1
|
Tan AW, Tong X, Alvarez-Cubela S, Chen P, Santana AG, Morales AA, Tian R, Infante R, Nunes de Paiva V, Kulandavelu S, Benny M, Dominguez-Bendala J, Wu S, Young KC, Rodrigues CO, Schmidt AF. c-Myc Drives inflammation of the maternal-fetal interface, and neonatal lung remodeling induced by intra-amniotic inflammation. Front Cell Dev Biol 2024; 11:1245747. [PMID: 38481391 PMCID: PMC10933046 DOI: 10.3389/fcell.2023.1245747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/07/2023] [Indexed: 04/11/2024] Open
Abstract
Background: Intra-amniotic inflammation (IAI) is associated with increased risk of preterm birth and bronchopulmonary dysplasia (BPD), but the mechanisms by which IAI leads to preterm birth and BPD are poorly understood, and there are no effective therapies for preterm birth and BPD. The transcription factor c-Myc regulates various biological processes like cell growth, apoptosis, and inflammation. We hypothesized that c-Myc modulates inflammation at the maternal-fetal interface, and neonatal lung remodeling. The objectives of our study were 1) to determine the kinetics of c-Myc in the placenta, fetal membranes and neonatal lungs exposed to IAI, and 2) to determine the role of c-Myc in modulating inflammation at the maternal-fetal interface, and neonatal lung remodeling induced by IAI. Methods: Pregnant Sprague-Dawley rats were randomized into three groups: 1) Intra-amniotic saline injections only (control), 2) Intra-amniotic lipopolysaccharide (LPS) injections only, and 3) Intra-amniotic LPS injections with c-Myc inhibitor 10058-F4. c-Myc expression, markers of inflammation, angiogenesis, immunohistochemistry, and transcriptomic analyses were performed on placenta and fetal membranes, and neonatal lungs to determine kinetics of c-Myc expression in response to IAI, and effects of prenatal systemic c-Myc inhibition on lung remodeling at postnatal day 14. Results: c-Myc was upregulated in the placenta, fetal membranes, and neonatal lungs exposed to IAI. IAI caused neutrophil infiltration and neutrophil extracellular trap (NET) formation in the placenta and fetal membranes, and neonatal lung remodeling with pulmonary hypertension consistent with a BPD phenotype. Prenatal inhibition of c-Myc with 10058-F4 in IAI decreased neutrophil infiltration and NET formation, and improved neonatal lung remodeling induced by LPS, with improved alveolarization, increased angiogenesis, and decreased pulmonary vascular remodeling. Discussion: In a rat model of IAI, c-Myc regulates neutrophil recruitment and NET formation in the placenta and fetal membranes. c-Myc also participates in neonatal lung remodeling induced by IAI. Further studies are needed to investigate c-Myc as a potential therapeutic target for IAI and IAI-associated BPD.
Collapse
Affiliation(s)
- April W. Tan
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children’s Hospital, Miami, FL, United States
| | - Xiaoying Tong
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children’s Hospital, Miami, FL, United States
| | - Silvia Alvarez-Cubela
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Pingping Chen
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children’s Hospital, Miami, FL, United States
| | - Aline Guimarães Santana
- Department of Biomedical Science, Florida Atlantic University Charles E. Schmidt College of Medicine, Boca Raton, FL, United States
| | - Alejo A. Morales
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Runxia Tian
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children’s Hospital, Miami, FL, United States
| | - Rae Infante
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children’s Hospital, Miami, FL, United States
| | - Vanessa Nunes de Paiva
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children’s Hospital, Miami, FL, United States
| | - Shathiyah Kulandavelu
- Division of Pediatric Nephrology, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Merline Benny
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children’s Hospital, Miami, FL, United States
| | - Juan Dominguez-Bendala
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Shu Wu
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children’s Hospital, Miami, FL, United States
| | - Karen C. Young
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children’s Hospital, Miami, FL, United States
| | - Claudia O. Rodrigues
- Department of Biomedical Science, Florida Atlantic University Charles E. Schmidt College of Medicine, Boca Raton, FL, United States
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Augusto F. Schmidt
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children’s Hospital, Miami, FL, United States
| |
Collapse
|
2
|
Mižíková I, Thébaud B. Perinatal origins of bronchopulmonary dysplasia-deciphering normal and impaired lung development cell by cell. Mol Cell Pediatr 2023; 10:4. [PMID: 37072570 PMCID: PMC10113423 DOI: 10.1186/s40348-023-00158-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/26/2023] [Indexed: 04/20/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a multifactorial disease occurring as a consequence of premature birth, as well as antenatal and postnatal injury to the developing lung. BPD morbidity and severity depend on a complex interplay between prenatal and postnatal inflammation, mechanical ventilation, and oxygen therapy as well as associated prematurity-related complications. These initial hits result in ill-explored aberrant immune and reparative response, activation of pro-fibrotic and anti-angiogenic factors, which further perpetuate the injury. Histologically, the disease presents primarily by impaired lung development and an arrest in lung microvascular maturation. Consequently, BPD leads to respiratory complications beyond the neonatal period and may result in premature aging of the lung. While the numerous prenatal and postnatal stimuli contributing to BPD pathogenesis are relatively well known, the specific cell populations driving the injury, as well as underlying mechanisms are still not well understood. Recently, an effort to gain a more detailed insight into the cellular composition of the developing lung and its progenitor populations has unfold. Here, we provide an overview of the current knowledge regarding perinatal origin of BPD and discuss underlying mechanisms, as well as novel approaches to study the perturbed lung development.
Collapse
Affiliation(s)
- I Mižíková
- Experimental Pulmonology, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| | - B Thébaud
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO), CHEO Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
3
|
Wang Y, Wang X, Xu Q, Yin J, Wang H, Zhang L. CircRNA, lncRNA, and mRNA profiles of umbilical cord blood exosomes from preterm newborns showing bronchopulmonary dysplasia. Eur J Pediatr 2022; 181:3345-3365. [PMID: 35790551 PMCID: PMC9395505 DOI: 10.1007/s00431-022-04544-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 02/07/2023]
Abstract
Bronchopulmonary dysplasia (BPD) represents a multifactorial chronic pulmonary pathology and a major factor causing premature illness and death. The therapeutic role of exosomes in BPD has been feverishly investigated. Meanwhile, the potential roles of exosomal circRNAs, lncRNAs, and mRNAs in umbilical cord blood (UCB) serum have not been studied. This study aimed to detect the expression profiles of circRNAs, lncRNAs, and mRNAs in UCB-derived exosomes of infants with BPD. Microarray analysis was performed to compare the RNA profiles of UCB-derived exosomes of a preterm newborn with (BPD group) and without (non-BPD, NBPD group) BPD. Then, circRNA/lncRNA-miRNA-mRNA co-expression networks were built to determine their association with BPD. In addition, cell counting kit-8 (CCK-8) assay was used to evaluate the proliferation of lipopolysaccharide (LPS)-induced human bronchial epithelial cells (BEAS-2B cells) and human umbilical vein endothelial cells (HUVECs). The levels of tumor necrosis factor (TNF)-α and interleukin (IL)-1β in LPS-induced BEAS-2B cells and HUVECs were assessed through Western blot analysis. Then, quantitative reverse transcription-polymerase chain reaction assay was used to evaluate the expression levels of four differentially expressed circRNAs (hsa_circ_0086913, hsa_circ_0049170, hsa_circ_0087059, and hsa_circ_0065188) and two lncRNAs (small nucleolar RNA host gene 20 (SNHG20) and LINC00582) detected in LPS-induced BEAS-2B cells or HUVECs. A total of 317 circRNAs, 104 lncRNAs, and 135 mRNAs showed significant differential expression in UCB-derived exosomes of preterm infants with BPD compared with those with NBPD. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted to examine differentially expressed exosomal circRNAs, lncRNAs, and mRNAs. The results showed that the GO terms and KEGG pathways mostly involving differentially expressed exosomal RNAs were closely associated with endothelial or epithelial cell development. In vitro, CCK-8 and Western blot assays revealed that LPS remarkably inhibited the viability and promoted inflammatory responses (TNF-α and IL-1β) of BEAS-2B cells or HUVECs. The expression levels of circRNAs hsa_circ_0049170 and hsa_circ_0087059 were upregulated in LPS-induced BEAS-2B cells; the expression level of hsa_circ_0086913 was upregulated and that of hsa_circ_0065188 was downregulated in LPS-induced HUVECs. Moreover, the expression level of lncRNA SNHG20 was upregulated and that of LINC00582 was downregulated in LPS-induced BEAS-2B cells. Further, 455 circRNA/lncRNA-miRNA-mRNA interaction networks were predicted, including hsa_circ_0086913/hsa-miR-103a-3p/transmembrane 4 L six family member 1 (TM4SF1) and lncRNA-SNHG20/hsa-miR-6720-5p/spermine synthase (SMS) networks, which may take part in BPD. CONCLUSION This study provided a systematic perspective on UCB-derived exosomal circRNAs and lncRNAs and laid an important foundation for further investigating the potential biological functions of exosomal circRNAs and lncRNAs in BPD. WHAT IS KNOWN • BPD represents a multifactorial chronic pulmonary pathology and a major factor causing premature illness and death. • The therapeutic role of exosomes in BPD has been feverishly investigated, and exosomal RNAs were ignored. WHAT IS NEW • The profiles of UCB-derived exosomal circRNAs, lncRNAs, and mRNAs were performed. • Several differentially expressed circRNAs and lncRNAs were identified in LPS-induced BEAS-2B cells and HUVECs.
Collapse
Affiliation(s)
- Yu Wang
- Department of Neonatology, Changzhou Maternal and Child Health Care Hospital, Changzhou, China
| | - Xuan Wang
- Department of Neonatology, Changzhou Maternal and Child Health Care Hospital, Changzhou, China
| | - Qiushi Xu
- Department of Neonatology, Changzhou Maternal and Child Health Care Hospital, Changzhou, China
| | - Jiao Yin
- Department of Neonatology, Changzhou Maternal and Child Health Care Hospital, Changzhou, China
| | - Huaiyan Wang
- Department of Neonatology, Changzhou Maternal and Child Health Care Hospital, Changzhou, China
| | - Lin Zhang
- Department of Neonatology, Changzhou Maternal and Child Health Care Hospital, Changzhou, China
| |
Collapse
|
4
|
Damnjanović J, Odake N, Fan J, Camagna M, Jia B, Kojima T, Nemoto N, Hitomi K, Nakano H. Comprehensive analysis of transglutaminase substrate preference by cDNA display coupled with next-generation sequencing and bioinformatics. Sci Rep 2022; 12:13578. [PMID: 35945258 PMCID: PMC9363462 DOI: 10.1038/s41598-022-17494-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/26/2022] [Indexed: 11/09/2022] Open
Abstract
cDNA display is an in vitro display technology based on a covalent linkage between a protein and its corresponding mRNA/cDNA, widely used for the selection of proteins and peptides from large libraries (1012) in a high throughput manner, based on their binding affinity. Here, we developed a platform using cDNA display and next-generation sequencing (NGS) for rapid and comprehensive substrate profiling of transglutaminase 2 (TG2), an enzyme crosslinking glutamine and lysine residues in proteins. After screening and selection of the control peptide library randomized at the reactive glutamine, a combinatorial library of displayed peptides randomized at positions - 1, + 1, + 2, and + 3 from the reactive glutamine was screened followed by NGS and bioinformatic analysis, which indicated a strong preference of TG2 towards peptides with glutamine at position - 1 (Gln-Gln motif), and isoleucine or valine at position + 3. The highly enriched peptides indeed contained the indicated sequence and showed a higher reactivity as TG2 substrates than the peptide previously selected by phage display, thus representing the novel candidate peptide probes for TG2 research. Furthermore, the obtained information on substrate profiling can be used to identify potential TG2 protein targets. This platform will be further used for the substrate profiling of other TG isozymes, as well as for the selection and evolution of larger biomolecules.
Collapse
Affiliation(s)
- Jasmina Damnjanović
- Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
| | - Nana Odake
- Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Jicheng Fan
- Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.,Tigermed, Hangzhou, China
| | - Maurizio Camagna
- Laboratory of Plant Genetics and Breeding, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Beixi Jia
- Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Takaaki Kojima
- Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.,Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, 468-8502, Japan
| | - Naoto Nemoto
- Laboratory of Evolutionary Molecular Engineering, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Kiyotaka Hitomi
- Laboratory of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Hideo Nakano
- Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| |
Collapse
|
5
|
Guo T, He C, Venado A, Zhou Y. Extracellular Matrix Stiffness in Lung Health and Disease. Compr Physiol 2022; 12:3523-3558. [PMID: 35766837 PMCID: PMC10088466 DOI: 10.1002/cphy.c210032] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The extracellular matrix (ECM) provides structural support and imparts a wide variety of environmental cues to cells. In the past decade, a growing body of work revealed that the mechanical properties of the ECM, commonly known as matrix stiffness, regulate the fundamental cellular processes of the lung. There is growing appreciation that mechanical interplays between cells and associated ECM are essential to maintain lung homeostasis. Dysregulation of ECM-derived mechanical signaling via altered mechanosensing and mechanotransduction pathways is associated with many common lung diseases. Matrix stiffening is a hallmark of lung fibrosis. The stiffened ECM is not merely a sequelae of lung fibrosis but can actively drive the progression of fibrotic lung disease. In this article, we provide a comprehensive view on the role of matrix stiffness in lung health and disease. We begin by summarizing the effects of matrix stiffness on the function and behavior of various lung cell types and on regulation of biomolecule activity and key physiological processes, including host immune response and cellular metabolism. We discuss the potential mechanisms by which cells probe matrix stiffness and convert mechanical signals to regulate gene expression. We highlight the factors that govern matrix stiffness and outline the role of matrix stiffness in lung development and the pathogenesis of pulmonary fibrosis, pulmonary hypertension, asthma, chronic obstructive pulmonary disease (COPD), and lung cancer. We envision targeting of deleterious matrix mechanical cues for treatment of fibrotic lung disease. Advances in technologies for matrix stiffness measurements and design of stiffness-tunable matrix substrates are also explored. © 2022 American Physiological Society. Compr Physiol 12:3523-3558, 2022.
Collapse
Affiliation(s)
- Ting Guo
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA.,Department of Respiratory Medicine, the Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Chao He
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| | - Aida Venado
- Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Yong Zhou
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| |
Collapse
|
6
|
Zhang Z, Chen H, Yu P, Ge C, Fang M, Zhao X, Geng Q, Wang H. Inducible factors and interaction of pulmonary fibrosis induced by prenatal dexamethasone exposure in offspring rats. Toxicol Lett 2022; 359:65-72. [PMID: 35143883 DOI: 10.1016/j.toxlet.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/26/2022] [Accepted: 02/03/2022] [Indexed: 11/29/2022]
Abstract
This study aimed to investigate the correlation between prenatal dexamethasone exposure (PDE) and susceptibility to pulmonary fibrosis in offspring. Healthy female Wistar rats were given dexamethasone (0.2 mg/kg.d) or an equal volume of normal saline subcutaneously from 9 to 20 days after conception. Some of their female offspring underwent ovariectomy (OV) at 22 weeks after birth. All animals were euthanized at 28 weeks after birth. The morphological changes related to pulmonary fibrosis and extracellular matrix-related gene expression were detected, and Two-way ANOVA analyzed the interaction between PDE and OV. The results showed that adult offspring rats in FD group (female rats with PDE treatment) had early pulmonary fibrosis changes, such as pulmonary interstitial thickening, and increased expression of type IV collagen (COL4), α -smooth muscle actin (α-SMA) and fibronectin (FN) in lung tissues compared with those in FC group (female rats with saline treatment). In addition, adult offspring rats in FDO group (female rats with PDE and OV treatment) showed signs of pulmonary fibrosis, including apparent extracellular matrix deposition, increased lung injury scores (P<0.01, P<0.05), and extracellular matrix related gene expression (P<0.01, P<0.05), compared with rats in FDS (female rats with PDE treatment alone) or rats in FCO group (female rats with OV treatment alone). Moreover, PDE and OV had an interactive effect on the development of pulmonary fibrosis in female adult offspring. This study first reported the correlation between PDE and susceptibility to pulmonary fibrosis in female offspring rats, as well as the synergistic effect of PDE and OV in this pathological event, which provided a basis for further understanding of the pathogenesis of fetal originated pulmonary fibrosis.
Collapse
Affiliation(s)
- Ziyao Zhang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, No.238 Jiefang Rd, Wuhan, 430060, Hubei, China
| | - Huijun Chen
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Pengxia Yu
- Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Caiyun Ge
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Man Fang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Xiaoqi Zhao
- Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, No.238 Jiefang Rd, Wuhan, 430060, Hubei, China.
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, China.
| |
Collapse
|
7
|
Zhong Y, Mahoney RC, Khatun Z, Chen HH, Nguyen CT, Caravan P, Roberts JD. Lysyl oxidase regulation and protein aldehydes in the injured newborn lung. Am J Physiol Lung Cell Mol Physiol 2022; 322:L204-L223. [PMID: 34878944 PMCID: PMC8794022 DOI: 10.1152/ajplung.00158.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
During newborn lung injury, excessive activity of lysyl oxidases (LOXs) disrupts extracellular matrix (ECM) formation. Previous studies indicate that TGFβ activation in the O2-injured mouse pup lung increases lysyl oxidase (LOX) expression. But how TGFβ regulates this, and whether the LOXs generate excess pulmonary aldehydes are unknown. First, we determined that O2-mediated lung injury increases LOX protein expression in TGFβ-stimulated pup lung interstitial fibroblasts. This regulation appeared to be direct; this is because TGFβ treatment also increased LOX protein expression in isolated pup lung fibroblasts. Then using a fibroblast cell line, we determined that TGFβ stimulates LOX expression at a transcriptional level via Smad2/3-dependent signaling. LOX is translated as a pro-protein that requires secretion and extracellular cleavage before assuming amine oxidase activity and, in some cells, reuptake with nuclear localization. We found that pro-LOX is processed in the newborn mouse pup lung. Also, O2-mediated injury was determined to increase pro-LOX secretion and nuclear LOX immunoreactivity particularly in areas populated with interstitial fibroblasts and exhibiting malformed ECM. Then, using molecular probes, we detected increased aldehyde levels in vivo in O2-injured pup lungs, which mapped to areas of increased pro-LOX secretion in lung sections. Increased activity of LOXs plays a critical role in the aldehyde generation; an inhibitor of LOXs prevented the elevation of aldehydes in the O2-injured pup lung. These results reveal new mechanisms of TGFβ and LOX in newborn lung disease and suggest that aldehyde-reactive probes might have utility in sensing the activation of LOXs in vivo during lung injury.
Collapse
Affiliation(s)
- Ying Zhong
- 1Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital, Boston, Massachusetts,4Harvard Medical School, Harvard University, Cambridge, Massachusetts
| | - Rose C. Mahoney
- 1Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital, Boston, Massachusetts
| | - Zehedina Khatun
- 4Harvard Medical School, Harvard University, Cambridge, Massachusetts,5Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts,6Division of Health Science Technology, Harvard-Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Howard H. Chen
- 4Harvard Medical School, Harvard University, Cambridge, Massachusetts,5Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts,6Division of Health Science Technology, Harvard-Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Christopher T. Nguyen
- 1Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital, Boston, Massachusetts,4Harvard Medical School, Harvard University, Cambridge, Massachusetts,5Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts
| | - Peter Caravan
- 4Harvard Medical School, Harvard University, Cambridge, Massachusetts,5Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts,6Division of Health Science Technology, Harvard-Massachusetts Institute of Technology, Cambridge, Massachusetts,7The Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, Massachusetts
| | - Jesse D. Roberts
- 1Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital, Boston, Massachusetts,2Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts,3Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts,4Harvard Medical School, Harvard University, Cambridge, Massachusetts
| |
Collapse
|
8
|
Sahni M, Bhandari V. Patho-mechanisms of the origins of bronchopulmonary dysplasia. Mol Cell Pediatr 2021; 8:21. [PMID: 34894313 PMCID: PMC8665964 DOI: 10.1186/s40348-021-00129-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) continues to be one of the most common complications of prematurity, despite significant advancement in neonatology over the last couple of decades. The new BPD is characterized histopathologically by impaired lung alveolarization and dysregulated vascularization. With the increased survival of extremely preterm infants, the risk for the development of BPD remains high, emphasizing the continued need to understand the patho-mechanisms that play a role in the development of this disease. This brief review summarizes recent advances in our understanding of the maldevelopment of the premature lung, highlighting recent research in pathways of oxidative stress-related lung injury, the role of placental insufficiency, growth factor signaling, the extracellular matrix, and microRNAs.
Collapse
Affiliation(s)
- Mitali Sahni
- Pediatrix Medical Group, Sunrise Children's Hospital, Las Vegas, NV, USA.,University of Nevada, Las Vegas, NV, USA
| | - Vineet Bhandari
- Neonatology Research Laboratory, Education and Research Building, Cooper University Hospital, One Cooper Plaza, Camden, NJ, 08103, USA.
| |
Collapse
|
9
|
Heidenreich E, Pfeffer T, Kracke T, Mechtel N, Nawroth P, Hoffmann GF, Schmitt CP, Hell R, Poschet G, Peters V. A Novel UPLC-MS/MS Method Identifies Organ-Specific Dipeptide Profiles. Int J Mol Sci 2021; 22:9979. [PMID: 34576148 PMCID: PMC8465603 DOI: 10.3390/ijms22189979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Amino acids have a central role in cell metabolism, and intracellular changes contribute to the pathogenesis of various diseases, while the role and specific organ distribution of dipeptides is largely unknown. METHOD We established a sensitive, rapid and reliable UPLC-MS/MS method for quantification of 36 dipeptides. Dipeptide patterns were analyzed in brown and white adipose tissues, brain, eye, heart, kidney, liver, lung, muscle, sciatic nerve, pancreas, spleen and thymus, serum and urine of C57BL/6N wildtype mice and related to the corresponding amino acid profiles. RESULTS A total of 30 out of the 36 investigated dipeptides were detected with organ-specific distribution patterns. Carnosine and anserine were most abundant in all organs, with the highest concentrations in muscles. In liver, Asp-Gln and Ala-Gln concentrations were high, in the spleen and thymus, Glu-Ser and Gly-Asp. In serum, dipeptide concentrations were several magnitudes lower than in organ tissues. In all organs, dipeptides with C-terminal proline (Gly-Pro and Leu-Pro) were present at higher concentrations than dipeptides with N-terminal proline (Pro-Gly and Pro-Leu). Organ-specific amino acid profiles were related to the dipeptide profile with several amino acid concentrations being related to the isomeric form of the dipeptides. Aspartate, histidine, proline and serine tissue concentrations correlated with dipeptide concentrations, when the amino acids were present at the C- but not at the N-terminus. CONCLUSION Our multi-dipeptide quantification approach demonstrates organ-specific dipeptide distribution. This method allows us to understand more about the dipeptide metabolism in disease or in healthy state.
Collapse
Affiliation(s)
- Elena Heidenreich
- Centre for Organismal Studies (COS), Metabolomics Core Technology Platform, Heidelberg University, 69120 Heidelberg, Germany; (E.H.); (N.M.); (R.H.)
| | - Tilman Pfeffer
- Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (T.P.); (T.K.); (G.F.H.); (C.P.S.)
| | - Tamara Kracke
- Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (T.P.); (T.K.); (G.F.H.); (C.P.S.)
| | - Nils Mechtel
- Centre for Organismal Studies (COS), Metabolomics Core Technology Platform, Heidelberg University, 69120 Heidelberg, Germany; (E.H.); (N.M.); (R.H.)
| | - Peter Nawroth
- Department of Internal Medicine I and Clinical Chemistry, University Hospital of Heidelberg, 69120 Heidelberg, Germany;
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Institute for Diabetes and Cancer (IDC) Helmholtz Center Munich, 85764 Neuherberg, Germany
- Joint Heidelberg-Institute for Diabetes and Cancer (IDC) Translational Diabetes Program, 85764 Neuherberg, Germany
| | - Georg F Hoffmann
- Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (T.P.); (T.K.); (G.F.H.); (C.P.S.)
| | - Claus Peter Schmitt
- Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (T.P.); (T.K.); (G.F.H.); (C.P.S.)
| | - Rüdiger Hell
- Centre for Organismal Studies (COS), Metabolomics Core Technology Platform, Heidelberg University, 69120 Heidelberg, Germany; (E.H.); (N.M.); (R.H.)
| | - Gernot Poschet
- Centre for Organismal Studies (COS), Metabolomics Core Technology Platform, Heidelberg University, 69120 Heidelberg, Germany; (E.H.); (N.M.); (R.H.)
| | - Verena Peters
- Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (T.P.); (T.K.); (G.F.H.); (C.P.S.)
| |
Collapse
|
10
|
Amarelle L, Quintela L, Hurtado J, Malacrida L. Hyperoxia and Lungs: What We Have Learned From Animal Models. Front Med (Lausanne) 2021; 8:606678. [PMID: 33768102 PMCID: PMC7985075 DOI: 10.3389/fmed.2021.606678] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/15/2021] [Indexed: 12/19/2022] Open
Abstract
Although oxygen (O2) is essential for aerobic life, it can also be an important source of cellular damage. Supra-physiological levels of O2 determine toxicity due to exacerbated reactive oxygen species (ROS) production, impairing the homeostatic balance of several cellular processes. Furthermore, injured cells activate inflammation cascades, amplifying the tissue damage. The lung is the first (but not the only) organ affected by this condition. Critically ill patients are often exposed to several insults, such as mechanical ventilation, infections, hypo-perfusion, systemic inflammation, and drug toxicity. In this scenario, it is not easy to dissect the effect of oxygen toxicity. Translational investigations with animal models are essential to explore injuring stimuli in controlled experimental conditions, and are milestones in understanding pathological mechanisms and developing therapeutic strategies. Animal models can resemble what happens in critical care or anesthesia patients under mechanical ventilation and hyperoxia, but are also critical to explore the effect of O2 on lung development and the role of hyperoxic damage on bronchopulmonary dysplasia. Here, we set out to review the hyperoxia effects on lung pathology, contributing to the field by describing and analyzing animal experimentation's main aspects and its implications on human lung diseases.
Collapse
Affiliation(s)
- Luciano Amarelle
- Department of Pathophysiology, Hospital de Clínicas, School of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Lucía Quintela
- Department of Pathophysiology, Hospital de Clínicas, School of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Javier Hurtado
- Department of Pathophysiology, Hospital de Clínicas, School of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Leonel Malacrida
- Department of Pathophysiology, Hospital de Clínicas, School of Medicine, Universidad de la República, Montevideo, Uruguay.,Advanced Bioimaging Unit, Institut Pasteur Montevideo and Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
11
|
Pfeffer T, Lignelli E, Inoue H, Mižíková I, Surate Solaligue DE, Steenbock H, Myti D, Vadász I, Herold S, Seeger W, Brinckmann J, Morty RE. Minoxidil Cannot Be Used To Target Lysyl Hydroxylases during Postnatal Mouse Lung Development: A Cautionary Note. J Pharmacol Exp Ther 2020; 375:478-487. [PMID: 33020194 DOI: 10.1124/jpet.120.000138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/22/2020] [Indexed: 11/22/2022] Open
Abstract
The lysyl hydroxylases (procollagen-lysine 5-dioxygenases) PLOD1, PLOD2, and PLOD3 have been proposed as pathogenic mediators of stunted lung development in bronchopulmonary dysplasia (BPD), a common complication of preterm birth. In affected infants, pulmonary oxygen toxicity stunts lung development. Mice lacking Plod1 exhibit 15% mortality, and mice lacking Plod2 or Plod3 exhibit embryonic lethality. Therefore, to address any pathogenic role of lysyl hydroxylases in stunted lung development associated with BPD, minoxidil was administered to newborn mice in an oxygen toxicity-based BPD animal model. Minoxidil, which has attracted much interest in the management of systemic hypertension and androgenetic alopecia, can also be used to reduce lysyl hydroxylase activity in cultured cells. An in vivo pilot dosing study established 50 mg⋅kg-1⋅day-1 as the maximum possible minoxidil dose for intraperitoneal administration in newborn mouse pups. When administered at 50 mg⋅kg-1⋅day-1 to newborn mouse pups, minoxidil was detected in the lungs but did not impact lysine hydroxylation, collagen crosslinking, or lysyl hydroxylase expression in the lungs. Consistent with no impact on mouse lung extracellular matrix structures, minoxidil administration did not alter the course of normal or stunted lung development in newborn mice. At doses of up to 50 mg⋅kg⋅day-1, pharmacologically active concentrations of minoxidil were not achieved in neonatal mouse lung tissue; thus, minoxidil cannot be used to attenuate lysyl hydroxylase expression or activity during mouse lung development. These data also highlight the need for new and specific lysyl hydroxylase inhibitors. SIGNIFICANCE STATEMENT: Extracellular matrix crosslinking is mediated by lysyl hydroxylases, which generate hydroxylated lysyl residues in procollagen peptides. Deregulated collagen crosslinking is a pathogenic component of a spectrum of diseases, and thus, there is interest in validating lysyl hydroxylases as pathogenic mediators of disease and potential "druggable" targets. Minoxidil, administered at the maximum possible dose, did not inhibit lysyl hydroxylation in newborn mouse lungs, suggesting that minoxidil was unlikely to be of use in studies that pharmacologically target lysyl hydroxylation in vivo.
Collapse
Affiliation(s)
- Tilman Pfeffer
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany (T.P., E.L., I.M., D.E.S.S., D.M., W.S., R.E.M.); Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany (T.P., E.L., I.M., D.E.S.S., D.M., I.V., S.H., W.S., R.E.M.); Division of Regenerative Medicine, Department of Plastic and Reconstructive Surgery, St. Marianna University School of Medicine, Kawasaki, Japan (H.I.); and Institute of Virology and Cell Biology (H.S., J.B.) and Department of Dermatology (J.B.), University of Lübeck, Lübeck, Germany
| | - Ettore Lignelli
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany (T.P., E.L., I.M., D.E.S.S., D.M., W.S., R.E.M.); Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany (T.P., E.L., I.M., D.E.S.S., D.M., I.V., S.H., W.S., R.E.M.); Division of Regenerative Medicine, Department of Plastic and Reconstructive Surgery, St. Marianna University School of Medicine, Kawasaki, Japan (H.I.); and Institute of Virology and Cell Biology (H.S., J.B.) and Department of Dermatology (J.B.), University of Lübeck, Lübeck, Germany
| | - Hajime Inoue
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany (T.P., E.L., I.M., D.E.S.S., D.M., W.S., R.E.M.); Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany (T.P., E.L., I.M., D.E.S.S., D.M., I.V., S.H., W.S., R.E.M.); Division of Regenerative Medicine, Department of Plastic and Reconstructive Surgery, St. Marianna University School of Medicine, Kawasaki, Japan (H.I.); and Institute of Virology and Cell Biology (H.S., J.B.) and Department of Dermatology (J.B.), University of Lübeck, Lübeck, Germany
| | - Ivana Mižíková
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany (T.P., E.L., I.M., D.E.S.S., D.M., W.S., R.E.M.); Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany (T.P., E.L., I.M., D.E.S.S., D.M., I.V., S.H., W.S., R.E.M.); Division of Regenerative Medicine, Department of Plastic and Reconstructive Surgery, St. Marianna University School of Medicine, Kawasaki, Japan (H.I.); and Institute of Virology and Cell Biology (H.S., J.B.) and Department of Dermatology (J.B.), University of Lübeck, Lübeck, Germany
| | - David E Surate Solaligue
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany (T.P., E.L., I.M., D.E.S.S., D.M., W.S., R.E.M.); Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany (T.P., E.L., I.M., D.E.S.S., D.M., I.V., S.H., W.S., R.E.M.); Division of Regenerative Medicine, Department of Plastic and Reconstructive Surgery, St. Marianna University School of Medicine, Kawasaki, Japan (H.I.); and Institute of Virology and Cell Biology (H.S., J.B.) and Department of Dermatology (J.B.), University of Lübeck, Lübeck, Germany
| | - Heiko Steenbock
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany (T.P., E.L., I.M., D.E.S.S., D.M., W.S., R.E.M.); Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany (T.P., E.L., I.M., D.E.S.S., D.M., I.V., S.H., W.S., R.E.M.); Division of Regenerative Medicine, Department of Plastic and Reconstructive Surgery, St. Marianna University School of Medicine, Kawasaki, Japan (H.I.); and Institute of Virology and Cell Biology (H.S., J.B.) and Department of Dermatology (J.B.), University of Lübeck, Lübeck, Germany
| | - Despoina Myti
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany (T.P., E.L., I.M., D.E.S.S., D.M., W.S., R.E.M.); Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany (T.P., E.L., I.M., D.E.S.S., D.M., I.V., S.H., W.S., R.E.M.); Division of Regenerative Medicine, Department of Plastic and Reconstructive Surgery, St. Marianna University School of Medicine, Kawasaki, Japan (H.I.); and Institute of Virology and Cell Biology (H.S., J.B.) and Department of Dermatology (J.B.), University of Lübeck, Lübeck, Germany
| | - István Vadász
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany (T.P., E.L., I.M., D.E.S.S., D.M., W.S., R.E.M.); Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany (T.P., E.L., I.M., D.E.S.S., D.M., I.V., S.H., W.S., R.E.M.); Division of Regenerative Medicine, Department of Plastic and Reconstructive Surgery, St. Marianna University School of Medicine, Kawasaki, Japan (H.I.); and Institute of Virology and Cell Biology (H.S., J.B.) and Department of Dermatology (J.B.), University of Lübeck, Lübeck, Germany
| | - Susanne Herold
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany (T.P., E.L., I.M., D.E.S.S., D.M., W.S., R.E.M.); Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany (T.P., E.L., I.M., D.E.S.S., D.M., I.V., S.H., W.S., R.E.M.); Division of Regenerative Medicine, Department of Plastic and Reconstructive Surgery, St. Marianna University School of Medicine, Kawasaki, Japan (H.I.); and Institute of Virology and Cell Biology (H.S., J.B.) and Department of Dermatology (J.B.), University of Lübeck, Lübeck, Germany
| | - Werner Seeger
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany (T.P., E.L., I.M., D.E.S.S., D.M., W.S., R.E.M.); Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany (T.P., E.L., I.M., D.E.S.S., D.M., I.V., S.H., W.S., R.E.M.); Division of Regenerative Medicine, Department of Plastic and Reconstructive Surgery, St. Marianna University School of Medicine, Kawasaki, Japan (H.I.); and Institute of Virology and Cell Biology (H.S., J.B.) and Department of Dermatology (J.B.), University of Lübeck, Lübeck, Germany
| | - Jürgen Brinckmann
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany (T.P., E.L., I.M., D.E.S.S., D.M., W.S., R.E.M.); Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany (T.P., E.L., I.M., D.E.S.S., D.M., I.V., S.H., W.S., R.E.M.); Division of Regenerative Medicine, Department of Plastic and Reconstructive Surgery, St. Marianna University School of Medicine, Kawasaki, Japan (H.I.); and Institute of Virology and Cell Biology (H.S., J.B.) and Department of Dermatology (J.B.), University of Lübeck, Lübeck, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany (T.P., E.L., I.M., D.E.S.S., D.M., W.S., R.E.M.); Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany (T.P., E.L., I.M., D.E.S.S., D.M., I.V., S.H., W.S., R.E.M.); Division of Regenerative Medicine, Department of Plastic and Reconstructive Surgery, St. Marianna University School of Medicine, Kawasaki, Japan (H.I.); and Institute of Virology and Cell Biology (H.S., J.B.) and Department of Dermatology (J.B.), University of Lübeck, Lübeck, Germany,
| |
Collapse
|
12
|
Lignelli E, Palumbo F, Myti D, Morty RE. Recent advances in our understanding of the mechanisms of lung alveolarization and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2019; 317:L832-L887. [PMID: 31596603 DOI: 10.1152/ajplung.00369.2019] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common cause of morbidity and mortality in preterm infants. A key histopathological feature of BPD is stunted late lung development, where the process of alveolarization-the generation of alveolar gas exchange units-is impeded, through mechanisms that remain largely unclear. As such, there is interest in the clarification both of the pathomechanisms at play in affected lungs, and the mechanisms of de novo alveoli generation in healthy, developing lungs. A better understanding of normal and pathological alveolarization might reveal opportunities for improved medical management of affected infants. Furthermore, disturbances to the alveolar architecture are a key histopathological feature of several adult chronic lung diseases, including emphysema and fibrosis, and it is envisaged that knowledge about the mechanisms of alveologenesis might facilitate regeneration of healthy lung parenchyma in affected patients. To this end, recent efforts have interrogated clinical data, developed new-and refined existing-in vivo and in vitro models of BPD, have applied new microscopic and radiographic approaches, and have developed advanced cell-culture approaches, including organoid generation. Advances have also been made in the development of other methodologies, including single-cell analysis, metabolomics, lipidomics, and proteomics, as well as the generation and use of complex mouse genetics tools. The objective of this review is to present advances made in our understanding of the mechanisms of lung alveolarization and BPD over the period 1 January 2017-30 June 2019, a period that spans the 50th anniversary of the original clinical description of BPD in preterm infants.
Collapse
Affiliation(s)
- Ettore Lignelli
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Francesco Palumbo
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Despoina Myti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| |
Collapse
|
13
|
Tiono J, Surate Solaligue DE, Mižíková I, Nardiello C, Vadász I, Böttcher-Friebertshäuser E, Ehrhardt H, Herold S, Seeger W, Morty RE. Mouse genetic background impacts susceptibility to hyperoxia-driven perturbations to lung maturation. Pediatr Pulmonol 2019; 54:1060-1077. [PMID: 30848059 DOI: 10.1002/ppul.24304] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/08/2019] [Accepted: 02/10/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND The laboratory mouse is widely used in preclinical models of bronchopulmonary dysplasia, where lung alveolarization is stunted by exposure of pups to hyperoxia. Whether the diverse genetic backgrounds of different inbred mouse strains impacts lung development in newborn mice exposed to hyperoxia has not been systematically assessed. METHODS Hyperoxia (85% O2 , 14 days)-induced perturbations to lung alveolarization were assessed by design-based stereology in C57BL/6J, BALB/cJ, FVB/NJ, C3H/HeJ, and DBA/2J inbred mouse strains. The expression of components of the lung antioxidant machinery was assessed by real-time reverse transcriptase polymerase chain reaction and immunoblot. RESULTS Hyperoxia-reduced lung alveolar density in all five mouse strains to different degrees (C57BL/6J, 64.8%; FVB/NJ, 47.4%; BALB/cJ, 46.4%; DBA/2J, 45.9%; and C3H/HeJ, 35.9%). Hyperoxia caused a 94.5% increase in mean linear intercept in the C57BL/6J strain, whilst the C3H/HeJ strain was the least affected (31.6% increase). In contrast, hyperoxia caused a 65.4% increase in septal thickness in the FVB/NJ strain, where the C57BL/6J strain was the least affected (30.3% increase). The expression of components of the lung antioxidant machinery in response to hyperoxia was strain dependent, with the C57BL/6J strain exhibiting the most dramatic engagement. Baseline expression levels of components of the lung antioxidant systems were different in the five mouse strains studied, under both normoxic and hyperoxic conditions. CONCLUSION The genetic background of laboratory mouse strains dramatically influenced the response of the developing lung to hyperoxic insult. This might be explained, at least in part, by differences in how antioxidant systems are engaged by different mouse strains after hyperoxia exposure.
Collapse
Affiliation(s)
- Jennifer Tiono
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), Universities of Giessen and Marburg Lung Center, member of The German Center for Lung Research (DZL), Giessen, Germany
| | - David E Surate Solaligue
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), Universities of Giessen and Marburg Lung Center, member of The German Center for Lung Research (DZL), Giessen, Germany
| | - Ivana Mižíková
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), Universities of Giessen and Marburg Lung Center, member of The German Center for Lung Research (DZL), Giessen, Germany
| | - Claudio Nardiello
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), Universities of Giessen and Marburg Lung Center, member of The German Center for Lung Research (DZL), Giessen, Germany
| | - István Vadász
- Department of Internal Medicine (Pulmonology), Universities of Giessen and Marburg Lung Center, member of The German Center for Lung Research (DZL), Giessen, Germany
| | | | - Harald Ehrhardt
- Division of General Pediatrics and Neonatology, University Children's Hospital Giessen, Justus Liebig, University, Giessen, Germany
| | - Susanne Herold
- Department of Internal Medicine (Pulmonology), Universities of Giessen and Marburg Lung Center, member of The German Center for Lung Research (DZL), Giessen, Germany
| | - Werner Seeger
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), Universities of Giessen and Marburg Lung Center, member of The German Center for Lung Research (DZL), Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), Universities of Giessen and Marburg Lung Center, member of The German Center for Lung Research (DZL), Giessen, Germany
| |
Collapse
|
14
|
Tanabe Y, Yamane M, Kato M, Teshima H, Kuribayashi M, Tatsukawa H, Takama H, Akiyama M, Hitomi K. Studies on differentiation‐dependent expression and activity of distinct transglutaminases by specific substrate peptides using three‐dimensional reconstituted epidermis. FEBS J 2019; 286:2536-2548. [DOI: 10.1111/febs.14832] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/26/2019] [Accepted: 04/01/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Yuki Tanabe
- Graduate School of Pharmaceutical Sciences Nagoya University Japan
| | - Miki Yamane
- Graduate School of Pharmaceutical Sciences Nagoya University Japan
| | - Manami Kato
- Graduate School of Pharmaceutical Sciences Nagoya University Japan
| | - Hirofumi Teshima
- Graduate School of Pharmaceutical Sciences Nagoya University Japan
| | - Miki Kuribayashi
- Graduate School of Pharmaceutical Sciences Nagoya University Japan
| | - Hideki Tatsukawa
- Graduate School of Pharmaceutical Sciences Nagoya University Japan
| | - Hiroyuki Takama
- Department of Dermatology Nagoya University Graduate School of Medicine Japan
- Department of Dermatology Aichi Medical University Nagakute Japan
| | - Masashi Akiyama
- Department of Dermatology Aichi Medical University Nagakute Japan
| | - Kiyotaka Hitomi
- Graduate School of Pharmaceutical Sciences Nagoya University Japan
| |
Collapse
|
15
|
Abstract
Bronchopulmonary dysplasia (BPD) continues to be one of the most common complications of preterm birth and is characterized histopathologically by impaired lung alveolarization. Extremely preterm born infants remain at high risk for the development of BPD, highlighting a pressing need for continued efforts to understand the pathomechanisms at play in affected infants. This brief review summarizes recent progress in our understanding of the how the development of the newborn lung is stunted, highlighting recent reports on roles for growth factor signaling, oxidative stress, inflammation, the extracellular matrix and proteolysis, non-coding RNA, and fibroblast and epithelial cell plasticity. Additionally, some concerns about modeling BPD in experimental animals are reviewed, as are new developments in the in vitro modeling of pathophysiological processes relevant to impaired lung alveolarization in BPD.
Collapse
Affiliation(s)
- Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.
| |
Collapse
|