1
|
Ozguney B, Mohanty P, Mittal J. RNA binding tunes the conformational plasticity and intradomain stability of TDP-43 tandem RNA recognition motifs. Biophys J 2024; 123:3844-3855. [PMID: 39354713 PMCID: PMC11560306 DOI: 10.1016/j.bpj.2024.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/26/2024] [Accepted: 09/27/2024] [Indexed: 10/03/2024] Open
Abstract
TAR DNA binding protein 43 (TDP-43) is a nuclear RNA/DNA-binding protein with pivotal roles in RNA-related processes such as splicing, transcription, transport, and stability. The high binding affinity and specificity of TDP-43 toward its cognate RNA sequences (GU-rich) is mediated by highly conserved residues in its tandem RNA recognition motif (RRM) domains (aa: 104-263). Importantly, the loss of RNA binding to the tandem RRMs caused by physiological stressors and chemical modifications promotes cytoplasmic mislocalization and pathological aggregation of TDP-43. Despite the substantial implications of RNA binding in TDP-43 function and pathology, its precise effects on the intradomain stability, and conformational dynamics of the tandem RRMs is not properly understood. Here, we employed all-atom molecular dynamics (MD) simulations to assess the effect of RNA binding on the conformational landscape and intradomain stability of TDP-43 tandem RRMs. RNA limits the overall conformational space of the tandem RRMs and promotes intradomain stability through a combination of specific base stacking interactions and transient electrostatic interactions. In contrast, tandem RRMs exhibit a high intrinsic conformational plasticity in the absence of RNA, which, surprisingly, is accompanied by a tendency of RRM1 to adopt partially unfolded conformations. Overall, our simulations reveal how RNA binding dynamically tunes the structural and conformational landscape of TDP-43 tandem RRMs, contributing to physiological function and mitigating pathological aggregation.
Collapse
Affiliation(s)
- Busra Ozguney
- Artie McFerrin Department of Chemical Engineering, Texas A&M College of Engineering, College Station, Texas
| | - Priyesh Mohanty
- Artie McFerrin Department of Chemical Engineering, Texas A&M College of Engineering, College Station, Texas.
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M College of Engineering, College Station, Texas; Department of Chemistry, Texas A&M University, College Station, Texas; Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, College Station, Texas.
| |
Collapse
|
2
|
Patni D, Patil AD, Kirmire MS, Jha A, Jha SK. DNA-Mediated Formation of Phase-Separated Coacervates of the Nucleic Acid-Binding Domain of TAR DNA-Binding Protein (TDP-43) Prevents Its Amyloid-Like Misfolding. ACS Chem Neurosci 2024. [PMID: 39471356 DOI: 10.1021/acschemneuro.4c00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024] Open
Abstract
Sequestration of protein molecules and nucleic acids to stress granules is one of the most promising strategies that cells employ to protect themselves from stress. In vitro, studies suggest that the nucleic acid-binding domain of TDP-43 (TDP-43tRRM) undergoes amyloid-like aggregation to β-sheet-rich structures in low pH stress. In contrast, we observed that the TDP-43tRRM undergoes complex coacervation in the presence of ssDNA to a dense and light phase, preventing its amyloid-like aggregation. The soluble light phase consists of monomeric native-like TDP-43tRRM. The microscopic data suggest that the dense phase consists of spherical coacervates with limited internal dynamics. We performed multiparametric analysis by employing various biophysical techniques and found that complex coacervation depends on the concentration and ratio of the participating biomolecules and is driven by multivalent interactions. The modulation of these forces due to environmental conditions or disease mutations regulates the extent of coacervation, and the weakening of interactions between TDP-43tRRM and ssDNA leads to amyloid-like aggregation of TDP-43tRRM. Our results highlight a competition among the native state, amyloid-like aggregates, and complex coacervates tuned by various environmental factors. Together, our results illuminate an alternate function of TDP-43tRRM in response to pH stress in the presence of the ssDNA.
Collapse
Affiliation(s)
- Divya Patni
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anjali D Patil
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mona S Kirmire
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anjali Jha
- MIT School of Bioengineering Sciences and Research, MIT-ADT University, Loni Kalbhor, Pune 412 201, India
| | - Santosh Kumar Jha
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Pillai M, Jha SK. Conformational Enigma of TDP-43 Misfolding in Neurodegenerative Disorders. ACS OMEGA 2024; 9:40286-40297. [PMID: 39372031 PMCID: PMC11447851 DOI: 10.1021/acsomega.4c04119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/25/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024]
Abstract
Misfolding and aggregation of the protein remain some of the most common phenomena observed in neurodegeneration. While there exist multiple neurodegenerative disorders characterized by accumulation of distinct proteins, what remains particularly interesting is the ability of these proteins to undergo a conformational change to form aggregates. TDP-43 is one such nucleic acid binding protein whose misfolding is associated with many neurogenerative diseases including amyotrophic lateral sclerosis (ALS) and fronto-temporal lobar degeneration (FTLD). TDP-43 protein assumes several different conformations and oligomeric states under the diseased condition. In this review, we explore the intrinsic relationship between the conformational variability of TDP-43 protein, with a particular focus on the RRM domains, and its propensity to undergo aggregation. We further emphasize the probable mechanism behind the formation of these conformations and suggest a potential diagnostic and therapeutic strategy in the context of these conformational states of the protein.
Collapse
Affiliation(s)
- Meenakshi Pillai
- Physical
and Materials Chemistry Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Santosh Kumar Jha
- Physical
and Materials Chemistry Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Song J. Molecular Mechanisms of Phase Separation and Amyloidosis of ALS/FTD-linked FUS and TDP-43. Aging Dis 2024; 15:2084-2112. [PMID: 38029395 PMCID: PMC11346406 DOI: 10.14336/ad.2023.1118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/18/2023] [Indexed: 12/01/2023] Open
Abstract
FUS and TDP-43, two RNA-binding proteins from the heterogeneous nuclear ribonucleoprotein family, have gained significant attention in the field of neurodegenerative diseases due to their association with amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD). They possess folded domains for binding ATP and various nucleic acids including DNA and RNA, as well as substantial intrinsically disordered regions (IDRs) including prion-like domains (PLDs) and RG-/RGG-rich regions. They play vital roles in various cellular processes, including transcription, splicing, microRNA maturation, RNA stability and transport and DNA repair. In particular, they are key components for forming ribonucleoprotein granules and stress granules (SGs) through homotypic or heterotypic liquid-liquid phase separation (LLPS). Strikingly, liquid-like droplets formed by FUS and TDP-43 may undergo aging to transform into less dynamic assemblies such as hydrogels, inclusions, and amyloid fibrils, which are the pathological hallmarks of ALS and FTD. This review aims to synthesize and consolidate the biophysical knowledge of the sequences, structures, stability, dynamics, and inter-domain interactions of FUS and TDP-43 domains, so as to shed light on the molecular mechanisms underlying their liquid-liquid phase separation (LLPS) and amyloidosis. The review further delves into the mechanisms through which ALS-causing mutants of the well-folded hPFN1 disrupt the dynamics of LLPS of FUS prion-like domain, providing key insights into a potential mechanism for misfolding/aggregation-prone proteins to cause neurodegenerative diseases and aging by gain of functions. With better understanding of different biophysical aspects of FUS and TDP-43, the ultimate goal is to develop drugs targeting LLPS and amyloidosis, which could mediate protein homeostasis within cells and lead to new treatments for currently intractable diseases, particularly neurodegenerative diseases such as ALS, FTD and aging. However, the study of membrane-less organelles and condensates is still in its infancy and therefore the review also highlights key questions that require future investigation.
Collapse
|
5
|
Meshram VD, Balaji R, Saravanan P, Subbamanda Y, Deeksha W, Bajpai A, Joshi H, Bhargava A, Patel BK. Computational Insights Into the Mechanism of EGCG's Binding and Inhibition of the TDP-43 Aggregation. Chem Biol Drug Des 2024; 104:e14640. [PMID: 39380150 DOI: 10.1111/cbdd.14640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/07/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024]
Abstract
Misfolding and aggregation of TAR DNA-binding protein, TDP-43, is linked to devastating proteinopathies such as ALS. Therefore, targeting TDP-43's aggregation is significant for therapeutics. Recently, green tea polyphenol, EGCG, was observed to promote non-toxic TDP-43 oligomer formation disallowing TDP-43 aggregation. Here, we investigated if the anti-aggregation effect of EGCG is mediated via EGCG's binding to TDP-43. In silico molecular docking and molecular dynamics (MD) simulation suggest a strong binding of EGCG with TDP-43's aggregation-prone C-terminal domain (CTD). Three replicas, each having 800 ns MD simulation of the EGCG-TDP-43-CTD complex, yielded a high negative binding free energy (ΔG) inferring a stable complex formation. Simulation snapshots show that EGCG forms close and long-lasting contacts with TDP-43's Phe-313 and Ala-341 residues, which were previously identified for monomer recruitment in CTD's aggregation. Notably, stable physical interactions between TDP-43 and EGCG were also detected in vitro using TTC staining and isothermal titration calorimetry which revealed a high-affinity binding site of EGCG on TDP-43 (Kd, 7.8 μM; ΔG, -6.9 kcal/mol). Additionally, TDP-43 co-incubated with EGCG was non-cytotoxic when added to HEK293 cells. In summary, EGCG's binding to TDP-43 and blocking of residues important for aggregation can be a possible mechanism of its anti-aggregation effects on TDP-43.
Collapse
Affiliation(s)
- Vini D Meshram
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, India
| | - Ramkumar Balaji
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, India
| | - Preethi Saravanan
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, India
| | - Yashashwini Subbamanda
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, India
| | - Waghela Deeksha
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, India
| | - Akarsh Bajpai
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, India
| | - Himanshu Joshi
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, India
| | - Anamika Bhargava
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, India
| | - Basant K Patel
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, India
| |
Collapse
|
6
|
Zeng J, Tang Y, Dong X, Li F, Wei G. Influence of ALS-linked M337V mutation on the conformational ensembles of TDP-43 321-340 peptide monomer and dimer. Proteins 2024; 92:1059-1069. [PMID: 36841957 DOI: 10.1002/prot.26482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/12/2023] [Accepted: 02/19/2023] [Indexed: 02/27/2023]
Abstract
The transactive response (TAR) DNA/RNA-binding protein 43 (TDP-43) can self-assemble into both functional stress granules via liquid-liquid phase separation (LLPS) and pathogenic amyloid fibrillary aggregates that are closely linked to amyotrophic lateral sclerosis. Previous experimental studies reported that the low complexity domain (LCD) of TDP-43 plays an essential role in the LLPS and aggregation of the full-length protein, and it alone can also undergo LLPS to form liquid droplets mainly via intermolecular interactions in the 321-340 region. And the ALS-associated M337V mutation impairs LCD's LLPS and facilitates liquid-solid phase transition. However, the underlying atomistic mechanism is not well understood. Herein, as a first step to understand the M337V-caused LLPS disruption of TDP-43 LCD mediated by the 321-340 region and the fibrillization enhancement, we investigated the conformational properties of monomer/dimer of TDP-43321-340 peptide and its M337V mutant by performing extensive all-atom explicit-solvent replica exchange molecular dynamic simulations. Our simulations demonstrate that M337V mutation alters the residue regions with high helix/β-structure propensities and thus affects the conformational ensembles of both monomer and dimer. M337V mutation inhibits helix formation in the N-terminal Ala-rich region and the C-terminal mutation site region, while facilitating their long β-sheet formation, albeit with a minor impact on the average probability of both helix structure and β-structure. Further analysis of dimer system shows that M337V mutation disrupts inter-molecular helix-helix interactions and W334-W334 π-π stacking interactions which were reported to be important for the LLPS of TDP-43 LCD, whereas enhances the overall peptide residue-residue interactions and weakens peptide-water interactions, which is conducive to peptide fibrillization. This study provides mechanistic insights into the M337V-mutation-induced impairment of phase separation and facilitation of fibril formation of TDP-43 LCD.
Collapse
Affiliation(s)
- Jiyuan Zeng
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai, China
| | - Yiming Tang
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai, China
| | - Xuewei Dong
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu, China
| | - Fangying Li
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai, China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai, China
| |
Collapse
|
7
|
Wan L, Zhu Y, Ke J, Zhang W, Mu W. Compartmentalization of pathway sequential enzymes into synthetic protein compartments for metabolic flux optimization in Escherichia coli. Metab Eng 2024; 85:167-179. [PMID: 39163974 DOI: 10.1016/j.ymben.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/24/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
Advancing the formation of artificial membraneless compartments with organizational complexity and diverse functionality remains a challenge. Typically, synthetic compartments or membraneless organelles are made up of intrinsically disordered proteins featuring low-complexity sequences or polypeptides with repeated distinctive short linear motifs. In order to expand the repertoire of tools available for the formation of synthetic membraneless compartments, here, a range of DIshevelled and aXin (DIX) or DIX-like domains undergoing head-to-tail polymerization were demonstrated to self-assemble into aggregates and generate synthetic compartments within E. coli cells. Then, synthetic complex compartments with diverse intracellular morphologies were generated by coexpressing different DIX domains. Further, we genetically incorporated a pair of interacting motifs, comprising a homo-dimeric domain and its anchoring peptide, into the DIX domain and cargo proteins, respectively, resulting in the alteration of both material properties and client recruitment of synthetic compartments. As a proof-of-concept, several human milk oligosaccharide biosynthesis pathways were chosen as model systems. The findings indicated that the recruitment of pathway sequential enzymes into synthetic compartments formed by DIX-DIX heterotypic interactions or by DIX domains embedded with specific interacting motifs efficiently boosted metabolic pathway flux and improved the production of desired chemicals. We propose that these synthetic compartment systems present a potent and adaptable toolkit for controlling metabolic flux and facilitating cellular engineering.
Collapse
Affiliation(s)
- Li Wan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Juntao Ke
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
8
|
Lang R, Hodgson RE, Shelkovnikova TA. TDP-43 in nuclear condensates: where, how, and why. Biochem Soc Trans 2024; 52:1809-1825. [PMID: 38958608 DOI: 10.1042/bst20231447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
TDP-43 is an abundant and ubiquitously expressed nuclear protein that becomes dysfunctional in a spectrum of neurodegenerative diseases. TDP-43's ability to phase separate and form/enter biomolecular condensates of varying size and composition is critical for its functionality. Despite the high density of phase-separated assemblies in the nucleus and the nuclear abundance of TDP-43, our understanding of the condensate-TDP-43 relationship in this cellular compartment is only emerging. Recent studies have also suggested that misregulation of nuclear TDP-43 condensation is an early event in the neurodegenerative disease amyotrophic lateral sclerosis. This review aims to draw attention to the nuclear facet of functional and aberrant TDP-43 condensation. We will summarise the current knowledge on how TDP-43 containing nuclear condensates form and function and how their homeostasis is affected in disease.
Collapse
Affiliation(s)
- Ruaridh Lang
- Sheffield Institute for Translational Neuroscience (SITraN) and Neuroscience Institute, University of Sheffield, Sheffield, U.K
| | - Rachel E Hodgson
- Sheffield Institute for Translational Neuroscience (SITraN) and Neuroscience Institute, University of Sheffield, Sheffield, U.K
| | - Tatyana A Shelkovnikova
- Sheffield Institute for Translational Neuroscience (SITraN) and Neuroscience Institute, University of Sheffield, Sheffield, U.K
| |
Collapse
|
9
|
Bai D, Deng F, Jia Q, Ou K, Wang X, Hou J, Zhu L, Guo M, Yang S, Jiang G, Li S, Li XJ, Yin P. Pathogenic TDP-43 accelerates the generation of toxic exon1 HTT in Huntington's disease knock-in mice. Aging Cell 2024:e14325. [PMID: 39185703 DOI: 10.1111/acel.14325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
Huntington's disease (HD) is caused by a CAG repeat expansion in exon1 of the HTT gene that encodes a polyglutamine tract in huntingtin protein. The formation of HTT exon1 fragments with an expanded polyglutamine repeat has been implicated as a key step in the pathogenesis of HD. It was reported that the CAG repeat length-dependent aberrant splicing of exon1 HTT results in a short polyadenylated mRNA that is translated into an exon1 HTT protein. Under normal conditions, TDP-43 is predominantly found in the nucleus, where it regulates gene expression. However, in various pathological conditions, TDP-43 is mislocalized in the cytoplasm. By investigating HD knock-in mice, we explore whether the pathogenic TDP-43 in the cytoplasm contributes to HD pathogenesis, through expressing the cytoplasmic TDP-43 without nuclear localization signal. We found that the cytoplasmic TDP-43 is increased in the HD mouse brain and that its mislocalization could deteriorate the motor and gait behavior. Importantly, the cytoplasmic TDP-43, via its binding to the intron1 sequence (GU/UG)n of the mouse Htt pre-mRNA, promotes the transport of exon1-intron1 Htt onto ribosome, resulting in the aberrant generation of exon1 Htt. Our findings suggest that cytoplasmic TDP-43 contributes to HD pathogenesis via its binding to and transport of nuclear un-spliced mRNA to the ribosome for the generation of a toxic protein product.
Collapse
Affiliation(s)
- Dazhang Bai
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong, China
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Fuyu Deng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong, China
- Shenzhen Institute for Drug Control, Shenzhen Testing Center of Medical Devices, In Vitro Diagnostic Reagents Testing Department, Shenzhen, Guangdong, China
| | - Qingqing Jia
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong, China
| | - Kaili Ou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong, China
| | - Xiang Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong, China
| | - Junqi Hou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong, China
| | - Longhong Zhu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong, China
| | - Mingwei Guo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong, China
| | - Su Yang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong, China
| | - Guohui Jiang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Shihua Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong, China
| | - Xiao-Jiang Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong, China
| | - Peng Yin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Staderini T, Bigi A, Lagrève C, Marzi I, Bemporad F, Chiti F. Biophysical characterization of the phase separation of TDP-43 devoid of the C-terminal domain. Cell Mol Biol Lett 2024; 29:104. [PMID: 38997630 PMCID: PMC11245819 DOI: 10.1186/s11658-024-00615-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-TDP), amyotrophic lateral sclerosis (ALS) and limbic-predominant age-related TDP-43 encephalopathy (LATE) are associated with deposition of cytoplasmic inclusions of TAR DNA-binding protein 43 (TDP-43) in neurons. One complexity of this process lies in the ability of TDP-43 to form liquid-phase membraneless organelles in cells. Previous work has shown that the recombinant, purified, prion-like domain (PrLD) forms liquid droplets in vitro, but the behaviour of the complementary fragment is uncertain. METHODS We have purified such a construct without the PrLD (PrLD-less TDP-43) and have induced its phase separation using a solution-jump method and an array of biophysical techniques to study the morphology, state of matter and structure of the TDP-43 assemblies. RESULTS The fluorescent TMR-labelled protein construct, imaged using confocal fluorescence, formed rapidly (< 1 min) round, homogeneous and 0.5-1.0 µm wide assemblies which then coalesced into larger, yet round, species. When labelled with AlexaFluor488, they initially exhibited fluorescence recovery after photobleaching (FRAP), showing a liquid behaviour distinct from full-length TDP-43 and similar to PrLD. The protein molecules did not undergo major structural changes, as determined with circular dichroism and intrinsic fluorescence spectroscopies. This process had a pH and salt dependence distinct from those of full-length TDP-43 and its PrLD, which can be rationalized on the grounds of electrostatic forces. CONCLUSIONS Similarly to PrLD, PrLD-less TDP-43 forms liquid droplets in vitro through liquid-liquid phase separation (LLPS), unlike the full-length protein that rather undergoes liquid-solid phase separation (LSPS). These results offer a rationale of the complex electrostatic forces governing phase separation of full-length TDP-43 and its fragments. On the one hand, PrLD-less TDP-43 has a low pI and oppositively charged domains, and LLPS is inhibited by salts, which attenuate inter-domain electrostatic attractions. On the other hand, PrLD is positively charged due to a high isoionic point (pI) and LLPS is therefore promoted by salts and pH increases as they both reduce electrostatic repulsions. By contrast, full-length TDP-43 undergoes LSPS most favourably at its pI, with positive and negative salt dependences at lower and higher pH, respectively, depending on whether repulsive or attractive forces dominate, respectively.
Collapse
Affiliation(s)
- Tommaso Staderini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134, Florence, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Florence, Italy
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, 50019, Florence, Italy
| | - Alessandra Bigi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134, Florence, Italy
| | - Clément Lagrève
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134, Florence, Italy
- Chimie ParisTech-PSL, École Nationale Supérieur de Chimie de Paris, 11 rue Pierre et Marie Curie, 75231, Paris, France
| | - Isabella Marzi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134, Florence, Italy
| | - Francesco Bemporad
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134, Florence, Italy
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134, Florence, Italy.
| |
Collapse
|
11
|
Al Ojaimi Y, Slek C, Osman S, Alarcan H, Marouillat S, Corcia P, Vourc'h P, Lanznaster D, Blasco H. The effect of pH alterations on TDP-43 in a cellular model of amyotrophic lateral sclerosis. Biochem Biophys Rep 2024; 38:101664. [PMID: 38389507 PMCID: PMC10882110 DOI: 10.1016/j.bbrep.2024.101664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 02/24/2024] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is the most common neurodegenerative disease affecting motor neurons. The pathophysiology of ALS is not well understood but TDP-43 proteinopathy (aggregation and mislocalization) is one of the major phenomena described. Several factors can influence TDP-43 behavior such as mild pH alterations that can induce conformational changes in recombinant TDP-43, increasing its propensity to aggregate. However to our knowledge, no studies have been conducted yet in a cellular setting, in the context of ALS. We therefore tested the effect of cellular pH alterations on the localization, aggregation, and phosphorylation of TDP-43. HEK293T cells overexpressing wildtype TDP-43 were incubated for 1 h with solutions of different pH (6.4, 7.2, and 8). Incubation of cells for 1 h in solutions of pH 6.4 and 8 led to an increase in TDP-43-positive puncta. This was accompanied by the mislocalization of TDP-43 from the nucleus to the cytoplasm. Our results suggest that small alterations in cellular pH affect TDP-43 and increase its mislocalization into cytoplasmic TDP-43-positive puncta, which might suggest a role of TDP-43 in the response of cells to pH alterations.
Collapse
Affiliation(s)
- Yara Al Ojaimi
- UMR 1253, iBrain, Université de Tours, INSERM, Tours, France
| | - Charlotte Slek
- UMR 1253, iBrain, Université de Tours, INSERM, Tours, France
| | - Samira Osman
- UMR 1253, iBrain, Université de Tours, INSERM, Tours, France
| | - Hugo Alarcan
- UMR 1253, iBrain, Université de Tours, INSERM, Tours, France
- Service de Biochimie et Biologie Moléculaire, CHRU de Tours, France
| | | | - Philippe Corcia
- Service de Biochimie et Biologie Moléculaire, CHRU de Tours, France
| | - Patrick Vourc'h
- UMR 1253, iBrain, Université de Tours, INSERM, Tours, France
- Service de Biochimie et Biologie Moléculaire, CHRU de Tours, France
| | | | - Hélène Blasco
- UMR 1253, iBrain, Université de Tours, INSERM, Tours, France
- Service de Biochimie et Biologie Moléculaire, CHRU de Tours, France
| |
Collapse
|
12
|
Tsekrekou M, Giannakou M, Papanikolopoulou K, Skretas G. Protein aggregation and therapeutic strategies in SOD1- and TDP-43- linked ALS. Front Mol Biosci 2024; 11:1383453. [PMID: 38855322 PMCID: PMC11157337 DOI: 10.3389/fmolb.2024.1383453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/02/2024] [Indexed: 06/11/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with severe socio-economic impact. A hallmark of ALS pathology is the presence of aberrant cytoplasmic inclusions composed of misfolded and aggregated proteins, including both wild-type and mutant forms. This review highlights the critical role of misfolded protein species in ALS pathogenesis, particularly focusing on Cu/Zn superoxide dismutase (SOD1) and TAR DNA-binding protein 43 (TDP-43), and emphasizes the urgent need for innovative therapeutic strategies targeting these misfolded proteins directly. Despite significant advancements in understanding ALS mechanisms, the disease remains incurable, with current treatments offering limited clinical benefits. Through a comprehensive analysis, the review focuses on the direct modulation of the misfolded proteins and presents recent discoveries in small molecules and peptides that inhibit SOD1 and TDP-43 aggregation, underscoring their potential as effective treatments to modify disease progression and improve clinical outcomes.
Collapse
Affiliation(s)
- Maria Tsekrekou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Maria Giannakou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Papanikolopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
- ResQ Biotech, Patras Science Park, Rio, Greece
| | - Georgios Skretas
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- ResQ Biotech, Patras Science Park, Rio, Greece
- Institute for Bio-innovation, Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
| |
Collapse
|
13
|
Ke YD, van Hummel A, Au C, Chan G, Lee WS, van der Hoven J, Przybyla M, Deng Y, Sabale M, Morey N, Bertz J, Feiten A, Ippati S, Stevens CH, Yang S, Gladbach A, Haass NK, Kril JJ, Blair IP, Delerue F, Ittner LM. Targeting 14-3-3θ-mediated TDP-43 pathology in amyotrophic lateral sclerosis and frontotemporal dementia mice. Neuron 2024; 112:1249-1264.e8. [PMID: 38366598 DOI: 10.1016/j.neuron.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/20/2023] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are characterized by cytoplasmic deposition of the nuclear TAR-binding protein 43 (TDP-43). Although cytoplasmic re-localization of TDP-43 is a key event in the pathogenesis of ALS/FTD, the underlying mechanisms remain unknown. Here, we identified a non-canonical interaction between 14-3-3θ and TDP-43, which regulates nuclear-cytoplasmic shuttling. Neuronal 14-3-3θ levels were increased in sporadic ALS and FTD with TDP-43 pathology. Pathogenic TDP-43 showed increased interaction with 14-3-3θ, resulting in cytoplasmic accumulation, insolubility, phosphorylation, and fragmentation of TDP-43, resembling pathological changes in disease. Harnessing this increased affinity of 14-3-3θ for pathogenic TDP-43, we devised a gene therapy vector targeting TDP-43 pathology, which mitigated functional deficits and neurodegeneration in different ALS/FTD mouse models expressing mutant or non-mutant TDP-43, including when already symptomatic at the time of treatment. Our study identified 14-3-3θ as a mediator of cytoplasmic TDP-43 localization with implications for ALS/FTD pathogenesis and therapy.
Collapse
Affiliation(s)
- Yazi D Ke
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Annika van Hummel
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Carol Au
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Gabriella Chan
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Wei Siang Lee
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Julia van der Hoven
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Magdalena Przybyla
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Yuanyuan Deng
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Miheer Sabale
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Nicolle Morey
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Josefine Bertz
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Astrid Feiten
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Stefania Ippati
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Claire H Stevens
- School of Chemistry and Molecular Bioscience, University of Wollongong and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Shu Yang
- Centre for MND Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Amadeus Gladbach
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Nikolas K Haass
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Jillian J Kril
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2050, Australia
| | - Ian P Blair
- Centre for MND Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Fabien Delerue
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Lars M Ittner
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
14
|
Salaikumaran M, Gopal PP. Rational Design of TDP-43 Derived α-Helical Peptide Inhibitors: An In Silico Strategy to Prevent TDP-43 Aggregation in Neurodegenerative Disorders. ACS Chem Neurosci 2024; 15:1096-1109. [PMID: 38466778 PMCID: PMC10959110 DOI: 10.1021/acschemneuro.3c00659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/21/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024] Open
Abstract
TDP-43, an essential RNA/DNA-binding protein, is central to the pathology of neurodegenerative diseases, such as amyotrophic lateral sclerosis and frontotemporal dementia. Pathological mislocalization and aggregation of TDP-43 disrupt RNA splicing, mRNA stability, and mRNA transport, thereby impairing neuronal function and survival. The formation of amyloid-like TDP-43 filaments is largely facilitated by the destabilization of an α-helical segment within the disordered C-terminal region. In this study, we hypothesized that preventing the destabilization of the α-helical domain could potentially halt the growth of these pathological filaments. To explore this, we utilized a range of in silico techniques to design and evaluate peptide-based therapeutics that bind to pathological TDP-43 amyloid-like filament crystal structures and resist β sheet conversion. Our computational approaches, including biophysical and secondary structure property prediction, molecular docking, 3D structure prediction, and molecular dynamics simulations, were used to assess the structure, stability, and binding affinity of these peptides in relation to pathological TDP-43 filaments. The results of our in silico analyses identified a selection of promising peptides which displayed a stable α-helical structure, exhibited an increased number of intramolecular hydrogen bonds within the helical domain, and demonstrated high binding affinities for pathological TDP-43 amyloid-like filaments. Molecular dynamics simulations provided further support for the structural and thermodynamic stability of these peptides, as they exhibited lower root-mean-square deviation and more favorable free energy landscapes over 300 ns. These findings establish α-helical propensity peptides as potential lead molecules for the development of novel therapeutics against TDP-43 aggregation. This structure-based computational approach for the rational design of peptide inhibitors opens a new direction in the search for effective interventions for ALS, FTD, and other related neurodegenerative diseases. The peptides identified as the most promising candidates in this study are currently subject to further testing and validation through both in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Muthu
Raj Salaikumaran
- Department
of Pathology, Yale School of Medicine, New Haven, Connecticut 06520, United States
| | - Pallavi P. Gopal
- Department
of Pathology, Yale School of Medicine, New Haven, Connecticut 06520, United States
- Program
in Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, New Haven, Connecticut 06520-8055, United States
| |
Collapse
|
15
|
Dos Passos PM, Hemamali EH, Mamede LD, Hayes LR, Ayala YM. RNA-mediated ribonucleoprotein assembly controls TDP-43 nuclear retention. PLoS Biol 2024; 22:e3002527. [PMID: 38422113 DOI: 10.1371/journal.pbio.3002527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/12/2024] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
TDP-43 is an essential RNA-binding protein strongly implicated in the pathogenesis of neurodegenerative disorders characterized by cytoplasmic aggregates and loss of nuclear TDP-43. The protein shuttles between nucleus and cytoplasm, yet maintaining predominantly nuclear TDP-43 localization is important for TDP-43 function and for inhibiting cytoplasmic aggregation. We previously demonstrated that specific RNA binding mediates TDP-43 self-assembly and biomolecular condensation, requiring multivalent interactions via N- and C-terminal domains. Here, we show that these complexes play a key role in TDP-43 nuclear retention. TDP-43 forms macromolecular complexes with a wide range of size distribution in cells and we find that defects in RNA binding or inter-domain interactions, including phase separation, impair the assembly of the largest species. Our findings suggest that recruitment into these macromolecular complexes prevents cytoplasmic egress of TDP-43 in a size-dependent manner. Our observations uncover fundamental mechanisms controlling TDP-43 cellular homeostasis, whereby regulation of RNA-mediated self-assembly modulates TDP-43 nucleocytoplasmic distribution. Moreover, these findings highlight pathways that may be implicated in TDP-43 proteinopathies and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Patricia M Dos Passos
- Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Erandika H Hemamali
- Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Lohany D Mamede
- Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Lindsey R Hayes
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Yuna M Ayala
- Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
16
|
Zhu L, Deng F, Bai D, Hou J, Jia Q, Zhang C, Ou K, Li S, Li XJ, Yin P. Loss of TDP-43 mediates severe neurotoxicity by suppressing PJA1 gene transcription in the monkey brain. Cell Mol Life Sci 2024; 81:16. [PMID: 38194085 PMCID: PMC11072099 DOI: 10.1007/s00018-023-05066-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/19/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024]
Abstract
The nuclear loss and cytoplasmic accumulation of TDP-43 (TAR DNA/RNA binding protein 43) are pathological hallmarks of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Previously, we reported that the primate-specific cleavage of TDP-43 accounts for its cytoplasmic mislocalization in patients' brains. This prompted us to investigate further whether and how the loss of nuclear TDP-43 mediates neuropathology in primate brain. In this study, we report that TDP-43 knockdown at the similar effectiveness, induces more damage to neuronal cells in the monkey brain than rodent mouse. Importantly, the loss of TDP-43 suppresses the E3 ubiquitin ligase PJA1 expression in the monkey brain at transcriptional level, but yields an opposite upregulation of PJA1 in the mouse brain. This distinct effect is due to the species-dependent binding of nuclear TDP-43 to the unique promoter sequences of the PJA1 genes. Further analyses reveal that the reduction of PJA1 accelerates neurotoxicity, whereas overexpressing PJA1 diminishes neuronal cell death by the TDP-43 knockdown in vivo. Our findings not only uncover a novel primate-specific neurotoxic contribution to the loss of function theory of TDP-43 proteinopathy, but also underscore a potential therapeutic approach of PJA1 to the loss of nuclear TDP-43.
Collapse
Affiliation(s)
- Longhong Zhu
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Fuyu Deng
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Dazhang Bai
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Nanchong, 637000, China
- Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Junqi Hou
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Qingqing Jia
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Chen Zhang
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Kaili Ou
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Shihua Li
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
- Ministry of Education Key Laboratory of CNS Regeneration, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
- Ministry of Education Key Laboratory of CNS Regeneration, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
| | - Peng Yin
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
- Ministry of Education Key Laboratory of CNS Regeneration, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
17
|
Salaikumaran MR, Gopal PP. Rational Design of TDP-43 Derived α-Helical Peptide Inhibitors: an In-Silico Strategy to Prevent TDP-43 Aggregation in Neurodegenerative Disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564235. [PMID: 37961353 PMCID: PMC10635017 DOI: 10.1101/2023.10.26.564235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
TDP-43, an essential RNA/DNA-binding protein, is central to the pathology of neurodegenerative diseases such as Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Pathological mislocalization and aggregation of TDP-43 disrupts RNA splicing, mRNA stability, and mRNA transport, thereby impairing neuronal function and survival. The formation of amyloid-like TDP-43 filaments is largely facilitated by the destabilization of an α-helical segment within the disordered C-terminal region. In this study, we hypothesized that preventing the destabilization of the α-helical domain could potentially halt the growth of these pathological filaments. To explore this, we utilized a range of in-silico techniques to design and evaluate peptide-based therapeutics. Various pathological TDP-43 amyloid-like filament crystal structures were selected for their potential to inhibit the binding of additional TDP-43 monomers to the growing filaments. Our computational approaches included biophysical and secondary structure property prediction, molecular docking, 3D structure prediction, and molecular dynamics simulations. Through these techniques, we were able to assess the structure, stability, and binding affinity of these peptides in relation to pathological TDP-43 filaments. The results of our in-silico analyses identified a selection of promising peptides, which displayed a stable α-helical structure, exhibited an increased number of intramolecular hydrogen bonds within the helical domain, and demonstrated high binding affinities for pathological TDP-43 amyloid-like filaments. Additionally, molecular dynamics simulations provided further support for the stability of these peptides, as they exhibited lower root mean square deviations in their helical propensity over 100ns. These findings establish α-helical propensity peptides as potential lead molecules for the development of novel therapeutics against TDP-43 aggregation. This structure-based computational approach for rational design of peptide inhibitors opens a new direction in the search for effective interventions for ALS, FTD, and other related neurodegenerative diseases. The peptides identified as the most promising candidates in this study are currently subject to further testing and validation through both in vitro and in vivo experiments.
Collapse
|
18
|
Nag S, Schneider JA. Limbic-predominant age-related TDP43 encephalopathy (LATE) neuropathological change in neurodegenerative diseases. Nat Rev Neurol 2023; 19:525-541. [PMID: 37563264 PMCID: PMC10964248 DOI: 10.1038/s41582-023-00846-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 08/12/2023]
Abstract
TAR DNA-binding protein 43 (TDP43) is a focus of research in late-onset dementias. TDP43 pathology in the brain was initially identified in amyotrophic lateral sclerosis and frontotemporal lobar degeneration, and later in Alzheimer disease (AD), other neurodegenerative diseases and ageing. Limbic-predominant age-related TDP43 encephalopathy (LATE), recognized as a clinical entity in 2019, is characterized by amnestic dementia resembling AD dementia and occurring most commonly in adults over 80 years of age. Neuropathological findings in LATE, referred to as LATE neuropathological change (LATE-NC), consist of neuronal and glial cytoplasmic TDP43 localized predominantly in limbic areas with or without coexisting hippocampal sclerosis and/or AD neuropathological change and without frontotemporal lobar degeneration or amyotrophic lateral sclerosis pathology. LATE-NC is frequently associated with one or more coexisting pathologies, mainly AD neuropathological change. The focus of this Review is the pathology, genetic risk factors and nature of the cognitive impairments and dementia in pure LATE-NC and in LATE-NC associated with coexisting pathologies. As the clinical and cognitive profile of LATE is currently not easily distinguishable from AD dementia, it is important to develop biomarkers to aid in the diagnosis of this condition in the clinic. The pathogenesis of LATE-NC should be a focus of future research to form the basis for the development of preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Sukriti Nag
- Rush Alzheimer's Disease Center, Department of Pathology (Neuropathology), Rush University Medical Center, Chicago, IL, USA.
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Department of Pathology (Neuropathology), Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
19
|
Dos Passos PM, Hemamali EH, Mamede LD, Hayes LR, Ayala YM. RNA-mediated ribonucleoprotein assembly controls TDP-43 nuclear retention. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.06.552215. [PMID: 37609278 PMCID: PMC10441353 DOI: 10.1101/2023.08.06.552215] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
TDP-43 is an essential RNA-binding protein strongly implicated in the pathogenesis of neurodegenerative disorders characterized by cytoplasmic aggregates and loss of nuclear TDP-43. The protein shuttles between nucleus and cytoplasm, yet maintaining predominantly nuclear TDP-43 localization is important for TDP-43 function and for inhibiting cytoplasmic aggregation. We previously demonstrated that specific RNA binding mediates TDP-43 self-assembly and biomolecular condensation, requiring multivalent interactions via N- and C-terminal domains. Here, we show that these complexes play a key role in TDP-43 nuclear retention. TDP-43 forms macromolecular complexes with a wide range of size distribution in cells and we find that defects in RNA binding or inter-domain interactions, including phase separation, impair the assembly of the largest species. Our findings suggest that recruitment into these macromolecular complexes prevents cytoplasmic egress of TDP-43 in a size-dependent manner. Our observations uncover fundamental mechanisms controlling TDP-43 cellular homeostasis, whereby regulation of RNA-mediated self-assembly modulates TDP-43 nucleocytoplasmic distribution. Moreover, these findings highlight pathways that may be implicated in TDP-43 proteinopathies and identify potential therapeutic targets.
Collapse
|
20
|
Bai D, Zhu L, Jia Q, Duan X, Chen L, Wang X, Hou J, Jiang G, Yang S, Li S, Li XJ, Yin P. Loss of TDP-43 promotes somatic CAG repeat expansion in Huntington's disease knock-in mice. Prog Neurobiol 2023:102484. [PMID: 37315918 DOI: 10.1016/j.pneurobio.2023.102484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 04/26/2023] [Accepted: 06/09/2023] [Indexed: 06/16/2023]
Abstract
TAR binding protein 43 (TDP-43) is normally present in the nucleus but mislocalized in the cytoplasm in a number of neurodegenerative diseases including Huntington's disease (HD). The nuclear loss of TDP-43 impairs gene transcription and regulation. However, it remains to be investigated whether loss of TDP-43 influences trinucleotide CAG repeat expansion in the HD gene, a genetic cause for HD. Here we report that CRISPR/Cas9 mediated-knock down of endogenous TDP-43 in the striatum of HD knock-in mice promoted CAG repeat expansion, accompanied by the increased expression of the DNA mismatch repair genes, Msh3 and Mlh1, which have been reported to increase trinucleotide repeat instability. Furthermore, suppressing Msh3 and Mlh1 by CRISPR/Cas9 targeting diminished the CAG repeat expansion. These findings suggest that nuclear TDP-43 deficiency may dysregulate the expression of DNA mismatch repair genes, leading to CAG repeat expansion and contributing to the pathogenesis of CAG repeat diseases. DATA AVAILABILITY: The key data supporting the findings of this study are presented within the article and the Supplemental Information. The RNA sequencing reported in this paper can be found at https://doi.org/10.6084/m9.figshare.22639429.
Collapse
Affiliation(s)
- Dazhang Bai
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632; Department of Neurology, Affiliated Hospital of North Sichuan Medical College; Institute of neurological diseases, North Sichuan Medical College, Nanchong, China, 637000
| | - Longhong Zhu
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632
| | - Qingqing Jia
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632
| | - Xuezhi Duan
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632
| | - Laiqiang Chen
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632
| | - Xiang Wang
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632
| | - Junqi Hou
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632
| | - Guohui Jiang
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632; Department of Neurology, Affiliated Hospital of North Sichuan Medical College; Institute of neurological diseases, North Sichuan Medical College, Nanchong, China, 637000
| | - Su Yang
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632
| | - Shihua Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632.
| | - Peng Yin
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632.
| |
Collapse
|
21
|
Kumar ST, Nazarov S, Porta S, Maharjan N, Cendrowska U, Kabani M, Finamore F, Xu Y, Lee VMY, Lashuel HA. Seeding the aggregation of TDP-43 requires post-fibrillization proteolytic cleavage. Nat Neurosci 2023:10.1038/s41593-023-01341-4. [PMID: 37248338 DOI: 10.1038/s41593-023-01341-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 04/18/2023] [Indexed: 05/31/2023]
Abstract
Despite the strong evidence linking the transactive response DNA-binding protein 43 (TDP-43) aggregation to the pathogenesis of frontotemporal lobar degeneration with TDP-43, amyotrophic lateral sclerosis and several neurodegenerative diseases, our knowledge of the sequence and structural determinants of its aggregation and neurotoxicity remains incomplete. Herein, we present a new method for producing recombinant full-length TDP-43 filaments that exhibit sequence and morphological features similar to those of brain-derived TDP-43 filaments. We show that TDP-43 filaments contain a β-sheet-rich helical amyloid core that is fully buried by the flanking structured domains of the protein. We demonstrate that the proteolytic cleavage of TDP-43 filaments and exposure of this amyloid core are necessary for propagating TDP-43 pathology and enhancing the seeding of brain-derived TDP-43 aggregates. Only TDP-43 filaments with exposed amyloid core efficiently seeded the aggregation of endogenous TDP-43 in cells. These findings suggest that inhibiting the enzymes mediating cleavage of TDP-43 aggregates represents a viable disease-modifying strategy to slow the progression of amyotrophic lateral sclerosis and other TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Senthil T Kumar
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Sergey Nazarov
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Sílvia Porta
- Center for Neurodegenerative Disease Research (CNDR), Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Niran Maharjan
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Urszula Cendrowska
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Malek Kabani
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Francesco Finamore
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Yan Xu
- Center for Neurodegenerative Disease Research (CNDR), Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Virginia M-Y Lee
- Center for Neurodegenerative Disease Research (CNDR), Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland.
| |
Collapse
|
22
|
Ishiguro A, Ishihama A. ALS-linked TDP-43 mutations interfere with the recruitment of RNA recognition motifs to G-quadruplex RNA. Sci Rep 2023; 13:5982. [PMID: 37046025 PMCID: PMC10097714 DOI: 10.1038/s41598-023-33172-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/08/2023] [Indexed: 04/14/2023] Open
Abstract
TDP-43 is a major pathological protein in sporadic and familial amyotrophic lateral sclerosis (ALS) and mediates mRNA fate. TDP-43 dysfunction leads to causes progressive degeneration of motor neurons, the details of which remain elusive. Elucidation of the molecular mechanisms of RNA binding could enhance our understanding of this devastating disease. We observed the involvement of the glycine-rich (GR) region of TDP-43 in the initial recognition and binding of G-quadruplex (G4)-RNA in conjunction with its RNA recognition motifs (RRM). We performed a molecular dissection of these intramolecular RNA-binding modules in this study. We confirmed that the ALS-linked mutations in the GR region lead to alteration in the G4 structure. In contrast, amino acid substitutions in the GR region alter the protein structure but do not void the interaction with G4-RNA. Based on these observations, we concluded that the structural distortion of G4 caused by these mutations interferes with RRM recruitment and leads to TDP-43 dysfunction. This intramolecular organization between RRM and GR regions modulates the overall G4-binding properties.
Collapse
Affiliation(s)
- Akira Ishiguro
- Research Center for Micro-Nano Technology, Hosei University, Midori-cho 3-11-15, Koganei, Tokyo, 184-0003, Japan.
| | - Akira Ishihama
- Research Center for Micro-Nano Technology, Hosei University, Midori-cho 3-11-15, Koganei, Tokyo, 184-0003, Japan
| |
Collapse
|
23
|
Choi HJ, Lee JY, Kim K. Glutathionylation on RNA-binding proteins: a regulator of liquid‒liquid phase separation in the pathogenesis of amyotrophic lateral sclerosis. Exp Mol Med 2023; 55:735-744. [PMID: 37009800 PMCID: PMC10167235 DOI: 10.1038/s12276-023-00978-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 04/04/2023] Open
Abstract
RNA-binding proteins (RBPs) containing low-sequence complexity domains mediate the formation of cellular condensates and membrane-less organelles with biological functions via liquid‒liquid phase separation (LLPS). However, the abnormal phase transition of these proteins induces the formation of insoluble aggregates. Aggregates are pathological hallmarks of neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS). The molecular mechanisms underlying aggregate formation by ALS-associated RPBs remain largely unknown. This review highlights emerging studies on various posttranslational modifications (PTMs) related to protein aggregation. We begin with the introduction of several ALS-associated RBPs that form aggregates induced by phase separation. In addition, we highlight our recent discovery of a new PTM involved in the phase transition during the pathogenesis of fused-in-sarcoma (FUS)-associated ALS. We suggest a molecular mechanism through which LLPS mediates glutathionylation in FUS-linked ALS. This review aims to provide a detailed overview of the key molecular mechanisms of LLPS-mediated aggregate formation by PTMs, which will help further the understanding of the pathogenesis and development of ALS therapeutics.
Collapse
Affiliation(s)
- Hyun-Jun Choi
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, 31151, Korea
- Department of Integrated Biomedical Sciences, Soonchunhyang University, Cheonan, 31151, Korea
| | - Ji Young Lee
- Department of Medical Biotechnology, Soonchunhyang University, Asan, 31538, Korea
- Department of Medical Science, Soonchunhyang University, Asan, 31538, Korea
| | - Kiyoung Kim
- Department of Medical Science, Soonchunhyang University, Asan, 31538, Korea.
| |
Collapse
|
24
|
Doke AA, Jha SK. Shapeshifter TDP-43: Molecular mechanism of structural polymorphism, aggregation, phase separation and their modulators. Biophys Chem 2023; 295:106972. [PMID: 36812677 DOI: 10.1016/j.bpc.2023.106972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
TDP-43 is a nucleic acid-binding protein that performs physiologically essential functions and is known to undergo phase separation and aggregation during stress. Initial observations have shown that TDP-43 forms heterogeneous assemblies, including monomer, dimer, oligomers, aggregates, phase-separated assemblies, etc. However, the significance of each assembly of TDP-43 concerning its function, phase separation, and aggregation is poorly known. Furthermore, how different assemblies of TDP-43 are related to each other is unclear. In this review, we focus on the various assemblies of TDP-43 and discuss the plausible origin of the structural heterogeneity of TDP-43. TDP-43 is involved in multiple physiological processes like phase separation, aggregation, prion-like seeding, and performing physiological functions. However, the molecular mechanism behind the physiological process performed by TDP-43 is not well understood. The current review discusses the plausible molecular mechanism of phase separation, aggregation, and prion-like propagation of TDP-43.
Collapse
Affiliation(s)
- Abhilasha A Doke
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Santosh Kumar Jha
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
25
|
Shenoy J, Lends A, Berbon M, Bilal M, El Mammeri N, Bertoni M, Saad A, Morvan E, Grélard A, Lecomte S, Theillet FX, Buell AK, Kauffmann B, Habenstein B, Loquet A. Structural polymorphism of the low-complexity C-terminal domain of TDP-43 amyloid aggregates revealed by solid-state NMR. Front Mol Biosci 2023; 10:1148302. [PMID: 37065450 PMCID: PMC10095165 DOI: 10.3389/fmolb.2023.1148302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
Aberrant aggregation of the transactive response DNA-binding protein (TDP-43) is associated with several lethal neurodegenerative diseases, including amyotrophic lateral sclerosis and frontotemporal dementia. Cytoplasmic neuronal inclusions of TDP-43 are enriched in various fragments of the low-complexity C-terminal domain and are associated with different neurotoxicity. Here we dissect the structural basis of TDP-43 polymorphism using magic-angle spinning solid-state NMR spectroscopy in combination with electron microscopy and Fourier-transform infrared spectroscopy. We demonstrate that various low-complexity C-terminal fragments, namely TDP-13 (TDP-43300–414), TDP-11 (TDP-43300–399), and TDP-10 (TDP-43314–414), adopt distinct polymorphic structures in their amyloid fibrillar state. Our work demonstrates that the removal of less than 10% of the low-complexity sequence at N- and C-termini generates amyloid fibrils with comparable macroscopic features but different local structural arrangement. It highlights that the assembly mechanism of TDP-43, in addition to the aggregation of the hydrophobic region, is also driven by complex interactions involving low-complexity aggregation-prone segments that are a potential source of structural polymorphism.
Collapse
Affiliation(s)
- Jayakrishna Shenoy
- University Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - Alons Lends
- University Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - Mélanie Berbon
- University Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - Muhammed Bilal
- University Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - Nadia El Mammeri
- University Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - Mathilde Bertoni
- University Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - Ahmad Saad
- University Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - Estelle Morvan
- University Bordeaux, CNRS, INSERM, IECB, UAR 3033, Pessac, France
| | - Axelle Grélard
- University Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - Sophie Lecomte
- University Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - François-Xavier Theillet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-surYvette Cedex, France
| | - Alexander K. Buell
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Brice Kauffmann
- University Bordeaux, CNRS, INSERM, IECB, UAR 3033, Pessac, France
| | - Birgit Habenstein
- University Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
- *Correspondence: Birgit Habenstein, ; Antoine Loquet,
| | - Antoine Loquet
- University Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
- *Correspondence: Birgit Habenstein, ; Antoine Loquet,
| |
Collapse
|
26
|
Herrera MG, Amundarain MJ, Santos J. Biophysical evaluation of the oligomerization and conformational properties of the N-terminal domain of TDP-43. Arch Biochem Biophys 2023; 737:109533. [PMID: 36740035 DOI: 10.1016/j.abb.2023.109533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/08/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023]
Abstract
TDP-43 is an RNA-binding protein that presents four domains comprising an N-terminal region, two RNA recognition motifs and a C-terminal region. The N-terminal domain (NTD) has a relevant role in the oligomerization and splicing activity of TDP-43. In this work, we have expressed, purified and biophysically characterized the region that includes residues 1 to 102 that contains the nuclear localization signal (residues 80-102, NLS). Furthermore, we have evaluated the oligomerization equilibrium for this protein fragment. Also, we have determined changes in the tertiary structure and its stability in a broad range of pH values by means of different spectroscopic methods. Additionally, we compared this fragment with the one that lacks the NLS employing experimental and computational methods. Finally, we evaluated the motion of dimeric forms to get insights into the conformational flexibility of this TDP-43 module in an oligomeric state. Our results suggest that this domain has a conformational plasticity in the vicinity of the single tryptophan of this domain (Trp68), which is enhanced by the presence of the nuclear localization signal. All these results help to understand the molecular features of the NTD of TDP-43.
Collapse
Affiliation(s)
- Maria Georgina Herrera
- Faculty of Exact and Natural Sciences, Institute of Biosciences, Biotechnology and Translational Biology (iB3), University of Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina; Institute of Biochemistry and Pathobiochemistry, Ruhr-Universität Bochum, Gebäude MA 2/143, Universitätsstraße 150, 44801, Bochum, Germany.
| | - Maria Julia Amundarain
- Faculty of Chemistry, OCIII, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Javier Santos
- Faculty of Exact and Natural Sciences, Institute of Biosciences, Biotechnology and Translational Biology (iB3), University of Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina
| |
Collapse
|
27
|
Role of Triggers on the Structural and Functional Facets of TAR DNA-binding Protein 43. Neuroscience 2023; 511:110-130. [PMID: 36442745 DOI: 10.1016/j.neuroscience.2022.11.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/15/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Nuclear TAR DNA-binding protein 43 (TDP-43) mitigates cellular function, but the dynamic nucleus-cytoplasm shuttling of TDP-43 is disrupted in diseases, such as Amyotrophic Lateral Sclerosis (ALS). The polymorphic nature of the TDP-43 structures in vitro and in vivo is a result of environmental factors leading to the protein pathogenesis. Once the triggers which mitigate TDP-43 biochemistry are identified, new therapies can be developed. This review aims to illustrate recent discoveries in the diversity of TDP-43 structures (amyloidogenic and non-amyloidogenic) and highlight the triggers which result in their formation.
Collapse
|
28
|
Doll SG, Cingolani G. Importin α/β and the tug of war to keep TDP-43 in solution: quo vadis? Bioessays 2022; 44:e2200181. [PMID: 36253101 PMCID: PMC9969346 DOI: 10.1002/bies.202200181] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 11/10/2022]
Abstract
The transactivation response-DNA binding protein of 43 kDa (TDP-43) is an aggregation-prone nucleic acid-binding protein linked to the etiology of Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Lobar Degeneration (FTLD). These conditions feature the accumulation of insoluble TDP-43 aggregates in the neuronal cytoplasm that lead to cell death. The dynamics between cytoplasmic and nuclear TDP-43 are altered in the disease state where TDP-43 mislocalizes to the cytoplasm, disrupting Nuclear Pore Complexes (NPCs), and ultimately forming large fibrils stabilized by the C-terminal prion-like domain. Here, we review three emerging and poorly understood aspects of TDP-43 biology linked to its aggregation. First, how post-translational modifications in the proximity of TDP-43 N-terminal domain (NTD) promote aggregation. Second, how TDP-43 engages FG-nucleoporins in the NPC, disrupting the pore permeability and function. Third, how the importin α/β heterodimer prevents TDP-43 aggregation, serving both as a nuclear import transporter and a cytoplasmic chaperone.
Collapse
Affiliation(s)
- Steven G. Doll
- Dept. of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Gino Cingolani
- Dept. of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA,Corresponding author: Gino Cingolani,
| |
Collapse
|
29
|
Tamaki Y, Urushitani M. Molecular Dissection of TDP-43 as a Leading Cause of ALS/FTLD. Int J Mol Sci 2022; 23:ijms232012508. [PMID: 36293362 PMCID: PMC9604209 DOI: 10.3390/ijms232012508] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
TAR DNA binding protein 43 (TDP-43) is a DNA/RNA binding protein involved in pivotal cellular functions, especially in RNA metabolism. Hyperphosphorylated and ubiquitinated TDP-43-positive neuronal cytoplasmic inclusions are identified in the brain and spinal cord in most cases of amyotrophic lateral sclerosis (ALS) and a substantial proportion of frontotemporal lobar degeneration (FTLD) cases. TDP-43 dysfunctions and cytoplasmic aggregation seem to be the central pathogenicity in ALS and FTLD. Therefore, unraveling both the physiological and pathological mechanisms of TDP-43 may enable the exploration of novel therapeutic strategies. This review highlights the current understanding of TDP-43 biology and pathology, describing the cellular processes involved in the pathogeneses of ALS and FTLD, such as post-translational modifications, RNA metabolism, liquid–liquid phase separation, proteolysis, and the potential prion-like propagation propensity of the TDP-43 inclusions.
Collapse
Affiliation(s)
- Yoshitaka Tamaki
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Makoto Urushitani
- Department of Neurology, Shiga University of Medical Science, Otsu 520-2192, Japan
- Correspondence:
| |
Collapse
|
30
|
Proteinopathies: Deciphering Physiology and Mechanisms to Develop Effective Therapies for Neurodegenerative Diseases. Mol Neurobiol 2022; 59:7513-7540. [PMID: 36205914 DOI: 10.1007/s12035-022-03042-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/13/2022] [Indexed: 10/10/2022]
Abstract
Neurodegenerative diseases (NDs) are a cluster of diseases marked by progressive neuronal loss, axonal transport blockage, mitochondrial dysfunction, oxidative stress, neuroinflammation, and aggregation of misfolded proteins. NDs are more prevalent beyond the age of 50, and their symptoms often include motor and cognitive impairment. Even though various proteins are involved in different NDs, the mechanisms of protein misfolding and aggregation are very similar. Recently, several studies have discovered that, like prions, these misfolded proteins have the inherent capability of translocation from one neuron to another, thus having far-reaching implications for understanding the processes involved in the onset and progression of NDs, as well as the development of innovative therapy and diagnostic options. These misfolded proteins can also influence the transcription of other proteins and form aggregates, tangles, plaques, and inclusion bodies, which then accumulate in the CNS, leading to neuronal dysfunction and neurodegeneration. This review demonstrates protein misfolding and aggregation in NDs, and similarities and differences between different protein aggregates have been discussed. Furthermore, we have also reviewed the disposal of protein aggregates, the various molecular machinery involved in the process, their regulation, and how these molecular mechanisms are targeted to build innovative therapeutic and diagnostic procedures. In addition, the landscape of various therapeutic interventions for targeting protein aggregation for the effective prevention or treatment of NDs has also been discussed.
Collapse
|
31
|
Yin P, Bai D, Deng F, Zhang C, Jia Q, Zhu L, Chen L, Li B, Guo X, Ye J, Tan Z, Wang L, Li S, Li XJ. SQSTM1-mediated clearance of cytoplasmic mutant TARDBP/TDP-43 in the monkey brain. Autophagy 2022; 18:1955-1968. [PMID: 34936539 PMCID: PMC9466617 DOI: 10.1080/15548627.2021.2013653] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022] Open
Abstract
The cytoplasmic accumulation and aggregates of TARDBP/TDP-43 (TAR DNA binding protein) are a pathological hallmark in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. We previously reported that the primate specific cleavage of TARDBP accounts for its cytoplasmic mislocalization in the primate brains, prompting us to further investigate how the cytoplasmic TARDBP mediates neuropathology. Here we reported that cytoplasmic mutant TARDBP reduced SQSTM1 expression selectively in the monkey brain, when compared with the mouse brain, by inducing SQSTM1 mRNA instability via its binding to the unique 3'UTR sequence (GU/UG)n of the primate SQSTM1 transcript. Overexpression of SQSTM1 could diminish the cytoplasmic C-terminal TARDBP accumulation in the monkey brain by augmenting macroautophagy/autophagy activity. Our findings provide additional clues for the pathogenesis of cytoplasmic TARDBP and a potential therapy for mutant TARDBP-mediated neuropathology.
Collapse
Affiliation(s)
- Peng Yin
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Dazhang Bai
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Fuyu Deng
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Chen Zhang
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Qingqing Jia
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Longhong Zhu
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Laiqiang Chen
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Bang Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Xiangyu Guo
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Jianmeng Ye
- Guangdong Landao Biotechnology Co. Ltd, Guangzhou, China
| | - Zhiqiang Tan
- Department of Medical Imaging, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lu Wang
- Department of Medical Imaging, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shihua Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| |
Collapse
|
32
|
Conversion of the Native N-Terminal Domain of TDP-43 into a Monomeric Alternative Fold with Lower Aggregation Propensity. Molecules 2022; 27:molecules27134309. [PMID: 35807552 PMCID: PMC9268139 DOI: 10.3390/molecules27134309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 11/17/2022] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) forms intraneuronal cytoplasmic inclusions associated with amyotrophic lateral sclerosis and ubiquitin-positive frontotemporal lobar degeneration. Its N-terminal domain (NTD) can dimerise/oligomerise with the head-to-tail arrangement, which is essential for function but also favours liquid-liquid phase separation and inclusion formation of full-length TDP-43. Using various biophysical approaches, we identified an alternative conformational state of NTD in the presence of Sulfobetaine 3-10 (SB3-10), with higher content of α-helical structure and tryptophan solvent exposure. NMR shows a highly mobile structure, with partially folded regions and β-sheet content decrease, with a concomitant increase of α-helical structure. It is monomeric and reverts to native oligomeric NTD upon SB3-10 dilution. The equilibrium GdnHCl-induced denaturation shows a cooperative folding and a somewhat lower conformational stability. When the aggregation processes were compared with and without pre-incubation with SB3-10, but at the identical final SB3-10 concentration, a slower aggregation was found in the former case, despite the reversible attainment of the native conformation in both cases. This was attributed to protein monomerization and oligomeric seeds disruption by the conditions promoting the alternative conformation. Overall, the results show a high plasticity of TDP-43 NTD and identify strategies to monomerise TDP-43 NTD for methodological and biomedical applications.
Collapse
|
33
|
Doll SG, Meshkin H, Bryer AJ, Li F, Ko YH, Lokareddy RK, Gillilan RE, Gupta K, Perilla JR, Cingolani G. Recognition of the TDP-43 nuclear localization signal by importin α1/β. Cell Rep 2022; 39:111007. [PMID: 35767952 PMCID: PMC9290431 DOI: 10.1016/j.celrep.2022.111007] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/31/2022] [Accepted: 06/06/2022] [Indexed: 11/27/2022] Open
Abstract
Cytoplasmic mislocalization of the TAR-DNA binding protein of 43 kDa (TDP-43) leads to large, insoluble aggregates that are a hallmark of amyotrophic lateral sclerosis and frontotemporal dementia. Here, we study how importin α1/β recognizes TDP-43 bipartite nuclear localization signal (NLS). We find that the NLS makes extensive contacts with importin α1, especially at the minor NLS-binding site. NLS binding results in steric clashes with the C terminus of importin α1 that disrupts the TDP-43 N-terminal domain (NTD) dimerization interface. A putative phosphorylation site in the proximity of TDP-43 R83 at the minor NLS site destabilizes binding to importins by reducing the NLS backbone dynamics. Based on these data, we explain the pathogenic role of several post-translational modifications and mutations in the proximity of TDP-43 minor NLS site that are linked to disease and shed light on the chaperone activity of importin α1/β.
Collapse
Affiliation(s)
- Steven G Doll
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust St., Philadelphia, PA 19107, USA
| | - Hamed Meshkin
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Alexander J Bryer
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Fenglin Li
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust St., Philadelphia, PA 19107, USA
| | - Ying-Hui Ko
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust St., Philadelphia, PA 19107, USA
| | - Ravi K Lokareddy
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust St., Philadelphia, PA 19107, USA
| | - Richard E Gillilan
- Macromolecular Diffraction Facility, Cornell High Energy Synchrotron Source (MacCHESS), Cornell University, 161 Synchrotron Drive, Ithaca, NY 14853, USA
| | - Kushol Gupta
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Juan R Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust St., Philadelphia, PA 19107, USA.
| |
Collapse
|
34
|
Ramírez de Mingo D, Pantoja-Uceda D, Hervás R, Carrión-Vázquez M, Laurents DV. Conformational dynamics in the disordered region of human CPEB3 linked to memory consolidation. BMC Biol 2022; 20:129. [PMID: 35658951 PMCID: PMC9166367 DOI: 10.1186/s12915-022-01310-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 04/25/2022] [Indexed: 11/10/2022] Open
Abstract
Background Current understanding of the molecular basis of memory consolidation points to an important function of amyloid formation by neuronal-specific isoforms of the cytoplasmic polyadenylation element binding (CPEB) protein family. In particular, CPEB is thought to promote memory persistence through formation of self-sustaining prion-like amyloid assemblies at synapses, mediated by its intrinsically disordered region (IDR) and leading to permanent physical alterations at the basis of memory persistence. Although the molecular mechanisms by which amyloid formation takes place in CPEB have been described in invertebrates, the way amyloid formation occurs in the human homolog CPEB3 (hCPEB3) remains unclear. Here, we characterize by NMR spectroscopy the atomic level conformation and ps-ms dynamics of the 426-residue IDR of hCPEB3, which has been associated with episodic memory in humans. Results We show that the 426-residue N-terminal region of hCPEB3 is a dynamic, intrinsically disordered region (IDR) which lacks stable folded structures. The first 29 residues, M1QDDLLMDKSKTQPQPQQQQRQQQQPQP29, adopt a helical + disordered motif, and residues 86–93: P83QQPPPP93, and 166–175: P166PPPAPAPQP175 form polyproline II (PPII) helices. The (VG)5 repeat motif is completely disordered, and residues 200–250 adopt three partially populated α-helices. Residues 345–355, which comprise the nuclear localization signal (NLS), form a modestly populated α-helix which may mediate STAT5B binding. These findings allow us to suggest a model for nascent hCPEB3 structural transitions at single residue resolution, advancing that amyloid breaker residues, like proline, are a key difference between functional versus pathological amyloids. Conclusion Our NMR spectroscopic analysis of hCPEB3 provides insights into the first structural transitions involved in protein–protein and protein-mRNA interactions. The atomic level understanding of these structural transitions involved in hCPEB3 aggregation is a key first step toward understanding memory persistence in humans, as well as sequence features that differentiate beneficial amyloids from pathological ones. Areas Biophysics, Structural Biology, Biochemistry & Neurosciences. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01310-6.
Collapse
|
35
|
Laurents DV. AlphaFold 2 and NMR Spectroscopy: Partners to Understand Protein Structure, Dynamics and Function. Front Mol Biosci 2022; 9:906437. [PMID: 35655760 PMCID: PMC9152297 DOI: 10.3389/fmolb.2022.906437] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
The artificial intelligence program AlphaFold 2 is revolutionizing the field of protein structure determination as it accurately predicts the 3D structure of two thirds of the human proteome. Its predictions can be used directly as structural models or indirectly as aids for experimental structure determination using X-ray crystallography, CryoEM or NMR spectroscopy. Nevertheless, AlphaFold 2 can neither afford insight into how proteins fold, nor can it determine protein stability or dynamics. Rare folds or minor alternative conformations are also not predicted by AlphaFold 2 and the program does not forecast the impact of post translational modifications, mutations or ligand binding. The remaining third of human proteome which is poorly predicted largely corresponds to intrinsically disordered regions of proteins. Key to regulation and signaling networks, these disordered regions often form biomolecular condensates or amyloids. Fortunately, the limitations of AlphaFold 2 are largely complemented by NMR spectroscopy. This experimental approach provides information on protein folding and dynamics as well as biomolecular condensates and amyloids and their modulation by experimental conditions, small molecules, post translational modifications, mutations, flanking sequence, interactions with other proteins, RNA and virus. Together, NMR spectroscopy and AlphaFold 2 can collaborate to advance our comprehension of proteins.
Collapse
|
36
|
Vishal SS, Wijegunawardana D, Salaikumaran MR, Gopal PP. Sequence Determinants of TDP-43 Ribonucleoprotein Condensate Formation and Axonal Transport in Neurons. Front Cell Dev Biol 2022; 10:876893. [PMID: 35646935 PMCID: PMC9133736 DOI: 10.3389/fcell.2022.876893] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/21/2022] [Indexed: 11/17/2022] Open
Abstract
Mutations in TDP-43, a RNA-binding protein with multiple functions in RNA metabolism, cause amyotrophic lateral sclerosis (ALS), but it is uncertain how defects in RNA biology trigger motor neuron degeneration. TDP-43 is a major constituent of ribonucleoprotein (RNP) granules, phase separated biomolecular condensates that regulate RNA splicing, mRNA transport, and translation. ALS-associated TDP-43 mutations, most of which are found in the low complexity domain, promote aberrant liquid to solid phase transitions and impair the dynamic liquid-like properties and motility of RNP transport granules in neurons. Here, we perform a comparative analysis of ALS-linked mutations and TDP-43 variants in order to identify critical structural elements, aromatic and charged residues that are key determinants of TDP-43 RNP transport and condensate formation in neurons. We find that A315T and Q343R disease-linked mutations and substitutions of aromatic residues within the α-helical domain and LARKS, show the most severe defects in TDP-43 RNP granule transport and impair both anterograde and retrograde motility. F313L and F313-6L/Y substitutions of one or both phenylalanine residues in LARKS suggest the aromatic rings are important for TDP-43 RNP transport. Similarly, W334F/L substitutions of the tryptophan residue in the α-helical domain, impair TDP-43 RNP motility (W334L) or anterograde transport (W334F). We also show that R293A and R293K mutations, which disrupt the only RGG in the LCD, profoundly reduce long-range, directed transport and net velocity of TDP-43 RNP granules. In the disordered regions flanking the α-helical domain, we find that F283Y, F397Y or Y374F substitutions of conserved GF/G and SYS motifs, also impair anterograde and/or retrograde motility, possibly by altering hydrophobicity. Similarly, ALS-linked mutations in disordered regions distant from the α-helical domain also show anterograde transport deficits, consistent with previous findings, but these mutations are less severe than A315T and Q343R. Overall our findings demonstrate that the conserved α-helical domain, phenylalanine residues within LARKS and RGG motif are key determinants of TDP-43 RNP transport, suggesting they may mediate efficient recruitment of motors and adaptor proteins. These results offer a possible mechanism underlying ALS-linked TDP-43 defects in axonal transport and homeostasis.
Collapse
Affiliation(s)
- Sonali S. Vishal
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
| | | | | | - Pallavi P. Gopal
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
37
|
Li R, Singh R, Kashav T, Yang C, Sharma RD, Lynn AM, Prasad R, Prakash A, Kumar V. Computational Insights of Unfolding of N-Terminal Domain of TDP-43 Reveal the Conformational Heterogeneity in the Unfolding Pathway. Front Mol Neurosci 2022; 15:822863. [PMID: 35548668 PMCID: PMC9083116 DOI: 10.3389/fnmol.2022.822863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/22/2022] [Indexed: 02/05/2023] Open
Abstract
TDP-43 proteinopathies is a disease hallmark that characterizes amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). The N-terminal domain of TDP-43 (NTD) is important to both TDP-43 physiology and TDP-43 proteinopathy. However, its folding and dimerization process is still poorly characterized. In the present study, we have investigated the folding/unfolding of NTD employing all-atom molecular dynamics (MD) simulations in 8 M dimethylsulfoxide (DMSO) at high temperatures. The MD results showed that the unfolding of the NTD at high temperature evolves through the formation of a number of conformational states differing in their stability and free energy. The presence of structurally heterogeneous population of intermediate ensembles was further characterized by the different extents of solvent exposure of Trp80 during unfolding. We suggest that these non-natives unfolded intermediate ensembles may facilitate NTD oligomerization and subsequently TDP-43 oligomerization, which might lead to the formation of irreversible pathological aggregates, characteristics of disease pathogenesis.
Collapse
Affiliation(s)
- Ruiting Li
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou, China
| | - Ruhar Singh
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Tara Kashav
- Department of Life Science, Central University of South Bihar, Gaya, India
| | - ChunMin Yang
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou, China
| | - Ravi Datta Sharma
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, India
| | - Andrew M. Lynn
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rajendra Prasad
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, India
| | - Amresh Prakash
- Amity Institute of Integrative Sciences and Health (AIISH), Amity University Haryana, Gurgaon, India
- *Correspondence: Vijay Kumar Amresh Prakash
| | - Vijay Kumar
- Amity Institute of Neuropsychology & Neurosciences (AINN), Amity University, Noida, India
- *Correspondence: Vijay Kumar Amresh Prakash
| |
Collapse
|
38
|
Hassan MN, Nabi F, Khan AN, Hussain M, Siddiqui WA, Uversky VN, Khan RH. The amyloid state of proteins: A boon or bane? Int J Biol Macromol 2022; 200:593-617. [PMID: 35074333 DOI: 10.1016/j.ijbiomac.2022.01.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/05/2022]
Abstract
Proteins and their aggregation is significant field of research due to their association with various conformational maladies including well-known neurodegenerative diseases like Alzheimer's (AD), Parkinson's (PD), and Huntington's (HD) diseases. Amyloids despite being given negative role for decades are also believed to play a functional role in bacteria to humans. In this review, we discuss both facets of amyloid. We have shed light on AD, which is one of the most common age-related neurodegenerative disease caused by accumulation of Aβ fibrils as extracellular senile plagues. We also discuss PD caused by the aggregation and deposition of α-synuclein in form of Lewy bodies and neurites. Other amyloid-associated diseases such as HD and amyotrophic lateral sclerosis (ALS) are also discussed. We have also reviewed functional amyloids that have various biological roles in both prokaryotes and eukaryotes that includes formation of biofilm and cell attachment in bacteria to hormone storage in humans, We discuss in detail the role of Curli fibrils' in biofilm formation, chaplins in cell attachment to peptide hormones, and Pre-Melansomal Protein (PMEL) roles. The disease-related and functional amyloids are compared with regard to their structural integrity, variation in regulation, and speed of forming aggregates and elucidate how amyloids have turned from foe to friend.
Collapse
Affiliation(s)
- Md Nadir Hassan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Faisal Nabi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Asra Nasir Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Murtaza Hussain
- Department of Biochemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Waseem A Siddiqui
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Vladimir N Uversky
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, 10 Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy 11 of Sciences", Pushchino, Moscow Region 142290, Russia; Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College 13 of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
39
|
Gilodi M, Lisi S, F. Dudás E, Fantini M, Puglisi R, Louka A, Marcatili P, Cattaneo A, Pastore A. Selection and Modelling of a New Single-Domain Intrabody Against TDP-43. Front Mol Biosci 2022; 8:773234. [PMID: 35237655 PMCID: PMC8884700 DOI: 10.3389/fmolb.2021.773234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/29/2021] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder associated to deteriorating motor and cognitive functions, and short survival. The disease is caused by neuronal death which results in progressive muscle wasting and weakness, ultimately leading to lethal respiratory failure. The misbehaviour of a specific protein, TDP-43, which aggregates and becomes toxic in ALS patient’s neurons, is supposed to be one of the causes. TDP-43 is a DNA/RNA-binding protein involved in several functions related to nucleic acid metabolism. Sequestration of TDP-43 aggregates is a possible therapeutic strategy that could alleviate or block pathology. Here, we describe the selection and characterization of a new intracellular antibody (intrabody) against TDP-43 from a llama nanobody library. The structure of the selected intrabody was predicted in silico and the model was used to suggest mutations that enabled to improve its expression yield, facilitating its experimental validation. We showed how coupling experimental methodologies with in silico design may allow us to obtain an antibody able to recognize the RNA binding regions of TDP-43. Our findings illustrate a strategy for the mitigation of TDP-43 proteinopathy in ALS and provide a potential new tool for diagnostics.
Collapse
Affiliation(s)
- Martina Gilodi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Dementia Research Institute at King’s College London, The Wohl Institute, London, United Kingdom
| | - Simonetta Lisi
- Bio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri, Pisa, Italy
| | - Erika F. Dudás
- Dementia Research Institute at King’s College London, The Wohl Institute, London, United Kingdom
| | - Marco Fantini
- Bio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri, Pisa, Italy
| | - Rita Puglisi
- Dementia Research Institute at King’s College London, The Wohl Institute, London, United Kingdom
| | - Alexandra Louka
- Dementia Research Institute at King’s College London, The Wohl Institute, London, United Kingdom
| | - Paolo Marcatili
- Department of Bioinformatics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Antonino Cattaneo
- Bio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri, Pisa, Italy
- *Correspondence: Annalisa Pastore, ; Antonino Cattaneo,
| | - Annalisa Pastore
- Dementia Research Institute at King’s College London, The Wohl Institute, London, United Kingdom
- *Correspondence: Annalisa Pastore, ; Antonino Cattaneo,
| |
Collapse
|
40
|
Dong W, Zhou R, Chen J, Shu Z, Duan M. Phosphorylation Regulation on the Homo-Dimeric Binding of Transactive Response DNA-Binding Protein. J Chem Inf Model 2022; 62:5267-5275. [PMID: 35040651 DOI: 10.1021/acs.jcim.1c01224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The dimerization of transactive response DNA-binding protein of 43 kDa (TDP-43) is crucial for the RNA metabolism, and the higher-order aggregation of TDP-43 would induce several neurodegenerative diseases. The dimerization and aggregation of TDP-43 are regulated by the phosphorylation on its N-terminal domain (NTD). Understanding the regulation mechanism of TDP-43 NTD dimerization is crucial for the preventing of harmful aggregation and the associated diseases. In this study, the dimerization processes of wild-type (WT), phosphorylated S48 (pS48), and phosphomimic S48E mutation (S48E) of TDP-43 NTD are characterized by the enhanced sampling technology. Our results show that the phosphorylation not only shift the conformation population of bound and unbound state of TDP-43 NTD, but also would regulate the dimerization processes, including increase the binding free-energy barrier. The phosphomimic mutation would also shift the conformational space of TDP-43 NTD dimer to the unbound structures; however, the thermodynamic and kinetic properties of the dimerization processes between the phosphorylated and phosphomimic mutant systems are distinct, which reminds us to carefully study the phosphorylation regulation by using the phosphomimic mutations.
Collapse
Affiliation(s)
- Wanqian Dong
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technoloy, College of Life Sciences, Fujian Normal University (Qishan Campus), Fuzhou 350117, Fujian, China.,National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
| | - Rui Zhou
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
| | - Jiawen Chen
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
| | - Zhengyu Shu
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technoloy, College of Life Sciences, Fujian Normal University (Qishan Campus), Fuzhou 350117, Fujian, China
| | - Mojie Duan
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
| |
Collapse
|
41
|
Sidibé H, Khalfallah Y, Xiao S, Gómez NB, Fakim H, Tank EMH, Di Tomasso G, Bareke E, Aulas A, McKeever PM, Melamed Z, Destroimaisons L, Deshaies JE, Zinman L, Parker JA, Legault P, Tétreault M, Barmada SJ, Robertson J, Vande Velde C. TDP-43 stabilizes G3BP1 mRNA: relevance to amyotrophic lateral sclerosis/frontotemporal dementia. Brain 2021; 144:3461-3476. [PMID: 34115105 PMCID: PMC8677511 DOI: 10.1093/brain/awab217] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 03/26/2021] [Accepted: 05/27/2021] [Indexed: 12/04/2022] Open
Abstract
TDP-43 nuclear depletion and concurrent cytoplasmic accumulation in vulnerable neurons is a hallmark feature of progressive neurodegenerative proteinopathies such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Cellular stress signalling and stress granule dynamics are now recognized to play a role in ALS/FTD pathogenesis. Defective stress granule assembly is associated with increased cellular vulnerability and death. Ras-GAP SH3-domain-binding protein 1 (G3BP1) is a critical stress granule assembly factor. Here, we define that TDP-43 stabilizes G3BP1 transcripts via direct binding of a highly conserved cis regulatory element within the 3' untranslated region. Moreover, we show in vitro and in vivo that nuclear TDP-43 depletion is sufficient to reduce G3BP1 protein levels. Finally, we establish that G3BP1 transcripts are reduced in ALS/FTD patient neurons bearing TDP-43 cytoplasmic inclusions/nuclear depletion. Thus, our data indicate that, in ALS/FTD, there is a compromised stress granule response in disease-affected neurons due to impaired G3BP1 mRNA stability caused by TDP-43 nuclear depletion. These data implicate TDP-43 and G3BP1 loss of function as contributors to disease.
Collapse
Affiliation(s)
- Hadjara Sidibé
- Department of Neurosciences, Université de Montréal, Montréal, QC H3A 0E8, Canada
- CHUM Research Center, Montréal, QC H2X 0A9, Canada
| | - Yousra Khalfallah
- CHUM Research Center, Montréal, QC H2X 0A9, Canada
- Department of Biochemistry, Université de Montréal, Montréal, QC H3A 0E8, Canada
| | - Shangxi Xiao
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 0S8, Canada
| | - Nicolás B Gómez
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hana Fakim
- Department of Neurosciences, Université de Montréal, Montréal, QC H3A 0E8, Canada
- CHUM Research Center, Montréal, QC H2X 0A9, Canada
| | - Elizabeth M H Tank
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Geneviève Di Tomasso
- Department of Biochemistry, Université de Montréal, Montréal, QC H3A 0E8, Canada
| | - Eric Bareke
- CHUM Research Center, Montréal, QC H2X 0A9, Canada
| | - Anaïs Aulas
- CHUM Research Center, Montréal, QC H2X 0A9, Canada
- Department of Biochemistry, Université de Montréal, Montréal, QC H3A 0E8, Canada
| | - Paul M McKeever
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 0S8, Canada
| | - Ze’ev Melamed
- University of California, San Diego/Ludwig Institute for Cancer Research, San Diego, CA 92093, USA
| | | | | | - Lorne Zinman
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - J Alex Parker
- Department of Neurosciences, Université de Montréal, Montréal, QC H3A 0E8, Canada
- CHUM Research Center, Montréal, QC H2X 0A9, Canada
| | - Pascale Legault
- Department of Biochemistry, Université de Montréal, Montréal, QC H3A 0E8, Canada
| | - Martine Tétreault
- Department of Neurosciences, Université de Montréal, Montréal, QC H3A 0E8, Canada
- CHUM Research Center, Montréal, QC H2X 0A9, Canada
| | - Sami J Barmada
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Janice Robertson
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 0S8, Canada
| | - Christine Vande Velde
- Department of Neurosciences, Université de Montréal, Montréal, QC H3A 0E8, Canada
- CHUM Research Center, Montréal, QC H2X 0A9, Canada
| |
Collapse
|
42
|
Parkin beyond Parkinson’s Disease—A Functional Meaning of Parkin Downregulation in TDP-43 Proteinopathies. Cells 2021; 10:cells10123389. [PMID: 34943897 PMCID: PMC8699658 DOI: 10.3390/cells10123389] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022] Open
Abstract
Parkin and PINK1 are key regulators of mitophagy, an autophagic pathway for selective elimination of dysfunctional mitochondria. To this date, parkin depletion has been associated with recessive early onset Parkinson’s disease (PD) caused by loss-of-function mutations in the PARK2 gene, while, in sporadic PD, the activity and abundance of this protein can be compromised by stress-related modifications. Intriguingly, research in recent years has shown that parkin depletion is not limited to PD but is also observed in other neurodegenerative diseases—especially those characterized by TDP-43 proteinopathies, such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Here, we discuss the evidence of parkin downregulation in these disease phenotypes, its emerging connections with TDP-43, and its possible functional implications.
Collapse
|
43
|
Laurents DV, Stuani C, Pantoja-Uceda D, Buratti E, Mompeán M. Aromatic and aliphatic residues of the disordered region of TDP-43 are on a fast track for self-assembly. Biochem Biophys Res Commun 2021; 578:110-114. [PMID: 34560580 DOI: 10.1016/j.bbrc.2021.09.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/17/2021] [Indexed: 10/20/2022]
Abstract
The C-terminal, intrinsically disordered, prion-like domain (PrLD) of TDP-43 promotes liquid condensate and solid amyloid formation. These phase changes are crucial to the normal biological functions of the protein but also for its abnormal aggregation, which is implicated in amyotrophic lateral sclerosis (ALS) and certain dementias. We and other previously found that certain amyloid forms emerge from an intermediate condensed state that acts as a nucleus for fibrillization. To quantitatively ascertain the role of individual residues within TDP-43's PrLD in its early self-assembly we have followed the kinetics of NMR 1H-15N HSQC signal loss to obtain values for the lag time, elongation rate and extent of condensate formation at equilibrium. The results of this analysis represent a robust corroboration that aliphatic and aromatic residues are key drivers of condensate formation.
Collapse
Affiliation(s)
- Douglas V Laurents
- "Rocasolano" Institute for Physical Chemistry, Spanish National Research Council, Serrano 119, 28006, Madrid, Spain
| | - Cristiana Stuani
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, I-34149, Trieste, Italy
| | - David Pantoja-Uceda
- "Rocasolano" Institute for Physical Chemistry, Spanish National Research Council, Serrano 119, 28006, Madrid, Spain
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, I-34149, Trieste, Italy
| | - Miguel Mompeán
- "Rocasolano" Institute for Physical Chemistry, Spanish National Research Council, Serrano 119, 28006, Madrid, Spain.
| |
Collapse
|
44
|
Koski L, Ronnevi C, Berntsson E, Wärmländer SKTS, Roos PM. Metals in ALS TDP-43 Pathology. Int J Mol Sci 2021; 22:12193. [PMID: 34830074 PMCID: PMC8622279 DOI: 10.3390/ijms222212193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS), Alzheimer's disease, Parkinson's disease and similar neurodegenerative disorders take their toll on patients, caregivers and society. A common denominator for these disorders is the accumulation of aggregated proteins in nerve cells, yet the triggers for these aggregation processes are currently unknown. In ALS, protein aggregation has been described for the SOD1, C9orf72, FUS and TDP-43 proteins. The latter is a nuclear protein normally binding to both DNA and RNA, contributing to gene expression and mRNA life cycle regulation. TDP-43 seems to have a specific role in ALS pathogenesis, and ubiquitinated and hyperphosphorylated cytoplasmic inclusions of aggregated TDP-43 are present in nerve cells in almost all sporadic ALS cases. ALS pathology appears to include metal imbalances, and environmental metal exposure is a known risk factor in ALS. However, studies on metal-to-TDP-43 interactions are scarce, even though this protein seems to have the capacity to bind to metals. This review discusses the possible role of metals in TDP-43 aggregation, with respect to ALS pathology.
Collapse
Affiliation(s)
- Lassi Koski
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden;
| | | | - Elina Berntsson
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden;
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12616 Tallinn, Estonia
| | | | - Per M. Roos
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden;
- Capio St. Göran Hospital, 112 19 Stockholm, Sweden;
| |
Collapse
|
45
|
Rengifo-Gonzalez JC, El Hage K, Clément MJ, Steiner E, Joshi V, Craveur P, Durand D, Pastré D, Bouhss A. The cooperative binding of TDP-43 to GU-rich RNA repeats antagonizes TDP-43 aggregation. eLife 2021; 10:67605. [PMID: 34490845 PMCID: PMC8523171 DOI: 10.7554/elife.67605] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 09/03/2021] [Indexed: 01/01/2023] Open
Abstract
TDP-43 is a nuclear RNA-binding protein that forms neuronal cytoplasmic inclusions in two major neurodegenerative diseases, ALS and FTLD. While the self-assembly of TDP-43 by its structured N-terminal and intrinsically disordered C-terminal domains has been widely studied, the mechanism by which mRNA preserves TDP-43 solubility in the nucleus has not been addressed. Here, we demonstrate that tandem RNA recognition motifs of TDP-43 bind to long GU-repeats in a cooperative manner through intermolecular interactions. Moreover, using mutants whose cooperativity is impaired, we found that the cooperative binding of TDP-43 to mRNA may be critical to maintain the solubility of TDP-43 in the nucleus and the miscibility of TDP-43 in cytoplasmic stress granules. We anticipate that the knowledge of a higher order assembly of TDP-43 on mRNA may clarify its role in intron processing and provide a means of interfering with the cytoplasmic aggregation of TDP-43.
Collapse
Affiliation(s)
- Juan Carlos Rengifo-Gonzalez
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP), Evry-Courcouronnes, France
| | - Krystel El Hage
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP), Evry-Courcouronnes, France
| | - Marie-Jeanne Clément
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP), Evry-Courcouronnes, France
| | - Emilie Steiner
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP), Evry-Courcouronnes, France
| | - Vandana Joshi
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP), Evry-Courcouronnes, France
| | | | - Dominique Durand
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - David Pastré
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP), Evry-Courcouronnes, France
| | - Ahmed Bouhss
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP), Evry-Courcouronnes, France
| |
Collapse
|
46
|
Aledo JC. The Role of Methionine Residues in the Regulation of Liquid-Liquid Phase Separation. Biomolecules 2021; 11:biom11081248. [PMID: 34439914 PMCID: PMC8394241 DOI: 10.3390/biom11081248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
Membraneless organelles are non-stoichiometric supramolecular structures in the micron scale. These structures can be quickly assembled/disassembled in a regulated fashion in response to specific stimuli. Membraneless organelles contribute to the spatiotemporal compartmentalization of the cell, and they are involved in diverse cellular processes often, but not exclusively, related to RNA metabolism. Liquid-liquid phase separation, a reversible event involving demixing into two distinct liquid phases, provides a physical framework to gain insights concerning the molecular forces underlying the process and how they can be tuned according to the cellular needs. Proteins able to undergo phase separation usually present a modular architecture, which favors a multivalency-driven demixing. We discuss the role of low complexity regions in establishing networks of intra- and intermolecular interactions that collectively control the phase regime. Post-translational modifications of the residues present in these domains provide a convenient strategy to reshape the residue-residue interaction networks that determine the dynamics of phase separation. Focus will be placed on those proteins with low complexity domains exhibiting a biased composition towards the amino acid methionine and the prominent role that reversible methionine sulfoxidation plays in the assembly/disassembly of biomolecular condensates.
Collapse
Affiliation(s)
- Juan Carlos Aledo
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| |
Collapse
|
47
|
Maraschi A, Gumina V, Dragotto J, Colombrita C, Mompeán M, Buratti E, Silani V, Feligioni M, Ratti A. SUMOylation Regulates TDP-43 Splicing Activity and Nucleocytoplasmic Distribution. Mol Neurobiol 2021; 58:5682-5702. [PMID: 34390468 PMCID: PMC8599232 DOI: 10.1007/s12035-021-02505-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/22/2021] [Indexed: 12/13/2022]
Abstract
The nuclear RNA-binding protein TDP-43 forms abnormal cytoplasmic aggregates in the brains of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) patients and several molecular mechanisms promoting TDP-43 cytoplasmic mislocalization and aggregation have been proposed, including defects in nucleocytoplasmic transport, stress granules (SG) disassembly and post-translational modifications (PTM). SUMOylation is a PTM which regulates a variety of cellular processes and, similarly to ubiquitination, targets lysine residues. To investigate the possible regulatory effects of SUMOylation on TDP-43 activity and trafficking, we first assessed that TDP-43 is SUMO-conjugated in the nuclear compartment both covalently and non-covalently in the RRM1 domain at the predicted lysine 136 and SUMO-interacting motif (SIM, 106–110 residues), respectively. By using the SUMO-mutant TDP-43 K136R protein, we demonstrated that SUMOylation modifies TDP-43 splicing activity, specifically exon skipping, and influences its sub-cellular localization and recruitment to SG after oxidative stress. When promoting deSUMOylation by SENP1 enzyme over-expression or by treatment with the cell-permeable SENP1 peptide TS-1, the cytoplasmic localization of TDP-43 increased, depending on its SUMOylation. Moreover, deSUMOylation by TS-1 peptide favoured the formation of small cytoplasmic aggregates of the C-terminal TDP-43 fragment p35, still containing the SUMO lysine target 136, but had no effect on the already formed p25 aggregates. Our data suggest that TDP-43 can be post-translationally modified by SUMOylation which may regulate its splicing function and trafficking, indicating a novel and druggable mechanism to explore as its dysregulation may lead to TDP-43 pathological aggregation in ALS and FTD.
Collapse
Affiliation(s)
- AnnaMaria Maraschi
- Department of Neurology, Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano, IRCCS, Piazzale Brescia 20, 20149 Milan, Italy
| | - Valentina Gumina
- Department of Neurology, Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano, IRCCS, Piazzale Brescia 20, 20149 Milan, Italy
| | - Jessica Dragotto
- Laboratory of Neuronal Cell Signaling, EBRI Rita Levi-Montalcini Foundation, Viale Regina Elena 295, 00161 Rome, Italy
| | - Claudia Colombrita
- Department of Neurology, Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano, IRCCS, Piazzale Brescia 20, 20149 Milan, Italy
| | - Miguel Mompeán
- “Rocasolano” Institute for Physical Chemistry, Spanish National Research Council, Serrano 119, 28006 Madrid, Spain
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy
| | - Vincenzo Silani
- Department of Neurology, Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano, IRCCS, Piazzale Brescia 20, 20149 Milan, Italy
- Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi Di Milano, Via A. di Rudinì 8, 20142 Milan, Italy
- Department of Pathophysiology and Transplantation, Dino Ferrari” Center, Università Degli Studi Di Milano, Via F. Sforza 35, 20122 Milan, Italy
| | - Marco Feligioni
- Laboratory of Neuronal Cell Signaling, EBRI Rita Levi-Montalcini Foundation, Viale Regina Elena 295, 00161 Rome, Italy
- Department of Neurorehabilitation Sciences, Casa Di Cura del Policlinico, Via Giuseppe Dezza 48, 20144 Milan, Italy
| | - Antonia Ratti
- Department of Neurology, Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano, IRCCS, Piazzale Brescia 20, 20149 Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università Degli Studi Di Milano, Via Fratelli Cervi 93, 20090 Segrate, Milan Italy
| |
Collapse
|
48
|
Strategies in the design and development of (TAR) DNA-binding protein 43 (TDP-43) binding ligands. Eur J Med Chem 2021; 225:113753. [PMID: 34388383 DOI: 10.1016/j.ejmech.2021.113753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/16/2021] [Accepted: 08/05/2021] [Indexed: 01/09/2023]
Abstract
The human transactive responsive (TAR) DNA-binding protein 43 (TDP-43) is involved in a number of physiological processes in the body. Its primary function involves RNA regulation. The TDP-43 protein is also involved in many diseases such as amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), Alzheimer's disease (AD), Parkinson's disease (PD) and even cancers. These TDP-43 mediated diseases are collectively called as TDP-43 proteinopathies. Intense research in the last decade has increased our understanding on TDP-43 structure and function in biology. The three-dimensional structures of TDP-43 domains such as N-terminal domain (NTD), RNA-recognition motif-1 (RRM1), RNA-recognition motif-2 (RRM2) and the C-terminal domain (CTD) or low-complexity domain (LCD) have been solved. These structures have yielded insights into novel binding sites and pockets at various TDP-43 domains, which can be targeted by designing a diverse library of ligands including small molecules, peptides and oligonucleotides as molecular tools to (i) study TDP-43 function, (ii) develop novel diagnostic agents and (iii) discover disease-modifying therapies to treat TDP-43 proteinopathies. This review provides a summary on recent progress in the development of TDP-43 binding ligands and uses the solved structures of various TDP-43 domains to investigate putative ligand binding regions that can be exploited to discover novel molecular probes to modulate TDP-43 structure and function.
Collapse
|
49
|
Francois-Moutal L, Scott DD, Khanna M. Direct targeting of TDP-43, from small molecules to biologics: the therapeutic landscape. RSC Chem Biol 2021; 2:1158-1166. [PMID: 34458829 PMCID: PMC8341936 DOI: 10.1039/d1cb00110h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/18/2021] [Indexed: 11/21/2022] Open
Abstract
Tar DNA binding (TDP)-43 proteinopathy, typically described as cytoplasmic accumulation of highly modified and misfolded TDP-43 molecules, is characteristic of several neurodegenerative diseases such as Amyotrophic Lateral Sclerosis (ALS) and limbic-predominant age-related TDP-43 encephalopathy (LATE). TDP-43 proposed proteinopathies include homeostatic imbalance between nuclear and cytoplasmic localization, aggregation of ubiquitinated and hyper-phosphorylated TDP-43, and an increase in protein truncation of cytoplasmic TDP-43. Given the therapeutic interest of targeting TDP-43, this review focuses on the current landscape of strategies, ranging from biologics to small molecules, that directly target TDP-43. Antibodies, peptides and compounds have been designed or found to recognize specific TDP-43 sequences but alleviate TDP-43 toxicity through different mechanisms. While two antibodies described here were able to induce degradation of pathological TDP-43, the peptides and small molecules were primarily designed to reduce aggregation of TDP-43. Furthermore, we discuss promising emerging therapeutic targets.
Collapse
Affiliation(s)
- Liberty Francois-Moutal
- Department of Pharmacology, College of Medicine, University of Arizona 1501 North Campbell Drive, P.O. Box 245050 Tucson AZ 85724 USA +520-626-2204 +520-626-2147
- Center of Innovation in Brain Science Tucson AZ 85721 USA
| | - David Donald Scott
- Department of Pharmacology, College of Medicine, University of Arizona 1501 North Campbell Drive, P.O. Box 245050 Tucson AZ 85724 USA +520-626-2204 +520-626-2147
- Center of Innovation in Brain Science Tucson AZ 85721 USA
| | - May Khanna
- Department of Pharmacology, College of Medicine, University of Arizona 1501 North Campbell Drive, P.O. Box 245050 Tucson AZ 85724 USA +520-626-2204 +520-626-2147
- Center of Innovation in Brain Science Tucson AZ 85721 USA
- Bio5 Institute, University of Arizona Tucson USA
| |
Collapse
|
50
|
Dang M, Lim L, Kang J, Song J. ATP biphasically modulates LLPS of TDP-43 PLD by specifically binding arginine residues. Commun Biol 2021; 4:714. [PMID: 34112944 PMCID: PMC8192790 DOI: 10.1038/s42003-021-02247-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 05/20/2021] [Indexed: 12/14/2022] Open
Abstract
Mysteriously neurons maintain ATP concentrations of ~3 mM but whether ATP modulates TDP-43 LLPS remains completely unexplored. Here we characterized the effect of ATP on LLPS of TDP-43 PLD and seven mutants by DIC and NMR. The results revealed: 1) ATP induces and subsequently dissolves LLPS of TDP-43 PLD by specifically binding Arg saturated at 1:100. 2) ATP modifies the conformation-specific electrostatic property beyond just imposing screening effect. 3) Reversibility of LLPS of TDP-43 PLD and further exaggeration into aggregation appear to be controlled by a delicate network composed of both attractive and inhibitory interactions. Results together establish that ATP might be a universal but specific regulator for most, if not all, R-containing intrinsically-disordered regions by altering physicochemical properties, conformations, dynamics, LLPS and aggregation. Under physiological conditions, TDP-43 is highly bound with ATP and thus inhibited for LLPS, highlighting a central role of ATP in cell physiology, pathology and aging. Dang Mei et al. use NMR and microscopy approaches to examine how ATP impacts the liquid-liquid phase separation (LLPS) of prion-like domains in TDP-43, a RNA-binding protein that is implicated in ALS and other neurological disorders. Their results suggest that ATP specifically binds to a subset of TDP-43 arginine residues at a particular molar ratio to modulate LLPS, and provides insight into how ATP affects the LLPS of biomolecular systems.
Collapse
Affiliation(s)
- Mei Dang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Liangzhong Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Jian Kang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore.
| |
Collapse
|