1
|
Godoy JA, Mira RG, Inestrosa NC. Intracellular effects of lithium in aging neurons. Ageing Res Rev 2024; 99:102396. [PMID: 38942199 DOI: 10.1016/j.arr.2024.102396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Lithium therapy received approval during the 1970s, and it has been used for its antidepressant, antimanic, and anti-suicidal effects for acute and long-term prophylaxis and treatment of bipolar disorder (BPD). These properties have been well established; however, the molecular and cellular mechanisms remain controversial. In the past few years, many studies demonstrated that at the cellular level, lithium acts as a regulator of neurogenesis, aging, and Ca2+ homeostasis. At the molecular level, lithium modulates aging by inhibiting glycogen synthase kinase-3β (GSK-3β), and the phosphatidylinositol (PI) cycle; latter, lithium specifically inhibits inositol production, acting as a non-competitive inhibitor of inositol monophosphatase (IMPase). Mitochondria and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) have been related to lithium activity, and its regulation is mediated by GSK-3β degradation and inhibition. Lithium also impacts Ca2+ homeostasis in the mitochondria modulating the function of the lithium-permeable mitochondrial Na+-Ca2+exchanger (NCLX), affecting Ca2+ efflux from the mitochondrial matrix to the endoplasmic reticulum (ER). A close relationship between the protease Omi, GSK-3β, and PGC-1α has also been established. The purpose of this review is to summarize some of the intracellular mechanisms related to lithium activity and how, through them, neuronal aging could be controlled.
Collapse
Affiliation(s)
- Juan A Godoy
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo G Mira
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| | - Nibaldo C Inestrosa
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile; Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
2
|
Case KC, Beltman RJ, Pflum MKH, Greenberg ML. Valproate regulates inositol synthesis by reducing expression of myo-inositol-3-phosphate synthase. Sci Rep 2023; 13:14844. [PMID: 37684289 PMCID: PMC10491628 DOI: 10.1038/s41598-023-41936-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023] Open
Abstract
Inositol depletion is a hypothesized mechanism of action of mood stabilization drugs used in the treatment of bipolar disorder. It was previously reported that the mood stabilizer valproate (VPA) increased phosphorylation of myo-inositol-3-phosphate synthases (MIPS), the rate limiting enzyme of inositol synthesis. Phosphosites were identified and examination of site-directed mutants suggested that phosphorylation leads to decreased enzymatic activity. In this study, we examined the extent of MIPS phosphorylation in response to VPA and used two interaction screens to identify protein kinases that interact with MIPS. Using an epitope tagged MIPS construct, we determined the fraction of phosphorylated MIPS to be very low (less than 2% of total), and we could not detect phosphorylation of untagged MIPS in response to VPA. In vitro analyses of phosphorylation revealed that putative protein kinases, PKC and CKII, have low specificity toward MIPS. These findings suggest that VPA likely depletes inositol via a mechanism other than MIPS phosphorylation. Consistent with this, mRNA levels of the MIPS-encoding gene INO1 and MIPS protein levels were significantly reduced during the mid-log growth phase in response to VPA treatment. These findings suggest that the mechanism whereby VPA causes inositol depletion is by reducing expression of the rate-limiting enzyme MIPS.
Collapse
Affiliation(s)
- Kendall C Case
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Rachel J Beltman
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - Mary Kay H Pflum
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
3
|
Puglisi-Allegra S, Lazzeri G, Busceti CL, Giorgi FS, Biagioni F, Fornai F. Lithium engages autophagy for neuroprotection and neuroplasticity: translational evidence for therapy. Neurosci Biobehav Rev 2023; 148:105148. [PMID: 36996994 DOI: 10.1016/j.neubiorev.2023.105148] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023]
Abstract
Here an overview is provided on therapeutic/neuroprotective effects of Lithium (Li+) in neurodegenerative and psychiatric disorders focusing on the conspicuous action of Li+ through autophagy. The effects on the autophagy machinery remain the key molecular mechanisms to explain the protective effects of Li+ for neurodegenerative diseases, offering potential therapeutic strategies for the treatment of neuropsychiatric disorders and emphasizes a crossroad linking autophagy, neurodegenerative disorders, and mood stabilization. Sensitization by psychostimulants points to several mechanisms involved in psychopathology, most also crucial in neurodegenerative disorders. Evidence shows the involvement of autophagy and metabotropic Glutamate receptors-5 (mGluR5) in neurodegeneration due to methamphetamine neurotoxicity as well as in neuroprotection, both in vitro and in vivo models. More recently, Li+ was shown to modulate autophagy through its action on mGluR5, thus pointing to an additional way of autophagy engagement by Li+ and to a substantial role of mGluR5 in neuroprotection related to neural e neuropsychiatry diseases. We propose Li+ engagement of autophagy through the canonical mechanisms of autophagy machinery and through the intermediary of mGluR5.
Collapse
|
4
|
Chen Q, Shen L, Li S. Emerging role of inositol monophosphatase in cancer. Biomed Pharmacother 2023; 161:114442. [PMID: 36841024 DOI: 10.1016/j.biopha.2023.114442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023] Open
Abstract
Inositol monophosphatase (IMPase) is an enzyme with two homologs-IMPA1 and IMPA2-that is responsible for dephosphorylating myo-inositol monophosphate to generate myo-inositol. IMPase has been extensively studied in neuropsychiatric diseases and is regarded as a susceptibility gene. Recently, emerging evidence has implied that IMPase is linked to cancer development and progression and correlates with patient survival outcomes. Interestingly, whether it acts as a tumor-promoter or tumor-suppressor is inconsistent among different research studies. In this review, we summarize the latest findings on IMPase in cancer, focusing on exploring the underlying mechanisms for its pro- and anticancer roles. In addition, we discuss the potential methods of IMPase regulation in cancer cells and the possible approaches for IMPase intervention in clinical practice.
Collapse
Affiliation(s)
- Qian Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Shan Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
5
|
Puglisi-Allegra S, Ruggieri S, Fornai F. Translational evidence for lithium-induced brain plasticity and neuroprotection in the treatment of neuropsychiatric disorders. Transl Psychiatry 2021; 11:366. [PMID: 34226487 PMCID: PMC8257731 DOI: 10.1038/s41398-021-01492-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence indicates lithium (Li+) efficacy in neuropsychiatry, pointing to overlapping mechanisms that occur within distinct neuronal populations. In fact, the same pathway depending on which circuitry operates may fall in the psychiatric and/or neurological domains. Li+ restores both neurotransmission and brain structure unveiling that psychiatric and neurological disorders share common dysfunctional molecular and morphological mechanisms, which may involve distinct brain circuitries. Here an overview is provided concerning the therapeutic/neuroprotective effects of Li+ in different neuropsychiatric disorders to highlight common molecular mechanisms through which Li+ produces its mood-stabilizing effects and to what extent these overlap with plasticity in distinct brain circuitries. Li+ mood-stabilizing effects are evident in typical bipolar disorder (BD) characterized by a cyclic course of mania or hypomania followed by depressive episodes, while its efficacy is weaker in the opposite pattern. We focus here on neural adaptations that may underlie psychostimulant-induced psychotic development and to dissect, through the sensitization process, which features are shared in BD and other psychiatric disorders, including schizophrenia. The multiple functions of Li+ highlighted here prove its exceptional pharmacology, which may help to elucidate its mechanisms of action. These may serve as a guide toward a multi-drug strategy. We propose that the onset of sensitization in a specific BD subtype may predict the therapeutic efficacy of Li+. This model may help to infer in BD which molecular mechanisms are relevant to the therapeutic efficacy of Li+.
Collapse
Affiliation(s)
| | | | - Francesco Fornai
- IRCCS Neuromed, Via Atinense 18, 86077, Pozzilli (IS), Italy.
- Human Anatomy, Department of Translational Research and New technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126, Pisa (PI), Italy.
| |
Collapse
|
6
|
Dollins DE, Xiong JP, Endo-Streeter S, Anderson DE, Bansal VS, Ponder JW, Ren Y, York JD. A structural basis for lithium and substrate binding of an inositide phosphatase. J Biol Chem 2021; 296:100059. [PMID: 33172890 PMCID: PMC7948987 DOI: 10.1074/jbc.ra120.014057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/29/2020] [Accepted: 11/10/2020] [Indexed: 01/07/2023] Open
Abstract
Inositol polyphosphate 1-phosphatase (INPP1) is a prototype member of metal-dependent/lithium-inhibited phosphomonoesterase protein family defined by a conserved three-dimensional core structure. Enzymes within this family function in distinct pathways including inositide signaling, gluconeogenesis, and sulfur assimilation. Using structural and biochemical studies, we report the effect of substrate and lithium on a network of metal binding sites within the catalytic center of INPP1. We find that lithium preferentially occupies a key site involved in metal-activation only when substrate or product is added. Mutation of a conserved residue that selectively coordinates the putative lithium-binding site results in a dramatic 100-fold reduction in the inhibitory constant as compared with wild-type. Furthermore, we report the INPP1/inositol 1,4-bisphosphate complex which illuminates key features of the enzyme active site. Our results provide insights into a structural basis for uncompetitive lithium inhibition and substrate recognition and define a sequence motif for metal binding within this family of regulatory phosphatases.
Collapse
Affiliation(s)
- D Eric Dollins
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Jian-Ping Xiong
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Stuart Endo-Streeter
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - David E Anderson
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Vinay S Bansal
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Jay W Ponder
- Department of Chemistry, Washington University, St Louis, Missouri, USA
| | - Yi Ren
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - John D York
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
7
|
Fenn GD, Waller-Evans H, Atack JR, Bax BD. Crystallization and structure of ebselen bound to Cys141 of human inositol monophosphatase. Acta Crystallogr F Struct Biol Commun 2020; 76:469-476. [PMID: 33006574 PMCID: PMC7531247 DOI: 10.1107/s2053230x20011310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/18/2020] [Indexed: 11/21/2022] Open
Abstract
Inositol monophosphatase (IMPase) is inhibited by lithium, which is the most efficacious treatment for bipolar disorder. Several therapies have been approved, or are going through clinical trials, aimed at the replacement of lithium in the treatment of bipolar disorder. One candidate small molecule is ebselen, a selenium-containing antioxidant, which has been demonstrated to produce lithium-like effects both in a murine model and in clinical trials. Here, the crystallization and the first structure of human IMPase covalently complexed with ebselen, a 1.47 Å resolution crystal structure (PDB entry 6zk0), are presented. In the complex with human IMPase, ebselen in a ring-opened conformation is covalently attached to Cys141, a residue located away from the active site. IMPase is a dimeric enzyme and in the crystal structure two adjacent dimers share four ebselen molecules, creating a tetramer with approximate 222 symmetry. In the crystal structure presented in this publication, the active site in the tetramer is still accessible, suggesting that ebselen may function as an allosteric inhibitor or may block the binding of partner proteins.
Collapse
Affiliation(s)
- Gareth D. Fenn
- Medicines Discovery Institute, School of Biosciences, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Helen Waller-Evans
- Medicines Discovery Institute, School of Biosciences, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - John R. Atack
- Medicines Discovery Institute, School of Biosciences, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Benjamin D. Bax
- Medicines Discovery Institute, School of Biosciences, Cardiff University, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
8
|
Wineman-Fisher V, Delgado JM, Nagy PR, Jakobsson E, Pandit SA, Varma S. Transferable interactions of Li + and Mg 2+ ions in polarizable models. J Chem Phys 2020; 153:104113. [PMID: 32933310 DOI: 10.1063/5.0022060] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Therapeutic implications of Li+, in many cases, stem from its ability to inhibit certain Mg2+-dependent enzymes, where it interacts with or substitutes for Mg2+. The underlying details of its action are, however, unknown. Molecular simulations can provide insights, but their reliability depends on how well they describe relative interactions of Li+ and Mg2+ with water and other biochemical groups. Here, we explore, benchmark, and recommend improvements to two simulation approaches: the one that employs an all-atom polarizable molecular mechanics (MM) model and the other that uses a hybrid quantum and MM implementation of the quasi-chemical theory (QCT). The strength of the former is that it describes thermal motions explicitly and that of the latter is that it derives local contributions from electron densities. Reference data are taken from the experiment, and also obtained systematically from CCSD(T) theory, followed by a benchmarked vdW-inclusive density functional theory. We find that the QCT model predicts relative hydration energies and structures in agreement with the experiment and without the need for additional parameterization. This implies that accurate descriptions of local interactions are essential. Consistent with this observation, recalibration of local interactions in the MM model, which reduces errors from 10.0 kcal/mol to 1.4 kcal/mol, also fixes aqueous phase properties. Finally, we show that ion-ligand transferability errors in the MM model can be reduced significantly from 10.3 kcal/mol to 1.2 kcal/mol by correcting the ligand's polarization term and by introducing Lennard-Jones cross-terms. In general, this work sets up systematic approaches to evaluate and improve molecular models of ions binding to proteins.
Collapse
Affiliation(s)
- Vered Wineman-Fisher
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida 33620, USA
| | - Julián Meléndez Delgado
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida 33620, USA
| | - Péter R Nagy
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| | - Eric Jakobsson
- National Center for Supercomputing Applications, Center for Biophysics and Computational Biology, Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Sagar A Pandit
- Department of Physics, University of South Florida, Tampa, Florida 33620, USA
| | - Sameer Varma
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida 33620, USA
| |
Collapse
|
9
|
Rebernik M, Snoj T, Klemenčič M, Novinec M. Interplay between tetrameric structure, enzymatic activity and allosteric regulation of human dipeptidyl-peptidase I. Arch Biochem Biophys 2019; 675:108121. [DOI: 10.1016/j.abb.2019.108121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/10/2019] [Accepted: 09/27/2019] [Indexed: 02/06/2023]
|
10
|
Pickard BS. Genomics of Lithium Action and Response. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2019; 17:308-313. [PMID: 32015722 PMCID: PMC6996056 DOI: 10.1176/appi.focus.17305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
(Reprinted with permission from Neurotherapeutics (2017) 14:582-587).
Collapse
|
11
|
Abstract
Lithium is the most successful mood stabilizer treatment for bipolar disorder. However, unlike conventional drugs that are designed to interact with a specific molecular target, the actions of lithium are distributed across many biological processes and pathways. Treatment response is subject to genetic variation between individuals and similar genetic variation may dictate susceptibility to side effects. Transcriptomic, genomic, and cell-model research strategies have all been deployed in the search for the genetic factors and biological systems that mediate the interaction between genetics and the therapeutic actions of lithium. In this review, recent findings from genome-wide studies and patient cell lines will be summarized and discussed from a standpoint that genuine progress is being made to define clinically useful mechanisms of this treatment, to place it in the context of bipolar disorder pathology, and to move towards a time when the prescription of lithium is targeted to those individuals who will derive the greatest benefit.
Collapse
Affiliation(s)
- Benjamin S Pickard
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK.
| |
Collapse
|
12
|
Mikosha AS, Kovzun OI, Tronko MD. Biological effects of lithium – fundamental and medical aspects. UKRAINIAN BIOCHEMICAL JOURNAL 2017. [DOI: 10.15407/ubj89.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
13
|
Roux M, Dosseto A. From direct to indirect lithium targets: a comprehensive review of omics data. Metallomics 2017; 9:1326-1351. [DOI: 10.1039/c7mt00203c] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metal ions are critical to a wide range of biological processes.
Collapse
Affiliation(s)
| | - Anthony Dosseto
- Wollongong Isotope Geochronology Laboratory
- School of Earth & Environmental Sciences
- University of Wollongong
- Wollongong
- Australia
| |
Collapse
|
14
|
Macroscopic amyloid fiber formation by staphylococcal biofilm associated SuhB protein. Biophys Chem 2016; 217:32-41. [DOI: 10.1016/j.bpc.2016.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/04/2016] [Accepted: 07/27/2016] [Indexed: 11/22/2022]
|
15
|
Romero-Güiza MS, Mata-Alvarez J, Chimenos JM, Astals S. The effect of magnesium as activator and inhibitor of anaerobic digestion. WASTE MANAGEMENT (NEW YORK, N.Y.) 2016; 56:137-142. [PMID: 27402564 DOI: 10.1016/j.wasman.2016.06.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/28/2016] [Accepted: 06/28/2016] [Indexed: 06/06/2023]
Abstract
Anaerobic digestion stands as a key technology in the emerging green energy economy. Mg(2+) has been identified as an important element to improve digesters methane production; however the inhibition risk that high Mg(2+) concentrations can cause to the AD process must also be considered when dosing Mg reagents and wastes containing Mg(2+). Despite its importance, Mg(2+) stimulation and inhibition mechanisms as well as threshold values are scarce in the literature. This research paper investigates the impact (stimulation and inhibition) of Mg(2+) on pig manure anaerobic digestion. Mathematical modelling was used to better understand the interaction between substrate, inoculum and magnesium, where Mg(2+) inhibition was modelled by a n-component non-competitive inhibition function. Modelling was done on absolute curves rather than specific methane productions curves (new approach) to account for the lower background methane production of the inoculum as the Mg(2+) concentration increased. Results showed that no stimulation or inhibition occurred between 40 (native concentration) and 400mgMg(2+)L(-1), while minor and major inhibition were observed at 750 and 1000mgMg(2+)L(-1), and at 2000 and 4000mgMg(2+)L(-1), respectively. Mg(2+) half maximal inhibition concentration was estimated at 2140mgMg(2+)L(-1) with an inhibition order of 2. The latter indicates that Mg(2+) inhibition is a progressive rather than a steep inhibition mechanism.
Collapse
Affiliation(s)
- M S Romero-Güiza
- Department of Chemical Engineering, University of Barcelona, C/Martí i Franquès 1, 08028 Barcelona, Spain; Department of Materials Science and Metallurgical Engineering, University of Barcelona, C/Martí i Franquès 1, 08028 Barcelona, Spain
| | - J Mata-Alvarez
- Department of Chemical Engineering, University of Barcelona, C/Martí i Franquès 1, 08028 Barcelona, Spain
| | - J M Chimenos
- Department of Materials Science and Metallurgical Engineering, University of Barcelona, C/Martí i Franquès 1, 08028 Barcelona, Spain
| | - S Astals
- Department of Chemical Engineering, University of Barcelona, C/Martí i Franquès 1, 08028 Barcelona, Spain; Advanced Water Management Centre, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
16
|
Ferruz N, Tresadern G, Pineda-Lucena A, De Fabritiis G. Multibody cofactor and substrate molecular recognition in the myo-inositol monophosphatase enzyme. Sci Rep 2016; 6:30275. [PMID: 27440438 PMCID: PMC4954947 DOI: 10.1038/srep30275] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/29/2016] [Indexed: 01/22/2023] Open
Abstract
Molecular recognition is rarely a two-body protein-ligand problem, as it often involves the dynamic interplay of multiple molecules that together control the binding process. Myo-inositol monophosphatase (IMPase), a drug target for bipolar disorder, depends on 3 Mg(2+) ions as cofactor for its catalytic activity. Although the crystallographic pose of the pre-catalytic complex is well characterized, the binding process by which substrate, cofactor and protein cooperate is essentially unknown. Here, we have characterized cofactor and substrate cooperative binding by means of large-scale molecular dynamics. Our study showed the first and second Mg(2+) ions identify the binding pocket with fast kinetics whereas the third ion presents a much higher energy barrier. Substrate binding can occur in cooperation with cofactor, or alone to a binary or ternary cofactor-IMPase complex, although the last scenario occurs several orders of magnitude faster. Our atomic description of the three-body mechanism offers a particularly challenging example of pathway reconstruction, and may prove particularly useful in realistic contexts where water, ions, cofactors or other entities cooperate and modulate the binding process.
Collapse
Affiliation(s)
- Noelia Ferruz
- Computational Biophysics Laboratory (GRIB-IMIM), Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), Doctor Aiguader 88, 08003, Barcelona, Spain
- Acellera, Barcelona Biomedical Research Park, C Dr Aiguader 88, 08003, Barcelona, Spain
| | - Gary Tresadern
- Research Informatics, Janssen Research and Development, Janssen Cilag S A, Calle Jarama 75, Poligono Industrial, Toledo 45007, Spain
| | | | - Gianni De Fabritiis
- Computational Biophysics Laboratory (GRIB-IMIM), Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), Doctor Aiguader 88, 08003, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
17
|
A differential impact of lithium on endothelium-dependent but not on endothelium-independent vessel relaxation. Prog Neuropsychopharmacol Biol Psychiatry 2016; 67:98-106. [PMID: 26875501 DOI: 10.1016/j.pnpbp.2016.02.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/06/2016] [Accepted: 02/09/2016] [Indexed: 01/01/2023]
Abstract
Lithium is drug for bipolar disorders with a narrow therapeutic window. Lithium was recently reported to prevent stroke and protect vascular endothelium but tends to accumulate particularly in the brain and kidney. Here, adverse effects are common; however mechanisms are still vaguely understood. If lithium could also negatively influence the endothelium is unclear. We hypothesize that at higher lithium levels, the effects on endothelium reverses--that lithium also impairs endothelial-dependent relaxation of blood vessels. Vessel grafts from de-nerved murine aortas and porcine middle cerebral arteries were preconditioned using media supplemented with lithium chloride or acetate (0.4-100 mmol/L). Native or following phenylephrine-induced vasoconstriction, the relaxation capacity of preconditioned vessels was assessed by isometric myography, using acetylcholine to test the endothelium-dependent or sodium nitroprusside to test the endothelium-independent vasorelaxation, respectively. At the 0.4 mmol/L lithium concentration, acetylcholine-induced endothelium-dependent vessel relaxation was slightly increased, however, diminished in a concentration-dependent manner in vessel grafts preconditioned with lithium at higher therapeutic and supratherapeutic concentrations (0.8-100 mmol/L). In contrast, endothelium-independent vasorelaxation remained unaltered in preconditioned vessel grafts at any lithium concentration tested. Lithium elicits opposing effects on endothelial functions representing a differential impact on the endothelium within the narrow therapeutic window. Lithium accumulation or overdose reduces endothelium-dependent but not endothelium-independent vasorelaxation. The differentially modified endothelium-dependent vascular response represents an additional mechanism contributing to therapeutic or adverse effects of lithium.
Collapse
|
18
|
Bhattacharyya S, Dutta A, Dutta D, Ghosh AK, Das AK. Structural elucidation of the NADP(H) phosphatase activity of staphylococcal dual-specific IMPase/NADP(H) phosphatase. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2016; 72:281-90. [PMID: 26894675 DOI: 10.1107/s2059798316000620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 01/12/2016] [Indexed: 11/10/2022]
Abstract
NADP(H)/NAD(H) homeostasis has long been identified to play a pivotal role in the mitigation of reactive oxygen stress (ROS) in the intracellular milieu and is therefore critical for the progression and pathogenesis of many diseases. NAD(H) kinases and NADP(H) phosphatases are two key players in this pathway. Despite structural evidence demonstrating the existence and mode of action of NAD(H) kinases, the specific annotation and the mode of action of NADP(H) phosphatases remains obscure. Here, structural evidence supporting the alternative role of inositol monophosphatase (IMPase) as an NADP(H) phosphatase is reported. Crystal structures of staphylococcal dual-specific IMPase/NADP(H) phosphatase (SaIMPase-I) in complex with the substrates D-myo-inositol-1-phosphate and NADP(+) have been solved. The structure of the SaIMPase-I-Ca(2+)-NADP(+) ternary complex reveals the catalytic mode of action of NADP(H) phosphatase. Moreover, structures of SaIMPase-I-Ca(2+)-substrate complexes have reinforced the earlier proposal that the length of the active-site-distant helix α4 and its preceding loop are the predisposing factors for the promiscuous substrate specificity of SaIMPase-I. Altogether, the evidence presented suggests that IMPase-family enzymes with a shorter α4 helix could be potential candidates for previously unreported NADP(H) phosphatase activity.
Collapse
Affiliation(s)
- Sudipta Bhattacharyya
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India
| | - Anirudha Dutta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India
| | - Debajyoti Dutta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India
| | - Ananta Kumar Ghosh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India
| |
Collapse
|