1
|
Kekilli D, Petersen CA, Pixton DA, Ghafoor DD, Abdullah GH, Dworkowski FSN, Wilson MT, Heyes DJ, Hardman SJO, Murphy LM, Strange RW, Scrutton NS, Andrew CR, Hough MA. Engineering proximal vs. distal heme-NO coordination via dinitrosyl dynamics: implications for NO sensor design. Chem Sci 2017; 8:1986-1994. [PMID: 28451315 PMCID: PMC5390784 DOI: 10.1039/c6sc04190f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/08/2016] [Indexed: 01/18/2023] Open
Abstract
Proximal vs. distal heme-NO coordination is a novel strategy for selective gas response in heme-based NO-sensors. In the case of Alcaligenes xylosoxidans cytochrome c' (AXCP), formation of a transient distal 6cNO complex is followed by scission of the trans Fe-His bond and conversion to a proximal 5cNO product via a putative dinitrosyl species. Here we show that replacement of the AXCP distal Leu16 residue with smaller or similar sized residues (Ala, Val or Ile) traps the distal 6cNO complex, whereas Leu or Phe residues lead to a proximal 5cNO product with a transient or non-detectable distal 6cNO precursor. Crystallographic, spectroscopic, and kinetic measurements of 6cNO AXCP complexes show that increased distal steric hindrance leads to distortion of the Fe-N-O angle and flipping of the heme 7-propionate. However, it is the kinetic parameters of the distal NO ligand that determine whether 6cNO or proximal 5cNO end products are formed. Our data support a 'balance of affinities' mechanism in which proximal 5cNO coordination depends on relatively rapid release of the distal NO from the dinitrosyl precursor. This mechanism, which is applicable to other proteins that form transient dinitrosyls, represents a novel strategy for 5cNO formation that does not rely on an inherently weak Fe-His bond. Our data suggest a general means of engineering selective gas response into biologically-derived gas sensors in synthetic biology.
Collapse
Affiliation(s)
- Demet Kekilli
- School of Biological Sciences , University of Essex , Wivenhoe Park , Colchester , Essex CO4 3SQ , UK .
| | - Christine A Petersen
- Department of Chemistry and Biochemistry , Eastern Oregon University , La Grande , Oregon 97850 , USA .
| | - David A Pixton
- Department of Chemistry and Biochemistry , Eastern Oregon University , La Grande , Oregon 97850 , USA .
| | - Dlzar D Ghafoor
- Faculty of Science and Education Science , University of Sulaimani , Sulaymaniyah , Iraq
| | | | | | - Michael T Wilson
- School of Biological Sciences , University of Essex , Wivenhoe Park , Colchester , Essex CO4 3SQ , UK .
| | - Derren J Heyes
- Manchester Institute of Biotechnology , 131 Princess Street , Manchester M1 7DN , UK
| | - Samantha J O Hardman
- Manchester Institute of Biotechnology , 131 Princess Street , Manchester M1 7DN , UK
| | - Loretta M Murphy
- School of Chemistry , Bangor University , Bangor , Gwynedd , Wales LL57 2UW , UK
| | - Richard W Strange
- School of Biological Sciences , University of Essex , Wivenhoe Park , Colchester , Essex CO4 3SQ , UK .
- Molecular Biophysics Group , Institute of Integrative Biology , Faculty of Health and Life Sciences , University of Liverpool , Liverpool , L69 7ZB , UK
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology , 131 Princess Street , Manchester M1 7DN , UK
| | - Colin R Andrew
- Department of Chemistry and Biochemistry , Eastern Oregon University , La Grande , Oregon 97850 , USA .
| | - Michael A Hough
- School of Biological Sciences , University of Essex , Wivenhoe Park , Colchester , Essex CO4 3SQ , UK .
| |
Collapse
|
2
|
Andrew CR, Petrova ON, Lamarre I, Lambry JC, Rappaport F, Negrerie M. The Dynamics Behind the Affinity: Controlling Heme-Gas Affinity via Geminate Recombination and Heme Propionate Conformation in the NO Carrier Cytochrome c'. ACS Chem Biol 2016; 11:3191-3201. [PMID: 27709886 DOI: 10.1021/acschembio.6b00599] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nitric oxide (NO) sensors are heme proteins which may also bind CO and O2. Control of heme-gas affinity and their discrimination are achieved by the structural properties and reactivity of the heme and its distal and proximal environments, leading to several energy barriers. In the bacterial NO sensor cytochrome c' from Alcaligenes xylosoxidans (AXCP), the single Leu16Ala distal mutation boosts the affinity for gas ligands by a remarkable 106-108-fold, transforming AXCP from one of the lowest affinity gas binding proteins to one of the highest. Here, we report the dynamics of diatomics after photodissociation from wild type and L16A-AXCP over 12 orders of magnitude in time. For the L16A variant, the picosecond geminate rebinding of both CO and NO appears with an unprecedented 100% yield, and no exit of these ligands from protein to solvent could be observed. Molecular dynamic simulations saliently demonstrate that dissociated CO stays within 4 Å from Fe2+, in contrast to wild-type AXCP. The L16A mutation confers a heme propionate conformation and docking site which traps the diatomics, maximizing the probability of recombination and directly explaining the ultrahigh affinities for CO, NO, and O2. Overall, our results point to a novel mechanism for modulating heme-gas affinities in proteins.
Collapse
Affiliation(s)
- Colin R. Andrew
- Department
of Chemistry and Biochemistry, Eastern Oregon University, La Grande, Oregon 97850, United States
| | - Olga N. Petrova
- Laboratoire
d’Optique et Biosciences, INSERM, Ecole Polytechnique, 91128 Palaiseau, France
| | - Isabelle Lamarre
- Laboratoire
d’Optique et Biosciences, INSERM, Ecole Polytechnique, 91128 Palaiseau, France
| | - Jean-Christophe Lambry
- Laboratoire
d’Optique et Biosciences, INSERM, Ecole Polytechnique, 91128 Palaiseau, France
| | - Fabrice Rappaport
- Laboratoire
de Physiologie Membranaire et Moléculaire du Chloroplaste, CNRS, Université Pierre et Marie Curie, 75005 Paris, France
| | - Michel Negrerie
- Laboratoire
d’Optique et Biosciences, INSERM, Ecole Polytechnique, 91128 Palaiseau, France
| |
Collapse
|
3
|
Greetham GM, Donaldson PM, Nation C, Sazanovich IV, Clark IP, Shaw DJ, Parker AW, Towrie M. A 100 kHz Time-Resolved Multiple-Probe Femtosecond to Second Infrared Absorption Spectrometer. APPLIED SPECTROSCOPY 2016; 70:645-653. [PMID: 26887988 DOI: 10.1177/0003702816631302] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/05/2015] [Indexed: 06/05/2023]
Abstract
We present a dual-amplifier laser system for time-resolved multiple-probe infrared (IR) spectroscopy based on the ytterbium potassium gadolinium tungstate (Yb:KGW) laser medium. Comparisons are made between the ytterbium-based technology and titanium sapphire laser systems for time-resolved IR spectroscopy measurements. The 100 kHz probing system provides new capability in time-resolved multiple-probe experiments, as more information is obtained from samples in a single experiment through multiple-probing. This method uses the high repetition-rate probe pulses to repeatedly measure spectra at 10 µs intervals following excitation allowing extended timescales to be measured routinely along with ultrafast data. Results are presented showing the measurement of molecular dynamics over >10 orders of magnitude in timescale, out to 20 ms, with an experimental time response of <200 fs. The power of multiple-probing is explored through principal component analysis of repeating probe measurements as a novel method for removing noise and measurement artifacts.
Collapse
Affiliation(s)
- Gregory M Greetham
- Central Laser Facility, Science and Technology Facilities Council, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, UK
| | - Paul M Donaldson
- Central Laser Facility, Science and Technology Facilities Council, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, UK
| | - Charlie Nation
- Central Laser Facility, Science and Technology Facilities Council, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, UK
| | - Igor V Sazanovich
- Central Laser Facility, Science and Technology Facilities Council, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, UK
| | - Ian P Clark
- Central Laser Facility, Science and Technology Facilities Council, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, UK
| | - Daniel J Shaw
- Central Laser Facility, Science and Technology Facilities Council, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, UK Department of Physics, University of Strathclyde, SUPA, Glasgow, UK
| | - Anthony W Parker
- Central Laser Facility, Science and Technology Facilities Council, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, UK
| | - Michael Towrie
- Central Laser Facility, Science and Technology Facilities Council, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, UK
| |
Collapse
|
4
|
Kato Y, Fujii S, Kuribayashi TA, Masanari M, Sambongi Y. Thermal stability of cytochrome c′ from mesophilic Shewanella amazonensis. Biosci Biotechnol Biochem 2015; 79:1125-9. [DOI: 10.1080/09168451.2015.1015956] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract
Cytochrome c′ (SACP) from mesophilic Shewanella amazonensis, growing optimally at 37 °C, was thermally more stable than cytochrome c′ (AVCP) from mesophilic Allochromatium vinosum, growing optimally at 25 °C. In contrast, SACP was less stable than cytochrome c′ (PHCP) from thermophilic Hydrogenophilus thermoluteolus, growing optimally at 52 °C. Although only 28% of the SACP amino acid sequence was identical to those of AVCP and PHCP, the latter two being 55% identical, the overall main chain structures of the three cytochromes c′ were similar, and SACP exhibited thermal stability intermediate between those of AVCP and PHCP. For these three proteins, the higher the stability is, the lesser the number of Gly residues in the putative α-helical regions is. Cytochromes c′ including the present three are suitable for examining the protein stabilization mechanisms, because they are structurally similar and available from environments with a wide range of temperatures.
Collapse
Affiliation(s)
- Yuki Kato
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Sotaro Fujii
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Taka-aki Kuribayashi
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Misa Masanari
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Yoshihiro Sambongi
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
5
|
Servid AE, McKay AL, Davis CA, Garton EM, Manole A, Dobbin PS, Hough MA, Andrew CR. Resonance Raman Spectra of Five-Coordinate Heme-Nitrosyl Cytochromes c′: Effect of the Proximal Heme-NO Environment. Biochemistry 2015; 54:3320-7. [DOI: 10.1021/acs.biochem.5b00227] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amy E. Servid
- Department of Chemistry & Biochemistry, Eastern Oregon University, La Grande, Oregon 97850, United States
| | - Alison L. McKay
- Department of Chemistry & Biochemistry, Eastern Oregon University, La Grande, Oregon 97850, United States
| | - Cherry A. Davis
- Department of Chemistry & Biochemistry, Eastern Oregon University, La Grande, Oregon 97850, United States
| | - Elizabeth M. Garton
- Department of Chemistry & Biochemistry, Eastern Oregon University, La Grande, Oregon 97850, United States
| | - Andreea Manole
- School
of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, U.K
| | - Paul S. Dobbin
- School
of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, U.K
| | - Michael A. Hough
- School
of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, U.K
| | - Colin R. Andrew
- Department of Chemistry & Biochemistry, Eastern Oregon University, La Grande, Oregon 97850, United States
| |
Collapse
|
6
|
Hough MA, Andrew CR. Cytochromes c': Structure, Reactivity and Relevance to Haem-Based Gas Sensing. Adv Microb Physiol 2015; 67:1-84. [PMID: 26616515 DOI: 10.1016/bs.ampbs.2015.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cytochromes c' are a group of class IIa cytochromes with pentacoordinate haem centres and are found in photosynthetic, denitrifying and methanotrophic bacteria. Their function remains unclear, although roles in nitric oxide (NO) trafficking during denitrification or in cellular defence against nitrosoative stress have been proposed. Cytochromes c' are typically dimeric with each c-type haem-containing monomer folding as a four-α-helix bundle. Their hydrophobic and crowded distal sites impose severe restrictions on the binding of distal ligands, including diatomic gases. By contrast, NO binds to the proximal haem face in a similar manner to that of the eukaryotic NO sensor, soluble guanylate cyclase and bacterial analogues. In this review, we focus on how structural features of cytochromes c' influence haem spectroscopy and reactivity with NO, CO and O2. We also discuss the relevance of cytochrome c' to understanding the mechanisms of gas binding to haem-based sensor proteins.
Collapse
|