1
|
Kim B, Rothenberg ME, Sun X, Bachert C, Artis D, Zaheer R, Deniz Y, Rowe P, Cyr S. Neuroimmune interplay during type 2 inflammation: Symptoms, mechanisms, and therapeutic targets in atopic diseases. J Allergy Clin Immunol 2024; 153:879-893. [PMID: 37634890 PMCID: PMC11215634 DOI: 10.1016/j.jaci.2023.08.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/17/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
Type 2 inflammation is characterized by overexpression and heightened activity of type 2 cytokines, mediators, and cells that drive neuroimmune activation and sensitization to previously subthreshold stimuli. The consequences of altered neuroimmune activity differ by tissue type and disease; they include skin inflammation, sensitization to pruritogens, and itch amplification in atopic dermatitis and prurigo nodularis; airway inflammation and/or hyperresponsiveness, loss of expiratory volume, airflow obstruction and increased mucus production in asthma; loss of sense of smell in chronic rhinosinusitis with nasal polyps; and dysphagia in eosinophilic esophagitis. We describe the neuroimmune interactions that underlie the various sensory and autonomic pathologies in type 2 inflammatory diseases and present recent advances in targeted treatment approaches to reduce type 2 inflammation and its associated symptoms in these diseases. Further research is needed to better understand the neuroimmune mechanisms that underlie chronic, sustained inflammation and its related sensory pathologies in diseases associated with type 2 inflammation.
Collapse
Affiliation(s)
- Brian Kim
- Kimberly and Eric J. Waldman Department of Dermatology, Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY.
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Xin Sun
- Department of Pediatrics, University of California, San Diego, Calif
| | - Claus Bachert
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Muenster, Muenster, Germany; First Affiliated Hospital, Sun Yat-Sen University, International Airway Research Center, Guangzhou, China
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY
| | | | - Yamo Deniz
- Regeneron Pharmaceuticals, Tarrytown, NY
| | | | - Sonya Cyr
- Regeneron Pharmaceuticals, Tarrytown, NY
| |
Collapse
|
2
|
Mohan S, Khan A. Pain and Wound Management in Fungating Merkel Cell Carcinoma within a Palliative Setting: The First Case Report of this Predicament. Indian J Palliat Care 2024; 30:81-84. [PMID: 38633689 PMCID: PMC11021067 DOI: 10.25259/ijpc_259_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/25/2023] [Indexed: 04/19/2024] Open
Abstract
Merkel cell carcinoma (MCC) is a rare type of skin cancer of the neuroendocrine Merkel mechanoreceptors. These cells are closely associated with nerve terminals and, given their proximity to cutaneous tissue, have the propensity to develop into deeply ulcerated, fungating malignancies. These friable wounds are easily irritated, and can cause significant pain for patients. We report a palliative case of severe, fungating MCC of the left scalp where the main contributor to the patient's illness burden is pain. Having been referred to palliative care by the Tissue Viability team, this 90-year-old gentleman was complaining of episodic burning pain during dressing changes, which was associated with radiation to the forehead, nausea, and significant trait anxiety. It was theorised that this pain could be in part due to tension headache, not just nociception, and anticipatory lorazepam was prescribed to relieve trait anxiety. All symptoms were majorly relieved following this administration. A specialist dressing was implemented to absorb exudate and balance moisture, which we believe may have stopped further deterioration of pain. Overall, this report emphasises the need to consider alternative pain aetiologies other than nociception in a presentation that is not found in the literature.
Collapse
Affiliation(s)
- Shaan Mohan
- School of Medicine, College of Life Sciences, Leicester Medical School, Leicester, United Kingdom
| | - Ahmad Khan
- School of Medicine, College of Life Sciences, Leicester Medical School, Leicester, United Kingdom
| |
Collapse
|
3
|
Piccini I, Chéret J, Tsutsumi M, Sakaguchi S, Ponce L, Almeida L, Funk W, Kückelhaus M, Kajiya K, Paus R, Bertolini M. Preliminary evidence that Merkel cells exert chemosensory functions in human epidermis. Exp Dermatol 2023; 32:1848-1855. [PMID: 37587642 DOI: 10.1111/exd.14907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/30/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023]
Abstract
The mechanotransduction of light-touch sensory stimuli is considered to be the main physiological function of epidermal Merkel cells (MCs). Recently, however, MCs have been demonstrated to be also thermo-sensitive, suggesting that their role in skin physiologically extends well beyond mechanosensation. Here, we demonstrate that in healthy human skin epidermal MCs express functional olfactory receptors, namely OR2AT4, just like neighbouring keratinocytes. Selective stimulation of OR2AT4 by topical application of the synthetic odorant, Sandalore®, significantly increased Piccolo protein expression in MCs, as assessed by quantitative immunohistomorphometry, indicating increased vesicle trafficking and recycling, and significantly reduced nerve growth factor (NGF) immunoreactivity within MCs, possibly indicating increased neurotrophin release upon OR2AT4 activation. Live-cell imaging showed that Sandalore® rapidly induces a loss of FFN206-dependent fluorescence in MCs, suggesting OR2AT4-dependent MC depolarization and subsequent vesicle secretion. Yet, in contrast to keratinocytes, OR2AT4 stimulation by Sandalore® altered neither the number nor the proliferation status of MCs. These preliminary ex vivo findings demonstrate that epidermal MCs also exert OR-dependent chemosensory functions in human skin, and invite one to explore whether these newly identified properties are dysregulated in selected skin disorders, for example, in pruritic dermatoses, and if these novel MC functions can be therapeutically targeted to maintain/promote skin health.
Collapse
Affiliation(s)
- Ilaria Piccini
- Monasterium Laboratory, Skin and Hair Research Solutions GmbH, Münster, Germany
| | - Jeremy Chéret
- Monasterium Laboratory, Skin and Hair Research Solutions GmbH, Münster, Germany
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Moe Tsutsumi
- MIRAI Technology Institute, Shiseido Co., Ltd., Yokohama, Japan
| | - Saito Sakaguchi
- MIRAI Technology Institute, Shiseido Co., Ltd., Yokohama, Japan
| | - Leslie Ponce
- Monasterium Laboratory, Skin and Hair Research Solutions GmbH, Münster, Germany
| | - Luis Almeida
- Monasterium Laboratory, Skin and Hair Research Solutions GmbH, Münster, Germany
| | - Wolfgang Funk
- Clinic for Plastic, Aesthetic and Reconstructive Surgery, Munich, Germany
| | | | - Kentaro Kajiya
- MIRAI Technology Institute, Shiseido Co., Ltd., Yokohama, Japan
| | - Ralf Paus
- Monasterium Laboratory, Skin and Hair Research Solutions GmbH, Münster, Germany
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- CUTANEON - Skin & Hair Innovations, Hamburg, Germany
| | - Marta Bertolini
- Monasterium Laboratory, Skin and Hair Research Solutions GmbH, Münster, Germany
| |
Collapse
|
4
|
Georgopoulou A, Hardman D, Thuruthel TG, Iida F, Clemens F. Sensorized Skin With Biomimetic Tactility Features Based on Artificial Cross-Talk of Bimodal Resistive Sensory Inputs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301590. [PMID: 37679081 PMCID: PMC10602557 DOI: 10.1002/advs.202301590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/15/2023] [Indexed: 09/09/2023]
Abstract
Tactility in biological organisms is a faculty that relies on a variety of specialized receptors. The bimodal sensorized skin, featured in this study, combines soft resistive composites that attribute the skin with mechano- and thermoreceptive capabilities. Mimicking the position of the different natural receptors in different depths of the skin layers, a multi-layer arrangement of the soft resistive composites is achieved. However, the magnitude of the signal response and the localization ability of the stimulus change with lighter presses of the bimodal skin. Hence, a learning-based approach is employed that can help achieve predictions about the stimulus using 4500 probes. Similar to the cognitive functions in the human brain, the cross-talk of sensory information between the two types of sensory information allows the learning architecture to make more accurate predictions of localization, depth, and temperature of the stimulus contiguously. Localization accuracies of 1.8 mm, depth errors of 0.22 mm, and temperature errors of 8.2 °C using 8 mechanoreceptive and 8 thermoreceptive sensing elements are achieved for the smaller inter-element distances. Combining the bimodal sensing multilayer skins with the neural network learning approach brings the artificial tactile interface one step closer to imitating the sensory capabilities of biological skin.
Collapse
Affiliation(s)
- Antonia Georgopoulou
- Department of Functional MaterialsEmpa ‐ Swiss Federal Laboratories for Materials Science and Technology8600Switzerland
| | - David Hardman
- Bio‐Inspired Robotics LabDepartment of EngineeringUniversity of CambridgeCB2 1PZUK
| | - Thomas George Thuruthel
- Bio‐Inspired Robotics LabDepartment of EngineeringUniversity of CambridgeCB2 1PZUK
- Department of Computer ScienceUniversity College LondonE20 2AFUK
| | - Fumiya Iida
- Bio‐Inspired Robotics LabDepartment of EngineeringUniversity of CambridgeCB2 1PZUK
| | - Frank Clemens
- Department of Functional MaterialsEmpa ‐ Swiss Federal Laboratories for Materials Science and Technology8600Switzerland
| |
Collapse
|
5
|
Talagas M. Anatomical contacts between sensory neurons and epidermal cells: an unrecognized anatomical network for neuro-immuno-cutaneous crosstalk. Br J Dermatol 2023; 188:176-185. [PMID: 36763869 DOI: 10.1093/bjd/ljac066] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/11/2022] [Accepted: 10/22/2022] [Indexed: 01/09/2023]
Abstract
Sensory neurons innervating the skin are conventionally thought to be the sole transducers of touch, temperature, pain and itch. However, recent studies have shown that keratinocytes - like Merkel cells - act as sensory transducers, whether for innocuous or noxious mechanical, thermal or chemical stimuli, and communicate with intraepidermal free nerve endings via chemical synaptic contacts. This paradigm shift leads to consideration of the whole epidermis as a sensory epithelium. Sensory neurons additionally function as an efferent system. Through the release of neuropeptides in intimate neuroepidermal contact areas, they contribute to epidermal homeostasis and to the pathogenesis of inflammatory skin diseases. To counteract the dogma regarding neurocutaneous interactions, seen exclusively from the perspective of soluble and spreading mediators, this review highlights the essential contribution of the unrecognized anatomical contacts between sensory neurons and epidermal cells (keratinocytes, melanocytes, Langerhans cells and Merkel cells), which take part in the reciprocal dialogue between the skin, nervous system and immune system.
Collapse
Affiliation(s)
- Matthieu Talagas
- University of Brest, LIEN, F-29200 Brest, France.,Department of Dermatology, Brest University Hospital, Brest, France
| |
Collapse
|
6
|
Bataille-Savattier A, Le Gall-Ianotto C, Lebonvallet N, Misery L, Talagas M. Do Merkel complexes initiate mechanical itch? Exp Dermatol 2023; 32:226-234. [PMID: 36208286 DOI: 10.1111/exd.14685] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/12/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022]
Abstract
Itch is a common sensation which is amenable to disabling patients' life under pathological and chronic conditions. Shared assertion easily limits itch to chemical itch, without considering mechanical itch and alloknesis, its pathological counterpart. However, in recent years, our understanding of the mechanical itch pathway, particularly in the central nervous system, has been enhanced. In addition, Merkel complexes, conventionally considered as tactile end organs only responsible for light touch perception due to Piezo2 expressed by both Merkel cells and SA1 Aβ-fibres - low threshold mechanical receptors (LTMRs) -, have recently been identified as modulators of mechanical itch. However, the tactile end organs responsible for initiating mechanical itch remain unexplored. The consensus is that some LTMRs, either SA1 Aβ- or A∂- and C-, are cutaneous initiators of mechanical itch, even though they are not self-sufficient to finely detect and encode light mechanical stimuli into sensory perceptions, which depend on the entire hosting tactile end organ. Consequently, to enlighten our understanding of mechanical itch initiation, this article discusses the opportunity to consider Merkel complexes as potential tactile end organs responsible for initiating mechanical itch, under both healthy and pathological conditions. Their unsuspected modulatory abilities indeed show that they are tuned to detect and encode light mechanical stimuli leading to mechanical itch, especially as they host not only SA1 Aβ-LTMRs but also A∂- and C-fibres.
Collapse
Affiliation(s)
| | | | | | - Laurent Misery
- University of Brest, LIEN, Brest, France.,CHU Brest, Department of Dermatology, Brest, France
| | - Matthieu Talagas
- University of Brest, LIEN, Brest, France.,CHU Brest, Department of Dermatology, Brest, France
| |
Collapse
|
7
|
Oss-Ronen L, Cohen I. Epigenetic regulation and signalling pathways in Merkel cell development. Exp Dermatol 2021; 30:1051-1064. [PMID: 34152646 DOI: 10.1111/exd.14415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/20/2022]
Abstract
Merkel cells are specialized epithelial cells connected to afferent nerve endings responsible for light-touch sensations, formed at specific locations in touch-sensitive regions of the mammalian skin. Although Merkel cells are descendants of the epidermal lineage, little is known about the mechanisms responsible for the development of these unique mechanosensory cells. Recent studies have highlighted that the Polycomb group (PcG) of proteins play a significant role in spatiotemporal regulation of Merkel cell formation. In addition, several of the major signalling pathways involved in skin development have been shown to regulate Merkel cell development as well. Here, we summarize the current understandings of the role of developmental regulators in Merkel cell formation, including the interplay between the epigenetic machinery and key signalling pathways, and the lineage-specific transcription factors involved in the regulation of Merkel cell development.
Collapse
Affiliation(s)
- Liat Oss-Ronen
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Idan Cohen
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
8
|
Abstract
Mechanosensation is the ability to detect dynamic mechanical stimuli (e.g., pressure, stretch, and shear stress) and is essential for a wide variety of processes, including our sense of touch on the skin. How touch is detected and transduced at the molecular level has proved to be one of the great mysteries of sensory biology. A major breakthrough occurred in 2010 with the discovery of a family of mechanically gated ion channels that were coined PIEZOs. The last 10 years of investigation have provided a wealth of information about the functional roles and mechanisms of these molecules. Here we focus on PIEZO2, one of the two PIEZO proteins found in humans and other mammals. We review how work at the molecular, cellular, and systems levels over the past decade has transformed our understanding of touch and led to unexpected insights into other types of mechanosensation beyond the skin.
Collapse
Affiliation(s)
- Marcin Szczot
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, Maryland 20892, USA; .,Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, 583 30 Linköping, Sweden
| | - Alec R Nickolls
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Ruby M Lam
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, Maryland 20892, USA; .,NIH-Brown University Graduate Program in Neuroscience, Providence, Rhode Island 02912, USA
| | - Alexander T Chesler
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, Maryland 20892, USA; .,National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
9
|
Böhm M. In search of the needle in a haystack: Finding a suitable serum biomarker for monitoring disease activity of systemic sclerosis. Exp Dermatol 2021; 30:880-886. [PMID: 34121239 DOI: 10.1111/exd.14403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Markus Böhm
- Department of Dermatology, University of Münster, Münster, Germany
| |
Collapse
|
10
|
Li Y, Zhang W, Sun T, Liu B, Manyande A, Xu W, Xiang HB. The Role of Gut Microbiota in Chronic Itch-Evoked Novel Object Recognition-Related Cognitive Dysfunction in Mice. Front Med (Lausanne) 2021; 8:616489. [PMID: 33614682 PMCID: PMC7892771 DOI: 10.3389/fmed.2021.616489] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/06/2021] [Indexed: 01/01/2023] Open
Abstract
The high incidence of patients with chronic itch highlights the importance of fundamental research. Recent advances in the interface of gut microbiota have shed new light into exploring this phenomenon. However, it is unknown whether gut microbiota plays a role in chronic itch in rodents with or without cognitive dysfunction. In this study, the role of gut microbiota in diphenylcyclopropenone (DCP)-evoked chronic itch was investigated in mice and hierarchical cluster analysis of novel object recognition test (ORT) results were used to classify DCP-evoked itch model in mice with or without cognitive dysfunction (CD)-like phenotype and 16S ribosomal RNA (rRNA) gene sequencing was used to compare gut bacterial composition between CD (Susceptible) and Non-CD phenotypes (Unsusceptible) in chronic itch mice. Results showed that the microbiota composition was significantly altered by DCP-evoked chronic itch and chronic itch induced novel object recognition-related CD. However, abnormal gut microbiota composition induced by chronic itch may not be correlated with novel object recognition-related CD.
Collapse
Affiliation(s)
- Yujuan Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wencui Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tainning Sun
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Baowen Liu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, London, United Kingdom
| | - Weiguo Xu
- Department of Orthopedics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Bing Xiang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Talagas M, Lebonvallet N, Leschiera R, Sinquin G, Elies P, Haftek M, Pennec JP, Ressnikoff D, La Padula V, Le Garrec R, L'herondelle K, Mignen O, Le Pottier L, Kerfant N, Reux A, Marcorelles P, Misery L. Keratinocytes Communicate with Sensory Neurons via Synaptic-like Contacts. Ann Neurol 2020; 88:1205-1219. [PMID: 32951274 DOI: 10.1002/ana.25912] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Pain, temperature, and itch are conventionally thought to be exclusively transduced by the intraepidermal nerve endings. Although recent studies have shown that epidermal keratinocytes also participate in sensory transduction, the mechanism underlying keratinocyte communication with intraepidermal nerve endings remains poorly understood. We sought to demonstrate the synaptic character of the contacts between keratinocytes and sensory neurons and their involvement in sensory communication between keratinocytes and sensory neurons. METHODS Contacts were explored by morphological, molecular, and functional approaches in cocultures of epidermal keratinocytes and sensory neurons. To interrogate whether structures observed in vitro were also present in the human epidermis, in situ correlative light electron microscopy was performed on human skin biopsies. RESULTS Epidermal keratinocytes dialogue with sensory neurons through en passant synaptic-like contacts. These contacts have the ultrastructural features and molecular hallmarks of chemical synaptic-like contacts: narrow intercellular cleft, keratinocyte synaptic vesicles expressing synaptophysin and synaptotagmin 1, and sensory information transmitted from keratinocytes to sensory neurons through SNARE-mediated (syntaxin1) vesicle release. INTERPRETATION By providing selective communication between keratinocytes and sensory neurons, synaptic-like contacts are the hubs of a 2-site receptor. The permanent epidermal turnover, implying a specific en passant structure and high plasticity, may have delayed their identification, thereby contributing to the long-held concept of nerve endings passing freely between keratinocytes. The discovery of keratinocyte-sensory neuron synaptic-like contacts may call for a reassessment of basic assumptions in cutaneous sensory perception and sheds new light on the pathophysiology of pain and itch as well as the physiology of touch. ANN NEUROL 2020;88:1205-1219.
Collapse
Affiliation(s)
- Matthieu Talagas
- Univ Brest, LIEN, Brest University, F-29200 Brest, France.,Department of Pathology, Brest University Hospital, Brest, France.,Univ Brest, Brest Institute of Health Agro Matter, Brest University, F-29200 Brest, France
| | - Nicolas Lebonvallet
- Univ Brest, LIEN, Brest University, F-29200 Brest, France.,Univ Brest, Brest Institute of Health Agro Matter, Brest University, F-29200 Brest, France
| | - Raphael Leschiera
- Univ Brest, LIEN, Brest University, F-29200 Brest, France.,Univ Brest, Brest Institute of Health Agro Matter, Brest University, F-29200 Brest, France
| | - Gerard Sinquin
- Univ Brest, Imagery and Microscopic Measures Facility, Brest University, F-29200 Brest, France
| | - Philippe Elies
- Univ Brest, Imagery and Microscopic Measures Facility, Brest University, F-29200 Brest, France
| | - Marek Haftek
- Laboratory of Tissue Biology and Therapeutic Engineering, University of Lyon 1, UMR 5305 CNRS-UCBL1, Lyon, France
| | - Jean-Pierre Pennec
- Univ Brest, Brest Institute of Health Agro Matter, Brest University, F-29200 Brest, France.,Univ Brest, Movement Sport and Health (EA1274), Brest University, F-29200 Brest, France
| | - Denis Ressnikoff
- East Lyon Center of Quantitative Imagery, University of Lyon 1, INSERM US 7-CNRS UMS 3453, Lyon, France
| | - Veronica La Padula
- Technological Center of Microstructures, University of Lyon 1, Lyon, France
| | - Raphaele Le Garrec
- Univ Brest, LIEN, Brest University, F-29200 Brest, France.,Univ Brest, Brest Institute of Health Agro Matter, Brest University, F-29200 Brest, France
| | - Killian L'herondelle
- Univ Brest, LIEN, Brest University, F-29200 Brest, France.,Univ Brest, Brest Institute of Health Agro Matter, Brest University, F-29200 Brest, France
| | - Olivier Mignen
- Univ Brest, Brest Institute of Health Agro Matter, Brest University, F-29200 Brest, France.,Univ Brest, INSERM, UMR 1227, Brest University, F-29200 Brest, France
| | - Laetitia Le Pottier
- Univ Brest, Brest Institute of Health Agro Matter, Brest University, F-29200 Brest, France.,Univ Brest, INSERM, UMR 1227, Brest University, F-29200 Brest, France
| | - Nathalie Kerfant
- Department of Plastic, Reconstructive, and Esthetic Surgery, Brest University Hospital, Brest, France
| | - Alexia Reux
- Univ Brest, LIEN, Brest University, F-29200 Brest, France
| | - Pascale Marcorelles
- Univ Brest, LIEN, Brest University, F-29200 Brest, France.,Department of Pathology, Brest University Hospital, Brest, France.,Univ Brest, Brest Institute of Health Agro Matter, Brest University, F-29200 Brest, France
| | - Laurent Misery
- Univ Brest, LIEN, Brest University, F-29200 Brest, France.,Univ Brest, Brest Institute of Health Agro Matter, Brest University, F-29200 Brest, France.,Department of Dermatology, Brest University Hospital, Brest, France
| |
Collapse
|
12
|
Kahremany S, Hofmann L, Gruzman A, Cohen G. Advances in Understanding the Initial Steps of Pruritoceptive Itch: How the Itch Hits the Switch. Int J Mol Sci 2020; 21:ijms21144883. [PMID: 32664385 PMCID: PMC7402353 DOI: 10.3390/ijms21144883] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
Pruritoceptive (dermal) itch was long considered an accompanying symptom of diseases, a side effect of drug applications, or a temporary sensation induced by invading pruritogens, as produced by the stinging nettle. Due to extensive research in recent years, it was possible to provide detailed insights into the mechanism of itch mediation and modulation. Hence, it became apparent that pruritus is a complex symptom or disease in itself, which requires particular attention to improve patients’ health. Here, we summarize recent findings in pruritoceptive itch, including how this sensation is triggered and modulated by diverse endogenous and exogenous pruritogens and their receptors. A differentiation between mediating pruritogen and modulating pruritogen seems to be of great advantage to understand and decipher the molecular mechanism of itch perception. Only a comprehensive view on itch sensation will provide a solid basis for targeting this long-neglected adverse sensation accompanying numerous diseases and many drug side effects. Finally, we identify critical aspects of itch perception that require future investigation.
Collapse
Affiliation(s)
- Shirin Kahremany
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (L.H.); (A.G.)
- The Skin Research Institute, The Dead Sea and Arava Science Center, Masada 86910, Israel;
- Correspondence:
| | - Lukas Hofmann
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (L.H.); (A.G.)
| | - Arie Gruzman
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (L.H.); (A.G.)
| | - Guy Cohen
- The Skin Research Institute, The Dead Sea and Arava Science Center, Masada 86910, Israel;
- Ben-Gurion University of the Negev, Eilat Campus, Eilat 8855630, Israel
| |
Collapse
|
13
|
Ständer S, Yosipovitch G. Switch to Itch—The many novel facets of pruritus research. Exp Dermatol 2019; 28:1371-1372. [DOI: 10.1111/exd.14058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sonja Ständer
- Center for Chronic Pruritus Department of Dermatology University Hospital of Münster Germany
| | - Gil Yosipovitch
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery Miami Itch Center Miller School of Medicine Miami Florida
| |
Collapse
|