1
|
Fabian C, Mahajan S, Schmidt MHH. EGFL7: An emerging biomarker with great therapeutic potential. Pharmacol Ther 2024; 266:108764. [PMID: 39631508 DOI: 10.1016/j.pharmthera.2024.108764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/08/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
EGFL7 is a factor involved in the regulation of various essential biological mechanisms. Endothelial cells and neurons secrete the EGFL7 protein into the extracellular matrix, where it interacts with other matrix proteins, thereby regulating several important signaling pathways. To date, extensive in vitro and in vivo studies have illuminated the central role of EGFL7 in governing major biological processes involving blood vessels and the central nervous system. Notably, EGFL7 has also emerged as a key factor in a spectrum of diseases including cancer, stroke, multiple sclerosis and preeclampsia. Its influence on various diseases and multiple regulatory pathways highlights EGFL7 as an emerging biomarker and therapeutic target. Thus, the multifaceted regulatory functions of EGFL7 will be discussed in the physiological context before delving into its involvement in the progression of different diseases. Finally, the review will provide an insight into the broad therapeutic potential of EGFL7 by describing its role as a powerful biomarker and discussing potential strategies to therapeutically target EGFL7 function in a plethora of human diseases.
Collapse
Affiliation(s)
- Carina Fabian
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technical University Dresden School of Medicine, Fetscherstraße 74, 01307 Dresden, Germany
| | - Sukrit Mahajan
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technical University Dresden School of Medicine, Fetscherstraße 74, 01307 Dresden, Germany
| | - Mirko H H Schmidt
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technical University Dresden School of Medicine, Fetscherstraße 74, 01307 Dresden, Germany.
| |
Collapse
|
2
|
Huang J, Xu Y, Qi S, Zheng Q, Cui C, Liu L, Liu F. The potent potential of MFAP2 in prognosis and immunotherapy of triple-negative breast cancer. Discov Oncol 2024; 15:202. [PMID: 38822944 PMCID: PMC11144179 DOI: 10.1007/s12672-024-01044-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 05/20/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUNDS Microfibril-associated protein 2 (MFAP2) is a protein presenting in the extracellular matrix that governs the activity of microfibrils through its interaction with fibrillin. While the involvement of MFAP2 in metabolic disorders has been documented, its expression and prognostic significance in triple-negative breast cancer (TNBC) remain unexplored. METHODS We acquired datasets pertaining to breast cancer (BC) from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Next, a Venn diagram was used to identify the differentially expressed genes (DEGs). The DEGs were used to perform Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), protein-protein interaction (PPI), immune and survival analysis. The expressions of MFAP2, PD-1 and PD-L1 were examined by immunohistochemistry and western blot and their relationship with clinical pathological parameters were analyzed by clinical specimen samples from patients with TNBC. Tumor Immune Estimation Resource (TIMER, https://cistrome.shinyapps.io/timer/ ) was adopted to calculate the immune infiltration level of TNBC. The link between gene expression and tumor mutational burden (TMB) was described using Spearman's correlation analysis. RESULTS We identified 66 differentially expressed genes (DEGs) that were up-regulated. Among these DEGs, MFAP2 was found to be overexpressed in TNBC and was associated with a lower probability of survival. This finding was confirmed through the use of immunohistochemistry and western blot techniques. Additionally, MFAP2 was found to be related to various pathological parameters in TNBC patients. Mechanistically, gene set enrichment analysis (GSEA) revealed that MFAP2 primarily influenced cellular biological behavior in terms of epithelial mesenchymal transition, glycolysis, and apical junction. Notably, MFAP2 expression was positively correlated with the abundance of macrophages, while a negative correlation was observed with the abundance of B cells, CD4 + T cells, CD8 + T cells, neutrophils and dendritic cells through immune analysis. Furthermore, it was observed that MFAP2 displayed a negative correlation not only with tumor mutational burden (TMB), a recognized biomarker for PD-1/PD-L1 immunotherapy, but also with PD-L1 in samples of TNBC. CONCLUSION MFAP2 may be an important prognostic biomarker for TNBC, as well as a viable target for immunotherapy in this disease.
Collapse
Affiliation(s)
- Jing Huang
- The First Clinical Medical College of Nanjing Medical University, Nanjing, 211166, China
| | - Yuting Xu
- Department of Pathology, Affiliated Hospital of Nantong University, 20 Xisi Road, Chongchuan District, Nantong, 226001, China
| | - Shengnan Qi
- Department of Pathology, Qingdao Eighth People's Hospital, Qingdao, 266121, China
| | - Qi Zheng
- Department of Pathology, Affiliated Hospital of Nantong University, 20 Xisi Road, Chongchuan District, Nantong, 226001, China
| | - Can Cui
- Department of Pathology, Affiliated Hospital of Nantong University, 20 Xisi Road, Chongchuan District, Nantong, 226001, China
| | - Lei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, 20 Xisi Road, Chongchuan District, Nantong, 226001, China.
| | - Fan Liu
- Department of Oncology, Affiliated Hospital of Nantong University, 20 Xisi Road, Chongchuan District, Nantong, 226001, China.
| |
Collapse
|
3
|
Hao Z, Yin C, Wang X, Huo Z, Zhang G, Jiang D, An M. Tetramethylpyrazine promotes angiogenesis and nerve regeneration and nerve defect repair in rats with spinal cord injury. Heliyon 2023; 9:e21549. [PMID: 38027809 PMCID: PMC10656251 DOI: 10.1016/j.heliyon.2023.e21549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 08/25/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Objective This study evaluated the regulatory effect of Tetramethylpyrazine (TMP) on the spinal cord injury (SCI) rat model and clarified the neuroprotective mechanism of TMP on SCI. Methods An SCI rat model was generated and treated with TMP injections for two weeks. miR-497-5p and EGFL7 expression changes were evaluated, motor function recovery after SCI was assessed by BBB score test and footprint analysis, lesions of rat spinal cord were assessed by HE staining and TUNEL staining; angiogenesis was assessed by immunoblotting for CD31; inflammatory factor levels were detected by ELISA. EGFL7 was verified as a target of miR-497-5p by bioinformatics website analysis and luciferase reporter gene assay. H2O2-injured neurons were cultured in vitro to explore the effect of TMP. Results After SCI, miR-497-5p was upregulated while EGFL7 was downregulated in rats. TMP inhibited apoptosis and promoted angiogenesis, nerve regeneration, and repair of nerve defects by reducing miR-497-5p and increasing EGFL7 expression. miR-497-5p targeted EGFL7. In addition, TMP hindered neuronal inflammation and apoptosis induced by H2O2in vitro. Conclusion TMP promotes angiogenesis by downregulating miR-497-5p to target EGFL7, and promotes nerve regeneration and repair of nerve defects in rats with SCI.
Collapse
Affiliation(s)
- ZengTao Hao
- Department of Hand and Foot Microsurgery, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot City, 010000, China
| | - Chao Yin
- Department of Hand and Foot Microsurgery, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot City, 010000, China
| | - XiaoLong Wang
- Department of Hand and Foot Microsurgery, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot City, 010000, China
| | - ZhiQi Huo
- Department of Hand and Foot Microsurgery, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot City, 010000, China
| | - GuoRong Zhang
- Department of Hand and Foot Microsurgery, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot City, 010000, China
| | - Dong Jiang
- Department of Hand and Foot Microsurgery, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot City, 010000, China
| | - Min An
- Department of Hand and Foot Microsurgery, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot City, 010000, China
| |
Collapse
|
4
|
Zhang H, Shen S, Feng C, Chen G, Wang X. MFAP2 promotes the progression of oral squamous cell carcinoma by activating the Wnt/β-catenin signaling pathway through autophagy. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1445-1455. [PMID: 37592847 PMCID: PMC10520470 DOI: 10.3724/abbs.2023079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/23/2023] [Indexed: 08/19/2023] Open
Abstract
Microfibrillar-associated protein 2 (MFAP2) is a small glycoprotein that is involved in vascular development and metabolic disease. The present study aims to explore the regulatory role of MFAP2 in the development and progression of oral squamous cell carcinoma (OSCC), including the underlying mechanisms. MFAP2 expression and its association with the progression of OSCC are explored using bioinformatics. MFAP2 expression in OSCC tissues is detected by immunohistochemical staining. SCC15 cell migration, invasion, apoptosis, proliferation, and viability are detected by wound healing, Transwell, flow cytometry, colony formation, and cell counting kit-8 assays. An in vivo experiment is used to detect tumor formation. Western blot analysis is used to determine MFAP2's regulatory role in autophagy and the Wnt/β-catenin signaling pathway. MFAP2 is highly expressed in SCC15 cells and OSCC tissues, which correlates positively with the poor prognosis of patients with OSCCs. Functionally, MFAP2 promotes oncogenic autophagy to increase cell invasion, migration, and proliferation but inhibits apoptosis in SCC15 cells and promotes tumor growth in vivo. Mechanistically, MFAP2 upregulates autophagy and Wnt/β-catenin signaling to stimulate OSCC development. Intriguingly, regulation of Wnt/β-catenin signaling dependent on autophagy contributes to the malignant behaviors of SCC15 cells. MFAP2 could serve as a novel biomarker for OSCC and could affect OSCC tumorigenesis and development via autophagic regulation of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Hao Zhang
- Tianjin Institute of Environmental and Operational MedicineTianjin300050China
- School and Hospital of StomatologyTianjin Medical UniversityTianjin300070China
| | - Si Shen
- Tianjin Institute of Environmental and Operational MedicineTianjin300050China
- School and Hospital of StomatologyTianjin Medical UniversityTianjin300070China
| | - Chong Feng
- Tianjin Institute of Environmental and Operational MedicineTianjin300050China
- School and Hospital of StomatologyTianjin Medical UniversityTianjin300070China
| | - Gang Chen
- School and Hospital of StomatologyTianjin Medical UniversityTianjin300070China
| | - Xinxing Wang
- Tianjin Institute of Environmental and Operational MedicineTianjin300050China
| |
Collapse
|
5
|
de Oliveira C, Gonçalves PG, Bidinotto LT. Role of EGFL7 in human cancers: A review. J Cell Physiol 2023; 238:1756-1767. [PMID: 37490307 DOI: 10.1002/jcp.31084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/26/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023]
Abstract
EGFL7 is a proangiogenic factor. It has been widely described with having a vital role in tubulogenesis and regulation of angiogenesis, mainly during embryogenesis and organogenesis. It has been mainly associated with NOTCH pathway, but there are reports showing association with MAPK and integrin pathways. Given its association with angiogenesis and these other pathways, there are several studies associating EGFL7 with carcinogenesis. In fact, most of the studies have pointed to EGFL7 as an oncogene, and some of them suggest EGFL7 expression as a possible biomarker of prognosis or use for a patient's follow-up. Here, we review the molecular pathways which EGFL7 is associated and highlight several studies describing the role of EGFL7 in tumorigenesis, separated by tumor type. Besides its role on angiogenesis, EGFL7 may act in other pathways as oncogene, which makes it a possible biomarker and a candidate to targeted therapy.
Collapse
Affiliation(s)
- Cristiane de Oliveira
- Department of Pathology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo, Brazil
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Paola Gyuliane Gonçalves
- Department of Pathology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo, Brazil
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Lucas Tadeu Bidinotto
- Department of Pathology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo, Brazil
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
- Human and Experimental Biology Department, Barretos School of Health Sciences, Dr Paulo Prata - FACISB, Barretos, São Paulo, Brazil
| |
Collapse
|
6
|
Xu W, Wang M, Bai Y, Chen Y, Ma X, Yang Z, Zhao L, Li Y. The role of microfibrillar‐associated protein 2 in cancer. Front Oncol 2022; 12:1002036. [DOI: 10.3389/fonc.2022.1002036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 11/03/2022] [Indexed: 12/05/2022] Open
Abstract
Microfibrillar-associated protein 2 (MFAP2), a component of the extracellular matrix, is important in controlling growth factor signal transduction. Recent studies have shown that MFAP2, an effective prognostic molecule for various tumors, is associated with tumor occurrence and development and may be involved in remodeling the extracellular matrix and regulating proliferation, apoptosis, invasion, tumor cell metastasis, and tumor angiogenesis. However, MFAP2’s specific mechanism in these tumor processes remains unclear. This article reviewed the possible mechanism of MFAP2 in tumorigenesis and progression and provided a reference for the clinical prognosis of patients with cancer and new therapeutic target discovery.
Collapse
|
7
|
Xu W, Geng R, Zhao Y, Ma X, Bai Y, Jiang Y, Zhao L, Li Y. Microfibrillar-associated protein 2 is a prognostic marker that correlates with the immune microenvironment in glioma. Front Genet 2022; 13:989521. [PMID: 36204318 PMCID: PMC9531167 DOI: 10.3389/fgene.2022.989521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
Aims: microfibrillar-associated protein 2 (MFAP2), a component of the extracellular matrix, plays key roles in regulating growth factor signal transduction and various malignant tumors. However, the clinicopathological features of microfibrillar-associated protein 2 in gliomas have not been elucidated to date. Methods: TCGA and CGGA databases were used to study the expression of microfibrillar-associated protein 2 in glioma and its relationship with clinicopathological features of patients with glioma. Western blotting was performed to detect the expression of microfibrillar-associated protein 2 protein in tissue samples from glioma patients. Gene set enrichment analysis (GSEA) was applied to detect biological processes and signal pathways related to microfibrillar-associated protein 2. Single-sample gene set enrichment analysis, TIMER 2.0, and TISIDB databases were used to evaluate the role of microfibrillar-associated protein 2 in tumor immune characteristics. The prognostic role of microfibrillar-associated protein 2 in glioma was analyzed using the Kaplan-Meier method and Cox regression. Survival data were used to establish a nomogram prediction model. Results: microfibrillar-associated protein 2 expression was significantly elevated in gliomas. receiver operating characteristic analysis revealed good discrimination of microfibrillar-associated protein 2 between glioma and normal tissues. High expression of microfibrillar-associated protein 2 was associated with malignant phenotypes, such as histological type. Based on gene set enrichment analysis, we identified pathways associated with high microfibrillar-associated protein 2 expression. High microfibrillar-associated protein 2 expression was related to the infiltration of tumor immune cells, including Th2 cells and macrophages, and correlated with key markers of T-cell exhaustion. Based on the TISIDB database, microfibrillar-associated protein 2 was observed to be associated with chemokines, chemokine receptors, and multiple immunoinhibitors in glioma. Kaplan–Meier survival analyses revealed that high microfibrillar-associated protein 2 expression predicted poor overall survival, DSS, and PFS in patients with glioma. By combining microfibrillar-associated protein 2 and other prognostic factors, a nomogram prognostic prediction model was constructed, which demonstrated an ideal prediction effect. Conclusion: microfibrillar-associated protein 2 is a potential prognostic marker that plays a key role in glioma development given its association with malignant phenotypes, cancer-related pathways and tumor immunity.
Collapse
Affiliation(s)
- Wanzhen Xu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Ren Geng
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Yao Zhao
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Xiaoshan Ma
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Yang Bai
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Yining Jiang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Liyan Zhao
- Department of Clinical Laboratory, Second Hospital of Jilin University, Changchun, China
- *Correspondence: Liyan Zhao, ; Yunqian Li,
| | - Yunqian Li
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
- *Correspondence: Liyan Zhao, ; Yunqian Li,
| |
Collapse
|
8
|
Zhao LQ, Sun W, Zhang P, Gao W, Fang CY, Zheng AW. MFAP2 aggravates tumor progression through activating FOXM1/β-catenin-mediated glycolysis in ovarian cancer. Kaohsiung J Med Sci 2022; 38:772-780. [PMID: 35546486 DOI: 10.1002/kjm2.12546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/21/2022] [Accepted: 03/18/2022] [Indexed: 11/08/2022] Open
Abstract
Ovarian cancer is one of the most common gynecological tumors that seriously endanger the health and quality of life of women. Microfibril-associated protein 2 (MFAP2) has been demonstrated to play crucial roles in the development of multiple tumors. However, the function of MFAP2 in ovarian cancer remains unclear. In this study, we found that MFAP2 was upregulated in ovarian cancer and cells and was positively correlated with FOXM1 and glycolysis-related genes. The results of Cell Count Kit-8, colony formation, and flow cytometry assays indicated that MFAP2 promoted cell proliferation. In addition, MFAP2 promotes cell proliferation, glucose uptake, lactate production; increases ATP levels, extracellular acidification ratio, and oxygen consumption ratio in ovarian cancer cells and increases the expression of glycolytic proteins. Further mechanistic analysis suggests that MFAP2 promotes FOXM1/β-catenin-mediated glycolysis signaling in ovarian cancer cells. Knockdown of MFAP2 inhibits ovarian cancer xenograft tumor growth and expression of Ki-67, MFAP2, FOXM1, GLUT1, HK2, and β-catenin in mice. In conclusion, MFAP2 promotes cell proliferation and glycolysis by modulating the FOXM1/β-catenin signaling pathway in ovarian cancer, which may offer a fresh insight into the treatment of ovarian cancer in the glycolysis pathway.
Collapse
Affiliation(s)
- Ling-Qin Zhao
- Department of Gynecologic Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Wei Sun
- Department of Gynecologic Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Ping Zhang
- Department of Gynecologic Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Wen Gao
- Department of Gynecologic Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Chen-Yan Fang
- Department of Gynecologic Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Ai-Wen Zheng
- Department of Gynecologic Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
9
|
Pinte S, Delfortrie S, Havet C, Villain G, Mattot V, Soncin F. EGF repeats of epidermal growth factor‑like domain 7 promote endothelial cell activation and tumor escape from the immune system. Oncol Rep 2021; 47:8. [PMID: 34738625 DOI: 10.3892/or.2021.8219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/23/2021] [Indexed: 11/06/2022] Open
Abstract
The tumor blood vessel endothelium forms a barrier that must be crossed by circulating immune cells in order for them to reach and kill cancer cells. Epidermal growth factor‑like domain 7 (Egfl7) represses this immune infiltration by lowering the expression levels of leukocyte adhesion receptors on the surface of endothelial cells. However, the protein domains involved in these properties are not completely understood. Egfl7 is structurally composed of the predicted EMI‑, EGF‑ and C‑terminal domains. The present study aimed to investigate the roles of these different domains in tumor development by designing retroviruses coding for deletion mutants and then infecting 4T1 breast cancer cell populations, which consequently overexpressed the variants. By performing in vitro soft‑agar assays, it was found that Egfl7 and its deletion variants did not affect cell proliferation or anchorage‑independent growth. When 4T1 cells expressing either the wild‑type Egfl7 protein or Egfl7 domain variants were implanted in mice, Egfl7 expression markedly promoted tumor development and deletion of the EGF repeats decreased the tumor growth rate. By contrast, deleting any other domain displayed no significant effect on tumor development. The overexpression of Egfl7 also decreased T cell and natural killer cell infiltration in tumors, as determined by immunofluorescence staining of tumor sections, whereas deletion of the EGF repeats inhibited this effect. Reverse transcription‑quantitative PCR analysis of the mechanisms involved revealed that deleting the EGF repeats partially restored the expression levels of vascular cell adhesion molecule 1 and E‑selectin, which were suppressed by overexpression of Egfl7 in endothelial cells in vitro. This resulted in a higher number of lymphocytes bound to HUVEC expressing Egfl7‑ΔEGF compared with HUVEC expressing wild‑type Egfl7, as assessed by fluorescent‑THP‑1 adhesion assays onto endothelial cells. Overall, the present study demonstrated that the EGF repeats may participate in the protumoral and anti‑inflammatory effects of Egfl7.
Collapse
Affiliation(s)
- Sébastien Pinte
- Université de Lille, CNRS, Institut Pasteur de Lille, UMR 8161‑M3T‑Mechanisms of Tumorigenesis and Target Therapies, 59000 Lille, France
| | - Suzanne Delfortrie
- Université de Lille, CNRS, Institut Pasteur de Lille, UMR 8161‑M3T‑Mechanisms of Tumorigenesis and Target Therapies, 59000 Lille, France
| | - Chantal Havet
- Université de Lille, CNRS, Institut Pasteur de Lille, UMR 8161‑M3T‑Mechanisms of Tumorigenesis and Target Therapies, 59000 Lille, France
| | - Gaëlle Villain
- Université de Lille, CNRS, Institut Pasteur de Lille, UMR 8161‑M3T‑Mechanisms of Tumorigenesis and Target Therapies, 59000 Lille, France
| | - Virginie Mattot
- Université de Lille, CNRS, Institut Pasteur de Lille, UMR 8161‑M3T‑Mechanisms of Tumorigenesis and Target Therapies, 59000 Lille, France
| | - Fabrice Soncin
- Université de Lille, CNRS, Institut Pasteur de Lille, UMR 8161‑M3T‑Mechanisms of Tumorigenesis and Target Therapies, 59000 Lille, France
| |
Collapse
|
10
|
Mantri M, Scuderi GJ, Abedini-Nassab R, Wang MFZ, McKellar D, Shi H, Grodner B, Butcher JT, De Vlaminck I. Spatiotemporal single-cell RNA sequencing of developing chicken hearts identifies interplay between cellular differentiation and morphogenesis. Nat Commun 2021; 12:1771. [PMID: 33741943 PMCID: PMC7979764 DOI: 10.1038/s41467-021-21892-z] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 02/17/2021] [Indexed: 01/01/2023] Open
Abstract
Single-cell RNA sequencing is a powerful tool to study developmental biology but does not preserve spatial information about tissue morphology and cellular interactions. Here, we combine single-cell and spatial transcriptomics with algorithms for data integration to study the development of the chicken heart from the early to late four-chambered heart stage. We create a census of the diverse cellular lineages in developing hearts, their spatial organization, and their interactions during development. Spatial mapping of differentiation transitions in cardiac lineages defines transcriptional differences between epithelial and mesenchymal cells within the epicardial lineage. Using spatially resolved expression analysis, we identify anatomically restricted expression programs, including expression of genes implicated in congenital heart disease. Last, we discover a persistent enrichment of the small, secreted peptide, thymosin beta-4, throughout coronary vascular development. Overall, our study identifies an intricate interplay between cellular differentiation and morphogenesis.
Collapse
Affiliation(s)
- Madhav Mantri
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Computational Biology Ph.D. Program, Cornell University, Ithaca, NY, USA
| | - Gaetano J Scuderi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Roozbeh Abedini-Nassab
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Department of Engineering, University of Neyshabur, Neyshabur, Iran
| | - Michael F Z Wang
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Computational Biology Ph.D. Program, Cornell University, Ithaca, NY, USA
| | - David McKellar
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Hao Shi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Benjamin Grodner
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Jonathan T Butcher
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| | - Iwijn De Vlaminck
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
11
|
The Multifaceted Roles of EGFL7 in Cancer and Drug Resistance. Cancers (Basel) 2021; 13:cancers13051014. [PMID: 33804387 PMCID: PMC7957479 DOI: 10.3390/cancers13051014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Cancer growth and metastasis require interactions with the extracellular matrix (ECM), which is home to many biomolecules that support the formation of new vessels and cancer growth. One of these biomolecules is epidermal growth factor-like protein-7 (EGFL7). EGFL7 alters cellular adhesion to the ECM and migratory behavior of tumor and immune cells contributing to tumor metastasis. EGFL7 is engaged in the formation of new vessels and changes in ECM stiffness. One of its binding partners on the endothelial and cancer cell surface is beta 3 integrin. Beta 3 integrin pathways are under intense investigation in search of new therapies to kill cancer cells. All these properties enable EGFL7 to contribute to drug resistance. In this review, we give insight into recent studies on EGFL7 and its engagement with beta3 integrin, a marker predicting cancer stem cells and drug resistance. Abstract Invasion of cancer cells into surrounding tissue and the vasculature is an important step for tumor progression and the establishment of distant metastasis. The extracellular matrix (ECM) is home to many biomolecules that support new vessel formation and cancer growth. Endothelial cells release growth factors such as epidermal growth factor-like protein-7 (EGFL7), which contributes to the formation of the tumor vasculature. The signaling axis formed by EGFL7 and one of its receptors, beta 3 integrin, has emerged as a key mediator in the regulation of tumor metastasis and drug resistance. Here we summarize recent studies on the role of the ECM-linked angiocrine factor EGFL7 in primary tumor growth, neoangiogenesis, tumor metastasis by enhancing epithelial-mesenchymal transition, alterations in ECM rigidity, and drug resistance. We discuss its role in cellular adhesion and migration, vascular leakiness, and the anti-cancer response and provide background on its transcriptional regulation. Finally, we discuss its potential as a drug target as an anti-cancer strategy.
Collapse
|
12
|
Zhu S, Ye L, Bennett S, Xu H, He D, Xu J. Molecular structure and function of microfibrillar-associated proteins in skeletal and metabolic disorders and cancers. J Cell Physiol 2020; 236:41-48. [PMID: 32572962 DOI: 10.1002/jcp.29893] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 12/16/2022]
Abstract
Microfibrillar-associated proteins (MFAPs) are extracellular matrix glycoproteins, which play a role in microfibril assembly, elastinogenesis, and tissue homeostasis. MFAPs consist of five subfamily members, including MFAP1, MFAP2, MFAP3, MFAP4, and MFAP5. Among these, MFAP2 and MFAP5 are most closely related, and exhibit very limited amino acid sequence homology with MFAP1, MFAP3, and MFAP4. Gene expression profiling analysis reveals that MFAP2, MFAP5, and MFAP4 are specifically expressed in osteoblastic like cells, whereas MFAP1 and MFAP3 are more ubiquitously expressed, indicative of their diverse role in the tropism of tissues. Molecular structural analysis shows that each MFAP family member has distinct features, and functional evidence reveals discrete purposes of individual MFAPs. Animal studies indicate that MFAP2-deficient mice exhibit progressive osteopenia with elevated receptor activator of NF-κB ligand (RANKL) expression, whereas MFAP5-deficient mice are neutropenic, and MFAP4-deficient mice displayed emphysema-like pathology and the impaired formation of neointimal hyperplasia. Emerging data also suggest that MFAPs are involved in cancer progression and fat metabolism. Further understanding of tissue-specific pathophysiology of MFAPs might offer potential novel therapeutic targets for related diseases, such as skeletal and metabolic disorders, and cancers.
Collapse
Affiliation(s)
- Sipin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Lin Ye
- Department of Orthopaedic Surgery, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Samuel Bennett
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dengwei He
- Department of Orthopaedic Surgery, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Jiake Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, Australia
| |
Collapse
|
13
|
Systems Genetics in Human Endothelial Cells Identifies Non-coding Variants Modifying Enhancers, Expression, and Complex Disease Traits. Am J Hum Genet 2020; 106:748-763. [PMID: 32442411 DOI: 10.1016/j.ajhg.2020.04.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/05/2020] [Indexed: 12/22/2022] Open
Abstract
The identification of causal variants and mechanisms underlying complex disease traits in humans is important for the progress of human disease genetics; this requires finding strategies to detect functional regulatory variants in disease-relevant cell types. To achieve this, we collected genetic and transcriptomic data from the aortic endothelial cells of up to 157 donors and four epigenomic phenotypes in up to 44 human donors representing individuals of both sexes and three major ancestries. We found thousands of expression quantitative trait loci (eQTLs) at all ranges of effect sizes not detected by the Gene-Tissue Expression Project (GTEx) in human tissues, showing that novel biological relationships unique to endothelial cells (ECs) are enriched in this dataset. Epigenetic profiling enabled discovery of over 3,000 regulatory elements whose activity is modulated by genetic variants that most frequently mutated ETS, AP-1, and NF-kB binding motifs, implicating these motifs as governors of EC regulation. Using CRISPR interference (CRISPRi), allele-specific reporter assays, and chromatin conformation capture, we validated candidate enhancer variants located up to 750 kb from their target genes, VEGFC, FGD6, and KIF26B. Regulatory SNPs identified were enriched in coronary artery disease (CAD) loci, and this result has specific implications for PECAM-1, FES, and AXL. We also found significant roles for EC regulatory variants in modifying the traits pulse pressure, blood protein levels, and monocyte count. Lastly, we present two unlinked SNPs in the promoter of MFAP2 that exhibit pleiotropic effects on human disease traits. Together, this supports the possibility that genetic predisposition for complex disease is manifested through the endothelium.
Collapse
|
14
|
Chen Z, Lv Y, Cao D, Li X, Li Y. Microfibril-Associated Protein 2 (MFAP2) Potentiates Invasion and Migration of Melanoma by EMT and Wnt/β-Catenin Pathway. Med Sci Monit 2020; 26:e923808. [PMID: 32464633 PMCID: PMC7278334 DOI: 10.12659/msm.923808] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Growing evidence indicates an association between microfibril-associated protein 2 (MFAP2) and a number of physiological and pathological mechanisms. The potential role of MFAP2 in cancer requires further elucidation. The present study investigated the biological behavior of MFAP2 in melanoma patients. Material/Methods MFAP2 inhibition was established in the B16 melanoma cell line through the use of RNA interference and was assessed by quantitative real-time PCR (qRT-PCR) and Western blot analysis. Wound-healing analysis, transwell assay, and in vivo imaging were performed to investigate the roles of MFAP2 reducing cell mobility, migration, and invasion abilities in vitro and in vivo. Results We found substantially higher MFAP2 expression in B16 melanoma cells. The knockdown of MFAP2 inhibited B16 melanoma cells migration and invasion. Western blot analysis was used to assess changes in biomarkers of EMT, indicating the function of MFAP2 in EMT. We found that downregulation of MFAP2 altered the expression of Wnt/β-catenin-linked protein. Conclusions Our results suggest that MFAP2 has potential as a molecular target to treat melanoma and suppress metastasis of melanoma cells.
Collapse
Affiliation(s)
- Zenghong Chen
- Department of Plastic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Yang Lv
- Department of Plastic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Dongsheng Cao
- Department of Plastic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Xiaocan Li
- Department of Plastic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Yuanyi Li
- Department of Plastic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, China (mainland)
| |
Collapse
|
15
|
Liu Q, He H, Yuan Y, Zeng H, Wang Z, Luo W. Novel Expression of EGFL7 in Osteosarcoma and Sensitivity to Cisplatin. Front Oncol 2020; 10:74. [PMID: 32117731 PMCID: PMC7016045 DOI: 10.3389/fonc.2020.00074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 01/15/2020] [Indexed: 12/19/2022] Open
Abstract
Epidermal growth factor-like domain 7 (EGFL7) is a protein specifically secreted by blood vessel endothelial cells, which plays an important role in angiogenesis. Considering the aberrant secretion of EGFL7 in osteosarcoma (OS) has not yet been elucidated, this study investigated the secretion of EGFL7 in OS and the changes in its secretion after chemotherapy. We observed increased varying secretion of EGFL7 in OS tissues compared with chondrosarcoma (CS) tissues. OS cell lines and HUVECs showed higher EGFL7 mRNA and protein expression than SW1353, with OS cells expressing the highest levels. In patient samples, EGFL7 was highly expressed in the cytoplasm of OS tumor cells and vascular endothelium cells. This overexpression was abolished in OS cell and tumor tissues when treated with chemotherapy. This study is a pioneering study to investigate EGFL7 expression and localization in human OS tissues and cell. Overexpression of EGFL-7 in response to chemotherapy suggests that it can be used as a therapeutic target for OS.
Collapse
Affiliation(s)
- Qing Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hongbo He
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Yuhao Yuan
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Hao Zeng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Zhiwei Wang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Luo
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
16
|
Broekelmann TJ, Bodmer NK, Mecham RP. Identification of the growth factor-binding sequence in the extracellular matrix protein MAGP-1. J Biol Chem 2020; 295:2687-2697. [PMID: 31988245 DOI: 10.1074/jbc.ra119.010540] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 01/21/2020] [Indexed: 12/13/2022] Open
Abstract
Microfibril-associated glycoprotein-1 (MAGP-1) is a component of vertebrate extracellular matrix (ECM) microfibrils that, together with the fibrillins, contributes to microfibril function. Many of the phenotypes associated with MAGP-1 gene inactivation are consistent with dysregulation of the transforming growth factor β (TGFβ)/bone morphogenetic protein (BMP) signaling system. We have previously shown that full-length MAGP-1 binds active TGFβ-1 and some BMPs. The work presented here further defines the growth factor-binding domain of MAGP-1. Using recombinant domains and synthetic peptides, along with surface plasmon resonance analysis to measure the kinetics of the MAGP-1-TGFβ-1 interaction, we localized the TGFβ- and BMP-binding site in MAGP-1 to a 19-amino acid-long, highly acidic sequence near the N terminus. This domain was specific for binding active, but not latent, TGFβ-1. Growth factor activity experiments revealed that TGFβ-1 retains signaling activity when complexed with MAGP-1. Furthermore, when bound to fibrillin, MAGP-1 retained the ability to interact with TGFβ-1, and active TGFβ-1 did not bind fibrillin in the absence of MAGP-1. The absence of MAGP was sufficient to raise the amount of total TGFβ stored in the ECM of cultured cells, suggesting that the MAGPs compete with the TGFβ large latent complex for binding to microfibrils. Together, these results indicate that MAGP-1 plays an active role in TGFβ signaling in the ECM.
Collapse
Affiliation(s)
- Thomas J Broekelmann
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Nicholas K Bodmer
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Robert P Mecham
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110.
| |
Collapse
|
17
|
Ramaswamy AK, Vorp DA, Weinbaum JS. Functional Vascular Tissue Engineering Inspired by Matricellular Proteins. Front Cardiovasc Med 2019; 6:74. [PMID: 31214600 PMCID: PMC6554335 DOI: 10.3389/fcvm.2019.00074] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/15/2019] [Indexed: 12/17/2022] Open
Abstract
Modern regenerative medicine, and tissue engineering specifically, has benefited from a greater appreciation of the native extracellular matrix (ECM). Fibronectin, collagen, and elastin have entered the tissue engineer's toolkit; however, as fully decellularized biomaterials have come to the forefront in vascular engineering it has become apparent that the ECM is comprised of more than just fibronectin, collagen, and elastin, and that cell-instructive molecules known as matricellular proteins are critical for desired outcomes. In brief, matricellular proteins are ECM constituents that contrast with the canonical structural proteins of the ECM in that their primary role is to interact with the cell. Of late, matricellular genes have been linked to diseases including connective tissue disorders, cardiovascular disease, and cancer. Despite the range of biological activities, this class of biomolecules has not been actively used in the field of regenerative medicine. The intent of this review is to bring matricellular proteins into wider use in the context of vascular tissue engineering. Matricellular proteins orchestrate the formation of new collagen and elastin fibers that have proper mechanical properties-these will be essential components for a fully biological small diameter tissue engineered vascular graft (TEVG). Matricellular proteins also regulate the initiation of thrombosis via fibrin deposition and platelet activation, and the clearance of thrombus when it is no longer needed-proper regulation of thrombosis will be critical for maintaining patency of a TEVG after implantation. Matricellular proteins regulate the adhesion, migration, and proliferation of endothelial cells-all are biological functions that will be critical for formation of a thrombus-resistant endothelium within a TEVG. Lastly, matricellular proteins regulate the adhesion, migration, proliferation, and activation of smooth muscle cells-proper control of these biological activities will be critical for a TEVG that recellularizes and resists neointimal formation/stenosis. We review all of these functions for matricellular proteins here, in addition to reviewing the few studies that have been performed at the intersection of matricellular protein biology and vascular tissue engineering.
Collapse
Affiliation(s)
- Aneesh K Ramaswamy
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - David A Vorp
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Justin S Weinbaum
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
18
|
Usuba R, Pauty J, Soncin F, Matsunaga YT. EGFL7 regulates sprouting angiogenesis and endothelial integrity in a human blood vessel model. Biomaterials 2019; 197:305-316. [PMID: 30684886 DOI: 10.1016/j.biomaterials.2019.01.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/28/2018] [Accepted: 01/12/2019] [Indexed: 12/17/2022]
Abstract
Elucidating the mechanisms underlying sprouting angiogenesis and permeability should enable the development of more effective therapies for various diseases, including retinopathy, cancer, and other vascular disorders. We focused on epidermal growth factor-like domain 7 (EGFL7) which plays an important role in NOTCH signaling and in the organization of angiogenic sprouts. We developed an EGFL7-knockdown in vitro microvessel model and investigated the effect of EGFL7 at a tissue level. We found EGFL7 knockdown suppressed VEGF-A-induced sprouting angiogenesis accompanied by an overproduction of endothelial filopodia and reduced collagen IV deposition at the basal side of endothelial cells. We also observed impaired barrier function which reflected an inflammatory condition. Furthermore, our results showed that proper formation of adherens junctions and phosphorylation of VE-cadherin was disturbed. In conclusion, by using a 3D microvessel model we identified novel roles for EGFL7 in endothelial function during sprouting angiogenesis.
Collapse
Affiliation(s)
- Ryo Usuba
- Center for International Research on Integrative Biomedical Systems (CIBiS), Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Joris Pauty
- Center for International Research on Integrative Biomedical Systems (CIBiS), Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; LIMMS/CNRS-IIS (UMI 2820), Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Fabrice Soncin
- LIMMS/CNRS-IIS (UMI 2820), Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; CNRS/IIS/COL/Lille University SMMiL-E Project, CNRS Délégation Nord-Pas de Calais et Picardie, 2 rue de Canonniers, Lille, Cedex 59046, France; Université de Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T, F-59000 Lille, France.
| | - Yukiko T Matsunaga
- Center for International Research on Integrative Biomedical Systems (CIBiS), Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; LIMMS/CNRS-IIS (UMI 2820), Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; CNRS/IIS/COL/Lille University SMMiL-E Project, CNRS Délégation Nord-Pas de Calais et Picardie, 2 rue de Canonniers, Lille, Cedex 59046, France.
| |
Collapse
|