1
|
Deng S, Wu Y, Huang S, Yang X. Novel insights into the roles of migrasome in cancer. Discov Oncol 2024; 15:166. [PMID: 38748047 PMCID: PMC11096295 DOI: 10.1007/s12672-024-00942-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 03/18/2024] [Indexed: 05/18/2024] Open
Abstract
Cell migration, a hallmark of cancer malignancy, plays a critical role in cancers. Improperly initiated or misdirected cell migration can lead to invasive metastatic cancer. Migrasomes are newly discovered vesicular cellular organelles produced by migrating cells and depending on cell migration. Four marker proteins [NDST1 (bifunctionalheparan sulfate N-deacetylase/N-sulfotransferase 1), EOGT (Epidermal growth factor domains pecific O-linked N-acetylglucosaminetransferase), CPQ (carboxypeptidase Q), and PIGK (phosphatidylinositol glycan anchor biosynthesis, class K)] of migrasomes were successfully identified. There are three marker proteins (NDST1, PIGK, and EOGT) of migrasome expressed in cancer. In this review, we will discuss the process of migrasome discovery, the formation of migrasome, the possible functions of migrasome, and the differences between migrasomes and exosomes, especially, the biological functions of migrasome marker proteins in cancer, and discuss some possible roles of migrasomes in cancer. We speculate that migrasomes and migracytosis can play key roles in regulating the development of cancer.
Collapse
Affiliation(s)
- Sijun Deng
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang , 421001, Hunan, People's Republic of China
| | - Yiwen Wu
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang , 421001, Hunan, People's Republic of China
| | - Sheng Huang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang , 421001, Hunan, People's Republic of China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang , 421001, Hunan, People's Republic of China.
| |
Collapse
|
2
|
Ari Yuka S, Yilmaz A. Decoding dynamic miRNA:ceRNA interactions unveils therapeutic insights and targets across predominant cancer landscapes. BioData Min 2024; 17:11. [PMID: 38627780 PMCID: PMC11022475 DOI: 10.1186/s13040-024-00362-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
Competing endogenous RNAs play key roles in cellular molecular mechanisms through cross-talk in post-transcriptional interactions. Studies on ceRNA cross-talk, which is particularly dependent on the abundance of free transcripts, generally involve large- and small-scale studies involving the integration of transcriptomic data from tissues and correlation analyses. This abundance-dependent nature of ceRNA interactions suggests that tissue- and condition-specific ceRNA dynamics may fluctuate. However, there are no comprehensive studies investigating the ceRNA interactions in normal tissue, ceRNAs that are lost and/or appear in cancerous tissues or their interactions. In this study, we comprehensively analyzed the tumor-specific ceRNA fluctuations observed in the three highest-incidence cancers, LUAD, PRAD, and BRCA, compared to healthy lung, prostate, and breast tissues, respectively. Our observations pertaining to tumor-specific competing endogenous RNA (ceRNA) interactions revealed that, in the cases of lung adenocarcinoma (LUAD), prostate adenocarcinoma (PRAD), and breast invasive carcinoma (BRCA), 3,204, 1,233, and 406 ceRNAs, respectively, engage in post-transcriptional intercommunication within tumor tissues, in contrast to their absence in corresponding healthy samples. We also found that 90 ceRNAs are shared by the three cancer types and that these ceRNAs participate in ceRNA interactions in tumor tissues compared to those in normal tissues. Among the 90 ceRNAs that directly interact with miRNAs, we uncovered a core network of 165 miRNAs and 63 ceRNAs that should be considered in RNA-targeted and RNA-mediated approaches in future studies and could be used in these three aggressive cancer types. More specifically, in this core interaction network, ceRNAs such as GALNT7, KLF9, and DAB2 and miRNAs like miR-106a/b-5p, miR-20a-5p, and miR-519d-3p may have potential as common targets in the three critical cancers. In contrast to conventional methods that construct ceRNA networks using differentially expressed genes compared to normal tissues, our proposed approach identifies ceRNA players by considering their context within the ceRNA:miRNA interactions. Our results have the potential to reveal distinct and common ceRNA interactions in cancer types and to pinpoint critical RNAs, thereby paving the way for RNA-based strategies in the battle against cancer.
Collapse
Affiliation(s)
- Selcen Ari Yuka
- Department of Bioengineering, Yildiz Technical University, Istanbul, 34220, Turkey.
- Health Biotechnology Joint Research and Application Center of Excellence, Yildiz Technical University, Istanbul, 34220, Turkey.
| | - Alper Yilmaz
- Department of Bioengineering, Yildiz Technical University, Istanbul, 34220, Turkey
| |
Collapse
|
3
|
Kim HW, Baek M, Jung S, Jang S, Lee H, Yang SH, Kwak BS, Kim SJ. ELOVL2-AS1 suppresses tamoxifen resistance by sponging miR-1233-3p in breast cancer. Epigenetics 2023; 18:2276384. [PMID: 37908128 PMCID: PMC10621244 DOI: 10.1080/15592294.2023.2276384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023] Open
Abstract
Tamoxifen (Tam) has long been a top treatment option for breast cancer patients, but the challenge of eliminating cancer recurrence remains. Here, we identify a signalling pathway involving ELOVL2, ELOVL2-AS1, and miR-1233-3p, which contributes to drug resistance in Tam-resistant (TamR) breast cancer. ELOVL2-AS1, a long noncoding RNA, was significantly upregulated by its antisense gene, ELOVL2, which is known to be downregulated in TamR cells. Additionally, ELOVL2-AS1 underwent the most hypermethylation in MCF-7/TamR cells. Furthermore, patients with breast cancer who developed TamR during chemotherapy had significantly lower expression of ELOVL2-AS1 compared to those who responded to Tam. Ectopic downregulation of ELOVL2-AS1 by siRNA both stimulated cancer cell growth and deteriorated TamR. We also found that ELOVL2-AS1 sponges miR-1233-3p, which has pro-proliferative activity and elevates TamR, leading to the activation of potential target genes, such as MYEF2, NDST1, and PIK3R1. These findings suggest that ELOVL2-AS1, in association with ELOVL2, may contribute to the suppression of drug resistance by sponging miR-1233-3p in breast cancer.
Collapse
Affiliation(s)
- Hyeon Woo Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Minjae Baek
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Sanghyun Jung
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Siyeon Jang
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Hyeonjin Lee
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Seung-Hoon Yang
- Department of Biomedical Engineering, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Beom Seok Kwak
- Department of Surgery, Ilsan Hospital, College of Medicine, Dongguk University, Goyang, Republic of Korea
| | - Sun Jung Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| |
Collapse
|
4
|
Wang G, Zhang H, Shen X, Jin W, Wang X, Zhou Z. Characterization of cancer-associated fibroblasts (CAFs) and development of a CAF-based risk model for triple-negative breast cancer. Cancer Cell Int 2023; 23:294. [PMID: 38007443 PMCID: PMC10676599 DOI: 10.1186/s12935-023-03152-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023] Open
Abstract
Triple-negative breast Cancer (TNBC) is a highly malignant cancer with unclear pathogenesis. Within the tumor microenvironment (TME), cancer-associated fibroblasts (CAFs) vitally influence tumor onset and progression. Thus, this research aimed to identify distinct subgroups of CAF using single-cell and TNBC-related information from the GEO and TCGA databases, respectively. The primary aim was to establish a novel predictive model based on the CAF features and their clinical relevance. Moreover, the CAFs were analyzed for their immune characteristics, response to immunotherapy, and sensitivity to different drugs. The developed predictive model demonstrated significant effectiveness in determining the prognosis of patients with TNBC, TME, and the immune landscape of the tumor. Of note, the expression of GPR34 was significantly higher in TNBC tissues compared to that in other breast cancer (non-TNBC) tissues, indicating that GPR34 plays a crucial role in the onset and progression of TNBC. In summary, this research has yielded a novel predictive model for TNBC that holds promise for the accurate prediction of prognosis and response to immunotherapy in patients with TNBC.
Collapse
Affiliation(s)
- Ganggang Wang
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Hao Zhang
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Xiaowei Shen
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenzhi Jin
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Xiaoliang Wang
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China.
| | - Zhijie Zhou
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China.
| |
Collapse
|
5
|
Gupta J, Suliman M, Ali R, Margiana R, Hjazi A, Alsaab HO, Qasim MT, Hussien BM, Ahmed M. Double-edged sword role of miRNA-633 and miRNA-181 in human cancers. Pathol Res Pract 2023; 248:154701. [PMID: 37542859 DOI: 10.1016/j.prp.2023.154701] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 08/07/2023]
Abstract
Understanding the function and mode of operation of microRNAs (miRNAs) in cancer is of growing interest. The short non-coding RNAs known as miRNAs, which target mRNA in multicellular organisms, are described as controlling essential cellular processes. The miR-181 family and miR-633 are well-known miRNAs that play a key role in the development and metastasis of tumor cells. They may facilitate either tumor-suppressive or oncogenic function in malignant cells, according to mounting evidence. Metastatic cells that are closely linked to cancer cell migration, invasion, and angiogenesis can be identified by abnormal levels of miR-181 and miR-633. Numerous studies have demonstrated their capacity to control drug resistance, cell growth, apoptosis, and the epithelial-mesenchymal transition (EMT) and metastasis process. Interestingly, the levels of miR-181 and miR-633 and their potential target genes in the basic cellular process can vary depending on the type of cancer cells and their gene expression profile. Such miRNAs' interactions with other non-coding RNAs such as long non-coding RNAs and circular RNAs can influence tumor behaviors. Herein, we concentrated on the multifaceted roles of miR-181 and miR-633 and potential targets in human tumorigenesis, ranging from cell growth and metastasis to drug resistance.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, U. P., India.
| | - Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Rida Ali
- Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia; Dr. Soetomo General Academic Hospital, Surabaya, Indonesia.
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | - Maytham T Qasim
- Department of Anesthesia, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | - Beneen M Hussien
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Muhja Ahmed
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
6
|
Ponzetti M, Rucci N, Falone S. RNA methylation and cellular response to oxidative stress-promoting anticancer agents. Cell Cycle 2023; 22:870-905. [PMID: 36648057 PMCID: PMC10054233 DOI: 10.1080/15384101.2023.2165632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
Disruption of the complex network that regulates redox homeostasis often underlies resistant phenotypes, which hinder effective and long-lasting cancer eradication. In addition, the RNA methylome-dependent control of gene expression also critically affects traits of cellular resistance to anti-cancer agents. However, few investigations aimed at establishing whether the epitranscriptome-directed adaptations underlying acquired and/or innate resistance traits in cancer could be implemented through the involvement of redox-dependent or -responsive signaling pathways. This is unexpected mainly because: i) the effectiveness of many anti-cancer approaches relies on their capacity to promote oxidative stress (OS); ii) altered redox milieu and reprogramming of mitochondrial function have been acknowledged as critical mediators of the RNA methylome-mediated response to OS. Here we summarize the current state of understanding on this topic, as well as we offer new perspectives that might lead to original approaches and strategies to delay or prevent the problem of refractory cancer and tumor recurrence.
Collapse
Affiliation(s)
- Marco Ponzetti
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L'Aquila, Italy
| | - Nadia Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L'Aquila, Italy
| | - Stefano Falone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
7
|
Yang H, Wang L. Heparan sulfate proteoglycans in cancer: Pathogenesis and therapeutic potential. Adv Cancer Res 2023; 157:251-291. [PMID: 36725112 DOI: 10.1016/bs.acr.2022.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The heparan sulfate proteoglycans (HSPGs) are glycoproteins that consist of a proteoglycan "core" protein and covalently attached heparan sulfate (HS) chain. HSPGs are ubiquitously expressed in mammalian cells on the cell surface and in the extracellular matrix (ECM) and secretory vesicles. Within HSPGs, the protein cores determine when and where HSPG expression takes place, and the HS chains mediate most of HSPG's biological roles through binding various protein ligands, including cytokines, chemokines, growth factors and receptors, morphogens, proteases, protease inhibitors, and ECM proteins. Through these interactions, HSPGs modulate cell proliferation, adhesion, migration, invasion, and angiogenesis to display essential functions in physiology and pathology. Under physiological conditions, the expression and localization of HSPGs are finely regulated to orchestrate their physiological functions, and this is disrupted in cancer. The HSPG dysregulation elicits multiple oncogenic signaling, including growth factor signaling, ECM and Integrin signaling, chemokine and immune signaling, cancer stem cell, cell differentiation, apoptosis, and senescence, to prompt cell transformation, proliferation, tumor invasion and metastasis, tumor angiogenesis and inflammation, and immunotolerance. These oncogenic roles make HSPGs an attractive pharmacological target for anti-cancer therapy. Several therapeutic strategies have been under development, including anti-HSPG antibodies, peptides and HS mimetics, synthetic xylosides, and heparinase inhibitors, and shown promising anti-cancer efficacy. Therefore, much progress has been made in this line of study. However, it needs to bear in mind that the roles of HSPGs in cancer can be either oncogenic or tumor-suppressive, depending on the HSPG and the cancer cell type with the underlying mechanisms that remain obscure. Further studies need to address these to fill the knowledge gap and rationalize more efficient therapeutic targeting.
Collapse
Affiliation(s)
- Hua Yang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Lianchun Wang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States; Bryd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| |
Collapse
|
8
|
Crosstalk between Methylation and ncRNAs in Breast Cancer: Therapeutic and Diagnostic Implications. Int J Mol Sci 2022; 23:ijms232415759. [PMID: 36555400 PMCID: PMC9779155 DOI: 10.3390/ijms232415759] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Breast cancer, as a highly heterogeneous malignant tumor, is one of the primary causes of death among females worldwide. The etiology of breast cancer involves aberrant epigenetic mechanisms and abnormal expression of certain non-coding RNA (ncRNAs). DNA methylation, N6-methyladenosine(m6A), and histone methylation are widely explored epigenetic regulation types in breast cancer. ncRNAs are a group of unique RNA transcripts, mainly including microRNA (miRNAs), long non-coding RNA (lncRNAs), circular RNA (circRNAs), small interfering RNA (siRNAs), piwi-interacting RNA (piRNAs), etc. Different types of methylation and ncRNAs mutually regulate and interact to form intricate networks to mediate precisely breast cancer genesis. In this review, we elaborate on the crosstalk between major methylation modifications and ncRNAs and discuss the role of their interaction in promoting breast cancer oncogenesis. This review can provide novel insights into establishing a new diagnostic marker system on methylation patterns of ncRNAs and therapeutic perspectives of combining ncRNA oligonucleotides and phytochemical drugs for breast cancer therapy.
Collapse
|
9
|
Tian X, Zheng J, Mou W, Lu G, Chen S, Du J, Zheng Y, Chen S, Shen B, Li J, Wang N. Development and validation of a hypoxia-stemness-based prognostic signature in pancreatic adenocarcinoma. Front Pharmacol 2022; 13:939542. [PMID: 35935823 PMCID: PMC9350896 DOI: 10.3389/fphar.2022.939542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/30/2022] [Indexed: 12/14/2022] Open
Abstract
Background: Pancreatic adenocarcinoma (PAAD) is one of the most aggressive and fatal gastrointestinal malignancies with high morbidity and mortality worldwide. Accumulating evidence has revealed the clinical significance of the interaction between the hypoxic microenvironment and cancer stemness in pancreatic cancer progression and therapies. This study aims to identify a hypoxia-stemness index-related gene signature for risk stratification and prognosis prediction in PAAD.Methods: The mRNA expression-based stemness index (mRNAsi) data of PAAD samples from The Cancer Genome Atlas (TCGA) database were calculated based on the one-class logistic regression (OCLR) machine learning algorithm. Univariate Cox regression and LASSO regression analyses were then performed to establish a hypoxia-mRNAsi-related gene signature, and its prognostic performance was verified in both the TCGA-PAAD and GSE62452 corhorts by Kaplan-Meier and receiver operating characteristic (ROC) analyses. Additionally, we further validated the expression levels of signature genes using the TCGA, GTEx and HPA databases as well as qPCR experiments. Moreover, we constructed a prognostic nomogram incorporating the eight-gene signature and traditional clinical factors and analyzed the correlations of the risk score with immune infiltrates and immune checkpoint genes.Results: The mRNAsi values of PAAD samples were significantly higher than those of normal samples (p < 0.001), and PAAD patients with high mRNAsi values exhibited worse overall survival (OS). A novel prognostic risk model was successfully constructed based on the eight-gene signature comprising JMJD6, NDST1, ENO3, LDHA, TES, ANKZF1, CITED, and SIAH2, which could accurately predict the 1-, 3-, and 5-year OS of PAAD patients in both the training and external validation datasets. Additionally, the eight-gene signature could distinguish PAAD samples from normal samples and stratify PAAD patients into low- and high-risk groups with distinct OS. The risk score was closely correlated with immune cell infiltration patterns and immune checkpoint molecules. Moreover, calibration analysis showed the excellent predictive ability of the nomogram incorporating the eight-gene signature and traditional clinical factors.Conclusion: We developed a hypoxia-stemness-related prognostic signature that reliably predicts the OS of PAAD. Our findings may aid in the risk stratification and individual treatment of PAAD patients.
Collapse
Affiliation(s)
- Xiong Tian
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Jing Zheng
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Wanlan Mou
- Department of Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Guoguang Lu
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Shuaishuai Chen
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Juping Du
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Yufen Zheng
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Shiyong Chen
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Bo Shen
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Jun Li
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- *Correspondence: Jun Li, ; Na Wang,
| | - Na Wang
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- *Correspondence: Jun Li, ; Na Wang,
| |
Collapse
|
10
|
Sritharan S, Guha S, Hazarika S, Sivalingam N. Meta analysis of bioactive compounds, miRNA, siRNA and cell death regulators as sensitizers to doxorubicin induced chemoresistance. Apoptosis 2022; 27:622-646. [PMID: 35716277 DOI: 10.1007/s10495-022-01742-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 11/02/2022]
Abstract
Cancer has presented to be the most challenging disease, contributing to one in six mortalities worldwide. The current treatment regimen involves multiple rounds of chemotherapy administration, alone or in combination. The treatment has adverse effects including cardiomyopathy, hepatotoxicity, and nephrotoxicity. In addition, the development of resistance to chemo has been attributed to cancer relapse and low patient overall survivability. Multiple drug resistance development may be through numerous factors such as up-regulation of drug transporters, drug inactivation, alteration of drug targets and drug degradation. Doxorubicin is a widely used first line chemotherapeutic drug for a myriad of cancers. It has multiple intracellular targets, DNA intercalation, adduct formation, topoisomerase inhibition, iron chelation, reactive oxygen species generation and promotes immune mediated clearance of the tumor. Agents that can sensitize the resistant cancer cells to the chemotherapeutic drug are currently the focus to improve the clinical efficiency of cancer therapy. This review summarizes the recent 10-year research on the use of natural phytochemicals, inhibitors of apoptosis and autophagy, miRNAs, siRNAs and nanoformulations being investigated for doxorubicin chemosensitization.
Collapse
Affiliation(s)
- Sruthi Sritharan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India
| | - Sampurna Guha
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India
| | - Snoopy Hazarika
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India
| | - Nageswaran Sivalingam
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
11
|
Si Z, Zhong Y, Lao S, Wu Y, Zhong G, Zeng W. The Role of miRNAs in the Resistance of Anthracyclines in Breast Cancer: A Systematic Review. Front Oncol 2022; 12:899145. [PMID: 35664800 PMCID: PMC9157424 DOI: 10.3389/fonc.2022.899145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer has been reported as the most common cancer in women globally, with 2.26 million new cases in 2020. While anthracyclines are the first-line drug for breast cancer, they cause a variety of adverse reactions and drug resistance, especially for triple-negative breast cancer, which can lead to poor prognosis, high relapse, and mortality rate. MicroRNAs (miRNAs) have been shown to be important in the initiation, development and metastasis of malignancies and their abnormal transcription levels may influence the efficacy of anthracyclines by participating in the pathologic mechanisms of breast cancer. Therefore, it is essential to understand the exact role of miRNAs in the treatment of breast cancer with anthracyclines. In this review, we outline the mechanisms and signaling pathways involved in miRNAs in the treatment of breast cancer using anthracyclines. The role of miRNA in the diagnosis, prognosis and treatment of breast cancer patients is discussed, along with the involvement of miRNAs in chemotherapy for breast cancer.
Collapse
Affiliation(s)
- Zihan Si
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China
| | - Yan Zhong
- Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Sixian Lao
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China
| | - Yufeng Wu
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China
| | - Guoping Zhong
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China
| | - Weiwei Zeng
- The Second People's Hospital of Longgang District, Shenzhen, China.,Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| |
Collapse
|
12
|
Colin-Pierre C, Berthélémy N, Belloy N, Danoux L, Bardey V, Rivet R, Mine S, Jeanmaire C, Maquart FX, Ramont L, Brézillon S. The Glypican-1/HGF/C-Met and Glypican-1/VEGF/VEGFR2 Ternary Complexes Regulate Hair Follicle Angiogenesis. Front Cell Dev Biol 2021; 9:781172. [PMID: 34957110 PMCID: PMC8692797 DOI: 10.3389/fcell.2021.781172] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/16/2021] [Indexed: 12/30/2022] Open
Abstract
The hair renewal involves changes in the morphology of the hair follicle and its micro-vascularization. In alopecia, the hair cycle is accelerated, resulting in the formation of thinner and shorter hair. In addition, alopecia is associated with a decrease in the micro-vascularization of the hair follicles. In this study, the role of glypicans (GPCs) was analyzed in the regulation of the angiogenesis of human dermal microvascular endothelial cells (HDMEC). The analysis of glypican gene expression showed that GPC1 is the major glypican expressed by human keratinocytes of outer root sheath (KORS), human hair follicle dermal papilla cells (HHFDPC) and HDMEC. KORS were demonstrated to secrete VEGF and HGF. The HDMEC pseudotube formation was induced by KORS conditioned media (KORSCM). It was totally abrogated after GPC1 siRNA transfection of HDMEC. Moreover, when cleaved by phospholipase C (PLC), GPC1 promotes the proliferation of HDMEC. Finally, GPC1 was shown to interact directly with VEGFR2 or c-Met to regulate angiogenesis induced by the activation of these receptors. Altogether, these results showed that GPC1 is a key regulator of microvascular endothelial cell angiogenesis induced by VEGF and HGF secreted by KORS. Thus, GPC1 might constitute an interesting target to tackle alopecia in dermatology research.
Collapse
Affiliation(s)
- Charlie Colin-Pierre
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, Reims, France.,BASF Beauty Care Solutions France SAS, Pulnoy, France
| | | | - Nicolas Belloy
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, Reims, France.,P3M, Multiscale Molecular Modeling Platform, Université de Reims Champagne-Ardenne, Reims, France
| | - Louis Danoux
- BASF Beauty Care Solutions France SAS, Pulnoy, France
| | | | - Romain Rivet
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, Reims, France
| | - Solène Mine
- BASF Beauty Care Solutions France SAS, Pulnoy, France
| | | | - François-Xavier Maquart
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
| | - Laurent Ramont
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, Reims, France.,CHU de Reims, Service Biochimie-Pharmacologie-Toxicologie, Reims, France
| | - Stéphane Brézillon
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, Reims, France
| |
Collapse
|
13
|
Subramanian A, Hall M, Hou H, Mufteev M, Yu B, Yuki KE, Nishimura H, Sathaseevan A, Lant B, Zhai B, Ellis J, Wilson MD, Daugaard M, Derry WB. Alternative polyadenylation is a determinant of oncogenic Ras function. SCIENCE ADVANCES 2021; 7:eabh0562. [PMID: 34919436 PMCID: PMC8682989 DOI: 10.1126/sciadv.abh0562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 10/29/2021] [Indexed: 06/14/2023]
Abstract
Alternative polyadenylation of mRNA has important but poorly understood roles in development and cancer. Activating mutations in the Ras oncogene are common drivers of many human cancers. From a screen for enhancers of activated Ras (let-60) in Caenorhabditis elegans, we identified cfim-1, a subunit of the alternative polyadenylation machinery. Ablation of cfim-1 increased penetrance of the multivulva phenotype in let-60/Ras gain-of-function (gf) mutants. Depletion of the human cfim-1 ortholog CFIm25/NUDT21 in cancer cells with KRAS mutations increased their migration and stimulated an epithelial-to-mesenchymal transition. CFIm25-depleted cells and cfim-1 mutants displayed biased placement of poly(A) tails to more proximal sites in many conserved transcripts. Functional analysis of these transcripts identified the multidrug resistance protein mrp-5/ABCC1 as a previously unidentified regulator of C. elegans vulva development and cell migration in human cells through alternative 3′UTR usage. Our observations demonstrate a conserved functional role for alternative polyadenylation in oncogenic Ras function.
Collapse
Affiliation(s)
- Aishwarya Subramanian
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Mathew Hall
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Huayun Hou
- Genetics and Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Marat Mufteev
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Bin Yu
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Kyoko E. Yuki
- Genetics and Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Haruka Nishimura
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anson Sathaseevan
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Benjamin Lant
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Beibei Zhai
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - James Ellis
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Michael D. Wilson
- Genetics and Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Mads Daugaard
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - W. Brent Derry
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
14
|
Marima R, Francies FZ, Hull R, Molefi T, Oyomno M, Khanyile R, Mbatha S, Mabongo M, Owen Bates D, Dlamini Z. MicroRNA and Alternative mRNA Splicing Events in Cancer Drug Response/Resistance: Potent Therapeutic Targets. Biomedicines 2021; 9:1818. [PMID: 34944633 PMCID: PMC8698559 DOI: 10.3390/biomedicines9121818] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is a multifaceted disease that involves several molecular mechanisms including changes in gene expression. Two important processes altered in cancer that lead to changes in gene expression include altered microRNA (miRNA) expression and aberrant splicing events. MiRNAs are short non-coding RNAs that play a central role in regulating RNA silencing and gene expression. Alternative splicing increases the diversity of the proteome by producing several different spliced mRNAs from a single gene for translation. MiRNA expression and alternative splicing events are rigorously regulated processes. Dysregulation of miRNA and splicing events promote carcinogenesis and drug resistance in cancers including breast, cervical, prostate, colorectal, ovarian and leukemia. Alternative splicing may change the target mRNA 3'UTR binding site. This alteration can affect the produced protein and may ultimately affect the drug affinity of target proteins, eventually leading to drug resistance. Drug resistance can be caused by intrinsic and extrinsic factors. The interplay between miRNA and alternative splicing is largely due to splicing resulting in altered 3'UTR targeted binding of miRNAs. This can result in the altered targeting of these isoforms and altered drug targets and drug resistance. Furthermore, the increasing prevalence of cancer drug resistance poses a substantial challenge in the management of the disease. Henceforth, molecular alterations have become highly attractive drug targets to reverse the aberrant effects of miRNAs and splicing events that promote malignancy and drug resistance. While the miRNA-mRNA splicing interplay in cancer drug resistance remains largely to be elucidated, this review focuses on miRNA and alternative mRNA splicing (AS) events in breast, cervical, prostate, colorectal and ovarian cancer, as well as leukemia, and the role these events play in drug resistance. MiRNA induced cancer drug resistance; alternative mRNA splicing (AS) in cancer drug resistance; the interplay between AS and miRNA in chemoresistance will be discussed. Despite this great potential, the interplay between aberrant splicing events and miRNA is understudied but holds great potential in deciphering miRNA-mediated drug resistance.
Collapse
Affiliation(s)
- Rahaba Marima
- SAMRC Precision Oncology Research Unit (PORU), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfiel, Pretoria 0028, South Africa; (R.M.); (F.Z.F.); (R.H.); (T.M.); (M.O.); (R.K.); (S.M.); (M.M.); (D.O.B.)
| | - Flavia Zita Francies
- SAMRC Precision Oncology Research Unit (PORU), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfiel, Pretoria 0028, South Africa; (R.M.); (F.Z.F.); (R.H.); (T.M.); (M.O.); (R.K.); (S.M.); (M.M.); (D.O.B.)
| | - Rodney Hull
- SAMRC Precision Oncology Research Unit (PORU), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfiel, Pretoria 0028, South Africa; (R.M.); (F.Z.F.); (R.H.); (T.M.); (M.O.); (R.K.); (S.M.); (M.M.); (D.O.B.)
| | - Thulo Molefi
- SAMRC Precision Oncology Research Unit (PORU), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfiel, Pretoria 0028, South Africa; (R.M.); (F.Z.F.); (R.H.); (T.M.); (M.O.); (R.K.); (S.M.); (M.M.); (D.O.B.)
- Department of Medical Oncology, Steve Biko Academic Hospital, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Meryl Oyomno
- SAMRC Precision Oncology Research Unit (PORU), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfiel, Pretoria 0028, South Africa; (R.M.); (F.Z.F.); (R.H.); (T.M.); (M.O.); (R.K.); (S.M.); (M.M.); (D.O.B.)
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Richard Khanyile
- SAMRC Precision Oncology Research Unit (PORU), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfiel, Pretoria 0028, South Africa; (R.M.); (F.Z.F.); (R.H.); (T.M.); (M.O.); (R.K.); (S.M.); (M.M.); (D.O.B.)
- Department of Medical Oncology, Steve Biko Academic Hospital, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Sikhumbuzo Mbatha
- SAMRC Precision Oncology Research Unit (PORU), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfiel, Pretoria 0028, South Africa; (R.M.); (F.Z.F.); (R.H.); (T.M.); (M.O.); (R.K.); (S.M.); (M.M.); (D.O.B.)
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Mzubanzi Mabongo
- SAMRC Precision Oncology Research Unit (PORU), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfiel, Pretoria 0028, South Africa; (R.M.); (F.Z.F.); (R.H.); (T.M.); (M.O.); (R.K.); (S.M.); (M.M.); (D.O.B.)
- Department of Maxillofacial and Oral Surgery, School of Dentistry, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - David Owen Bates
- SAMRC Precision Oncology Research Unit (PORU), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfiel, Pretoria 0028, South Africa; (R.M.); (F.Z.F.); (R.H.); (T.M.); (M.O.); (R.K.); (S.M.); (M.M.); (D.O.B.)
- Centre for Cancer Sciences, Division of Cancer and Stem Cells, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfiel, Pretoria 0028, South Africa; (R.M.); (F.Z.F.); (R.H.); (T.M.); (M.O.); (R.K.); (S.M.); (M.M.); (D.O.B.)
| |
Collapse
|
15
|
Chen J, Chen X, Fu L, Chen J, Chen Y, Liu F. LncRNA GACAT1 targeting miRNA-149 regulates the molecular mechanism of proliferation, apoptosis and autophagy of oral squamous cell carcinoma cells. Aging (Albany NY) 2021; 13:20359-20371. [PMID: 34460438 PMCID: PMC8436912 DOI: 10.18632/aging.203416] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/03/2021] [Indexed: 12/27/2022]
Abstract
To explore the effects of lncRNA GACAT1/miR-149 molecular axis on the proliferation, apoptosis, migration and autophagy of oral squamous cell carcinoma (OSCC) cells, and to explore its molecular mechanism. The expressions of lncRNA GACAT1 and miR-149 in tissues and cell lines of patients with OSCC were detected by qRT-PCR. Si-control, GACAT1-siRNA, inhibitor NC and miR-149 inhibitors were transfected into OSCC cells separately or in combination with Lipofectamine 2000. The binding sites between lncRNA GACAT1 and miR-149 were predicted using the miRanda website, and the targeting relationship was verified by dual-luciferase assay. The expression of lncRNA XIST and miR-149 was detected by qRT-PCR. CCK-8 assay was used to detect cell activity. Cell cycle distribution and apoptosis were detected by flow cytometry. Cell migration ability was detected by Transwell assay. The expression of migration and autophagy-related proteins was detected by western blot. LncRNA GACAT1 was highly expressed in cancer tissues and cell lines of OSCC patients (P < 0.01), while miR-149 was low expressed (P < 0.01). LncRNA GACAT1 binds to miR-149 targeting. The down-regulation of lncRNA GACAT1 inhibited the proliferation and migration of OSCC cells and promoted apoptosis and autophagy (P < 0.01). The transfection of miR-149 inhibitor had the opposite effect. Knockdown of lncRNA GACAT1 and transfection with miR-149 inhibitor reversed the effect of GACAT1 silencing on OSCC cells. Inhibition of lncRNA GACAT1 can inhibit the proliferation and migration of OSCC cells, promote apoptosis and autophagy, and the mechanism may be related to the targeting of miR-149.
Collapse
Affiliation(s)
- Jingxin Chen
- Department of Oral and Maxillofacial Surgery, Hainan Province People’s Hospital, Haikou, Hainan, China
| | - Xubin Chen
- Department of Oral and Maxillofacial Surgery, Hainan Province People’s Hospital, Haikou, Hainan, China
| | - Liangbin Fu
- Department of Oral and Maxillofacial Surgery, Hainan Province People’s Hospital, Haikou, Hainan, China
| | - Jimin Chen
- Department of Pathology, Hainan Province People’s Hospital, Haikou, Hainan, China
| | - Yang Chen
- Department of Oral and Maxillofacial Surgery, Hainan Province People’s Hospital, Haikou, Hainan, China
| | - Feng Liu
- Department of Stomatology, Hunan Province People’s Hospital, Changsha, Hunan, China
| |
Collapse
|
16
|
Maciej-Hulme ML, Dubaissi E, Shao C, Zaia J, Amaya E, Flitsch SL, Merry CLR. Selective Inhibition of Heparan Sulphate and Not Chondroitin Sulphate Biosynthesis by a Small, Soluble Competitive Inhibitor. Int J Mol Sci 2021; 22:ijms22136988. [PMID: 34209670 PMCID: PMC8269443 DOI: 10.3390/ijms22136988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 11/29/2022] Open
Abstract
The glycosaminoglycan, heparan sulphate (HS), orchestrates many developmental processes. Yet its biological role has not yet fully been elucidated. Small molecule chemical inhibitors can be used to perturb HS function and these compounds provide cheap alternatives to genetic manipulation methods. However, existing chemical inhibition methods for HS also interfere with chondroitin sulphate (CS), complicating data interpretation of HS function. Herein, a simple method for the selective inhibition of HS biosynthesis is described. Using endogenous metabolic sugar pathways, Ac4GalNAz produces UDP-GlcNAz, which can target HS synthesis. Cell treatment with Ac4GalNAz resulted in defective chain elongation of the polymer and decreased HS expression. Conversely, no adverse effect on CS production was observed. The inhibition was transient and dose-dependent, affording rescue of HS expression after removal of the unnatural azido sugar. The utility of inhibition is demonstrated in cell culture and in whole organisms, demonstrating that this small molecule can be used as a tool for HS inhibition in biological systems.
Collapse
Affiliation(s)
- Marissa L. Maciej-Hulme
- Materials Science Centre, School of Materials, The University of Manchester, Grosvenor St., Manchester M1 7HS, UK
- Correspondence: (M.L.M.-H.); (C.L.R.M.)
| | - Eamon Dubaissi
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, Michael Smith Building, The University of Manchester, Oxford Road, Manchester M13 9PT, UK; (E.D.); (E.A.)
| | - Chun Shao
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, 670 Albany Street, Boston, MA 02118, USA; (C.S.); (J.Z.)
| | - Joseph Zaia
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, 670 Albany Street, Boston, MA 02118, USA; (C.S.); (J.Z.)
| | - Enrique Amaya
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, Michael Smith Building, The University of Manchester, Oxford Road, Manchester M13 9PT, UK; (E.D.); (E.A.)
| | - Sabine L. Flitsch
- School of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK;
| | - Catherine L. R. Merry
- Materials Science Centre, School of Materials, The University of Manchester, Grosvenor St., Manchester M1 7HS, UK
- Correspondence: (M.L.M.-H.); (C.L.R.M.)
| |
Collapse
|
17
|
Hussen BM, Hidayat HJ, Salihi A, Sabir DK, Taheri M, Ghafouri-Fard S. MicroRNA: A signature for cancer progression. Biomed Pharmacother 2021; 138:111528. [PMID: 33770669 DOI: 10.1016/j.biopha.2021.111528] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are a group of small non-coding RNAs that post-transcriptionally control expression of genes by targeting mRNAs. miRNA alterations partake in the establishment and progression of different types of human cancer. Consequently, expression profiling of miRNA in human cancers has correlations with cancer detection, staging, progression, and response to therapies. Particularly, amplification, deletion, abnormal pattern of epigenetic factors and the transcriptional factors that mediate regulation of primary miRNA frequently change the landscape of miRNA expression in cancer. Indeed, changes in the quantity and quality of miRNAs are associated with the initiation of cancer, its progression and metastasis. Additionally, miRNA profiling has been used to categorize genes that can affect oncogenic pathways in cancer. Here, we discuss several circulating miRNA signatures, their expression profiles in different types of cancer and their impacts on cellular processes.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq; Department of Medical Analysis, Faculty of Science, Tishk International University, Erbil, Iraq
| | - Dana K Sabir
- Department of Medical Laboratory Sciences, Charmo University, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Singh S, Raza W, Parveen S, Meena A, Luqman S. Flavonoid display ability to target microRNAs in cancer pathogenesis. Biochem Pharmacol 2021; 189:114409. [PMID: 33428895 DOI: 10.1016/j.bcp.2021.114409] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are non-coding, conserved, single-stranded nucleotide sequences involved in physiological and developmental processes. Recent evidence suggests an association between miRNAs' deregulation with initiation, promotion, progression, and drug resistance in cancer cells. Besides, miRNAs are known to regulate the epithelial-mesenchymal transition, angiogenesis, autophagy, and senescence in different cancer types. Previous reports proposed that apart from the antioxidant potential, flavonoids play an essential role in miRNAs modulation associated with changes in cancer-related proteins, tumor suppressor genes, and oncogenes. Thus, flavonoids can suppress proliferation, help in the development of drug sensitivity, suppress metastasis and angiogenesis by modulating miRNAs expression. In the present review, we summarize the role of miRNAs in cancer, drug resistance, and the chemopreventive potential of flavonoids mediated by miRNAs. The potential of flavonoids to modulate miRNAs expression in different cancer types demonstrate their selectivity and importance as regulators of carcinogenesis. Flavonoids as chemopreventive agents targeting miRNAs are extensively studied in vitro, in vivo, and pre-clinical studies, but their efficiency in targeting miRNAs in clinical studies is less investigated. The evidence presented in this review highlights the potential of flavonoids in cancer prevention/treatment by regulating miRNAs, although further investigations are required to validate and establish their clinical usefulness.
Collapse
Affiliation(s)
- Shilpi Singh
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Waseem Raza
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Jawahar Lal Nehru University, New Delhi 110067, India
| | - Shahnaz Parveen
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
19
|
Shen Q, Zhu H, Lei Q, Chen L, Yang D, Sui W. MicroRNA‑149‑3p inhibits cell proliferation by targeting AKT2 in oral squamous cell carcinoma. Mol Med Rep 2021; 23:172. [PMID: 33398370 PMCID: PMC7821286 DOI: 10.3892/mmr.2020.11811] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/17/2020] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRs) exhibit oncogenic or tumor suppressive functions that contribute to the initiation and development of various types of human cancer. miR-149-3p has been reported to serve multiple roles in the regulation of proliferation, apoptosis and metastasis. However, the effects and detailed mechanism of miR-149-3p in oral squamous cell carcinoma (OSCC) remain unclear. In the present study, miR-149-3p mimic, mimic control, miR-149-3p inhibitor and inhibitor control were transiently transfected into Cal27 and SCC-9 cells. The viability, proliferation and apoptosis of OSCC cells were determined using Cell Counting Kit-8, colony formation and Annexin V assays, respectively. The mRNA expression levels of miR-149-3p and AKT2 were determined by reverse transcription-quantitative PCR. The protein expression levels of AKT2, cleaved caspase-3 and cleaved PARP were examined by western blot analysis. The binding of miR-149-3p to the AKT2 3′-untranslated region was evaluated by a dual luciferase reporter assay. In the present study, overexpression of miR-149-3p reduced the viability and proliferation of OSCC cells. By contrast, increased cell viability and proliferation was observed in miR-149-3p-deficient OSCC cells. Dual luciferase reporter assay indicated that miR-149-3p significantly decreased the luciferase activity of the wild-type AKT2 3′-untranslated region. Moreover, overexpression of miR-149-3p downregulated the mRNA and protein expression levels of AKT2, suggesting that miR-149-3p was a negative modulator of AKT2. Restoration of AKT2 efficiently reversed the miR-149-3p-mediated reduction in the proliferative capacity of OSCC cells. In addition, miR-149-3p enhanced the sensitivity of OSCC cells to the chemotherapeutic drug 5-fluorouracil. Taken together, the current findings revealed an inhibitory effect of miR-149-3p on the proliferation of OSCC cells through the post-transcriptional suppression of AKT2, and indicated a potential chemosensitizing function of miR-149-3p for the treatment of patients with OSCC.
Collapse
Affiliation(s)
- Qin Shen
- Department of Stomatology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518100, P.R. China
| | - Hong Zhu
- Department of Stomatology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518100, P.R. China
| | - Qiaoling Lei
- Department of Stomatology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518100, P.R. China
| | - Luyuan Chen
- Department of Stomatology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518100, P.R. China
| | - Dajiang Yang
- Department of Stomatology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518100, P.R. China
| | - Wen Sui
- Department of Stomatology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518100, P.R. China
| |
Collapse
|
20
|
Wang XY, Zhou YC, Wang Y, Liu YY, Wang YX, Chen DD, Fan Y. miR-149 contributes to resistance of 5-FU in gastric cancer via targeting TREM2 and regulating β-catenin pathway. Biochem Biophys Res Commun 2020; 532:329-335. [PMID: 32977944 DOI: 10.1016/j.bbrc.2020.05.135] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
Abstract
Drug resistance remains the unresolved obstacle for gastric cancer (GC) treatment. Recently more and more studies have shown that microRNAs are involved in cancer resistance and could apply to drug resistance therapy in tumors. The relationship between miR-149 and 5-fluorouracil (5-FU) resistance in GC remains unclear. Here we detected miR-149 expression in 5-FU resistance tumor tissues and cell lines, and found that miR-149 expression is upregulated in AGS/5-FU cells compared with AGS cells. Further experiments indicated that overexpression of miR-149 can alleviate 5-FU-induced apoptosis and proliferation inhibition by targeting TREM2. It was also confirmed that TREM2 regulated 5-FU resistance through β-catenin pathway. Generally speaking, our results indicated that miR-149 contributes to resistance of 5-FU in gastric cancer via targeting TREM2 and regulating β-catenin pathway.
Collapse
Affiliation(s)
- Xiao-Yan Wang
- Department of Gastroenterology, The First People's Hospital of Suqian, Su'qian, Jiangsu, 223800, China
| | - Yi-Chan Zhou
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, 210006, China
| | - Yan Wang
- Department of Gastroenterology, The First People's Hospital of Suqian, Su'qian, Jiangsu, 223800, China
| | - Yun-Yun Liu
- Department of Gastroenterology, The First People's Hospital of Suqian, Su'qian, Jiangsu, 223800, China
| | - Yu-Xin Wang
- Department of Gastroenterology, The First People's Hospital of Suqian, Su'qian, Jiangsu, 223800, China
| | - Dan-Dan Chen
- Department of Gastroenterology, The First People's Hospital of Suqian, Su'qian, Jiangsu, 223800, China
| | - Yu Fan
- Cancer Institute, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China.
| |
Collapse
|
21
|
Dobre EG, Dinescu S, Costache M. Connecting the Missing Dots: ncRNAs as Critical Regulators of Therapeutic Susceptibility in Breast Cancer. Cancers (Basel) 2020; 12:E2698. [PMID: 32967267 PMCID: PMC7565380 DOI: 10.3390/cancers12092698] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/24/2022] Open
Abstract
Whether acquired or de novo, drug resistance remains a significant hurdle in achieving therapeutic success in breast cancer (BC). Thus, there is an urge to find reliable biomarkers that will help in predicting the therapeutic response. Stable and easily accessible molecules such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are regarded as valuable prognostic biomarkers and therapeutic targets since they act as crucial regulators of the various mechanisms involved in BC drug resistance. Here, we reviewed the current literature on ncRNAs as mediators of resistance to systemic therapies in BC. Interestingly, upon integrating data results from individual studies, we concluded that miR-221, miR-222, miR-451, Urothelial Carcinoma Associated 1 (UCA1), and Growth arrest-specific 5 (GAS5) are strong candidates as prognostic biomarkers and therapeutic targets since they are regulating multiple drug resistance phenotypes in BC. However, further research around their clinical implications is needed to validate and integrate them into therapeutic applications. Therefore, we believe that our review may provide relevant evidence for the selection of novel therapeutic targets and prognostic biomarkers for BC and will serve as a foundation for future translational research in the field.
Collapse
Affiliation(s)
- Elena-Georgiana Dobre
- AMS Genetic Lab, 030882 Bucharest, Romania;
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania;
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania;
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania;
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| |
Collapse
|
22
|
Abdalla F, Singh B, Bhat HK. MicroRNAs and gene regulation in breast cancer. J Biochem Mol Toxicol 2020; 34:e22567. [DOI: 10.1002/jbt.22567] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/01/2020] [Accepted: 06/18/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Fatma Abdalla
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy University of Missouri‐Kansas City Kansas City Missouri
| | - Bhupendra Singh
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy University of Missouri‐Kansas City Kansas City Missouri
- Eurofins Lancaster Laboratories Lancaster PA 17605
| | - Hari K. Bhat
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy University of Missouri‐Kansas City Kansas City Missouri
| |
Collapse
|
23
|
He Y, Chen D, Yi Y, Zeng S, Liu S, Li P, Xie H, Yu P, Jiang G, Liu H. Histone Deacetylase Inhibitor Sensitizes ERCC1-High Non-small-Cell Lung Cancer Cells to Cisplatin via Regulating miR-149. MOLECULAR THERAPY-ONCOLYTICS 2020; 17:448-459. [PMID: 32478168 PMCID: PMC7251316 DOI: 10.1016/j.omto.2020.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023]
Abstract
Resistance to platinum-based chemotherapy becomes a major obstacle in non-small-cell lung cancer (NSCLC) treatment. Overexpression of the excision repair cross-complementing 1 (ERCC1) gene is reported to negatively influence the effectiveness of cisplatin-based therapy for NSCLC cells. In this study, we confirm that high ERCC1 expression correlates with cisplatin resistance in NSCLC cells. Importantly, histone deacetylase inhibitors (HDACis) re-sensitize ERCC1-high NSCLC cells to cisplatin both in vitro and in vivo. Mechanistically, the HDACi induces the expression of miR-149 by acetylation and activation of E2F1, which directly targets ERCC1 and inhibits ERCC1 expression. Inhibition of miR-149 reverses the promotion effect of HDACis on cisplatin-induced DNA damage and cell apoptosis in ERCC1-high NSCLC cells. In conclusion, this study reveals a novel mechanism by which HDACis re-sensitizes ERCC1-high NSCLC cells to cisplatin via regulation of the E2F1/miR-149/ERCC1 axis, and we propose that combination of HDACis and cisplatin might hold promise to be a more effective therapeutic paradigm for ERCC1-high NSCLCs.
Collapse
Affiliation(s)
- Yuwen He
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Danyang Chen
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Key Laboratory of “Translational Medicine on Malignant Tumor Treatment,” Guangzhou 510095, Guangdong, China
| | - Yanmei Yi
- Department of Histology and Embryology, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Shanshan Zeng
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Key Laboratory of “Translational Medicine on Malignant Tumor Treatment,” Guangzhou 510095, Guangdong, China
| | - Shuang Liu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Key Laboratory of “Translational Medicine on Malignant Tumor Treatment,” Guangzhou 510095, Guangdong, China
| | - Pan Li
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Key Laboratory of “Translational Medicine on Malignant Tumor Treatment,” Guangzhou 510095, Guangdong, China
| | - Hui Xie
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Pengjiu Yu
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Guanmin Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 528000, Guangdong, China
- Corresponding author: Guanmin Jiang, Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 528000, Guangdong, China.
| | - Hao Liu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Key Laboratory of “Translational Medicine on Malignant Tumor Treatment,” Guangzhou 510095, Guangdong, China
- Corresponding author: Hao Liu, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Key Laboratory of “Translational Medicine on Malignant Tumor Treatment,” No. 78 Engzhigang Road, Guangzhou 510095, Guangdong, China.
| |
Collapse
|
24
|
Gulberti S, Mao X, Bui C, Fournel-Gigleux S. The role of heparan sulfate maturation in cancer: A focus on the 3O-sulfation and the enigmatic 3O-sulfotransferases (HS3STs). Semin Cancer Biol 2020; 62:68-85. [DOI: 10.1016/j.semcancer.2019.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 01/05/2023]
|
25
|
Roychoudhury S, Kumar A, Bhatkar D, Sharma NK. Molecular avenues in targeted doxorubicin cancer therapy. Future Oncol 2020; 16:687-700. [PMID: 32253930 DOI: 10.2217/fon-2019-0458] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In recent, intra- and inter-tumor heterogeneity is seen as one of key factors behind success and failure of chemotherapy. Incessant use of doxorubicin (DOX) drug is associated with numerous post-treatment debacles including cardiomyopathy, health disorders, reversal of tumor and formation of secondary tumors. The module of cancer treatment has undergone evolutionary changes by achieving crucial understanding on molecular, genetic, epigenetic and environmental adaptations by cancer cells. Therefore, there is a paradigm shift in cancer therapeutic by employing amalgam of peptide mimetic, small RNA mimetic, DNA repair protein inhibitors, signaling inhibitors and epigenetic modulators to achieve targeted and personalized DOX therapy. This review summarizes on recent therapeutic avenues that can potentiate DOX effects by removing discernible pitfalls among cancer patients.
Collapse
Affiliation(s)
- Sayantani Roychoudhury
- Cancer & Translational Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India
| | - Ajay Kumar
- Cancer & Translational Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India
| | - Devyani Bhatkar
- Cancer & Translational Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India
| | - Nilesh Kumar Sharma
- Cancer & Translational Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India
| |
Collapse
|
26
|
Mao F, Zhang J, Cheng X, Xu Q. miR-149 inhibits cell proliferation and enhances chemosensitivity by targeting CDC42 and BCL2 in neuroblastoma. Cancer Cell Int 2019; 19:357. [PMID: 31889909 PMCID: PMC6935209 DOI: 10.1186/s12935-019-1082-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
Background Neuroblastoma (NB) is one of most common childhood tumors with high mortality among children worldwide. microRNAs (miRNAs) have been reported to play essential roles in the pathogenesis and therapeutics of NB. However, the role of miR-149 and its mechanism remain poorly understood. Main methods The expression levels of miR-149, cell division cycle 42 (CDC42) and B-cell lymphoma 2 (BCL2) were measured in NB tissues or cells by quantitative real-time polymerase chain reaction or western blot. Cell proliferation was measured by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and colony formation assays. Cell apoptosis was detected by flow cytometry. Chemosensitivity of NB cells to doxorubicin (Dox) was analyzed by MTT assay. The interaction between miR-149 and CDC42 or BCL2 was explored by luciferase activity and RNA immunoprecipitation analyses. Results Our data indicated that low expression of miR-149 was displayed in NB tissues and cells and associated with poor survival rate. Overexpression of miR-149 inhibited cell proliferation and colony formation but promoted cell apoptosis and chemosensitivity to Dox in NB cells. Moreover, CDC42 and BCL2 were targeted by miR-149. Additionally, CDC42 and BCL2 mRNA levels were elevated in NB tissues and cells and restoration of CDC42 or BCL2 reversed the regulatory effect of miR-149 on NB progression. Conclusion Our data suggested that miR-149 suppressed cell proliferation and improved Dox chemosensitivity by regulating CDC42 and BCL2 in NB, providing a novel avenue for treatment of NB.
Collapse
Affiliation(s)
- Fengxia Mao
- Department of Newborn Pediatrics, The First Affiliated Hospital of Zhengzhou University, No.1, East Jianshe Rd, Zhengzhou, 450052 China
| | - Ju Zhang
- Department of Newborn Pediatrics, The First Affiliated Hospital of Zhengzhou University, No.1, East Jianshe Rd, Zhengzhou, 450052 China
| | - Xinru Cheng
- Department of Newborn Pediatrics, The First Affiliated Hospital of Zhengzhou University, No.1, East Jianshe Rd, Zhengzhou, 450052 China
| | - Qianya Xu
- Department of Newborn Pediatrics, The First Affiliated Hospital of Zhengzhou University, No.1, East Jianshe Rd, Zhengzhou, 450052 China
| |
Collapse
|
27
|
Shi W, Tang T, Li X, Deng S, Li R, Wang Y, Wang Y, Xia T, Zhang Y, Zen K, Jin L, Pan Y. Methylation-mediated silencing of miR-133a-3p promotes breast cancer cell migration and stemness via miR-133a-3p/MAML1/DNMT3A positive feedback loop. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:429. [PMID: 31660998 PMCID: PMC6819615 DOI: 10.1186/s13046-019-1400-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/28/2019] [Indexed: 12/24/2022]
Abstract
Background miR-133a-3p has been recently discovered to be down-regulated in various human malignancies, including breast cancer, and reduced miR-133a-3p levels have been significantly associated with breast cancer cell growth and invasion. However, the regulatory mechanisms leading to abnormal expression of miR-133a-3p in breast cancer remain obscure. Methods qRT-PCR was applied to detect the expression of miR-133a-3p in breast cancer tissues and cell lines. Bisulfite sequencing was used to detect the degree of methylation of the miR-133a-3p promoter. The effects of miR-133a-3p on breast cancer in vitro were examined by cell proliferation assay, transwell assay, flow cytometry, and western blotting. Bioinformatic analysis, dual-luciferase assay and RIP assay were employed to identify the interaction between miR-133a-3p and MAML1. A xenograft model was used to show the metastasis of breast cancer cells. Results We confirmed that miR-133a-3p was silenced by DNA hypermethylation in breast cancer cell lines and tissues, which predicted poor prognosis in breast cancer patients, and reducing miR-133a-3p expression led to a significant increase in the migration, invasion, proliferation, and stemness of breast cancer cells in vitro. Mastermind-like transcriptional coactivator 1 (MAML1) was confirmed to be a target of miR-133a-3p involved in regulating breast cancer metastasis both in vitro and in vivo. Moreover, a series of investigations indicated that MAML1 initiated a positive feedback loop, which could up-regulate DNA methyltransferase 3A (DNMT3A) to promote hypermethylation of the miR-133a-3p promoter. Conclusion Taken together, our findings revealed a novel miR-133a-3p/MAML1/DNMT3A positive feedback loop in breast cancer cells, which may become a potential therapeutic target for breast cancer. Electronic supplementary material The online version of this article (10.1186/s13046-019-1400-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wanyue Shi
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang Avenue, Nanjing, Jiangsu, People's Republic of China
| | - Tingting Tang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang Avenue, Nanjing, Jiangsu, People's Republic of China
| | - Xinping Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang Avenue, Nanjing, Jiangsu, People's Republic of China
| | - Siwei Deng
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang Avenue, Nanjing, Jiangsu, People's Republic of China
| | - Ruiyi Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang Avenue, Nanjing, Jiangsu, People's Republic of China
| | - Yingshan Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang Avenue, Nanjing, Jiangsu, People's Republic of China
| | - Yifei Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang Avenue, Nanjing, Jiangsu, People's Republic of China
| | - Tiansong Xia
- Department of Breast Surgery, Breast Disease Center of Jiangsu Province, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, People's Republic of China
| | - Yanfeng Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang Avenue, Nanjing, Jiangsu, People's Republic of China
| | - Ke Zen
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, China
| | - Liang Jin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang Avenue, Nanjing, Jiangsu, People's Republic of China.
| | - Yi Pan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang Avenue, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
28
|
Clinical Theragnostic Relationship between Drug-Resistance Specific miRNA Expressions, Chemotherapeutic Resistance, and Sensitivity in Breast Cancer: A Systematic Review and Meta-Analysis. Cells 2019; 8:cells8101250. [PMID: 31615089 PMCID: PMC6830093 DOI: 10.3390/cells8101250] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/20/2019] [Accepted: 09/21/2019] [Indexed: 12/12/2022] Open
Abstract
Awareness of breast cancer has been increasing due to early detection, but the advanced disease has limited treatment options. There has been growing evidence on the role of miRNAs involved in regulating the resistance in several cancers. We performed a comprehensive systematic review and meta-analysis on the role of miRNAs in influencing the chemoresistance and sensitivity of breast cancer. A bibliographic search was performed in PubMed and Science Direct based on the search strategy, and studies published until December 2018 were retrieved. The eligible studies were included based on the selection criteria, and a detailed systematic review and meta-analysis were performed based on PRISMA guidelines. A random-effects model was utilised to evaluate the combined effect size of the obtained hazard ratio and 95% confidence intervals from the eligible studies. Publication bias was assessed with Cochran’s Q test, I2 statistic, Orwin and Classic fail-safe N test, Begg and Mazumdar rank correlation test, Duval and Tweedie trim and fill calculation and the Egger’s bias indicator. A total of 4584 potential studies were screened. Of these, 85 articles were eligible for our systematic review and meta-analysis. In the 85 studies, 188 different miRNAs were studied, of which 96 were upregulated, 87 were downregulated and 5 were not involved in regulation. Overall, 24 drugs were used for treatment, with doxorubicin being prominently reported in 15 studies followed by Paclitaxel in 11 studies, and 5 drugs were used in combinations. We found only two significant HR values from the studies (miR-125b and miR-4443) and our meta-analysis results yielded a combined HR value of 0.748 with a 95% confidence interval of 0.508–1.100; p-value of 0.140. In conclusion, our results suggest there are different miRNAs involved in the regulation of chemoresistance through diverse drug genetic targets. These biomarkers play a crucial role in guiding the effective diagnostic and prognostic efficiency of breast cancer. The screening of miRNAs as a theragnostic biomarker must be brought into regular practice for all diseases. We anticipate that our study serves as a reference in framing future studies and clinical trials for utilising miRNAs and their respective drug targets.
Collapse
|
29
|
Gong HL, Tao Y, Mao XZ, Song DY, You D, Ni JD. MicroRNA-29a suppresses the invasion and migration of osteosarcoma cells by regulating the SOCS1/NF-κB signalling pathway through negatively targeting DNMT3B. Int J Mol Med 2019; 44:1219-1232. [PMID: 31364725 PMCID: PMC6713425 DOI: 10.3892/ijmm.2019.4287] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 05/31/2019] [Indexed: 12/16/2022] Open
Abstract
The present study aimed to investigate the roles of the microRNA‑29a/DNA methyltransferase 3B/suppressor of cytokine signalling 1 (miR‑29a/DNMT3B/SOCS1) axis in the invasion and the migration of osteosarcoma (OS). The expression levels of miR‑29a, DNMT3B and SOCS1 were determined in tissue samples and OS cell lines by reverse transcription‑quantitative polymerase chain reaction (PCR). Apoptosis was measured using flow cytometry analysis. Transwell and wound healing assays were conducted to measure the invasion and migration abilities of OS cells, respectively. A dual‑luciferase reporter assay was also conducted to determine the interaction between DNMT3B and miR‑29a, while methylation‑specific PCR was used to detect the methylation of SOCS1. Western blotting was performed to determine the protein levels of DNMT3B and SOCS1, as well as the levels of proteins associated with epithelial‑mesenchymal transition (EMT), apoptosis and the nuclear factor (NF)‑κB signalling pathway. The results demonstrated that miR‑29a and SOCS1 were downregulated, and DNMT3B was upregulated in both OS tissues and cell lines. The expression of miR‑29a and SOCS1 was found to be associated with advanced clinical stage and distant metastasis. In addition, the dual‑luciferase reporter assay revealed that DNMT3B was a direct target of miR‑29a. Overexpression using miR‑29a mimics decreased DNMT3B expression and the methylation level of SOCS1, which resulted in the upregulation of SOCS1 in U2OS and MG‑63 cells, while miR‑29a inhibition led to the opposite results. Transfection with miR‑29a mimics also promoted the apoptosis, and inhibited the invasion, migration and EMT process of OS cells, while it markedly reduced the nuclear translocation of p65 and IκB‑α degradation. Treatment with 5‑aza‑2'‑deoxycytidine worked together with miR‑29a mimics to synergistically enhance the aforementioned effects. By contrast, the effects induced by miR‑29a were partly reversed upon co‑transfection with SOCS1 siRNA. In conclusion, miR‑29a promoted the apoptosis, and inhibited the invasion, migration and EMT process of OS cells via inhibition of the SOCS1/NF‑κB signalling pathway by directly targeting DNMT3B.
Collapse
Affiliation(s)
- Hao-Li Gong
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ye Tao
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Xin-Zhan Mao
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - De-Ye Song
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Di You
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jiang-Dong Ni
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
30
|
Jeong SJ, Lee KH, Nam AR, Cho JY. Genome-Wide Methylation Profiling in Canine Mammary Tumor Reveals miRNA Candidates Associated with Human Breast Cancer. Cancers (Basel) 2019; 11:E1466. [PMID: 31569550 PMCID: PMC6827104 DOI: 10.3390/cancers11101466] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/27/2019] [Accepted: 09/18/2019] [Indexed: 12/19/2022] Open
Abstract
Genome-wide methylation profiling is used in breast cancer (BC) studies, because DNA methylation is a crucial epigenetic regulator of gene expression, involved in many diseases including BC. We investigated genome-wide methylation profiles in both canine mammary tumor (CMT) tissues and peripheral blood mononuclear cells (PBMCs) using reduced representation bisulfite sequencing (RRBS) and found unique CMT-enriched methylation signatures. A total of 2.2-4.2 million cytosine-phosphate-guanine (CpG) sites were analyzed in both CMT tissues and PBMCs, which included 40,000 and 28,000 differentially methylated regions (DMRs) associated with 341 and 247 promoters of differentially methylated genes (DMGs) in CMT tissues and PBMCs, respectively. Genes related to apoptosis and ion transmembrane transport were hypermethylated, but cell proliferation and oncogene were hypomethylated in tumor tissues. Gene ontology analysis using DMGs in PBMCs revealed significant methylation changes in the subset of immune cells and host defense system-related genes, especially chemokine signaling pathway-related genes. Moreover, a number of CMT tissue-enriched DMRs were identified from the promoter regions of various microRNAs (miRNAs), including cfa-mir-96 and cfa-mir-149, which were reported as cancer-associated miRNAs in humans. We also identified novel miRNAs associated with CMT which can be candidates for new miRNAs associated with human BC. This study may provide new insight for a better understanding of aberrant methylation associated with both human BC and CMT, as well as possible targets for methylation-based BC diagnostic markers.
Collapse
Affiliation(s)
- Su-Jin Jeong
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.
| | - Kang-Hoon Lee
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.
| | - A-Reum Nam
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Je-Yoel Cho
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
31
|
Xu X, Chen X, Xu M, Liu X, Pan B, Qin J, Xu T, Zeng K, Pan Y, He B, Sun H, Sun L, Wang S. miR-375-3p suppresses tumorigenesis and partially reverses chemoresistance by targeting YAP1 and SP1 in colorectal cancer cells. Aging (Albany NY) 2019; 11:7357-7385. [PMID: 31543507 PMCID: PMC6781994 DOI: 10.18632/aging.102214] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023]
Abstract
Clinically, one of the principal factors in the failure of advanced colorectal cancer (CRC) treatment is chemoresistance to 5-fluorouracil (5FU)-based chemotherapy. Although microRNA-375-3p (miR-375) is considered a tumor suppressor in multiple cancers, the mechanism of miR-375 in the regulation of drug resistance in CRC remains unclear. In this study, we investigated the chemosensitivity of miR-375 to 5FU in CRC from biological and clinical aspects. We found that miR-375 was significantly downregulated in CRC tissues and cell lines, and low miR-375 expression was strongly correlated with poor overall survival in CRC patients. Overexpression of miR-375 sensitized CRC cells to a broad spectrum of chemotherapeutic drugs in vitro and in vivo. Further mechanistic analysis demonstrated that miR-375 enhanced CRC cell sensitivity to 5FU by directly targeting YAP1 and SP1. MiR-375 downregulated YAP1, resulting in reduced expression of the Hippo-YAP1 pathway downstream genes CTGF, cyclin D1 and BIRC5 (also known as survivin). Overall, miR-375 was confirmed as a prospective molecular biomarker in the chemoresistance and prognosis of CRC patients, and the synergy between miR-375 and chemotherapeutic drugs could be a promising therapeutic strategy for CRC patients, especially with chemoresistance.
Collapse
Affiliation(s)
- Xueni Xu
- School of Medicine, Southeast University, Nanjing 210009, China
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Xiaoxiang Chen
- School of Medicine, Southeast University, Nanjing 210009, China
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Mu Xu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Xiangxiang Liu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Bei Pan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Jian Qin
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Tao Xu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Kaixuan Zeng
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Yuqin Pan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Bangshun He
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Huiling Sun
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Li Sun
- Department of Laboratory Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Shukui Wang
- School of Medicine, Southeast University, Nanjing 210009, China
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| |
Collapse
|
32
|
Li G, An J, Han X, Zhang X, Wang W, Wang S. Hypermethylation of microRNA‐149 activates SDF‐1/CXCR4 to promote osteogenic differentiation of mesenchymal stem cells. J Cell Physiol 2019; 234:23485-23494. [PMID: 31206187 DOI: 10.1002/jcp.28917] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/12/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Guangjie Li
- The First Hospital of Lanzhou University Lanzhou China
- Lanzhou University Second Hospital Lanzhou China
| | - Jiangdong An
- Lanzhou University Second Hospital Lanzhou China
| | - Xingwen Han
- The First Hospital of Lanzhou University Lanzhou China
| | | | - Wenjin Wang
- The First Hospital of Lanzhou University Lanzhou China
| | - Shuanke Wang
- Lanzhou University Second Hospital Lanzhou China
| |
Collapse
|
33
|
Differential microRNA profiles between fulvestrant-resistant and tamoxifen-resistant human breast cancer cells. Anticancer Drugs 2019; 29:539-548. [PMID: 29557813 DOI: 10.1097/cad.0000000000000623] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Increasing evidence has shown that the dysregulation of microRNAs (miRNAs) is associated with drug resistance. Fulvestrant and tamoxifen represent the major endocrine drugs for the treatment of breast cancer patients, and yet little is known about the biological mechanisms of acquiring resistance to fulvestrant and tamoxifen, let alone the differences between cell lines resistant to these two drugs. Exploration of the differential miRNA profiles between these two cell lines is a useful way to further clarify these resistance mechanisms. The fulvestrant-resistant cell line (MCF7-F) and the tamoxifen-resistant cell line (MCF7-T) were established from the drug-sensitive parental MCF7 cell line using a 21-day high-dose antiestrogen induction method. Differentially expressed miRNA profiles of MCF7-F and MCF7-T were detected using microarray; then, multiple bioinformatic analyses were carried out, including protein-protein interaction network, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes pathway analysis. Compared with the parental MCF7 cell line, more miRNAs were found to be participating in the process of acquiring fulvestrant resistance than tamoxifen resistance. miR-4532, miR-486-5p, miR-138, miR-1228, and miR-3178 could be new targets for combating both fulvestrant resistance and tamoxifen resistance. miR-3188, miR-21, miR-149, and others may be associated with fulvestrant resistance, whereas miR-342 and miR-1226 may be associated with tamoxifen resistance in breast cancer cells. We found differential miRNA profiles between fulvestrant-resistant and tamoxifen-resistant breast cancer cells, but the definite mechanism involved in gaining resistance still needs further study.
Collapse
|
34
|
The role and mechanisms of action of microRNAs in cancer drug resistance. Clin Epigenetics 2019; 11:25. [PMID: 30744689 PMCID: PMC6371621 DOI: 10.1186/s13148-018-0587-8] [Citation(s) in RCA: 426] [Impact Index Per Article: 85.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 11/19/2018] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs with a length of about 19–25 nt, which can regulate various target genes and are thus involved in the regulation of a variety of biological and pathological processes, including the formation and development of cancer. Drug resistance in cancer chemotherapy is one of the main obstacles to curing this malignant disease. Statistical data indicate that over 90% of the mortality of patients with cancer is related to drug resistance. Drug resistance of cancer chemotherapy can be caused by many mechanisms, such as decreased antitumor drug uptake, modified drug targets, altered cell cycle checkpoints, or increased DNA damage repair, among others. In recent years, many studies have shown that miRNAs are involved in the drug resistance of tumor cells by targeting drug-resistance-related genes or influencing genes related to cell proliferation, cell cycle, and apoptosis. A single miRNA often targets a number of genes, and its regulatory effect is tissue-specific. In this review, we emphasize the miRNAs that are involved in the regulation of drug resistance among different cancers and probe the mechanisms of the deregulated expression of miRNAs. The molecular targets of miRNAs and their underlying signaling pathways are also explored comprehensively. A holistic understanding of the functions of miRNAs in drug resistance will help us develop better strategies to regulate them efficiently and will finally pave the way toward better translation of miRNAs into clinics, developing them into a promising approach in cancer therapy.
Collapse
|
35
|
Xu RD, Feng F, Yu XS, Liu ZD, Lao LF. miR-149-5p inhibits cell growth by regulating TWEAK/Fn14/PI3K/AKT pathway and predicts favorable survival in human osteosarcoma. Int J Immunopathol Pharmacol 2018; 32:2058738418786656. [PMID: 30014744 PMCID: PMC6050806 DOI: 10.1177/2058738418786656] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) as small non-coding RNAs act as either tumor suppressors or
oncogenes in human cancers, of which miR-149-5p (miR-149) is involved in tumor
growth and metastasis, but its role and molecular mechanisms underlying
osteosarcoma growth are poorly understood. The correlation of miR-149 expression
with clinicopathological characteristics and prognosis in patients with sarcoma
was analyzed by The Cancer Genome Atlas (TCGA) RNA-sequencing data. Osteosarcoma
cell growth affected by miR-149 was evaluated by
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and colony
formation assays. As a result, we found that the expression level of miR-149 was
markedly downregulated in human sarcoma samples and were negatively associated
with tumor size, acting as an independent prognostic factor for overall survival
of the sarcoma patients. Restoration of miR-149 expression suppressed
osteosarcoma cell growth, while its knockdown reversed these effects.
Furthermore, we identified TNFRSF12A (TNF receptor superfamily member 12A), also
called fibroblast growth factor–inducible 14 (Fn14) as a direct target of
miR-149, and TNFRSF12A and its ligand TNFSF12 (TNF superfamily member 12), also
called tumor necrosis factor–related weak inducer of apoptosis (TWEAK), were
both negatively correlated with miR-149 expression in sarcoma samples. Knockdown
of TNFRSF12A suppressed cell growth, but its overexpression weakened the
antiproliferative effects of miR-149 via the PI3K/AKT (AKT serine/threonine
kinase) signaling pathway. Altogether, our findings show that miR-149 functions
as a tumor suppressor in osteosarcoma via inhibition of the TWEAK–Fn14 axis and
represents a potential therapeutic target in patients with osteosarcoma.
Collapse
Affiliation(s)
- Rui-Da Xu
- Department of Orthopaedic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Feng
- Department of Orthopaedic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Sheng Yu
- Department of Orthopaedic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zu-De Liu
- Department of Orthopaedic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Feng Lao
- Department of Orthopaedic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
36
|
Bian A, Wang Y, Liu J, Wang X, Liu D, Jiang J, Ding L, Hui X. Circular RNA Complement Factor H (CFH) Promotes Glioma Progression by Sponging miR-149 and Regulating AKT1. Med Sci Monit 2018; 24:5704-5712. [PMID: 30111766 PMCID: PMC6108270 DOI: 10.12659/msm.910180] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Circular RNAs (circRNAs) are widely expressed in mammals and can regulate the development and progression of human tumors. has_circ_0015758 (circ-CFH) is an exon circRNA transcript from the GRCh37/hg19 fragment of chromosome 1 and is homologous to the protein-coding gene complement factor H (CFH). Currently, the function of circ-CFH in glioma remains unclear. Material/Methods In our study, circ-CFH, miR-149, and Akt1 mRNA expression levels were analyzed by qRT-PCR assays. To investigate the function of circ-CFH in cell proliferation, circ-CFH knockdown models were established by using circ-CFH siRNAs. Cell proliferation abilities were measured by CCK-8 and colony formation assays and in vivo experiments. In addition, the interaction between circ-CFH and miR-149 was assessed by luciferase reporter assays. Results Circ-CFH expression was significantly upregulated in glioma tissue and was correlated with tumor grade. Circ-CFH expression levels were also markedly higher in U251 and U373 glioma cell lines. Circ-CFH knockdown inhibited cell proliferation and colony formation abilities. Luciferase assays indicated that circ-CFH functions as a miR-149 sponge and inhibits its function in U251 and U373 cells. Subsequently, AKT1 was identified as a direct target of the circ-CFH/miR-149 axis. Conclusions Circ-CFH promotes glioma progression by sponging miR-149 and regulating the AKT1 signaling pathway. The circ-CFH/miR-149/AKT1 regulation axis may be a potential target for glioma therapy.
Collapse
Affiliation(s)
- Aimiao Bian
- Department of Neurosurgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China (mainland)
| | - Yanping Wang
- Department of Neurosurgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China (mainland)
| | - Ji Liu
- Department of Neurosurgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China (mainland)
| | - Xiaodong Wang
- Department of Neurosurgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China (mainland)
| | - Dai Liu
- Department of Neurosurgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China (mainland)
| | - Jian Jiang
- Department of Neurosurgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China (mainland)
| | - Lianshu Ding
- Department of Neurosurgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China (mainland)
| | - Xiaobo Hui
- Department of Neurosurgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China (mainland)
| |
Collapse
|
37
|
Zhi Y, Zhou H, Mubalake A, Chen Y, Zhang B, Zhang K, Chu X, Wang R. Regulation and functions of MicroRNA-149 in human cancers. Cell Prolif 2018; 51:e12465. [PMID: 29999552 DOI: 10.1111/cpr.12465] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 03/28/2018] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs are small non-coding RNAs that play critical roles in the regulatory mechanisms involving cell differentiation, proliferation, apoptosis and tumorigenesis. Recent research efforts have been conducted to apply these discoveries into clinical functions, including the early diagnosis and therapeutic outcome of patients with cancer. Previous studies have shown that microRNA-149 (miR-149) is dysregulated in various human cancers and exerts its effects on tumorigenesis and tumour progression. In this review, we summarized the potential roles of miR-149 dysregulation and its target genes during tumorigenesis and clinical treatment of human cancers.
Collapse
Affiliation(s)
- Yingru Zhi
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Hao Zhou
- Nanjing Medical University, Nanjing, China
| | - Abudoureyimu Mubalake
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Ying Chen
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Bei Zhang
- Nanjing Medical University, Nanjing, China
| | - Kai Zhang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Rui Wang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
38
|
Interplay between regulation by methylation and noncoding RNAs in cancers. Eur J Cancer Prev 2018; 27:418-424. [PMID: 29557800 DOI: 10.1097/cej.0000000000000433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cancer is one of the most important health problems today; therefore, many researchers are focusing on exploring the mechanisms underlying its development and treatment. The field of cancer epigenetics has flourished in recent decades, and studies have shown that different epigenetic events, such as DNA methylation, histone modification, and noncoding RNA regulation, work together to influence cancer development and progression. In this short review, we summarize the interactions between methylation and noncoding RNAs that affect cancer development.
Collapse
|
39
|
Kenworthy R, Bosco DB, DeLigio JT, Zorio DAR. Micro-RNA149 confers taxane resistance to malignant mesothelioma cells via regulation of P-glycoprotein expression. Cancer Biol Ther 2018; 19:181-187. [PMID: 29261027 DOI: 10.1080/15384047.2017.1415677] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Multidrug resistance (MDR) represents a major hindrance to the efficacy of cancer chemotherapeutics. While surgical resection, radiation, and chemotherapy can be used to reduce tumor size, the subsequent appearance of drug resistant cells is a frequent problem. One of the main contributors to the development of MDR is increased expression of multi-drug resistant protein 1 (MDR1), also known as P-glycoprotein (P-gp). P-gp is a membrane-associated efflux pump that can efficiently remove internalized taxane-base chemotherapeutics thus preventing drug accumulation and maintaining cellular viability. Consequently, investigation into the molecular mechanisms responsible for regulation of P-gp expression is necessary to facilitate treatment of MDR tumors. Using molecular and biochemical approaches, we identified that the micro-RNA, miRNA149, contributes to the development of MDR within malignant mesothelioma cells by regulating the expression of MDR1.
Collapse
Affiliation(s)
- Rachael Kenworthy
- a Department of Math and Sciences , Andrew College , Cuthbert , GA , United States
| | - Dale B Bosco
- c Department of Biomedical Sciences , School of Medicine, Florida State University , Tallahassee , FL , United States
| | - James T DeLigio
- b Department of Biochemistry and Molecular Biology , Virginia Commonwealth University School of Medicine , Richmond , VA , United States
| | - Diego A R Zorio
- c Department of Biomedical Sciences , School of Medicine, Florida State University , Tallahassee , FL , United States
| |
Collapse
|
40
|
Epigenetics and MicroRNAs in Cancer. Int J Mol Sci 2018; 19:ijms19020459. [PMID: 29401683 PMCID: PMC5855681 DOI: 10.3390/ijms19020459] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 02/08/2023] Open
Abstract
The ability to reprogram the transcriptional circuitry by remodeling the three-dimensional structure of the genome is exploited by cancer cells to promote tumorigenesis. This reprogramming occurs because of hereditable chromatin chemical modifications and the consequent formation of RNA-protein-DNA complexes that represent the principal actors of the epigenetic phenomena. In this regard, the deregulation of a transcribed non-coding RNA may be both cause and consequence of a cancer-related epigenetic alteration. This review summarizes recent findings that implicate microRNAs in the aberrant epigenetic regulation of cancer cells.
Collapse
|
41
|
Shen X, Li J, Liao W, Wang J, Chen H, Yao Y, Liu H, Ding K. microRNA-149 targets caspase-2 in glioma progression. Oncotarget 2018; 7:26388-99. [PMID: 27049919 PMCID: PMC5041987 DOI: 10.18632/oncotarget.8506] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 02/05/2016] [Indexed: 01/01/2023] Open
Abstract
Malignant gliomas are the most common form of intrinsic primary brain tumors worldwide. Alterations in microRNAs play a role in highly invasive malignant glioma, but detail mechanism still unknown. In this study, the role and mechanism of microRNA-149 (miR-149) in glioma are investigated. We show that miR-149 is expressed at substantially higher levels in glioma than in normal tissues. Stable overexpression of miR-149 augments potent prosurvival activity, as evidenced by promotion of cell viability, inhibition of apoptosis, and induced xenografted tumor growth in vivo. We further show that Caspase-2 is identified as a functional target of miR-149 and expression of caspase-2 is inversely associated with miR-149 in vitro. In addition, miR-149 promotes tumor survival in the U87-MG and A172 cell lines and it targets caspase-2 via inactivation of the p53 and p21 pathways. There results support a special role for miR-149 by targeting Caspase-2 to impact on p53 signaling pathway. We speculate that miR-149 has distinct biological functions in p53 wild type cells and p53 mutation cells, and the mechanisms involved remain to be explored in future. Our study suggests that targeting miR-149 may be a novel therapy strategy for treating p53 wild type glioma tumors in humans.
Collapse
Affiliation(s)
- Xiaokun Shen
- Glycobiology and Glycochemistry Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jie Li
- Glycobiology and Glycochemistry Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wenfeng Liao
- Glycobiology and Glycochemistry Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jiwen Wang
- Department of General Surgery, Zhongshan Hospital, General Surgery Institute, Fudan University, Shanghai 200032, China
| | - Huanjun Chen
- Glycobiology and Glycochemistry Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yanli Yao
- Glycobiology and Glycochemistry Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Houbao Liu
- Department of General Surgery, Zhongshan Hospital, General Surgery Institute, Fudan University, Shanghai 200032, China
| | - Kan Ding
- Glycobiology and Glycochemistry Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
42
|
He Y, Yu D, Zhu L, Zhong S, Zhao J, Tang J. miR-149 in Human Cancer: A Systemic Review. J Cancer 2018; 9:375-388. [PMID: 29344284 PMCID: PMC5771345 DOI: 10.7150/jca.21044] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 11/21/2017] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate post-transcriptional gene expression via binding to the 3'-untranslated region (3'-UTR) of targeted mRNAs. They are reported to play important roles in tumorigenesis and progression of various cancers. Among them, miR-149 was confirmed to be aberrantly regulated in various tumors. In this review, we provide a complex overview of miR-149, particularly summarize the critical roles of it in cancers and expect to lay the foundation for future works on this important microRNA.
Collapse
Affiliation(s)
- Yunjie He
- The First Clinical School of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Dandan Yu
- Center of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Baiziting 42, Nanjing 210009, P.R. China
| | - Lingping Zhu
- The First Clinical School of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Shanliang Zhong
- Center of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Baiziting 42, Nanjing 210009, P.R. China
| | - Jianhua Zhao
- Center of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Baiziting 42, Nanjing 210009, P.R. China
| | - Jinhai Tang
- The First Clinical School of Nanjing Medical University, Nanjing 210029, P.R. China.,Department of General Surgery, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, P.R. China
| |
Collapse
|
43
|
Dong Y, Chang C, Liu J, Qiang J. Targeting of GIT1 by miR-149* in breast cancer suppresses cell proliferation and metastasis in vitro and tumor growth in vivo. Onco Targets Ther 2017; 10:5873-5882. [PMID: 29270025 PMCID: PMC5729835 DOI: 10.2147/ott.s144280] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Breast cancer remains a major cause of cancer-related death in women worldwide. Dysregulation of microRNAs (miRNAs) is involved in the initiation and progression of breast cancer. Moreover, it was found that GIT1 was widely involved in the development of many human cancers. Herein, we aimed to investigate the expression changes of miR-149* and GIT1 and the functional effects of miR-149*/GIT1 link in breast cancer. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot (WB) were used to examine the expression levels of miR-149* and GIT1. Dual luciferase reporter assay was utilized to confirm the target interaction between miR-149* and GIT1. The biological functions, including cell proliferation, invasion, and migration, of miR-149* and GIT1 were determined by MTT assay and Transwell assays, respectively. Eventually, the tumor xenograft model in nude mice injected with stable transfected MDA-MB-231 cells was established to verify the effects of miR-149* and GIT1 on tumor growth. Our results showed that miR-149* expression was decreased, whereas GIT1 expression was increased in clinical samples of breast cancer. Based on the inverse expression trend between miR-149* and GIT1, we further demonstrated that miR-149* indeed directly targets GIT1. Subsequently, it was observed that inhibition of miR-149* significantly promoted cell proliferation, invasion, and migration, but the ability of cell proliferation, invasion, and migration was obviously declined after silencing of GIT1 in MDA-MB-231 cells transfected with miR-149* mimic and/or si-GIT1. Finally, it was also found that elevated miR-149* decelerated the tumor growth, while restored GIT1 accelerated the tumor growth in nude mice after 35 days of tumor xenograft. Collectively, these findings concluded that miR-149* might exert a tumor suppressive role in breast cancer by targeting GIT1.
Collapse
Affiliation(s)
- Yan Dong
- Department of Ultrasonography, Jinshan Hospital
| | - Cai Chang
- Department of Ultrasonography, Cancer Center
| | | | - Jinwei Qiang
- Department of Radiology, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
44
|
microRNA Expression in Ethnic Specific Early Stage Breast Cancer: an Integration and Comparative Analysis. Sci Rep 2017; 7:16829. [PMID: 29203780 PMCID: PMC5715135 DOI: 10.1038/s41598-017-16978-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/03/2017] [Indexed: 12/18/2022] Open
Abstract
Breast cancer (BC) has a higher incidence in young Lebanese woman as compared to the West. We assessed the microRNA (miRNA) microarray profile of tissues derived from Lebanese patients with early BC and performed mRNA-miRNA integration analysis. 173 miRNAs were significantly dysregulated in 45 BC versus 17 normal adjacent breast tissues, including 74 with a fold change more than two of which 17 were never reported before in cancer. Integration analysis of mRNA-miRNA microarray data revealed a potential role of 51 dysregulated miRNA regulating 719 tumor suppressive or oncogenic mRNA associated with increased proliferation and decreased migration and invasion. We then performed a comparative miRNA microarray profile analysis of BC tissue between these 45 Lebanese and 197 matched American BC patients. Notably, Lebanese BC patients had 21 exclusively dysregulated miRNA (e.g. miR-31, 362-3p, and 663) and 4 miRNA with different expression manner compared to American patients (e.g. miR-1288-star and 324-3p). Some of these differences could reflect variation in patient age at diagnosis or ethnic variation affecting miRNA epigenetic regulation or sequence of miRNA precursors. Our data provide a basis for genetic/epigenetic investigations to explore the role of miRNA in early stage BC in young women, including ethnic specific differences.
Collapse
|
45
|
Romagnolo DF, Daniels KD, Grunwald JT, Ramos SA, Propper CR, Selmin OI. Epigenetics of breast cancer: Modifying role of environmental and bioactive food compounds. Mol Nutr Food Res 2017; 60:1310-29. [PMID: 27144894 DOI: 10.1002/mnfr.201501063] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 04/24/2016] [Accepted: 04/26/2016] [Indexed: 12/12/2022]
Abstract
SCOPE Reduced expression of tumor suppressor genes (TSG) increases the susceptibility to breast cancer. However, only a small percentage of breast tumors is related to family history and mutational inactivation of TSG. Epigenetics refers to non-mutational events that alter gene expression. Endocrine disruptors found in foods and drinking water may disrupt epigenetically hormonal regulation and increase breast cancer risk. This review centers on the working hypothesis that agonists of the aromatic hydrocarbon receptor (AHR), bisphenol A (BPA), and arsenic compounds, induce in TSG epigenetic signatures that mirror those often seen in sporadic breast tumors. Conversely, it is hypothesized that bioactive food components that target epigenetic mechanisms protect against sporadic breast cancer induced by these disruptors. METHODS AND RESULTS This review highlights (i) overlaps between epigenetic signatures placed in TSG by AHR-ligands, BPA, and arsenic with epigenetic alterations associated with sporadic breast tumorigenesis; and (ii) potential opportunities for the prevention of sporadic breast cancer with food components that target the epigenetic machinery. CONCLUSIONS Characterizing the overlap between epigenetic signatures elicited in TSG by endocrine disruptors with those observed in sporadic breast tumors may afford new strategies for breast cancer prevention with specific bioactive food components or diet.
Collapse
Affiliation(s)
- Donato F Romagnolo
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ, USA.,The University of Arizona Cancer Center, Tucson, AZ, USA
| | - Kevin D Daniels
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Jonathan T Grunwald
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Stephan A Ramos
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Catherine R Propper
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Ornella I Selmin
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ, USA.,The University of Arizona Cancer Center, Tucson, AZ, USA
| |
Collapse
|
46
|
He DX, Wu XL, Lu CX, Gu XT, Zhang GY, Ma X, Liu DQ. Genome-wide analysis of the three-way interplay among gene expression, estrogen receptor expression and chemotherapeutic sensitivity in breast cancer. Oncol Rep 2017; 38:3392-3402. [PMID: 29039577 PMCID: PMC5783585 DOI: 10.3892/or.2017.6033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/26/2017] [Indexed: 01/04/2023] Open
Abstract
The expression of estrogen receptor α (ER) in breast cancers may be indicative of a favorable prognosis and most of these cancers respond to anti-estrogens or aromatase inhibitors. However, ER-positive (ER+) breast cancers receiving anti-hormone and/or chemotherapy sometimes lose their ER expression, which leads to the evolution of the disease to higher aggressiveness and drug resistance. In the present study, an ER-modified signature (EMS) was developed from the expression profile of a chemoresistant MCF-7 breast cancer cell line that lost ER expression during long-term treatment with a chemotherapeutic agent. The EMS could discriminate the ER-negative (ER-) breast cancer cells from the ER+ ones, which included seven pathways essential for the ER- cell development. Furthermore, the EMS indicated a more malignant subgroup of the ER- cells by discriminating the chemoresistant ER- cells from the chemosensitive ones. In addition, the classified chemoresistant ER- patients demonstrated worse prognosis. In conclusion, we developed a new method to discriminate subgroups of ER- breast cancer cells.
Collapse
Affiliation(s)
- Dong-Xu He
- National Engineering Laboratory for Cereal Fermentation Technology and Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Xiao-Li Wu
- National Engineering Laboratory for Cereal Fermentation Technology and Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Chun-Xiao Lu
- National Engineering Laboratory for Cereal Fermentation Technology and Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Xiao-Ting Gu
- National Engineering Laboratory for Cereal Fermentation Technology and Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Guang-Yuan Zhang
- National Engineering Laboratory for Cereal Fermentation Technology and Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Xin Ma
- National Engineering Laboratory for Cereal Fermentation Technology and Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - De-Quan Liu
- Department of Breast Surgery, The Third Affiliated Hospital, Kunming Medical University, Kunming, Yunnan 650031, P.R. China
| |
Collapse
|
47
|
Okato A, Arai T, Yamada Y, Sugawara S, Koshizuka K, Fujimura L, Kurozumi A, Kato M, Kojima S, Naya Y, Ichikawa T, Seki N. Dual Strands of Pre-miR-149 Inhibit Cancer Cell Migration and Invasion through Targeting FOXM1 in Renal Cell Carcinoma. Int J Mol Sci 2017; 18:ijms18091969. [PMID: 28902136 PMCID: PMC5618618 DOI: 10.3390/ijms18091969] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/07/2017] [Accepted: 09/07/2017] [Indexed: 12/16/2022] Open
Abstract
Our recent studies revealed that dual strands of certain pre-microRNAs, e.g., pre-miR-144, pre-miR-145, and pre-miR-150, act as antitumor microRNAs (miRNAs) in several cancers. The involvement of passenger strands of miRNAs in cancer pathogenesis is a novel concept in miRNA research. The analysis of a miRNA expression signature in clear cell renal cell carcinoma (ccRCC) has revealed that the guide strand of pre-miR-149 is significantly downregulated in cancer tissues. The aims of this study were to investigate the functional significance of miR-149’s guide strand (miR-149-5p) and passenger strand (miR-149-3p), and to identify the oncogenic genes regulated by these miRNAs in ccRCC cells. The ectopic expression of these miRNAs significantly inhibited cancer cell migration and invasion in ccRCC cells. Forkhead box protein M1 (FOXM1) was directly regulated by miR-149-5p and miR-149-3p in ccRCC cells. Knockdown studies using si-FOXM1 showed that the expression of FOXM1 enhanced RCC cell aggressiveness. Interestingly, the analysis of a large number of patients in the The Cancer Genome Atlas (TCGA) database (n = 260) demonstrated that patients with high FOXM1 expression had significantly shorter survival than did those with low FOXM1 expression (p = 1.5 × 10−6). Taken together, dual strands of pre-miR-149 (miR-149-5p and miR-149-3p) acted as antitumor miRNAs through the targeting of FOXM1 in ccRCC cells.
Collapse
Affiliation(s)
- Atsushi Okato
- Department of Functional Genomics, Chiba University Graduate School of Medicine, 2608670 Chiba, Japan.
- Department of Urology, Chiba University Graduate School of Medicine, 2608670 Chiba, Japan.
| | - Takayuki Arai
- Department of Functional Genomics, Chiba University Graduate School of Medicine, 2608670 Chiba, Japan.
- Department of Urology, Chiba University Graduate School of Medicine, 2608670 Chiba, Japan.
| | - Yasutaka Yamada
- Department of Functional Genomics, Chiba University Graduate School of Medicine, 2608670 Chiba, Japan.
- Department of Urology, Chiba University Graduate School of Medicine, 2608670 Chiba, Japan.
| | - Sho Sugawara
- Department of Functional Genomics, Chiba University Graduate School of Medicine, 2608670 Chiba, Japan.
- Department of Urology, Chiba University Graduate School of Medicine, 2608670 Chiba, Japan.
| | - Keiichi Koshizuka
- Department of Functional Genomics, Chiba University Graduate School of Medicine, 2608670 Chiba, Japan.
| | - Lisa Fujimura
- Department of Biomedical Science, Chiba University Graduate School of Medicine, 2608670 Chiba, Japan.
| | - Akira Kurozumi
- Department of Functional Genomics, Chiba University Graduate School of Medicine, 2608670 Chiba, Japan.
| | - Mayuko Kato
- Department of Functional Genomics, Chiba University Graduate School of Medicine, 2608670 Chiba, Japan.
| | - Satoko Kojima
- Department of Urology, Teikyo University Chiba Medical Center, 2990111 Ichihara, Japan.
| | - Yukio Naya
- Department of Urology, Teikyo University Chiba Medical Center, 2990111 Ichihara, Japan.
| | - Tomohiko Ichikawa
- Department of Urology, Chiba University Graduate School of Medicine, 2608670 Chiba, Japan.
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, 2608670 Chiba, Japan.
| |
Collapse
|
48
|
Demethylation of the MIR145 promoter suppresses migration and invasion in breast cancer. Oncotarget 2017; 8:61731-61741. [PMID: 28977900 PMCID: PMC5617460 DOI: 10.18632/oncotarget.18686] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 05/12/2017] [Indexed: 12/16/2022] Open
Abstract
miR-145 has been implicated in the progression of breast cancer. Here, we report that its expression is decreased in breast cancer specimens and cell lines and that this low level of expression is associated with DNA methylation of its gene, MIR145. Methylation of MIR145 has previously been correlated with cell migration and invasion, both in vivo and in vitro. We found that demethylation of MIR145 reactivates miR-145 and contributes to the anti-cancer properties of 5-aza-2'-deoxyazacytidine (5-AzaC). Therefore, miR-145 is a potentially valuable biomarker for breast cancer.
Collapse
|
49
|
Epigenetic Regulation of the Biosynthesis & Enzymatic Modification of Heparan Sulfate Proteoglycans: Implications for Tumorigenesis and Cancer Biomarkers. Int J Mol Sci 2017; 18:ijms18071361. [PMID: 28672878 PMCID: PMC5535854 DOI: 10.3390/ijms18071361] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/05/2017] [Accepted: 06/22/2017] [Indexed: 02/06/2023] Open
Abstract
Emerging evidence suggests that the enzymes in the biosynthetic pathway for the synthesis of heparan sulfate moieties of heparan sulfate proteoglycans (HSPGs) are epigenetically regulated at many levels. As the exact composition of the heparan sulfate portion of the resulting HSPG molecules is critical to the broad spectrum of biological processes involved in oncogenesis, the epigenetic regulation of heparan sulfate biosynthesis has far-reaching effects on many cellular activities related to cancer progression. Given the current focus on developing new anti-cancer therapeutics focused on epigenetic targets, it is important to understand the effects that these emerging therapeutics may have on the synthesis of HSPGs as alterations in HSPG composition may have profound and unanticipated effects. As an introduction, this review will briefly summarize the variety of important roles which HSPGs play in a wide-spectrum of cancer-related cellular and physiological functions and then describe the biosynthesis of the heparan sulfate chains of HSPGs, including how alterations observed in cancer cells serve as potential biomarkers. This review will then focus on detailing the multiple levels of epigenetic regulation of the enzymes in the heparan sulfate synthesis pathway with a particular focus on regulation by miRNA and effects of epigenetic therapies on HSPGs. We will also explore the use of lectins to detect differences in heparan sulfate composition and preview their potential diagnostic and prognostic use in the clinic.
Collapse
|
50
|
Chen Y, Luo D, Tian W, Li Z, Zhang X. Demethylation of miR-495 inhibits cell proliferation, migration and promotes apoptosis by targeting STAT-3 in breast cancer. Oncol Rep 2017; 37:3581-3589. [PMID: 28498478 DOI: 10.3892/or.2017.5621] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 04/18/2017] [Indexed: 11/06/2022] Open
Abstract
In breast cancer (BC), silencing of miRNA genes due to miRNA gene promoter methylation are the important mechanisms directly contributing to tumorigenesis and tumor progression. miRNA-495 (miR-495) has been reported to be a tumor suppressor gene in various cancers, but its role and regulation in BC remains unclear. In the present study, the level of miR-495 was inversely correlated with the expression of STAT-3 in BC tissues and cell lines. miR-495 can directly target 3'-UTR of STAT-3 mRNA and thereby decrease the expression of STAT-3 in MCF-7 and HCC1973 cells by Targetscan and Dual-luciferase assay. We further analyzed miR-495 promoter methylation by sodium bisulfite sequencing method (BSP), and found DNA methyltransferase inhibitor, 5-AzaC concomitantly upregulated expression of miR-495 and downregulated its target gene STAT-3 and its downstream target VEGF. Furthermore, we further observed that 5-AzaC treatment, miR-495 mimics and STAT-3 knockdown significantly inhibited cell function in breast cancer by Transwell assay, EdU flow cytometry, Annexin V-FITC/PI combined with flow cytometry and Hoechst staining. Taken together, our data are first to demonstrate that the miR-495 is silenced due to promoter methylation in breast cancer. DNA methyltransferase inhibitor 5-AzaC could reverse miR‑495 (suppressor gene) and STAT-3 (oncogene). The anticancer properties of 5-AzaC were preliminarily confirmed in breast cancer.
Collapse
Affiliation(s)
- Yi Chen
- Department of General (Breast and Thyroid), Daping Hospital of the Third Military Medical University, No. 10 Yangtze River Branch, Yuzhong, Chongqing 400042, P.R. China
| | - Donglin Luo
- Department of General (Breast and Thyroid), Daping Hospital of the Third Military Medical University, No. 10 Yangtze River Branch, Yuzhong, Chongqing 400042, P.R. China
| | - Wuguo Tian
- Department of General (Breast and Thyroid), Daping Hospital of the Third Military Medical University, No. 10 Yangtze River Branch, Yuzhong, Chongqing 400042, P.R. China
| | - Zhirong Li
- Department of General (Breast and Thyroid), Daping Hospital of the Third Military Medical University, No. 10 Yangtze River Branch, Yuzhong, Chongqing 400042, P.R. China
| | - Xiaohua Zhang
- Department of General (Breast and Thyroid), Daping Hospital of the Third Military Medical University, No. 10 Yangtze River Branch, Yuzhong, Chongqing 400042, P.R. China
| |
Collapse
|