1
|
Kumar K, Banerjee S, Sanivarapu H, Veronica J, Namdeo M, Anand A, Sundar S, Swamy MJ, Maurya R. Characterization of differentially regulated carboxypeptidase (metallopeptidase M32) protein in Miltefosine resistant Leishmania donovani parasites. Int J Biol Macromol 2024; 289:138648. [PMID: 39674486 DOI: 10.1016/j.ijbiomac.2024.138648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/14/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
INTRODUCTION Carboxypeptidase, a member of the metallopeptidase M32 family, catalyses the C-terminal hydrolysis of a variety of peptides and proteins in the presence of metal ions. OBJECTIVE To characterize Leishmania donovani carboxypeptidase (LdCP) in miltefosine (MIL) drug-resistant parasites. METHODS We performed the MTT assay and cell cycle analysis to confirm the MIL resistance of clinical isolates. LdCP gene was cloned and expressed in E. coli Artic strain. The purified LdCP protein was used for antibody generation and biochemical characterization. RESULTS MTT assay and cell cycle analysis revealed that all three isolates exhibit MIL resistance. LdCP constitutively expressed in both promastigote and amastigote stages of parasites, and its activity increased 2-3 fold in MIL-resistant parasites. LdCP has high α-helical content at physiological pH and temperature. The protein is quite thermostable with a Tm of 63 °C and susceptible to chemical denaturation, with 50 % unfolding induced by 3.59 M urea or 0.31 M guanidine hydrochloride (GdmCl). LC-MS/MS study reveals that LdCP interacts with membrane-associated proteins that have ATP binding sites and involved in protein phosphorylation. CONCLUSION To our knowledge, this is the first study to characterize the carboxypeptidase of L. donovani that appears to contribute to the development of MIL resistance parasites.
Collapse
Affiliation(s)
- Krishan Kumar
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Sneha Banerjee
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Hemalatha Sanivarapu
- International Crops Research Institute for Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India
| | - Jalaja Veronica
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Madhulika Namdeo
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Anjali Anand
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences (IMS), Banaras Hindu University, Varanasi 221005, India
| | - Musti J Swamy
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Radheshyam Maurya
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India.
| |
Collapse
|
2
|
Soukup CRM, Duffin RN, Burke KJ, Andrews PC. Tri-aryl antimony(V) hydroximato and hydroxamato complexes: Combining lipophilic Sb(III/V) and hydroxamic acids in combating Leishmania. J Inorg Biochem 2024; 260:112674. [PMID: 39088910 DOI: 10.1016/j.jinorgbio.2024.112674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/15/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024]
Abstract
Six novel tri-aryl antimony(V) hydroximato complexes (3-8) with composition [SbAr3(O2NCR)] (3: Ar = Ph, R = o-(OH)Ph, 4: Ar = Ph, R = Me, 5: Ar = Ph, R = Ph; 6: Ar = Mes, R = Me, 7: Ar = Mes, R = Ph, 8: Ar = Mes, R = o-(OH)Ph (where Ph = phenyl, Me = methyl, Mes = mesityl)), were synthesised and evaluated for anti-parasitic activity towards Leishmania major (L. major) promastigotes and amastigotes. Complexes of the form [SbAr3(O2NCR)], with the dianionic hydroximato ligand binding O,O'-bidentate to the Sb(V) centre, exist in the solid-state for the mesityl-derived complexes. In contrast, the phenyl-ligated Sb(V) complexes crystallise as the hexacoordinate, hydroxamato species [SbPh3(O2NHC(OH))], with the OH ligand derived from entrained H2O in the crystallisation solvent. It is found that both the aryl and hydroximato ligands are found to influence the bioactivity of the Sb(V) complexes. Complexes 3-8 exhibited varied anti-promastigote activity with IC50 values ranging from 1.53 μM for 6 to 36.0 μM for 3, also reflected in varied anti-amastigote activity with a percentage infection range of 5.50% for 6 to 29.00% for 3 at a concentration of 10 μM. The complexes were relatively non-toxic to human fibroblasts with an IC50 value range of 59.3 μM (7) to ≥100 μM (3-6, 8), and exhibited varied toxicity towards J774.1 A macrophages (IC50: 3.97 (6) to ≥100 (8) μM). All complexes showed enhanced activity compared to the parent hydroxamic acids.
Collapse
Affiliation(s)
- Charles R M Soukup
- School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Rebekah N Duffin
- School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Kirralee J Burke
- School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Philip C Andrews
- School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia.
| |
Collapse
|
3
|
Nawaz A, Priya B, Singh K, Ali V. Unveiling the role of serine o-acetyltransferase in drug resistance and oxidative stress tolerance in Leishmania donovani through the regulation of thiol-based redox metabolism. Free Radic Biol Med 2024; 213:371-393. [PMID: 38272324 DOI: 10.1016/j.freeradbiomed.2024.01.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/25/2023] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Understanding the unique metabolic pathway of L. donovani is crucial for comprehending its biology under oxidative stress conditions. The de novo cysteine biosynthetic pathway of L. donovani is absent in humans and its product, cysteine regulates the downstream components of trypanothione-based thiol metabolism, important for maintaining cellular redox homeostasis. The role of serine o-acetyl transferase (SAT), the first enzyme of this pathway remains unexplored. In order to investigate the role of SAT protein, we cloned SAT gene into pXG-GFP+ vector for episomal expression of SAT in Amphotericin B sensitive L. donovani promastigotes. The SAT overexpression was confirmed by SAT enzymatic assay, GFP fluorescence, immunoblotting and PCR. Our study unveiled an upregulated expression of both LdSAT and LdCS of cysteine biosynthetic pathway and other downstream thiol pathway proteins in LdSAT-OE promastigotes. Additionally, there was an increase in enzymatic activities of LdSAT and LdCS proteins in LdSAT-OE, which was found similar to the Amp B resistant parasites, indicating a potential role of SAT protein in modulating drug resistance. We observed that the overexpression of SAT in Amp B sensitive parasites increases tolerance to drug pressure and oxidative stress via trypanothione-dependent antioxidant mechanism. Moreover, the in vitro J774A.1 macrophage infectivity assessment showed that SAT overexpression augments parasite infectivity. In LdSAT-OE promastigotes, antioxidant enzyme activities like APx and SOD were upregulated, intracellular reactive oxygen species were reduced with a corresponding increase in thiol level, emphasizing SAT's role in stress tolerance and enhanced infectivity. Additionally, the ROS mediated upregulation in the expression of LdSAT, LdCS, LdTryS and LdcTXNPx proteins reveals an essential cross talk between SAT and proteins of thiol metabolism in combating oxidative stress and maintaining redox homeostasis. Taken together, our results provide the first insight into the role of SAT protein in parasite infectivity and survival under drug pressure and oxidative stress.
Collapse
Affiliation(s)
- Afreen Nawaz
- ICMR - Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, 800007, India
| | - Bhawna Priya
- ICMR - Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, 800007, India
| | - Kuljit Singh
- Infectious Diseases Division, CSIR - Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Vahab Ali
- ICMR - Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, 800007, India.
| |
Collapse
|
4
|
Marcolino LMC, Pinto JG, Ferreira I, Godoi BH, de Azevedo Canevari R, Ferreira-Strixino J. Molecular effects of photodynamic therapy with curcumin on Leishmania major promastigotes. Parasitol Res 2024; 123:146. [PMID: 38418645 DOI: 10.1007/s00436-024-08155-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024]
Abstract
Leishmaniasis is a neglected disease mainly affecting low-income populations. Conventional treatment involves several side effects, is expensive, and, in addition, protozoa can develop resistance. Photodynamic therapy (PDT) is a promising alternative in treating the disease. PDT involves applying light at a specific wavelength to activate a photosensitive compound (photosensitizer, PS), to produce reactive oxygen species (ROS). Curcumin and its photochemical characteristics make it a good candidate for photodynamic therapy. Studies evaluating gene expression can help to understand the molecular events involved in the cell death caused by PDT. In the present study, RNA was extracted from promastigotes from the control and treated groups after applying PDT. RT-qPCR was performed to verify the expression of the putative ATPase beta subunit (ATPS), ATP synthase subunit A (F0F1), argininosuccinate synthase 1 (ASS), ATP-binding cassette subfamily G member 2 (ABCG2), glycoprotein 63 (GP63), superoxide dismutase (FeSODA), and glucose-6-phosphate dehydrogenase (G6PDH) genes (QR). The results suggest that PDT altered the expression of genes that participate in oxidative stress and cell death pathways, such as ATPS, FeSODA, and G6PD. The ATP-F0F1, ASS, and GP63 genes did not have their expression altered. However, it is essential to highlight that other genes may be involved in the molecular mechanisms of oxidative stress and, consequently, in the death of parasites.
Collapse
Affiliation(s)
- Luciana Maria Cortez Marcolino
- Photobiology Applied to Health (PhotoBioS Lab), Universidade Do Vale Do Paraíba, Av. Shishima Hifumi, 2911, Urbanova, São José Dos Campos, SP, Brazil
| | - Juliana Guerra Pinto
- Photobiology Applied to Health (PhotoBioS Lab), Universidade Do Vale Do Paraíba, Av. Shishima Hifumi, 2911, Urbanova, São José Dos Campos, SP, Brazil
| | - Isabelle Ferreira
- Photobiology Applied to Health (PhotoBioS Lab), Universidade Do Vale Do Paraíba, Av. Shishima Hifumi, 2911, Urbanova, São José Dos Campos, SP, Brazil
| | - Bruno Henrique Godoi
- Photobiology Applied to Health (PhotoBioS Lab), Universidade Do Vale Do Paraíba, Av. Shishima Hifumi, 2911, Urbanova, São José Dos Campos, SP, Brazil
| | - Renata de Azevedo Canevari
- Cancer Molecular Biology Laboratory, Universidade Do Vale Do Paraíba, Av. Shishima Hifumi, 2911, Urbanova, São José Dos Campos, SP, Brazil
| | - Juliana Ferreira-Strixino
- Photobiology Applied to Health (PhotoBioS Lab), Universidade Do Vale Do Paraíba, Av. Shishima Hifumi, 2911, Urbanova, São José Dos Campos, SP, Brazil.
| |
Collapse
|
5
|
Devender M, Sebastian P, Maurya VK, Kumar K, Anand A, Namdeo M, Maurya R. Immunogenicity and protective efficacy of tuzin protein as a vaccine candidate in Leishmania donovani-infected BALB/c mice. Front Immunol 2024; 14:1294397. [PMID: 38274802 PMCID: PMC10808571 DOI: 10.3389/fimmu.2023.1294397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Visceral leishmaniasis (VL) is referred to as the most severe and fatal type of leishmaniasis basically caused by Leishmania donovani and L. infantum. The most effective method for preventing the spread of the disease is vaccination. Till today, there is no promising licensed vaccination for human VL. Hence, investigation for vaccines is necessary to enrich the therapeutic repertoire against leishmaniasis. Tuzin is a rare trans-membrane protein that has been reported in Trypanosoma cruzi with unknown function. However, tuzin is not characterized in Leishmania parasites. In this study, we for the first time demonstrated that tuzin protein was expressed in both stages (promastigote and amastigote) of L. donovani parasites. In-silico studies revealed that tuzin has potent antigenic properties. Therefore, we analyzed the immunogenicity of tuzin protein and immune response in BALB/c mice challenged with the L. donovani parasite. We observed that tuzin-vaccinated mice have significantly reduced parasite burden in the spleen and liver compared with the control. The number of granulomas in the liver was also significantly decreased compared with the control groups. We further measured the IgG2a antibody level, a marker of Th1 immune response in VL, which was significantly higher in the serum of immunized mice when compared with the control. Splenocytes stimulated with soluble Leishmania antigen (SLA) displayed a significant increase in NO and ROS levels compared with the control groups. Tuzin-immunized and parasite-challenged mice exhibit a notable rise in the IFN-γ/IL-10 ratio by significantly suppressing IL-10 expression level, an immunosuppressive cytokine that inhibits leishmanicidal immune function and encourages disease progression. In conclusion, tuzin immunizations substantially increase the protective immune response in L. donovani-challenged mice groups compared with control.
Collapse
|
6
|
Carnielli JB, Dave A, Romano A, Forrester S, de Faria PR, Monti-Rocha R, Costa CH, Dietze R, Graham IA, Mottram JC. 3'Nucleotidase/nuclease is required for Leishmania infantum clinical isolate susceptibility to miltefosine. EBioMedicine 2022; 86:104378. [PMID: 36462405 PMCID: PMC9713291 DOI: 10.1016/j.ebiom.2022.104378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/20/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Miltefosine treatment failure in visceral leishmaniasis in Brazil has been associated with deletion of the miltefosine susceptibility locus (MSL) in Leishmania infantum. The MSL comprises four genes, 3'-nucleotidase/nucleases (NUC1 and NUC2); helicase-like protein (HLP); and 3,2-trans-enoyl-CoA isomerase (TEI). METHODS In this study CRISPR-Cas9 was used to either epitope tag or delete NUC1, NUC2, HLP and TEI, to investigate their role in miltefosine resistance mechanisms. Additionally, miltefosine transporter genes and miltefosine-mediated reactive oxygen species homeostasis were assessed in 26 L. infantum clinical isolates. A comparative lipidomic analysis was also performed to investigate the molecular basis of miltefosine resistance. FINDINGS Deletion of both NUC1, NUC2 from the MSL was associated with a significant decrease in miltefosine susceptibility, which was restored after re-expression. Metabolomic analysis of parasites lacking the MSL or NUC1 and NUC2 identified an increase in the parasite lipid content, including ergosterol; these lipids may contribute to miltefosine resistance by binding the drug in the membrane. Parasites lacking the MSL are more resistant to lipid metabolism perturbation caused by miltefosine and NUC1 and NUC2 are involved in this pathway. Additionally, L. infantum parasites lacking the MSL isolated from patients who relapsed after miltefosine treatment were found to modulate nitric oxide accumulation in host macrophages. INTERPRETATION Altogether, these data indicate that multifactorial mechanisms are involved in natural resistance to miltefosine in L. infantum and that the absence of the 3'nucleotidase/nuclease genes NUC1 and NUC2 contributes to the phenotype. FUNDING MRC GCRF and FAPES.
Collapse
Affiliation(s)
- Juliana B.T. Carnielli
- York Biomedical Research Institute, Department of Biology, University of York, United Kingdom,Laboratório de Leishmanioses, Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória-ES, Brazil,Corresponding author. York Biomedical Research Institute, Department of Biology, University of York, Wentworth Way Heslington, York, YO10 5DD, United Kingdom.
| | - Anuja Dave
- Centre for Novel Agricultural Products, Department of Biology, University of York, United Kingdom
| | - Audrey Romano
- York Biomedical Research Institute, Department of Biology, University of York, United Kingdom
| | - Sarah Forrester
- York Biomedical Research Institute, Department of Biology, University of York, United Kingdom
| | - Pedro R. de Faria
- Laboratório de Leishmanioses, Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória-ES, Brazil
| | - Renata Monti-Rocha
- Laboratório de Leishmanioses, Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória-ES, Brazil
| | - Carlos H.N. Costa
- Laboratório de Pesquisas em Leishmanioses, Instituto de Doenças Tropicais Natan Portella, Universidade Federal do Piauí, Teresina-PI, Brazil
| | - Reynaldo Dietze
- Laboratório de Leishmanioses, Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória-ES, Brazil,Global Health & Tropical Medicine—Instituto de Higiene e Medicina Tropical—Universidade Nova de Lisboa, Lisbon, Portugal
| | - Ian A. Graham
- Centre for Novel Agricultural Products, Department of Biology, University of York, United Kingdom
| | - Jeremy C. Mottram
- York Biomedical Research Institute, Department of Biology, University of York, United Kingdom,Corresponding author. York Biomedical Research Institute, Department of Biology, University of York, Wentworth Way Heslington, York, YO10 5DD, United Kingdom.
| |
Collapse
|
7
|
Ali V, Behera S, Nawaz A, Equbal A, Pandey K. Unique thiol metabolism in trypanosomatids: Redox homeostasis and drug resistance. ADVANCES IN PARASITOLOGY 2022; 117:75-155. [PMID: 35878950 DOI: 10.1016/bs.apar.2022.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Trypanosomatids are mainly responsible for heterogeneous parasitic diseases: Leishmaniasis, Sleeping sickness, and Chagas disease and control of these diseases implicates serious challenges due to the emergence of drug resistance. Redox-active biomolecules are the endogenous substances in organisms, which play important role in the regulation of redox homeostasis. The redox-active substances like glutathione, trypanothione, cysteine, cysteine persulfides, etc., and other inorganic intermediates (hydrogen peroxide, nitric oxide) are very useful as defence mechanism. In the present review, the suitability of trypanothione and other essential thiol molecules of trypanosomatids as drug targets are described in Leishmania and Trypanosoma. We have explored the role of tryparedoxin, tryparedoxin peroxidase, ascorbate peroxidase, superoxide dismutase, and glutaredoxins in the anti-oxidant mechanism and drug resistance. Up-regulation of some proteins in trypanothione metabolism helps the parasites in survival against drug pressure (sodium stibogluconate, Amphotericin B, etc.) and oxidative stress. These molecules accept electrons from the reduced trypanothione and donate their electrons to other proteins, and these proteins reduce toxic molecules, neutralize reactive oxygen, or nitrogen species; and help parasites to cope with oxidative stress. Thus, a better understanding of the role of these molecules in drug resistance and redox homeostasis will help to target metabolic pathway proteins to combat Leishmaniasis and trypanosomiases.
Collapse
Affiliation(s)
- Vahab Ali
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, ICMR-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, India.
| | - Sachidananda Behera
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, ICMR-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, India
| | - Afreen Nawaz
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, ICMR-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, India
| | - Asif Equbal
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, ICMR-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, India; Department of Botany, Araria College, Purnea University, Purnia, Bihar, India
| | - Krishna Pandey
- Department of Clinical Medicine, ICMR-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, India
| |
Collapse
|
8
|
In-Depth Quantitative Proteomics Characterization of In Vitro Selected Miltefosine Resistance in Leishmania infantum. Proteomes 2022; 10:proteomes10020010. [PMID: 35466238 PMCID: PMC9036279 DOI: 10.3390/proteomes10020010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022] Open
Abstract
Visceral leishmaniasis (VL) is a neglected disease caused by Leishmania parasites. Although significant morbidity and mortality in tropical and subtropical regions of the world are associated with VL, the low investment for developing new treatment measures is chronic. Moreover, resistance and treatment failure are increasing for the main medications, but the emergence of resistance phenotypes is poorly understood at the protein level. Here, we analyzed the development of resistance to miltefosine upon experimental selection in a L. infantum strain. Time to miltefosine resistance emergence was ~six months and label-free quantitative mass-spectrometry-based proteomics analyses revealed that this process involves a remodeling of components of the membrane and mitochondrion, with significant increase in oxidative phosphorylation complexes, particularly on complex IV and ATP synthase, accompanied by increased energy metabolism mainly dependent on β-oxidation of fatty acids. Proteins canonically involved in ROS detoxification did not contribute to the resistant process whereas sterol biosynthesis enzymes could have a role in this development. Furthermore, changes in the abundance of proteins known to be involved in miltefosine resistance such as ABC transporters and phospholipid transport ATPase were detected. Together, our data show a more complete picture of the elements that make up the miltefosine resistance phenotype in L. infantum.
Collapse
|
9
|
Santi AMM, Murta/ SMF. Antioxidant defence system as a rational target for Chagas disease and Leishmaniasis chemotherapy. Mem Inst Oswaldo Cruz 2022; 117:e210401. [PMID: 35239945 PMCID: PMC8896756 DOI: 10.1590/0074-02760210401] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 12/03/2022] Open
Abstract
Chagas disease and leishmaniasis are neglected tropical diseases caused by the protozoan parasites Trypanosoma cruzi and Leishmania spp., respectively. They are among the most important parasitic diseases, affecting millions of people worldwide, being a considerable global challenge. However, there is no human vaccine available against T. cruzi and Leishmania infections, and their control is based mainly on chemotherapy. Treatments for Chagas disease and leishmaniasis have multiple limitations, mainly due to the high toxicity of the available drugs, long-term treatment protocols, and the occurrence of drug-resistant parasite strains. In the case of Chagas disease, there is still the problem of low cure rates in the chronic stage of the disease. Therefore, new therapeutic agents and novel targets for drug development are urgently needed. Antioxidant defence in Trypanosomatidae is a potential target for chemotherapy because the organisms present a unique mechanism for trypanothione-dependent detoxification of peroxides, which differs from that found in vertebrates. Cellular thiol redox homeostasis is maintained by the biosynthesis and reduction of trypanothione, involving different enzymes that act in concert. This study provides an overview of the antioxidant defence focusing on iron superoxide dismutase A, tryparedoxin peroxidase, and ascorbate peroxidase and how the enzymes play an important role in the defence against oxidative stress and their involvement in drug resistance mechanisms in T. cruzi and Leishmania spp.
Collapse
Affiliation(s)
- Ana Maria Murta Santi
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Grupo de Genômica Funcional de Parasitos, Belo Horizonte, MG, Brasil
| | - Silvane Maria Fonseca Murta/
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Grupo de Genômica Funcional de Parasitos, Belo Horizonte, MG, Brasil
| |
Collapse
|
10
|
Kumari D, Singh K. Exploring the paradox of defense between host and Leishmania parasite. Int Immunopharmacol 2021; 102:108400. [PMID: 34890999 DOI: 10.1016/j.intimp.2021.108400] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 01/04/2023]
Abstract
Leishmaniasis, a neglected tropical disease, still remains a global concern for the healthcare sector. The primary causative agents of the disease comprise diverse leishmanial species, leading to recurring failures in disease diagnosis and delaying the initiation of appropriate chemotherapy. Various species of the Leishmania parasite cause diverse clinical manifestations ranging from skin ulcers to systemic infections. Therefore, host immunity in response to different forms of infecting species of Leishmania becomes pivotal in disease progression or regression. Thus, understanding the paradox of immune arsenals during host and parasite interface becomes crucial to eliminate this deadly disease. In the present review, we have elaborated on the immunological perspectives of the disease and discussed primary host immune cells that form a defense line to counteract parasite infection. Furthermore, we also have shed light on the immune cells and effector molecules responsible for parasite survival in host lethal milieu/ environment. Next, we have highlighted recent molecules/compounds showing potent leishmanicidal activities pertaining to their pro-oxidant and immuno-modulatory mechanisms. This review addresses an immuno-biological overview of the factors influencing the parasitic disease, as this knowledge can aid in the unraveling/ identification of potential biomarkers, novel therapeutics, and vaccine candidates against leishmaniasis.
Collapse
Affiliation(s)
- Diksha Kumari
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kuljit Singh
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
11
|
Kar A, Charan Raja MR, Jayaraman A, Srinivasan S, Debnath J, Kar Mahapatra S. Oral combination of eugenol oleate and miltefosine induce immune response during experimental visceral leishmaniasis through nitric oxide generation with advanced cytokine demand. Cytokine 2021; 146:155623. [PMID: 34144446 DOI: 10.1016/j.cyto.2021.155623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 11/24/2022]
Abstract
Conventional therapy of visceral leishmaniasis (VL) remains challenging with the pitfall of toxicity, drug resistance, and expensive. Hence, urgent need for an alternative approach is essential. In this study, we evaluated the potential of combination therapy with eugenol oleate and miltefosine in Leishmania donovani infected macrophages and in the BALB/c mouse model. The interactions between eugenol oleate and miltefosine were found to be additive against promastigotes and amastigotes with xΣFIC 1.13 and 0.68, respectively. Significantly (p < 0.001) decreased arginase activity, increased nitrite generation, improved pro-inflammatory cytokines, and phosphorylated p38MAPK were observed after combination therapy with eugenol oleate and miltefosine. >80% parasite clearance in splenic and hepatic tissue with concomitant nitrite generation, and anti-VL cytokines productions were observed after orally administered miltefosine (5 mg/kg body weight) and eugenol oleate (15 mg/kg body weight) in L. donovani-infected BALB/c mice. Altogether, this study suggested the possibility of an oral combination of miltefosine with eugenol oleate against visceral leishmaniasis.
Collapse
Affiliation(s)
- Amrita Kar
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Mamilla R Charan Raja
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India
| | - Adithyan Jayaraman
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Sujatha Srinivasan
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Joy Debnath
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Santanu Kar Mahapatra
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India; Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore 721129, West Bengal, India.
| |
Collapse
|
12
|
Santi AMM, Silva PA, Santos IFM, Murta SMF. Downregulation of FeSOD-A expression in Leishmania infantum alters trivalent antimony and miltefosine susceptibility. Parasit Vectors 2021; 14:366. [PMID: 34266485 PMCID: PMC8281622 DOI: 10.1186/s13071-021-04838-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/10/2021] [Indexed: 12/13/2022] Open
Abstract
Background Superoxide dismutase (SOD), a central component of the antioxidant defence system of most organisms, removes excess superoxide anions by converting them to oxygen and hydrogen peroxide. As iron (Fe) SOD is absent in the human host, this enzyme is a promising molecular target for drug development against trypanosomatids. Results We obtained Leishmania infantum mutant clones with lower FeSOD-A expression and investigated their phenotypes. Our attempts to delete this enzyme-coding gene using three different methodologies (conventional allelic replacement or two different CRISPR/methods) failed, as FeSOD-A gene copies were probably retained by aneuploidy or gene amplification. Promastigote forms of WT and mutant parasites were used in quantitative reverse-transcription polymerase chain reaction (RT-qPCR) and western blot analyses, and these parasite forms were also used to assess drug susceptibility. RT-qPCR and western blot analyses revealed that FeSOD-A transcript and protein levels were lower in FeSOD-A−/−/+L. infantum mutant clones than in the wild-type (WT) parasite. The decrease in FeSOD-A expression in L. infantum did not interfere with the parasite growth or susceptibility to amphotericin B. Surprisingly, FeSOD-A−/−/+L. infantum mutant clones were 1.5- to 2.0-fold more resistant to trivalent antimony and 2.4- to 2.7-fold more resistant to miltefosine. To investigate whether the decrease in FeSOD-A expression was compensated by other enzymes, the transcript levels of five FeSODs and six enzymes from the antioxidant defence system were assessed by RT-qPCR. The transcript level of the enzyme ascorbate peroxidase increased in both the FeSOD-A−/−/+ mutants tested. The FeSOD-A−/−/+ mutant parasites were 1.4- to 1.75-fold less tolerant to oxidative stress generated by menadione. Infection analysis using THP-1 macrophages showed that 72 h post-infection, the number of infected macrophages and their intracellular multiplication rate were lower in the FeSOD-A−/−/+ mutant clones than in the WT parasite. Conclusions The unsuccessful attempts to delete FeSOD-A suggest that this gene is essential in L. infantum. This enzyme plays an important role in the defence against oxidative stress and infectivity in THP-1 macrophages. FeSOD-A-deficient L. infantum parasites deregulate their metabolic pathways related to antimony and miltefosine resistance. Graphic Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04838-8.
Collapse
Affiliation(s)
- Ana Maria Murta Santi
- Grupo de Genômica Funcional de Parasitos (GFP), Instituto René Rachou, Fiocruz Minas, Avenida Augusto de Lima 1715, Belo Horizonte, MG, CEP: 30190-002, Brazil
| | - Paula Alves Silva
- Grupo de Genômica Funcional de Parasitos (GFP), Instituto René Rachou, Fiocruz Minas, Avenida Augusto de Lima 1715, Belo Horizonte, MG, CEP: 30190-002, Brazil
| | - Isabella Fernandes Martins Santos
- Grupo de Genômica Funcional de Parasitos (GFP), Instituto René Rachou, Fiocruz Minas, Avenida Augusto de Lima 1715, Belo Horizonte, MG, CEP: 30190-002, Brazil
| | - Silvane Maria Fonseca Murta
- Grupo de Genômica Funcional de Parasitos (GFP), Instituto René Rachou, Fiocruz Minas, Avenida Augusto de Lima 1715, Belo Horizonte, MG, CEP: 30190-002, Brazil.
| |
Collapse
|
13
|
The ultimate fate determinants of drug induced cell-death mechanisms in Trypanosomatids. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2021; 15:81-91. [PMID: 33601284 PMCID: PMC7900639 DOI: 10.1016/j.ijpddr.2021.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Abstract
Chemotherapy constitutes a major part of modern-day therapy for infectious and chronic diseases. A drug is said to be effective if it can inhibit its target, induce stress, and thereby trigger an array of cell death pathways in the form of programmed cell death, autophagy, necrosis, etc. Chemotherapy is the only treatment choice against trypanosomatid diseases like Leishmaniasis, Chagas disease, and sleeping sickness. Anti-trypanosomatid drugs can induce various cell death phenotypes depending upon the drug dose and growth stage of the parasites. The mechanisms and pathways triggering cell death in Trypanosomatids serve to help identify potential targets for the development of effective anti-trypanosomatids. Studies show that the key proteins involved in cell death of trypanosomatids are metacaspases, Endonuclease G, Apoptosis-Inducing Factor, cysteine proteases, serine proteases, antioxidant systems, etc. Unlike higher eukaryotes, these organisms either lack the complete set of effectors involved in cell death pathways, or are yet to be deciphered. A detailed summary of the existing knowledge of different drug-induced cell death pathways would help identify the lacuna in each of these pathways and therefore open new avenues for research and thereby new therapeutic targets to explore. The cell death pathway associated complexities in metazoans are absent in trypanosomatids; hence this summary can also help understand the trigger points as well as cross-talk between these pathways. Here we provide an in-depth overview of the existing knowledge of these drug-induced trypanosomatid cell death pathways, describe their associated physiological changes, and suggest potential interconnections amongst them.
Collapse
|
14
|
Yadav S, Ali V, Singh Y, Kanojia S, Goyal N. Leishmania donovani chaperonin TCP1γ subunit protects miltefosine induced oxidative damage. Int J Biol Macromol 2020; 165:2607-2620. [PMID: 33736277 DOI: 10.1016/j.ijbiomac.2020.10.134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023]
Abstract
T-complex protein-1 (TCP1) is a chaperonin protein known to fold various proteins like actin and tubulin. In Leishmania donovani only one subunit of TCP1 that is gamma subunit (LdTCP1γ) has been functionally characterized. It not only performs ATP dependent protein folding but is also essential for survival and virulence. The present work demonstrates that LdTCP1γ also has a role in miltefosine resistance. Overexpression of LdTCP1γ in L. donovani promastigotes results in decreased sensitivity of parasites towards miltefosine, while single-allele replacement mutants exhibited increased sensitivity as compared to wild-type promastigotes. This response was specific to miltefosine with no cross-resistance to other drugs. The LdTCP1γ-mediated drug resistance was directly related to miltefosine-induced apoptotic death of the parasite, as was evidenced by 2 to 3-fold decrease in cell death parameters in overexpressing cells and >2-fold increase in single-allele replacement mutants. Further, deciphering the mechanism revealed that resistance of overexpressing cells was associated with efficient ROS neutralization due to increased levels of thiols and upregulation of cytosolic tryparedoxin peroxidase (cTxnPx). Further, modulation of LdTCP1γ expression in parasite also modulates the levels of proinflammatory cytokine (TNF-α) and anti-inflammatory cytokine (IL-10) of the host macrophages. The study provides evidence for the involvement of a chaperonin protein LdTCP1γ in the protection against miltefosine induced oxidative damage and reveals the fundamental role of LdTCP1γ in parasite biology.
Collapse
Affiliation(s)
- Shailendra Yadav
- Biochemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vahab Ali
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, India-800007
| | - Yatendra Singh
- Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Sanjeev Kanojia
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Neena Goyal
- Biochemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
15
|
Computationally designed synthetic peptides for transporter proteins imparts allostericity in Miltefosine resistant L. major. Biochem J 2020; 477:2007-2026. [PMID: 32391551 DOI: 10.1042/bcj20200176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 12/31/2022]
Abstract
The emergence of drug resistance is a major concern for combating against Cutaneous Leishmaniasis, a neglected tropical disease affecting 98 countries including India. Miltefosine is the only oral drug available for the disease and Miltefosine transporter proteins play a pivotal role in the emergence of drug-resistant Leishmania major. The cause of resistance is less accumulation of drug inside the parasite either by less uptake of the drug due to a decrease in the activity of P4ATPase-CDC50 complex or by increased efflux of the drug by P-glycoprotein (P-gp, an ABC transporter). In this paper, we are trying to allosterically modulate the behavior of resistant parasite (L. major) towards its sensitivity for the existing drug (Miltefosine, a phosphatidylcholine analog). We have used computational approaches to deal with the conservedness of the proteins and apparently its three-dimensional structure prediction through ab initio modeling. Long scale membrane-embedded molecular dynamics simulations were carried out to study the structural interaction and stability. Parasite-specific motifs of these proteins were identified based on the machine learning technique, against which a peptide library was designed. The protein-peptide docking shows good binding energy of peptides Pg5F, Pg8F and PC2 with specific binding to the motifs. These peptides were tested both in vitro and in vivo, where Pg5F in combination with PC2 showed 50-60% inhibition in resistant L. major's promastigote and amastigote forms and 80-90% decrease in parasite load in mice. We posit a model system wherein the data provide sufficient impetus for being novel therapeutics in order to counteract the drug resistance phenotype in Leishmania parasites.
Collapse
|
16
|
Ranjan R, Das P, Vijayakumar S. Differentially modulated proteins associated with Leishmaniasis-a systematic review of in-vivo and in-vitro studies. Mol Biol Rep 2020; 47:9159-9178. [PMID: 33113081 PMCID: PMC7591689 DOI: 10.1007/s11033-020-05936-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/20/2020] [Indexed: 11/05/2022]
Abstract
High-throughput proteomic technologies are widely used for understanding the disease mechanism, drug-resistant mechanism, and to identify drug targets and markers for diagnostics. Studies with proteomics applications, relating to Leishmaniasis, are being constantly reported in the literature. However, from such studies, a readily accessible knowledge of differentially modulated proteins associated with Leishmaniasis is lacking. Hence, we performed a systematic review concerning differentially modulated proteins (DMP) in Leishmania as well as host infected with Leishmania from the published articles between the years 2000 and 2019. This review is classified into five different sections, namely, DMP in the host after Leishmania infection, DMP between different strains of Leishmania, DMP in drug-resistant Leishmania, DMP in Leishmania under stress, and DMP in different life stages of Leishmania. A lot of consensuses could be observed among the DMP in drug-resistant and stressed Leishmania. In addition to the review, a database was constructed with the data collected in this study (protein accession ID, protein name, gene name, host organism, experimental conditions, fold change, and regulatory data). A total of 2635 records are available in the database. We believe this review and the database will help the researcher in understanding the disease better and provide information for the targeted proteomics study related to Leishmaniasis. Database availability: http://ldepdb.biomedinformri.com/ .
Collapse
Affiliation(s)
- Ravi Ranjan
- Department of Statistics/Bioinformatics Centre, Rajendra Memorial Research Institute of Medical Science, Indian Council for Medical Research, Agamkuan, Patna, Bihar, 800007, India
| | - Pradeep Das
- Department of Molecular Biology/Bioinformatics Centre, Rajendra Memorial Research Institute of Medical Science, Indian Council for Medical Research, Agamkuan, Patna, Bihar, 800007, India
| | - Saravanan Vijayakumar
- Department of Statistics/Bioinformatics Centre, Rajendra Memorial Research Institute of Medical Science, Indian Council for Medical Research, Agamkuan, Patna, Bihar, 800007, India.
| |
Collapse
|
17
|
Meshram RJ, Shirsath A, Aouti S, Bagul K, Gacche RN. Molecular modeling and simulation study of homoserine kinase as an effective leishmanial drug target. J Mol Model 2020; 26:218. [PMID: 32720228 DOI: 10.1007/s00894-020-04473-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 07/14/2020] [Indexed: 11/25/2022]
Abstract
Leishmaniasis is a tropical neglected disease that imposes major health concerns in many endemic countries worldwide and requires urgent attention to the identification of new drug targets as well as drug candidates. In the current study, we propose homoserine kinase (HSK) inhibition as a strategy to induce pathogen mortality via generating threonine deficiency. We introduce a homology-based molecular model of leishmanial HSK that appears to possess all conserved structural as well as functional features in the GHMP kinase family. Furthermore, 200 ns molecular dynamics data of the enzyme in open and closed state attempts to provide the mechanistic details involved in the substrate as well as phosphate binding to this enzyme. We discuss the structural and functional significance of movements involved in various loops (motif 1, 2, 3) and lips (upper and lower) in the transition of leishmanial HSK from closed to open state. Virtual screening data of more than 40,000 compounds from the present investigation tries to identify a few potential HSK inhibitors that possess important features to act as efficient HSK inhibitors. These compounds can be considered an effective starting point for the identification of novel drug-like scaffolds. We hope the structural wealth that is offered in this report will be utilized in designing competent experimental and therapeutic interventions for leishmaniasis management. Graphical abstract.
Collapse
Affiliation(s)
- Rohan J Meshram
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India.
| | - Akshay Shirsath
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| | - Snehal Aouti
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| | - Kamini Bagul
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| | - Rajesh N Gacche
- Department of Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| |
Collapse
|
18
|
Van den Kerkhof M, Sterckx YGJ, Leprohon P, Maes L, Caljon G. Experimental Strategies to Explore Drug Action and Resistance in Kinetoplastid Parasites. Microorganisms 2020; 8:E950. [PMID: 32599761 PMCID: PMC7356981 DOI: 10.3390/microorganisms8060950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022] Open
Abstract
Kinetoplastids are the causative agents of leishmaniasis, human African trypanosomiasis, and American trypanosomiasis. They are responsible for high mortality and morbidity in (sub)tropical regions. Adequate treatment options are limited and have several drawbacks, such as toxicity, need for parenteral administration, and occurrence of treatment failure and drug resistance. Therefore, there is an urgency for the development of new drugs. Phenotypic screening already allowed the identification of promising new chemical entities with anti-kinetoplastid activity potential, but knowledge on their mode-of-action (MoA) is lacking due to the generally applied whole-cell based approach. However, identification of the drug target is essential to steer further drug discovery and development. Multiple complementary techniques have indeed been used for MoA elucidation. In this review, the different 'omics' approaches employed to define the MoA or mode-of-resistance of current reference drugs and some new anti-kinetoplastid compounds are discussed.
Collapse
Affiliation(s)
- Magali Van den Kerkhof
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (L.M.)
| | - Yann G.-J. Sterckx
- Laboratory of Medical Biochemistry (LMB), University of Antwerp, 2610 Wilrijk, Belgium;
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie du Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, QC G1V 0A6, Canada;
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (L.M.)
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (L.M.)
| |
Collapse
|
19
|
Sani A, Hassan D, Khalil AT, Mughal A, El-Mallul A, Ayaz M, Yessimbekov Z, Shinwari ZK, Maaza M. Floral extracts-mediated green synthesis of NiO nanoparticles and their diverse pharmacological evaluations. J Biomol Struct Dyn 2020; 39:4133-4147. [DOI: 10.1080/07391102.2020.1775120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ayesha Sani
- National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Dilawar Hassan
- National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
- UNESCO-UNISA Africa chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria, South Africa
- Nanosciences African Network (NANOAFNET), Materials Research Department, iThemba LABS, Cape Town, South Africa
| | - Ali Talha Khalil
- UNESCO-UNISA Africa chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria, South Africa
- Nanosciences African Network (NANOAFNET), Materials Research Department, iThemba LABS, Cape Town, South Africa
- Department of Biotechnology, Qarshi University, Lahore, Pakistan
| | - Affifa Mughal
- College of Pharmacy, Liaquat University of Medical and Health Sciences (LUMHS), Jamshoro, Pakistan
| | - Ahmed El-Mallul
- Department of Food Engineering, Warsaw Medical University, Warszawa, Poland
| | - Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Zhanibek Yessimbekov
- Department of Food Engineering, Shakarim State University of Semey, Semey City, Kazakhstan
| | | | - Malik Maaza
- UNESCO-UNISA Africa chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria, South Africa
- Nanosciences African Network (NANOAFNET), Materials Research Department, iThemba LABS, Cape Town, South Africa
| |
Collapse
|
20
|
Zheng ZW, Li J, Chen H, He JL, Chen QW, Zhang JH, Zhou Q, Chen DL, Chen JP. Evaluation of in vitro antileishmanial efficacy of cyclosporin A and its non-immunosuppressive derivative, dihydrocyclosporin A. Parasit Vectors 2020; 13:94. [PMID: 32085719 PMCID: PMC7035640 DOI: 10.1186/s13071-020-3958-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/10/2020] [Indexed: 11/25/2022] Open
Abstract
Background New therapeutic drugs are urgently needed against visceral leishmaniasis because current drugs, such as pentavalent antimonials and miltefosine, produce severe side effects and development of resistance. Whether cyclosporine A (CsA) and its derivatives can be used as therapeutic drugs for visceral leishmaniasis has been controversial for many years. Methods In this study, we evaluated the efficacy of CsA and its derivative, dihydrocyclosporin A (DHCsA-d), against promastigotes and intracellular amastigotes of Leishmania donovani. Sodium stibogluconate (SSG) was used as a positive control. Results Our results showed that DHCsA-d was able to inhibit the proliferation of L. donovani promastigotes (IC50: 21.24 μM and 12.14 μM at 24 h and 48 h, respectively) and intracellular amastigotes (IC50: 5.23 μM and 4.84 μM at 24 and 48 h, respectively) in vitro, but CsA treatment increased the number of amastigotes in host cells. Both DHCsA-d and CsA caused several alterations in the morphology and ultrastructure of L. donovani, especially in the mitochondria. However, DHCsA-d showed high cytotoxicity towards cells of the mouse macrophage cell line RAW264.7, with CC50 values of 7.98 μM (24 h) and 6.65 μM (48 h). Moreover, DHCsA-d could increase IL-12, TNF-α and IFN-γ production and decrease the levels of IL-10, IL-4, NO and H2O2 in infected macrophages. On the contrary, CsA decreased IL-12, TNF-α, and IFN-γ production and increased the levels of IL-10, IL-4, NO and H2O2 in infected macrophages. The expression of L. donovani cyclophilin A (LdCyPA) in promastigotes and intracellular amastigotes and the expression of cyclophilin A (CyPA) in RAW 264.7 cells were found to be significantly downregulated in the CsA-treated group compared to those in the untreated group. However, no significant changes in LdCyPA and CyPA levels were found after DHCsA-d or SSG treatment. Conclusions Our findings initially resolved the dispute regarding the efficacy of CsA and DHCsA-d for visceral leishmaniasis treatment. CsA showed no significant inhibitory effect on intracellular amastigotes. DHCsA-d significantly inhibited promastigotes and intracellular amastigotes, but it was highly cytotoxic. Therefore, CsA and DHCsA-d are not recommended as antileishmanial drugs.![]()
Collapse
Affiliation(s)
- Zhi-Wan Zheng
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jiao Li
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Han Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jin-Lei He
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Qi-Wei Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jian-Hui Zhang
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Qi Zhou
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Da-Li Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China.
| | - Jian-Ping Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China. .,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
21
|
dos Santos Meira C, Gedamu L. Protective or Detrimental? Understanding the Role of Host Immunity in Leishmaniasis. Microorganisms 2019; 7:microorganisms7120695. [PMID: 31847221 PMCID: PMC6956275 DOI: 10.3390/microorganisms7120695] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/04/2019] [Accepted: 12/10/2019] [Indexed: 02/06/2023] Open
Abstract
The intracellular protozoan parasites of the genus Leishmania are the causative agents of leishmaniasis, a vector-borne disease of major public health concern, estimated to affect 12 million people worldwide. The clinical manifestations of leishmaniasis are highly variable and can range from self-healing localized cutaneous lesions to life-threatening disseminated visceral disease. Once introduced into the skin by infected sandflies, Leishmania parasites interact with a variety of immune cells, such as neutrophils, monocytes, dendritic cells (DCs), and macrophages. The resolution of infection requires a finely tuned interplay between innate and adaptive immune cells, culminating with the activation of microbicidal functions and parasite clearance within host cells. However, several factors derived from the host, insect vector, and Leishmania spp., including the presence of a double-stranded RNA virus (LRV), can modulate the host immunity and influence the disease outcome. In this review, we discuss the immune mechanisms underlying the main forms of leishmaniasis, some of the factors involved with the establishment of infection and disease severity, and potential approaches for vaccine and drug development focused on host immunity.
Collapse
|
22
|
Duffin RN, Blair VL, Kedzierski L, Andrews PC. Anti-leishmanial activity and cytotoxicity of a series of tris-aryl Sb(V) mandelate cyclometallate complexes. J Inorg Biochem 2019; 203:110932. [PMID: 31790875 DOI: 10.1016/j.jinorgbio.2019.110932] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/15/2019] [Accepted: 11/17/2019] [Indexed: 01/21/2023]
Abstract
A series of ten cyclometallates and two μ2-peroxo bridged tris-aryl Sb(V) complexes derived from R/S-mandelic acid (= R/S-ManH2) were synthesised and characterised. As confirmed by X-ray crystallography the complexes 1Sr/s, [Sb(o-tol)3(man)], 2Sr/s, [Sb(m-tol)3(man)], 4Sr/s, [Sb(o-PhOMe)3(man)], 5Sr/s, [Sb(Mes)3(man)] and 6Sr/s, [Sb(p-tert-BuPh)3(man)] are all cyclometallates. Complexes 3Sr/s, [(Sb(p-tol)3(manH)2O2], contain a bridging O22- anion in the solid-state but convert to the cyclometallates in DMSO solution with concomitant release of H2O2 and formation of complexes [Sb(p-tol)3(man)], 3Sr'/s'. All complexes underwent initial testing against both human fibroblasts and L. major V121 promastigotes. IC50 values were found to range from 2.07 (6Sr) to >100 (4Sr) μM and 0.21 (5Ss) to >100 (4Ss) μM for fibroblasts and parasites respectively. Two of the complexes were found to be ineffective, displaying no toxicity (4S/r). Despite the degree of mammalian toxicity, the selectivity of most complexes exceeded an SI of three and so were assessed for their anti-amastigote activity. Excellent anti-amastigote activity was observed for complexes at both 10 μM and 5 μM, with percentage infection value ranging from 0.15-3.00% for those tested at 10 μM and 0.25-2.50% for those at 5 μM.
Collapse
Affiliation(s)
- Rebekah N Duffin
- School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Victoria L Blair
- School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Lukasz Kedzierski
- Faculty of Veterinary and Agricultural Sciences at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne 3000, Victoria, Australia
| | - Philip C Andrews
- School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia.
| |
Collapse
|
23
|
Conceição-Silva F, Morgado FN. Leishmania Spp-Host Interaction: There Is Always an Onset, but Is There an End? Front Cell Infect Microbiol 2019; 9:330. [PMID: 31608245 PMCID: PMC6761226 DOI: 10.3389/fcimb.2019.00330] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/04/2019] [Indexed: 01/09/2023] Open
Abstract
For a long time Leishmaniasis had been considered as a neglected tropical disease. Recently, it has become a priority in public health all over the world for different aspects such as geographic spread, number of population living at risk of infection as well as the potential lethality and/or the development of disfiguring lesions in the, respectively, visceral and tegumentary forms of the disease. As a result, several groups have been bending over this issue and many valuable data have been published. Nevertheless, parasite-host interactions are still not fully known and, consequently, we do not entirely understand the infection dynamics and parasite persistence. This knowledge may point targets for modulation or blockage, being very useful in the development of measures to interfere in the course of infection/ disease and to minimize the risks and morbidity. In the present review we will discuss some aspects of the Leishmania spp-mammalian host interaction in the onset of infection and after the clinical cure of the lesions. We will also examine the information already available concerning the parasite strategy to evade immune response mainly at the beginning of the infection, as well as during the parasite persistence. This knowledge can improve the conditions of treatment, follow-up and cure control of patients, minimizing the potential damages this protozoosis can cause to infected individuals.
Collapse
Affiliation(s)
- Fatima Conceição-Silva
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, IOC/Fiocruz, Rio de Janeiro, Brazil
| | - Fernanda N Morgado
- Laboratory of Leishmaniasis Research, Oswaldo Cruz Institute, IOC/Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|