterus, femurs, and tibias are harvested for further investigation. Consequently, yam and gromwell extracts ameliorate menopausal conditions such as weight gain, glucose intolerance, dyslipidemia, and osteoporosis in estrogen-deficient OVX mice. In addition, the mixture of yam and gromwell extracts synergistically aids in the relief of the indications. CONCLUSION These results indicate the potential use of yam and gromwell extracts, as well as their mixture, for the development of healthy functional foods to modulate menopausal symptoms.
Collapse
Affiliation(s)
- Hyejeong Park
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Hyunju Ha
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Hyeji Lee
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Gyeongwhan Lee
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Gwang-Woong Go
- Department of Food and Nutrition, Hanyang University, Seoul, 04763, Republic of Korea
| | - Tae Mi Yoon
- Antimicrobial Materials Lab., Dynesoze Co., Ltd., R&D Center, Yongin, 16827, Republic of Korea
| | - Tae Yeol Kim
- Antimicrobial Materials Lab., Dynesoze Co., Ltd., R&D Center, Yongin, 16827, Republic of Korea
| | - Wooki Kim
- Department of Food and Nutrition, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
2
|
Malik S, Brudzyńska P, Khan MR, Sytar O, Makhzoum A, Sionkowska A. Natural Plant-Derived Compounds in Food and Cosmetics: A Paradigm of Shikonin and Its Derivatives. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4377. [PMID: 37374560 DOI: 10.3390/ma16124377] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
Shikonin and its derivatives are the natural naphthoquinone compounds produced in the roots of the Boraginaceae family. These red pigments have been used for a long time in coloring silk, as food colorants, and in the Chinese traditional system of medicines The resurgence of public interest in natural and plant-based products has led to this category of compounds being in high demand due to their wide range of biological activities including antioxidant, antitumor, antifungal, anti-inflammatory ones. Different researchers worldwide have reported various applications of shikonin derivatives in the area of pharmacology. Nevertheless, the use of these compounds in the food and cosmetics fields needs to be explored more in order to make them available for commercial utilization in various food industries as a packaging material and to enhance their shelf life without any side effects. Similarly, the antioxidant properties and skin whitening effects of these bioactive molecules may be used successfully in various cosmetic formulations. The present review delves into the updated knowledge on the various properties of shikonin derivatives in relation to food and cosmetics. The pharmacological effects of these bioactive compounds are also highlighted. Based on various studies, it can be concluded that these natural bioactive molecules have potential to be used in different sectors, including functional food, food additives, skin, health care, and to cure various diseases. Further research is required for the sustainable production of these compounds with minimum disturbances to the environment and in order to make them available in the market at an economic price. Simultaneous studies utilizing recent techniques in computational biology, bioinformatics, molecular docking, and artificial intelligence in laboratory and clinical trials would further help in making these potential candidates promising alternative natural bioactive therapeutics with multiple uses.
Collapse
Affiliation(s)
- Sonia Malik
- Laboratory of Woody Plants and Crops Biology (LBLGC), University of Orleans, 45067 Orléans, France
| | - Patrycja Brudzyńska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7, 87-100 Toruń, Poland
| | - Muhammad Rehan Khan
- Department of Agricultural Science, University of Naples Federico II, Via Università 133, 80055 Portici, Italy
| | - Oksana Sytar
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, 949 76 Nitra, Slovakia
| | - Abdullah Makhzoum
- Department of Biological Sciences & Biotechnology, Botswana International University of Sciences and Technology, Palapye 10071, Botswana
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7, 87-100 Toruń, Poland
| |
Collapse
|
3
|
Chen CY, Zhang JQ, Li L, Guo MM, He YF, Dong YM, Meng H, Yi F. Advanced Glycation End Products in the Skin: Molecular Mechanisms, Methods of Measurement, and Inhibitory Pathways. Front Med (Lausanne) 2022; 9:837222. [PMID: 35646963 PMCID: PMC9131003 DOI: 10.3389/fmed.2022.837222] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/21/2022] [Indexed: 12/19/2022] Open
Abstract
Advanced glycation end products (AGEs) are a series of stable compounds produced under non-enzymatic conditions by the amino groups of biomacromolecules and the free carbonyl groups of glucose or other reducing sugars commonly produced by thermally processed foods. AGEs can cause various diseases, such as diabetes, atherosclerosis, neurodegeneration, and chronic kidney disease, by triggering the receptors of AGE (RAGEs) in the human body. There is evidence that AGEs can also affect the different structures and physiological functions of the skin. However, the mechanism is complicated and cumbersome and causes various harms to the skin. This article aims to identify and summarise the formation and characteristics of AGEs, focussing on the molecular mechanisms by which AGEs affect the composition and structure of normal skin substances at different skin layers and induce skin issues. We also discuss prevention and inhibition pathways, provide a systematic and comprehensive method for measuring the content of AGEs in human skin, and summarise and analyse their advantages and disadvantages. This work can help researchers acquire a deeper understanding of the relationship between AGEs and the skin and provides a basis for the development of effective ingredients that inhibit glycation.
Collapse
Affiliation(s)
- Chun-Yu Chen
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China.,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, China.,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijng, China
| | - Jia-Qi Zhang
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China.,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, China.,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijng, China
| | - Li Li
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China.,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, China.,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijng, China
| | - Miao-Miao Guo
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China.,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, China.,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijng, China
| | - Yi-Fan He
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China.,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, China.,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijng, China
| | - Yin-Mao Dong
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China.,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, China.,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijng, China
| | - Hong Meng
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China.,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, China.,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijng, China
| | - Fan Yi
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China.,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, China.,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijng, China
| |
Collapse
|
4
|
Kaur K, Singh A, Sharma H, Punj S, Bedi N. Formulation Strategies and Therapeutic Applications of Shikonin and Related Derivatives. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2022; 16:55-67. [PMID: 35236278 DOI: 10.2174/2667387816666220302112201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Shikonin and its derivatives are excellent representatives of biologically active naphthoquinones. A wide range of investigations carried out in the last few decades validated their pharmacological efficacy. Besides having magnificent therapeutic potential, shikonin and its derivatives suffer from various pharmacokinetic, toxicity, and stability issues like poor bioavailability, nephrotoxicity, photodegradation, etc. Recently, various research groups have developed an extensive range of formulations to tackle these issues to ease their path to clinical practice. The latest formulation approaches have been focused on exploiting the unique features of novel functional excipients, which in turn escalate the therapeutic effect of shikonin. Moreover, the codelivery approach in various drug delivery systems has been taken into consideration in a recent while to reduce toxicity associated with shikonin and its derivatives. This review sheds light on the essential reports and patents published related to the array of formulations containing shikonin and its derivatives.
Collapse
Affiliation(s)
- Kirandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Hamayal Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Sanha Punj
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Neena Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| |
Collapse
|
5
|
Sun Q, Gong T, Liu M, Ren S, Yang H, Zeng S, Zhao H, Chen L, Ming T, Meng X, Xu H. Shikonin, a naphthalene ingredient: Therapeutic actions, pharmacokinetics, toxicology, clinical trials and pharmaceutical researches. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 94:153805. [PMID: 34749177 DOI: 10.1016/j.phymed.2021.153805] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/15/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Shikonin is one of the major phytochemical components of Lithospermum erythrorhizon (Purple Cromwell), which is a type of medicinal herb broadly utilized in traditional Chinese medicine. It is well established that shikonin possesses remarkable therapeutic actions on various diseases, with the underlying mechanisms, pharmacokinetics and toxicological effects elusive. Also, the clinical trial and pharmaceutical study of shikonin remain to be comprehensively delineated. PURPOSE The present review aimed to systematically summarize the updated knowledge regarding the therapeutic actions, pharmacokinetics, toxicological effects, clinical trial and pharmaceutical study of shikonin. METHODS The information contained in this review article were retrieved from some authoritative databases including Web of Science, PubMed, Google scholar, Chinese National Knowledge Infrastructure (CNKI), Wanfang Database and so on, till August 2021. RESULTS Shikonin exerts multiple therapeutic efficacies, such as anti-inflammation, anti-cancer, cardiovascular protection, anti-microbiomes, analgesia, anti-obesity, brain protection, and so on, mainly by regulating the NF-κB, PI3K/Akt/MAPKs, Akt/mTOR, TGF-β, GSK3β, TLR4/Akt signaling pathways, NLRP3 inflammasome, reactive oxygen stress, Bax/Bcl-2, etc. In terms of pharmacokinetics, shikonin has an unfavorable oral bioavailability, 64.6% of the binding rate of plasma protein, and enhances some metabolic enzymes, particularly including cytochrome P450. In regard to the toxicological effects, shikonin may potentially cause nephrotoxicity and skin allergy. The above pharmacodynamics and pharmacokinetics of shikonin have been validated by few clinical trials. In addition, pharmaceutical innovation of shikonin with novel drug delivery system such as nanoparticles, liposomes, microemulsions, nanogel, cyclodextrin complexes, micelles and polymers are beneficial to the development of shikonin-based drugs. CONCLUSIONS Shikonin is a promising phytochemical for drug candidates. Extensive and intensive explorations on shikonin are warranted to expedite the utilization of shikonin-based drugs in the clinical setting.
Collapse
Affiliation(s)
- Qiang Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ting Gong
- Department of Ultrasound, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
| | - Maolun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Han Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Sha Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hui Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
6
|
Pan N, Xia Y, Hou W, Zhu G, Zhang J, Lai W, Zheng Y. Assessment of Skin Photoallergy Risk in Cosmetics Containing Herbal Extract Ingredients. Skin Pharmacol Physiol 2021; 34:253-261. [PMID: 34198300 DOI: 10.1159/000515470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/19/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND/OBJECTIVE In recent years, herbal extracts are becoming increasingly popular ingredients added in cosmetics; however, the assessment of their potential adverse effects on the skin remains unclear. As Coptis, Phellodendron amurense, curcumin, and shikonin are herbs currently used in cosmetic ingredients, the aim of this study was to assess their skin photoallergy (PA) potential and the concentrations at which they could safely be used. METHODS In the patch test, Coptis, P. amurense, curcumin, and shikonin with 5, 10, 25, and 50% concentration were applied on 33 healthy Chinese subjects using the T.R.U.E. TEST® patch test system for 48 h. Photopatch testing was performed on 206 Chinese subjects with predisposed photosensitivity history using the Scandinavian photopatch series, and subjects were irradiated by 50% UVA minimum erythema dose. Photopatch testing of herbal extracts was then performed on subjects diagnosed with PA. RESULTS Thirty-three subjects (14 with type III skin and 19 with type IV skin) completed contact patch testing of herbal extracts. Coptis induced a contact allergy (CA) reaction on 2 subjects at 25% concentration and on 2 subjects at 10% concentration. P. amurense induced a CA reaction on 1 subject at 10% concentration and on 1 subject at 5% concentration. Shikonin induced a stimulating reaction on 1 subject at 10% concentration. Curcumin induced a stimulating reaction on 1 subject at 10% concentration. Of the 206 Chinese subjects predisposed for photosensitivity, 10.19% had PA, 16.5% showed CA, and 1.45% had both PA + CA. PA-induced substances were promethazine hydrochloride (15%, n = 31), chlorpromazine hydrochloride (10.84%, n = 19), perfume mix (5.82%, n = 12), atranorin (3.39%, n = 7), 6-methyl coumarine (3.39%, n = 7), balsam Peru (1.94%, n = 4), fentichlor (1.94%, n = 4), 3,3',4',5-tetrachloro salicylanilide (0.97%, n = 2), hexachlorophene (0.97%, n = 2), chlorhexidine digluconate (0.97%, n = 2), and 4-aminobenzoic acid 2-hydroxy-4-methoxybenzophenone (0.97%, n = 2). Coptis at 25, 10, and 5% concentration and P. amurense, shikonin, and curcumin each at 10 and 5% concentration induced negative photopatch test results in all 10 photosensitive subjects. CONCLUSION We have shown that Coptis, shikonin, or curcumin at 5% concentration in cosmetics could be applied safely without inducing contact allergic and photosensitive reactions on the skin. These findings advance the understanding of herbal extract use in cosmetic ingredients as related to the fields of dermatopharmacology and dermatotoxicology.
Collapse
Affiliation(s)
- Nannan Pan
- Department of Dermato-Venereology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Dermato-Venereology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yue Xia
- Department of Dermato-Venereology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenyi Hou
- Department of Dermato-Venereology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Gouxing Zhu
- Department of Dermato-Venereology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jie Zhang
- Department of Dermato-Venereology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Lai
- Department of Dermato-Venereology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yue Zheng
- Department of Dermato-Venereology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Yumnam S, Subedi L, Kim SY. Glyoxalase System in the Progression of Skin Aging and Skin Malignancies. Int J Mol Sci 2020; 22:ijms22010310. [PMID: 33396745 PMCID: PMC7794849 DOI: 10.3390/ijms22010310] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/19/2022] Open
Abstract
Dicarbonyl compounds, including methylglyoxal (MGO) and glyoxal (GO), are mainly formed as byproducts of glucose metabolism. The main glyoxalase system consists of glyoxalase I and II (Glo1 and Glo2) and is the main enzyme involved in the detoxification of dicarbonyl stress, which occurs as an accumulation of MGO or GO due to decreased activity or expression of Glo1. Dicarbonyl stress is a major cause of cellular and tissue dysfunction that causes various health issues, including diabetes, aging, and cancer. The skin is the largest organ in the body. In this review, we discuss the role of the glyoxalase system in the progression of skin aging, and more importantly, skin malignancies. We also discuss the future prospects of the glyoxalase system in other skin abnormalities such as psoriasis and vitiligo, including hyperpigmentation. Finally, in the present review, we suggest the role of glyoxalase in the progression of skin aging and glyoxalase system as a potential target for anticancer drug development for skin cancer.
Collapse
Affiliation(s)
- Silvia Yumnam
- College of Pharmacy, Gachon University, 191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea; (S.Y.); (L.S.)
| | - Lalita Subedi
- College of Pharmacy, Gachon University, 191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea; (S.Y.); (L.S.)
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, 191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea; (S.Y.); (L.S.)
- Gachon Institute of Pharmaceutical Science, Gachon University, Yeonsu-gu, Incheon 21565, Korea
- Correspondence: ; Tel.: +82-32-820-4931
| |
Collapse
|
8
|
Kim NS, Shin S, Park HS, Kwon HJ, Son HY, Bang OS. Sub-chronic oral toxicity of the aqueous extract of lithospermi radix in Fischer 344 rats. JOURNAL OF ETHNOPHARMACOLOGY 2019; 235:406-414. [PMID: 30703490 DOI: 10.1016/j.jep.2019.01.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/09/2018] [Accepted: 01/27/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lithospermi radix has been prescribed in traditional folk medicine to treat diverse diseases like cancer. AIM OF THE STUDY The present study assessed the sub-chronic oral toxicity of an aqueous extract of lithospermi radix (WLR) in Fischer 344 rats over a period of 13 weeks. MATERIALS AND METHODS The chemical compositions of WLR were analyzed using ultra-high performance liquid chromatography (UHPLC). WLR was daily administered to Fischer 344 rats at 0, 500, 1000, and 2000 mg/kg body weights (bw) for 13 weeks via oral gavage. Changes in mortalities, body weights, and intakes of food and water were monitored during the WLR treatment period. Urine was collected and analyzed 12 h before necropsy. Organ weights, hematological parameters, and plasma biochemical parameters were determined along with histopathological examination. RESULTS When compared with the normal control group, no remarkable toxic signs or parameter variations related with WLR treatment were observed in mortality, body weights, organ weights, food and water consumptions, urinalysis, hematological and plasma biochemical analyses, and histopathological examination. Mortalities observed in one male at 2000 mg/kg bw and three females at 1000 mg/kg bw were not related with WLR treatment because no gross findings of toxicity were observed in both morphological and histological examination. Some significant changes in clinical parameters or histological lesions observed in WLR-treated animals were not related with WLR treatment because the differences were marginal and did not show dose-dependent or directional changes. CONCLUSIONS Based on these findings, the calculated no-observed-adverse-effect-level (NOAEL) in rats was higher than 2000 mg/kg bw.
Collapse
Affiliation(s)
- No Soo Kim
- Clinical Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
| | - Sarah Shin
- Clinical Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
| | - Hee-Seon Park
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Hyo-Jung Kwon
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Hwa-Young Son
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Ok-Sun Bang
- Clinical Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
| |
Collapse
|