1
|
Mol V, Bennett M, Sánchez BJ, Lisowska BK, Herrgård MJ, Nielsen AT, Leak DJ, Sonnenschein N. Genome-scale metabolic modeling of P. thermoglucosidasius NCIMB 11955 reveals metabolic bottlenecks in anaerobic metabolism. Metab Eng 2021; 65:123-134. [PMID: 33753231 DOI: 10.1016/j.ymben.2021.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/01/2021] [Indexed: 12/27/2022]
Abstract
Parageobacillus thermoglucosidasius represents a thermophilic, facultative anaerobic bacterial chassis, with several desirable traits for metabolic engineering and industrial production. To further optimize strain productivity, a systems level understanding of its metabolism is needed, which can be facilitated by a genome-scale metabolic model. Here, we present p-thermo, the most complete, curated and validated genome-scale model (to date) of Parageobacillus thermoglucosidasius NCIMB 11955. It spans a total of 890 metabolites, 1175 reactions and 917 metabolic genes, forming an extensive knowledge base for P. thermoglucosidasius NCIMB 11955 metabolism. The model accurately predicts aerobic utilization of 22 carbon sources, and the predictive quality of internal fluxes was validated with previously published 13C-fluxomics data. In an application case, p-thermo was used to facilitate more in-depth analysis of reported metabolic engineering efforts, giving additional insight into fermentative metabolism. Finally, p-thermo was used to resolve a previously uncharacterised bottleneck in anaerobic metabolism, by identifying the minimal required supplemented nutrients (thiamin, biotin and iron(III)) needed to sustain anaerobic growth. This highlights the usefulness of p-thermo for guiding the generation of experimental hypotheses and for facilitating data-driven metabolic engineering, expanding the use of P. thermoglucosidasius as a high yield production platform.
Collapse
Affiliation(s)
- Viviënne Mol
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Martyn Bennett
- The Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom; The Centre for Sustainable Chemical Technologies (CSCT), University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Benjamín J Sánchez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark; Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Beata K Lisowska
- The Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Markus J Herrgård
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark; BioInnovation Institute, Copenhagen N, Denmark
| | - Alex Toftgaard Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - David J Leak
- The Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom; The Centre for Sustainable Chemical Technologies (CSCT), University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom.
| | - Nikolaus Sonnenschein
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
2
|
Rozenberg M, Lansky S, Shoham Y, Shoham G. Spectroscopic FTIR and NMR study of the interactions of sugars with proteins. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 222:116861. [PMID: 31255896 DOI: 10.1016/j.saa.2019.02.085] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/20/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
FTIR and NMR spectra were measured in parallel for specific two-components mixtures of various proteins with different sugar molecules, such as arabinose, glucose, and sucrose. In the FTIR spectra of arabinose with some of these proteins, the bands assigned to the vibrational modes of the CH and COH groups disappeared, and new ones, related to an arabinose-protein CN mode, appeared. Similar changes were observed in the FTIR spectra of lyophilized mixtures of arabinose with different amino acids. In additional FTIR spectra, measured for other protein-sugar mixtures, the bands correlated to the ring modes of arabinose, in the range 1150-1000 cm-1, disappeared, and two new very strong narrow bands became dominant, indicating ring opening or some kind of arabinose decomposition. Contrary to the prevailing opinion that complexes between sugars and proteins are formed mainly by hydrogen bonds, the IR and NMR spectra of the sugar-protein mixtures studied here suggest that significant chemical reactions also take place between the interacting sugar and the protein. Two types of sugar-protein chemical reactions can be distinguished on the basis of these IR spectra, leading to the formation of a new CN bond and to the decomposition of sugar skeletal bonds. The new IR bands suggest that the latter reaction results in the formation of new bonds, which are related to new polyether moieties. These results highlight the often ignored non-specific chemical reactions that take place between sugars and proteins, and demonstrate that the simultaneous application of FTIR and NMR spectroscopic analyses can detect and further characterize these types of sugar-protein interactions.
Collapse
Affiliation(s)
- Mark Rozenberg
- Institute of Chemistry, The Hebrew University, Jerusalem 91904, Israel.
| | - Shifra Lansky
- Institute of Chemistry, The Hebrew University, Jerusalem 91904, Israel
| | - Yuval Shoham
- Department of Biotechnology and Food Engineering, Technion, Haifa 32000, Israel
| | - Gil Shoham
- Institute of Chemistry, The Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
4
|
Willis JD, Smith JA, Mazarei M, Zhang JY, Turner GB, Decker SR, Sykes RW, Poovaiah CR, Baxter HL, Mann DGJ, Davis MF, Udvardi MK, Peña MJ, Backe J, Bar-Peled M, Stewart CN. Downregulation of a UDP-Arabinomutase Gene in Switchgrass ( Panicum virgatum L.) Results in Increased Cell Wall Lignin While Reducing Arabinose-Glycans. FRONTIERS IN PLANT SCIENCE 2016; 7:1580. [PMID: 27833622 PMCID: PMC5081414 DOI: 10.3389/fpls.2016.01580] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/06/2016] [Indexed: 05/09/2023]
Abstract
Background: Switchgrass (Panicum virgatum L.) is a C4 perennial prairie grass and a dedicated feedstock for lignocellulosic biofuels. Saccharification and biofuel yields are inhibited by the plant cell wall's natural recalcitrance against enzymatic degradation. Plant hemicellulose polysaccharides such as arabinoxylans structurally support and cross-link other cell wall polymers. Grasses predominately have Type II cell walls that are abundant in arabinoxylan, which comprise nearly 25% of aboveground biomass. A primary component of arabinoxylan synthesis is uridine diphosphate (UDP) linked to arabinofuranose (Araf). A family of UDP-arabinopyranose mutase (UAM)/reversible glycosylated polypeptides catalyze the interconversion between UDP-arabinopyranose (UDP-Arap) and UDP-Araf. Results: The expression of a switchgrass arabinoxylan biosynthesis pathway gene, PvUAM1, was decreased via RNAi to investigate its role in cell wall recalcitrance in the feedstock. PvUAM1 encodes a switchgrass homolog of UDP-arabinose mutase, which converts UDP-Arap to UDP-Araf. Southern blot analysis revealed each transgenic line contained between one to at least seven T-DNA insertions, resulting in some cases, a 95% reduction of native PvUAM1 transcript in stem internodes. Transgenic plants had increased pigmentation in vascular tissues at nodes, but were otherwise similar in morphology to the non-transgenic control. Cell wall-associated arabinose was decreased in leaves and stems by over 50%, but there was an increase in cellulose. In addition, there was a commensurate change in arabinose side chain extension. Cell wall lignin composition was altered with a concurrent increase in lignin content and transcript abundance of lignin biosynthetic genes in mature tillers. Enzymatic saccharification efficiency was unchanged in the transgenic plants relative to the control. Conclusion: Plants with attenuated PvUAM1 transcript had increased cellulose and lignin in cell walls. A decrease in cell wall-associated arabinose was expected, which was likely caused by fewer Araf residues in the arabinoxylan. The decrease in arabinoxylan may cause a compensation response to maintain cell wall integrity by increasing cellulose and lignin biosynthesis. In cases in which increased lignin is desired, e.g., feedstocks for carbon fiber production, downregulated UAM1 coupled with altered expression of other arabinoxylan biosynthesis genes might result in even higher production of lignin in biomass.
Collapse
Affiliation(s)
- Jonathan D. Willis
- Department of Plant Sciences, University of Tennessee, KnoxvilleTN, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak RidgeTN, USA
| | - James A. Smith
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak RidgeTN, USA
- Complex Carbohydrate Research Center, University of Georgia, AthensGA, USA
| | - Mitra Mazarei
- Department of Plant Sciences, University of Tennessee, KnoxvilleTN, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak RidgeTN, USA
| | - Ji-Yi Zhang
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak RidgeTN, USA
- The Samuel Roberts Noble Foundation, ArdmoreOK, USA
| | - Geoffrey B. Turner
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak RidgeTN, USA
- The National Renewable Energy Laboratory, GoldenCO, USA
| | - Stephen R. Decker
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak RidgeTN, USA
- The National Renewable Energy Laboratory, GoldenCO, USA
| | - Robert W. Sykes
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak RidgeTN, USA
- The National Renewable Energy Laboratory, GoldenCO, USA
| | - Charleson R. Poovaiah
- Department of Plant Sciences, University of Tennessee, KnoxvilleTN, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak RidgeTN, USA
| | - Holly L. Baxter
- Department of Plant Sciences, University of Tennessee, KnoxvilleTN, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak RidgeTN, USA
| | - David G. J. Mann
- Department of Plant Sciences, University of Tennessee, KnoxvilleTN, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak RidgeTN, USA
| | - Mark F. Davis
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak RidgeTN, USA
- The National Renewable Energy Laboratory, GoldenCO, USA
| | - Michael K. Udvardi
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak RidgeTN, USA
- The Samuel Roberts Noble Foundation, ArdmoreOK, USA
| | - Maria J. Peña
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak RidgeTN, USA
- Complex Carbohydrate Research Center, University of Georgia, AthensGA, USA
| | - Jason Backe
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak RidgeTN, USA
- Complex Carbohydrate Research Center, University of Georgia, AthensGA, USA
| | - Maor Bar-Peled
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak RidgeTN, USA
- Complex Carbohydrate Research Center, University of Georgia, AthensGA, USA
- Plant Biology, University of Georgia, AthensGA, USA
- *Correspondence: Maor Bar-Peled, C. N. Stewart Jr.,
| | - C. N. Stewart
- Department of Plant Sciences, University of Tennessee, KnoxvilleTN, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak RidgeTN, USA
- *Correspondence: Maor Bar-Peled, C. N. Stewart Jr.,
| |
Collapse
|
5
|
Abstract
The genus Geobacillus comprises a group of Gram-positive thermophilic bacteria, including obligate aerobes, denitrifiers, and facultative anaerobes that can grow over a range of 45-75°C. Originally classified as group five Bacillus spp., strains of Bacillus stearothermophilus came to prominence as contaminants of canned food and soon became the organism of choice for comparative studies of metabolism and enzymology between mesophiles and thermophiles. More recently, their catabolic versatility, particularly in the degradation of hemicellulose and starch, and rapid growth rates have raised their profile as organisms with potential for second-generation (lignocellulosic) biorefineries for biofuel or chemical production. The continued development of genetic tools to facilitate both fundamental investigation and metabolic engineering is now helping to realize this potential, for both metabolite production and optimized catabolism. In addition, this catabolic versatility provides a range of useful thermostable enzymes for industrial application. A number of genome-sequencing projects have been completed or are underway allowing comparative studies. These reveal a significant amount of genome rearrangement within the genus, the presence of large genomic islands encompassing all the hemicellulose utilization genes and a genomic island incorporating a set of long chain alkane monooxygenase genes. With G+C contents of 45-55%, thermostability appears to derive in part from the ability to synthesize protamine and spermine, which can condense DNA and raise its Tm.
Collapse
|