1
|
Zhang Y, Shu X, Zhang Y, Song C, Wu Y, Cui K, Zhang X, Sun Y, Shen H, Wei Q, Li J, Shu Y. Astrocyte-derived MMP-9 is a key mediator of pseudorabies virus penetration of the blood-brain barrier and tight junction disruption. Vet Res 2025; 56:72. [PMID: 40176142 PMCID: PMC11963458 DOI: 10.1186/s13567-025-01486-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 01/17/2025] [Indexed: 04/04/2025] Open
Abstract
Pseudorabies virus (PRV) infection leads to viral encephalitis and neurological damage in mice, causing significant neurological symptoms and brain damage. This study aimed to investigate the cellular mechanisms of PRV-induced encephalopathy and the role of matrix metalloproteinase-9 (MMP-9) in blood-brain barrier (BBB) disruption. We found that PRV infection increased the number of astrocytes and induced a phenotypic shift from the A2 to the A1 subtype, which was associated with increased secretion of MMP-9. MMP-9 was identified as a critical mediator of PRV-induced BBB disruption, as it degrades collagen VI, leading to BBB damage. PRV was shown to penetrate the BBB via a paracellular pathway, and MMP-9 deletion reversed this damage, mitigating tight junction injury. Additionally, PRV infection caused an "inflammatory storm" in the central nervous system (CNS), with increased levels of the chemokines CCL-3, CCL-4, and CCL-5; the cytokines IL-6 and IL-18; and TNF-α. The expression of INF-γ was significantly decreased. In conclusion, PRV infection disrupts the BBB and induces an inflammatory response in the CNS, with MMP-9 playing a key role in mediating BBB damage. These findings provide insights into the pathogenesis of PRV-induced encephalopathy and potential therapeutic targets for viral encephalitis.
Collapse
Affiliation(s)
- Ying Zhang
- College of Veterinary Medicine of Yunnan Agricultural University, Kunming, 650201, Yunnan Province, China
| | - Xianghua Shu
- College of Veterinary Medicine of Yunnan Agricultural University, Kunming, 650201, Yunnan Province, China.
| | - Ying Zhang
- College of Veterinary Medicine of Yunnan Agricultural University, Kunming, 650201, Yunnan Province, China
| | - Chunlian Song
- College of Veterinary Medicine of Yunnan Agricultural University, Kunming, 650201, Yunnan Province, China
| | - Yi Wu
- College of Veterinary Medicine of Yunnan Agricultural University, Kunming, 650201, Yunnan Province, China
| | - Kesi Cui
- College of Veterinary Medicine of Yunnan Agricultural University, Kunming, 650201, Yunnan Province, China
| | - Xue Zhang
- College of Veterinary Medicine of Yunnan Agricultural University, Kunming, 650201, Yunnan Province, China
| | - Yalong Sun
- College of Veterinary Medicine of Yunnan Agricultural University, Kunming, 650201, Yunnan Province, China
| | - Hong Shen
- College of Veterinary Medicine of Yunnan Agricultural University, Kunming, 650201, Yunnan Province, China
| | - Qianfei Wei
- College of Veterinary Medicine of Yunnan Agricultural University, Kunming, 650201, Yunnan Province, China
| | - Jianqin Li
- College of Veterinary Medicine of Yunnan Agricultural University, Kunming, 650201, Yunnan Province, China
| | - Yue Shu
- The Faculty of Science and Mathematics, Auburn University, Auburn, AL, USA
| |
Collapse
|
2
|
Xu Q, Yang Y, Huang Q, Xie L, Feng Y, Yang L. Extracellular(Serum) Levels of Matrix Metalloproteinases in Pediatric Type 1 Diabetes Mellitus and Association with Diabetic Ketoacidosis and Cerebral Edema. Diabetes Metab Syndr Obes 2025; 18:819-830. [PMID: 40129484 PMCID: PMC11932032 DOI: 10.2147/dmso.s507337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/12/2025] [Indexed: 03/26/2025] Open
Abstract
Background Type 1 diabetes mellitus (T1DM) in children is associated with acute complications such as diabetic ketoacidosis (DKA) and the severe risk of diabetic ketoacidosis-related cerebral edema (DKACE). Matrix metalloproteinases (MMPs) are implicated in inflammation and tissue remodeling, potentially contributing to these complications. This study explores the role of MMPs as biomarkers in pediatric T1DM patients with DKA and DKACE. Methods We conducted a systematic cross-sectional study at Jiangxi Children's Hospital, enrolling 56 pediatric patients with T1DM, categorized into three groups: T1DM without complications, DKA, and DKACE. Serum levels of MMP-2, MMP-3, and MMP-9 were measured through ELISA. Statistical analyses assessed correlations between MMPs, glucose metabolism, and inflammatory markers, evaluating potential biomarker utility in disease characterization. Results MMP-3 and MMP-9 levels were significantly elevated in the DKACE group compared to the T1DM and DKA groups, exhibiting strong correlations with decreased pH and bicarbonate levels (both p < 0.001). MMP-2 levels were reduced in DKACE, correlating positively with pH and bicarbonate levels. Post-clinical improvement analyses demonstrated no significant differences in MMP levels between DKA and DKACE groups, suggesting stabilization post-treatment regardless of initial acidosis severity. Conclusion The distinct patterns of MMP-3 and MMP-9 elevations in DKACE highlight their potential as biomarkers for identifying and monitoring severe DKA complications. The findings suggest these enzymes play a significant role in cerebral edema pathophysiology, making them viable targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Qingbo Xu
- Department of Endocrinology, Jiangxi Provincial Children’s Hospital, Nanchang, Jiangxi, 330038, People’s Republic of China
- The Affiliated Children’s Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330038, People’s Republic of China
| | - Yu Yang
- Department of Endocrinology, Jiangxi Provincial Children’s Hospital, Nanchang, Jiangxi, 330038, People’s Republic of China
- The Affiliated Children’s Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330038, People’s Republic of China
| | - Qiang Huang
- Department of Endocrinology, Jiangxi Provincial Children’s Hospital, Nanchang, Jiangxi, 330038, People’s Republic of China
- The Affiliated Children’s Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330038, People’s Republic of China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, People’s Republic of China
| | - Liling Xie
- Department of Endocrinology, Jiangxi Provincial Children’s Hospital, Nanchang, Jiangxi, 330038, People’s Republic of China
- The Affiliated Children’s Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330038, People’s Republic of China
| | - Yaqin Feng
- Department of Endocrinology, Jiangxi Provincial Children’s Hospital, Nanchang, Jiangxi, 330038, People’s Republic of China
- The Affiliated Children’s Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330038, People’s Republic of China
| | - Li Yang
- Department of Endocrinology, Jiangxi Provincial Children’s Hospital, Nanchang, Jiangxi, 330038, People’s Republic of China
- The Affiliated Children’s Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330038, People’s Republic of China
| |
Collapse
|
3
|
Mielke MM, Fielding RA, Atkinson EJ, Aversa Z, Schafer MJ, Cummings SR, Pahor M, Leeuwenburgh C, LeBrasseur NK. Biomarkers of cellular senescence predict risk of mild cognitive impairment: Results from the lifestyle interventions for elders (LIFE) study. J Nutr Health Aging 2025; 29:100529. [PMID: 40056496 DOI: 10.1016/j.jnha.2025.100529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 01/30/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
OBJECTIVES Cellular senescence, characterized by a marked and multifactorial senescence-associated secretory phenotype (SASP), is a potential unifying mechanism of aging and chronic disease. Most studies of the SASP have focused on frailty and other functional outcomes. Senescent cells have been detected in the brains of patients with Alzheimer's disease, but few studies have examined associations between plasma SASP markers and cognition. The objective of this study was to examine the cross-sectional and longitudinal associations between plasma SASP markers and mild cognitive impairment among older adults at high risk of mobility disability. DESIGN The Lifestyle Interventions for Elders (LIFE) study was a randomized controlled trial of a group-based physical activity program compared to a "successful aging" health education program to assess effects on major mobility disability that was conducted from February 2010 to December 2013. SETTING Recruitment occurred at eight centers in the United States. PARTICIPANTS We included 1,373 participants enrolled in the study with baseline measures of 27 biomarkers of cellular senescence and adjudication of mild cognitive impairment (MCI) and dementia at baseline and 24-month follow-up. At baseline, participants were aged 70-80, sedentary, and at high risk of mobility disability. MEASUREMENTS A neuropsychological assessment was administered at baseline and 24 months post-randomization. At both timepoints, a clinical adjudication committee determined whether individuals had a diagnosis of cognitively normal, MCI, or dementia; individuals with dementia at baseline were excluded. The concentrations of 26 of the 27 plasma proteins identified as components of the SASP were measured with commercially available Luminex xMAP multiplex magnetic bead-based immunoassays analyzed on the MAGPIX System while 1 protein (Activin A) was measured using an enzyme-linked immunosorbent assay. RESULTS Logistic regression models were used to examine the associations of each senescence biomarker, in quartiles, with baseline or incident MCI. Models stratified by clinical site and adjusted for intervention assignment, age, gender, race, and education. Among 1,373 participants, 117 (8.5%) were diagnosed with MCI at baseline. Increasing quartiles of myeloperoxidase (MPO) was associated with higher odds of MCI compared to quartile 1 (Q2: OR = 1.34, 95% CI: 0.74-2.45; Q3: OR = 1.43, 95% CI: 0.80-2.59; Q4: OR = 1.79, 95% CI: 1.02-3.22). Additionally, matrix metalloproteinase 1 (MMP1) quartiles 2-4 had lower odds of MCI compared to quartile 1 (Q2: OR = 0.61, 95% CI: 0.35-1.02; Q3: OR = 0.58, 95% CI: 0.33-0.98; Q4: OR = 0.64, 95% CI: 0.37-1.08). Of the 1,256 cognitively unimpaired participants at baseline, 141 (11.2%) were diagnosed with incident MCI or dementia at the 24-month follow-up. Compared to quartile 1, increasing baseline quartiles of MPO (Q2: OR = 1.10, 95% CI: 0.63-1.92; Q3: OR = 1.36, 95% CI: 0.80-2.33; Q4: OR = 1.92, 95% CI: 1.16-3.25) and matrix metalloproteinase 7 (MMP7, Q2: OR = 0.88, 95% CI: 0.47-1.62; Q3: OR = 1.46, 95% CI: 0.85-2.55; Q4: OR = 2.14, 95% CI: 1.28-3.65) were associated with increased odds of MCI or dementia at 24 months. CONCLUSIONS Among older adults at high risk of mobility disability, high plasma MPO was cross-sectionally and, along with MMP7, longitudinally associated with increased odds of MCI and dementia. In contrast, high MMP1 was cross-sectionally associated with reduced odds of MCI.
Collapse
Affiliation(s)
- Michelle M Mielke
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, United States.
| | - Roger A Fielding
- Metabolism and Basic Biology of Aging Directive, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, United States.
| | - Elizabeth J Atkinson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States.
| | - Zaira Aversa
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States; Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, United States.
| | - Marissa J Schafer
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States.
| | - Steven R Cummings
- Departments of Medicine, Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, United States; Research Institute, California Pacific Medical Center, San Francisco, CA, United States.
| | - Marco Pahor
- Principle Investigator of the LIFE Study, Independent Scholar, Miami, FL, United States.
| | - Christiaan Leeuwenburgh
- Department of Physiology and Aging, Institute on Aging, University of Florida, Gainesville, FL, United States.
| | - Nathan K LeBrasseur
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States; Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
4
|
Liu D, Liu L, Zhang X, Zhao X, Li X, Che X, Wu G. Decoding driver and phenotypic genes in cancer: Unveiling the essence behind the phenomenon. Mol Aspects Med 2025; 103:101358. [PMID: 40037122 DOI: 10.1016/j.mam.2025.101358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/25/2025] [Accepted: 02/26/2025] [Indexed: 03/06/2025]
Abstract
Gray hair, widely regarded as a hallmark of aging. While gray hair is associated with aging, reversing this trait through gene targeting does not alter the fundamental biological processes of aging. Similarly, certain oncogenes (such as CXCR4, MMP-related genes, etc.) can serve as markers of tumor behavior, such as malignancy or prognosis, but targeting these genes alone may not lead to tumor regression. We pioneered the name of this class of genes as "phenotypic genes". Historically, cancer genetics research has focused on tumor driver genes, while genes influencing cancer phenotypes have been relatively overlooked. This review explores the critical distinction between driver genes and phenotypic genes in cancer, using the MAPK and PI3K/AKT/mTOR pathways as key examples. We also discuss current research techniques for identifying driver and phenotypic genes, such as whole-genome sequencing (WGS), RNA sequencing (RNA-seq), RNA interference (RNAi), CRISPR-Cas9, and other genomic screening methods, alongside the concept of synthetic lethality in driver genes. The development of these technologies will help develop personalized treatment strategies and precision medicine based on the characteristics of relevant genes. By addressing the gap in discussions on phenotypic genes, this review significantly contributes to clarifying the roles of driver and phenotypic genes, aiming at advancing the field of targeted cancer therapy.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Lei Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xiaoman Zhang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xinming Zhao
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xiaorui Li
- Department of Oncology, Cancer Hospital of Dalian University of Technology, Shenyang, 110042, China.
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
5
|
Abe K, Yokota S, Matsumoto S, Ujiie H, Kikuchi E, Satoh K, Ishisaki A, Chosa N. Proinflammatory cytokine-induced matrix metalloproteinase-9 expression in temporomandibular joint osteoarthritis is regulated by multiple intracellular mitogen-activated protein kinase pathways. J Oral Biosci 2025; 67:100609. [PMID: 39755166 DOI: 10.1016/j.job.2024.100609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025]
Abstract
OBJECTIVES Temporomandibular joint (TMJ) osteoarthritis (OA) is an inflammatory disease that involves periarthritis of the TMJ and destruction of cartilage tissue in the mandibular condyle. However, the role of proinflammatory cytokines in the expression levels of matrix metalloproteinase (MMP) remains inconclusive. Thus, in this study, we aimed to investigate the effect of proinflammatory cytokines on the expression of MMPs. METHODS FLS1 cells (mouse TMJ-derived synovial cell line) were treated with tumor necrosis factor alpha (TNF-α) or interleukin (IL)-1β in the presence or absence of mitogen-activated protein kinase (MAPK) inhibitors. The mRNA expression levels of MMP-2 and MMP-9 were examined by reverse transcription-quantitative polymerase chain reaction. Additionally, the phosphorylation status of extracellular signal-regulated kinase (ERK)1/2 and p38 MAPK in the FLS1 cells treated with TNF-α or IL-1β was evaluated by performing western blotting analysis. RESULTS TNF-α and IL-1β significantly increased the expression of MMP-9 in the FLS1 cells; however, MMP-2 expression remained unaffected. Mitogen-activated protein kinase kinase (MEK) and p38 MAPK inhibitors significantly suppressed cytokine-induced MMP-9 upregulation. Conversely, Jun amino-terminal kinase (JNK) inhibitors further increased MMP-9 expression in the cells treated with TNF-α or IL-1β. Moreover, TNF-α and IL-1β enhanced ERK1/2 and p38 MAPK phosphorylation in the FLS1 cells. CONCLUSIONS TNF-α and IL-1β induced MMP-9 expression in the FLS1 cells via the MEK/ERK and p38 MAPK pathways and suppressed it via the JNK pathway. Thus, proinflammatory cytokines control MMP-9 expression in TMJ-OA by regulating multiple MAPK pathways.
Collapse
Affiliation(s)
- Karen Abe
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba, Iwate, 028-3694, Japan; Division of Orthodontics, Department of Developmental Oral Health Science, Iwate Medical University School of Dentistry, Morioka, Iwate, 020-8505, Japan
| | - Seiji Yokota
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba, Iwate, 028-3694, Japan
| | - Shikino Matsumoto
- Division of Orthodontics, Department of Developmental Oral Health Science, Iwate Medical University School of Dentistry, Morioka, Iwate, 020-8505, Japan
| | - Hayato Ujiie
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba, Iwate, 028-3694, Japan
| | - Emiko Kikuchi
- Division of Orthodontics, Department of Developmental Oral Health Science, Iwate Medical University School of Dentistry, Morioka, Iwate, 020-8505, Japan
| | - Kazuro Satoh
- Division of Orthodontics, Department of Developmental Oral Health Science, Iwate Medical University School of Dentistry, Morioka, Iwate, 020-8505, Japan
| | - Akira Ishisaki
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba, Iwate, 028-3694, Japan
| | - Naoyuki Chosa
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba, Iwate, 028-3694, Japan.
| |
Collapse
|
6
|
Zhou H, Kee HJ, Wan L, Asfaha Y, Fischer F, Kassack MU, Kurz T, Kim SH, Kee SJ, Hong YJ, Jeong MH. YAK577 Attenuates Cardiac Remodeling and Fibrosis in Isoproterenol-Infused Heart Failure Mice by Downregulating MMP12. Korean Circ J 2025; 55:231-247. [PMID: 39601396 PMCID: PMC11922594 DOI: 10.4070/kcj.2024.0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/01/2024] [Accepted: 09/09/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Heart failure is a potentially fatal event caused by diverse cardiovascular diseases, leading to high morbidity and mortality. Histone deacetylase (HDAC) inhibitors positively influence cardiac hypertrophy, fibrosis, hypertension, myocardial infarction, and heart failure, causing some side effects. We aimed to investigate the effect of the novel HDAC inhibitor YAK577 on the heart failure mouse model and its underlying mechanism. METHODS New hydroxamic acid YAK577 was prepared via methyl-2,3-diphenylpropanoate synthesis using carboxylic acids. We used a micro-osmotic pump, including isoproterenol (ISO; 80 mg/kg/day), to induce a heart failure with reduced ejection fraction. Cardiac hypertrophy was assessed by heart weight to body weight ratio and cross-sectional area. The left ventricular (LV) function was assessed by echocardiography. Fibrosis was evaluated using picrosirius red staining. Overexpression and knockdown experiments were performed to investigate the association between HDAC8 and matrix metalloproteinase 12 (MMP12). RESULTS YAK577 treatment restored ISO-induced reduction in LV fractional shortening and ejection fraction (n=9-11). YAK577 significantly downregulated cardiac hypertrophy marker genes (natriuretic peptide B, NPPB, and myosin heavy chain 7, MYH7) and cardiomyocyte size in vitro but not in vivo. YAK577 ameliorated cardiac fibrosis and fibrosis-related genes in vivo and in vitro. Additionally, YAK577 reduced elevated HDAC8 and MMP12 mRNA and protein expressions in ISO-infused mice, H9c2 cells, and rat neonatal cardiomyocytes. HDAC8 overexpression stimulated MMP12 and NPPB mRNA levels, while HDAC8 knockdown downregulated these genes. CONCLUSIONS YAK577 acts as a novel heart failure drug through the HDAC8/MMP12 pathway.
Collapse
Affiliation(s)
- Hongyan Zhou
- Heart Research Center of Chonnam National University Hospital, Gwangju, Korea
- Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Hae Jin Kee
- Heart Research Center of Chonnam National University Hospital, Gwangju, Korea
- Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Korea.
| | - Le Wan
- Deparment of Orthopedics, Chonnam National University Hospital, Gwangju, Korea
| | - Yodita Asfaha
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstrβe 1, Düsseldorf, Germany
| | - Fabian Fischer
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstrβe 1, Düsseldorf, Germany
| | - Matthias U Kassack
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstrβe 1, Düsseldorf, Germany
| | - Thomas Kurz
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstrβe 1, Düsseldorf, Germany
| | - Seong Hoon Kim
- Department of Cardiology, Chonnam National University Medical School, Gwangju, Korea
| | - Seung-Jung Kee
- Department of Laboratory Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Young Joon Hong
- Department of Cardiology, Chonnam National University Medical School, Gwangju, Korea
| | - Myung Ho Jeong
- Heart Research Center of Chonnam National University Hospital, Gwangju, Korea
- Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Korea
- Department of Cardiology, Gwangju Veterans Hospital, Gwangju, Korea.
| |
Collapse
|
7
|
Luo D, Zheng L, Ding M, Yu D, Chen T, Zheng K, Jing J, Yao Y. Metalloproteomic analysis of hemophilic arthropathy synovial tissue: insights into metal overload and pathogenesis. J Thromb Haemost 2025; 23:888-902. [PMID: 39709053 DOI: 10.1016/j.jtha.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/18/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Hemophilic arthropathy (HA) is a joint disease characterized by local iron overload stemming from erythrocyte rupture and closely linked to synovial lesions. However, the precise molecular characteristics of clinical HA synovial samples remain to be defined. OBJECTIVES To gain insight into HA synovial tissue lesions, we utilized a metalloprotein strategy to compare the metal and protein spectra of HA with those of osteoarthritis and rheumatoid arthritis. METHODS We collected synovial samples from patients with HA, osteoarthritis, and rheumatoid arthritis. Tissue metal and protein profiles were obtained by metallomics and proteomics, respectively. Finally, metalloproteomics strategies compared metal content, proteins, metalloproteins, and the life processes involved. RESULTS Our metallomics analysis revealed an explicit increase in heavy metal content, particularly arsenic and mercury, in HA synovial samples. Through proteomics, we delineated specific metalloproteins and identified correlations between metals and pathways. CONCLUSION These findings yield valuable insights into the pathogenesis of HA and offer potential therapeutic targets for conditions characterized by iron overload.
Collapse
Affiliation(s)
- Dasheng Luo
- Department of Orthopaedic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, China; Department of Orthopaedic Surgery, Anhui No.2 Provincial People's Hospital, Hefei, Anhui, China
| | - Liujie Zheng
- Department of Orthopaedic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, China; Department of Orthopaedics, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Mingyang Ding
- Department of Orthopaedic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Defu Yu
- Department of Orthopaedic Surgery, Anhui No.2 Provincial People's Hospital, Hefei, Anhui, China
| | - Tao Chen
- Department of Orthopaedic Surgery, Anhui No.2 Provincial People's Hospital, Hefei, Anhui, China
| | - Ke Zheng
- Department of Orthopaedic Surgery, Anhui No.2 Provincial People's Hospital, Hefei, Anhui, China
| | - Juehua Jing
- Department of Orthopaedic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yunfeng Yao
- Department of Orthopaedic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
8
|
Gao Y, Ma X, Shi Z, Zhu M, Yang Z, Tao Z, Niu N. MMP expression and its clinical significance in intervertebral disc destruction of spinal tuberculosis, Brucellar spondylitis, and pyogenic spondylitis. J Orthop Surg Res 2025; 20:208. [PMID: 40016774 PMCID: PMC11866808 DOI: 10.1186/s13018-025-05622-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/17/2025] [Indexed: 03/01/2025] Open
Abstract
OBJECTIVE This study is designed to investigate the roles of MMP-2, MMP-9, and MMP-13 in intervertebral disc destruction resulting from different types of spinal infections and their correlations with clinical quantitative data. METHODS Disc tissue samples were collected from 60 patients with spinal infections (20 cases each of STB, BS, and PS in the infection group) and 20 patients with intervertebral disc herniation (control group). The expressions of MMP-2, MMP-9, and MMP-13 were detected by RT-qPCR. Correlation analysis was carried out with clinical quantitative data such as preoperative erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), interleukin-6 (IL-6), procalcitonin (PCT), and related blood routine indicators in the infection group. RESULTS In the analysis between the infection group and the control group, MMP-13 was expressed in the diseased intervertebral disc tissue of STB patients, but the result was not statistically significant (P = 0.2172). There was a significant difference in the expression of MMP-13 in the diseased intervertebral discs of BS and PS patients. The expressions of MMP-9 and MMP-2 were markedly increased in the diseased intervertebral disc tissue of STB, BS, and PS patients (all P < 0.05). In the inter-group analysis of the infection group, the expression of MMP-13 in the diseased intervertebral disc tissue of PS patients was significantly different from that of STB and BS (P < 0.0001), while there was no significant difference between the STB and BS groups (P = 0.2393). The expression of MMP-9 in the diseased intervertebral disc tissue of STB patients was significantly different from that of BS and PS (P < 0.0001), but there was no statistically significant difference between the BS and PS groups (P = 0.9643). There was no statistically significant difference in the expression of MMP-2 among the STB, BS, and PS groups. In the correlation analysis with clinical quantitative data, MMP-13 was positively correlated with CRP, ESR, IL-6, WBC, and NEUT levels (r values were 0.7346, 0.3465, 0.3326, 0.6347, and 0.5152 respectively), and negatively correlated with LYM level (r = -0.5152, P < 0.05), and had no correlation with PCT and MXD levels. MMP-9 was positively correlated with ESR level (r = 0.3412, P < 0.05) and had no correlation with CRP, IL-6, PCT, WBC, NEUT, and LYM levels. MMP-2 was positively correlated with NEUT and LYM levels (r values were 0.3021 and 0.3306 respectively, P < 0.05) and had no correlation with ESR, CRP, IL-6, PCT, and WBC levels. CONCLUSION MMP-2, MMP-9, and MMP-13 play crucial roles in intervertebral disc destruction due to spinal infections. The differential expression of MMPs may be one of the reasons for the varying degrees of intervertebral disc destruction in different types of spinal infections. Moreover, when clinical indicators such as CRP, ESR, IL-6, WBC, and NEUT increase, it suggests that the expression of MMP-13 in the intervertebral disc at the lesion site significantly rises, and it may become a new target for the treatment of spinal infections in the future.
Collapse
Affiliation(s)
- Yuxin Gao
- Department of Orthopedic, General Hospital of Ningxia Medical University, Ningxia Hui Autonomous Region, No.804 Shengli Street, Yinchuan, 750004, China
- School of Clinical Medicine, Ningxia Medical University, Ningxia Hui Autonomous Region, Yinchuan, 750004, China
| | - Xiaojun Ma
- Department of Orthopedic, General Hospital of Ningxia Medical University, Ningxia Hui Autonomous Region, No.804 Shengli Street, Yinchuan, 750004, China
- School of Clinical Medicine, Ningxia Medical University, Ningxia Hui Autonomous Region, Yinchuan, 750004, China
| | - Zhiyun Shi
- School of Clinical Medicine, Ningxia Medical University, Ningxia Hui Autonomous Region, Yinchuan, 750004, China
- Medical Laboratory Center, General Hospital of Ningxia medical University, Yinchuan Ningxia Hui Autonomous Region, 750004, China
| | - Mengqi Zhu
- Department of Orthopedic, General Hospital of Ningxia Medical University, Ningxia Hui Autonomous Region, No.804 Shengli Street, Yinchuan, 750004, China
- School of Clinical Medicine, Ningxia Medical University, Ningxia Hui Autonomous Region, Yinchuan, 750004, China
| | - Zongqiang Yang
- Department of Orthopedic, General Hospital of Ningxia Medical University, Ningxia Hui Autonomous Region, No.804 Shengli Street, Yinchuan, 750004, China
- School of Clinical Medicine, Ningxia Medical University, Ningxia Hui Autonomous Region, Yinchuan, 750004, China
| | - Zhengyong Tao
- Department of Orthopedic, General Hospital of Ningxia Medical University, Ningxia Hui Autonomous Region, No.804 Shengli Street, Yinchuan, 750004, China
- School of Clinical Medicine, Ningxia Medical University, Ningxia Hui Autonomous Region, Yinchuan, 750004, China
| | - Ningkui Niu
- Department of Orthopedic, General Hospital of Ningxia Medical University, Ningxia Hui Autonomous Region, No.804 Shengli Street, Yinchuan, 750004, China.
- Research Center for Prevention and Control of Bone and Joint Tuberculosis, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
| |
Collapse
|
9
|
Zhao P, Li Y, Guo B, Liu Z, Zhang X, Liu M, Ma X. Hydrogen-Releasing Micromaterial Dressings: Promoting Wound Healing by Modulating Extracellular Matrix Accumulation Through Wnt/β-Catenin and TGF-β/Smad Pathways. Pharmaceutics 2025; 17:279. [PMID: 40142944 PMCID: PMC11944919 DOI: 10.3390/pharmaceutics17030279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Wound healing is a complex and intricate biological process that involves multiple systems within the body and initiates a series of highly coordinated responses to repair damage and restore integrity and functionality. We previously identified that breathing hydrogen can significantly inhibit early inflammation, activate autologous stem cells, and promote the accumulation of extracellular matrix (ECM). However, the broader functions and downstream targets of hydrogen-induced ECM accumulation and tissue remodeling are unknown in the wound-healing process. Methods: Consequently, this thesis developed a hydrogen sustained-release dressing based on a micro storage material and reveals the mechanism of hydrogen in treating wound healing. Upon encapsulating the hydrogen storage materials, magnesium (Mg), and ammonia borane (AB), we found that SiO2@Mg exhibits superior sustained-release performance, while SiO2@AB demonstrates a higher hydrogen storage capacity. We used a C57/BL6 mouse full-thickness skin defect wound model to analyze and compare different hydrogen dressings. Results: It was identified that hydrogen dressings can significantly improve the healing rate of wounds by promoting epithelialization, angiogenesis, and collagen accumulation in wound tissue, and that the effect of slow-release dressings is better than of non-slow-release dressings. We also found that hydrogen dressing can promote transcriptome-level expression related to cell proliferation and differentiation and ECM accumulation, mainly through the Wnt1/β-catenin pathway and TGF-β1/Smad2 pathway. Conclusions: Overall, these results provide a novel insight into the field of hydrogen treatment and wound healing.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xuemei Ma
- College of Chemistry and Life Sciences, Beijing University of Technology, Beijing 100124, China; (P.Z.); (Y.L.); (B.G.); (Z.L.); (X.Z.); (M.L.)
| |
Collapse
|
10
|
Nan Y, Wang Y, Dong Y, Liu Y, Ge X, Chen Y, Long M, Zhou X. Impact of Hypoxia-Inducible Factor-1α on Host Immune Metabolism and Tissue Damage During Mycobacterium bovis Infection. J Infect Dis 2025; 231:355-365. [PMID: 38843067 DOI: 10.1093/infdis/jiae305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/05/2024] [Indexed: 02/21/2025] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α) is a pivotal regulator of metabolic and inflammatory responses. This study investigated the role of HIF-1α in Mycobacterium bovis infection and its effects on host immune metabolism and tissue damage. We evaluated the expression of immunometabolism markers and matrix metalloproteinases (MMPs) in cells infected with M. bovis, and following HIF-1α inhibition in vitro. To understand the implications of HIF-1α inhibition on disease progression, mice at different infection stages were treated with the HIF-1α inhibitor, YC-1. Our results revealed an upregulation of HIF-1α in macrophages after M. bovis infection, facilitating enhanced M1 macrophage polarization. Blockade of HIF-1α moderated these responses but escalated MMP activity, hindering bacterial control. Consistent with our in vitro results, early-stage treatment of mice with YC-1 aggravated pathological alterations and tissue damage, while late-stage HIF-1α inhibition proved beneficial in managing the disease. Our findings underscored the nuanced role of HIF-1α across different phases of M. bovis infection.
Collapse
Affiliation(s)
- Yue Nan
- National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing, China
| | - Yuanzhi Wang
- National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing, China
| | - Yuhui Dong
- National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing, China
| | - Yiduo Liu
- National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing, China
| | - Xin Ge
- National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing, China
| | - Yulan Chen
- National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing, China
| | - Meizhen Long
- National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing, China
| | - Xiangmei Zhou
- National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Lv Y, Wang L, Zhang Y, Wei D, Hu Y. circDENND4C serves as a sponge for miR-200b to drive non-small cell lung cancer advancement by regulating MMP-9 expression. Front Oncol 2025; 15:1441384. [PMID: 40034591 PMCID: PMC11872906 DOI: 10.3389/fonc.2025.1441384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 01/24/2025] [Indexed: 03/05/2025] Open
Abstract
Introduction Lung cancer has a higher incidence and mortality rate than other cancers, especially non-small cell lung cancer (NSCLC), accounting for 85% of the cases. The role of the circDENND4C/miR-200b/matrix metalloproteinase-9 (MMP-9) regulatory axis in NSCLC remains largely unknown. Methods NSCLC cell lines were used to examine the expression of circDENND4C, miR-200b, and MMP-9 via qRT-PCR or Western blot. The target relationship of circDENND4C, miR-200b, and MMP-9 was examined by RNA fluorescence in situ hybridization (RNA-FISH), immunofluorescence (IF), dual-luciferase reporter system, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot. Then, a cell count kit-8 (CCK-8) experiment, flow cytometry, and migration/invasion assays were performed to assess the biological function of circDENND4C, miR-200b, and MMP-9 by transfecting with their overexpression or knockout plasmids in A549 cells. Finally, the proteins related to cell adhesion and tight junction were further tested by Western blot and IF. Results circDENND4C and MMP-9 were found to be highly expressed in NSCLC cell lines, while miR-200b was lowly expressed in NSCLC cell lines. Moreover, circDENND4C could sponge miR-200b to target MMP-9. Subsequently, it was observed that knockdown of circDENND4C and MMP-9 or the upregulation of miR-200b repressed cell proliferation and cell cycle progression, increased cell apoptosis, and hindered cell migration and invasion. Finally, it was also found that the circDENND4C/miR-200b/MMP-9 regulatory axis might be involved with cell adhesion and tight junction to influence tumor metastasis. Conclusions Altogether, our study reveals a novel regulatory loop in which the circDENND4C/miR-200b/MMP-9 axis may modulate NSCLC progression, indicating potential biomarkers for the diagnosis or treatment of NSCLC.
Collapse
Affiliation(s)
- Yaming Lv
- Department of Respiratory Medicine, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of Respiratory Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Lan Wang
- Department of Respiratory Medicine, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of Respiratory Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Yunhui Zhang
- Department of Respiratory Medicine, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of Respiratory Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Dong Wei
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yajie Hu
- Department of Respiratory Medicine, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of Respiratory Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
12
|
Liu Z, Sun T, Zhang Z, Piao C, Kong C, Zhang X. METTL14-mediated m6A modification of ZFP14 inhibits clear cell renal cell carcinoma progression via promoting STAT3 ubiquitination. Clin Transl Med 2025; 15:e70232. [PMID: 39936533 DOI: 10.1002/ctm2.70232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 02/13/2025] Open
Abstract
Therapeutic options for advanced clear cell renal cell carcinoma (ccRCC) are currently inadequate. Earlier research has shown that the enzyme methyltransferase-like 14 (METTL14) can suppress ccRCC development through the modification of N6-methyladenosine (m6A). This study further explored its complex biological functions and underlying molecular mechanisms. Here, we identified zinc finger protein 14 (ZFP14) as a novel target of METTL14-mediated m6A, and its under-expression was associated with ccRCC tumourigenesis and progression. Detailed investigations revealed that METTL14 interacted directly with the 3' untranslated region of ZFP14 mRNA, promoting m6A modification at two specific sites. These modifications were recognised by the protein insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2), which stabilised and enhanced the expression of ZFP14 mRNA. Functionally, the METTL14/ZFP14 axis suppressed in vitro growth, migration and invasiveness and in vivo proliferation and metastasis of ccRCC cells. ZFP14 potentially regulated numbers of transcripts, among which matrix metalloproteinase 1/3 (MMP1/3) were validated to be under-expressed by ZFP14. Crucially, ZFP14 interacted with the signal transducer and activator of transcription 3 (STAT3), augmenting its K48-linked ubiquitination and destabilising it via the proteasome pathway. Moreover, ZFP14 repressed ccRCC cell in vivo growth and metastasis as well as decreasing MMP1/3 levels by under-expressing STAT3. These observations confirmed that ZFP14 served as both a novel target for METTL14-mediated m6A modification and a significant tumour suppressor in ccRCC, shedding light on the cellular and molecular operations in ccRCC and opening up possibilities for novel therapeutic strategies. KEY POINTS: ZFP14 under-expression is associated with ccRCC tumourigenesis and progression. METTL14-mediated m6A enhances ZFP14 mRNA stability and expression with IGF2BP2 as the reader in ccRCC. ZFP14 promotes the degradation of STAT3 by enhancing its K48-linked ubiquitination, inhibiting ccRCC progression.
Collapse
Affiliation(s)
- Zhuonan Liu
- Department of Urology, First Hospital of China Medical University, Shenyang City, Liaoning Province, China
| | - Tianshui Sun
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhe Zhang
- Department of Urology, First Hospital of China Medical University, Shenyang City, Liaoning Province, China
| | - Chiyuan Piao
- Department of Urology, First Hospital of China Medical University, Shenyang City, Liaoning Province, China
| | - Chuize Kong
- Department of Urology, First Hospital of China Medical University, Shenyang City, Liaoning Province, China
| | - Xiaotong Zhang
- Department of Urology, First Hospital of China Medical University, Shenyang City, Liaoning Province, China
| |
Collapse
|
13
|
Ulrich CC, Parker LL, Lambert JA, Baldwin L, Buxton ILO, Etezadi-Amoli N, Leblanc N, Burkin HR. Matrix Metallopeptidase 9 Promotes Contraction in Human Uterine Myometrium. Reprod Sci 2025; 32:444-454. [PMID: 39776427 PMCID: PMC11825266 DOI: 10.1007/s43032-024-01778-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025]
Abstract
Matrix metallopeptidase 9 (MMP9) is a secreted zinc-dependent peptidase known for extracellular remodeling. MMP9 is elevated in tissues from women experiencing preterm labor, and previous research has shown that the addition of combined matrix metallopeptidases 2 and 9 (MMP2/9) enhances uterine contractions. We hypothesized that adding MMP9 alone would enhance myometrial contractions and that specific MMP9 inhibition would suppress uterine contractions. In myometrial tissue from women undergoing term Caesarean sections, we observed an increased contractile response as measured by area under the curve over time in tissues treated with MMP9 compared to vehicle-treated controls (p = 0.0003). This effect was primarily due to increased contraction frequency in MMP9-treated tissues compared to controls (p < 0.0001). Specific inhibition of MMP9 with the highly selective MMP9 inhibitor 1 (AG-L-66085) reduced contractile responses in myometrial tissues from pregnant women. We observed a reduction in the oxytocin-induced contractile response as measured by area under the curve over time (p < 0.0001) and contraction amplitude (p < 0.0068) in AG-L-66085-treated tissues compared to vehicle-treated controls. To determine the effects of MMP9 inhibition in the absence of exogenous oxytocin, we tested the effects of AG-L-66085 on spontaneous contractions. The area under the curve (p = 0.0415) and amplitude (p = 0.0354) of spontaneous contractions were reduced in response to 1 μM AG-L-66085, and the inhibitory effects increased as the AG-L-66085 concentration increased. Together, these data support the hypothesis that elevated MMP9 promotes myometrial contractions and labor, while its inhibition promotes relaxation.
Collapse
Affiliation(s)
- Craig C Ulrich
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia St., Reno, NV, 89557, USA
| | - Lauren L Parker
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia St., Reno, NV, 89557, USA
| | - Janet A Lambert
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia St., Reno, NV, 89557, USA
| | - Lexa Baldwin
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia St., Reno, NV, 89557, USA
| | - Iain L O Buxton
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia St., Reno, NV, 89557, USA
| | - Neda Etezadi-Amoli
- Department of Obstetrics and Gynecology, University of Nevada, Reno School of Medicine, 1664 North Virginia St., Reno, NV, 89557, USA
| | - Normand Leblanc
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia St., Reno, NV, 89557, USA
| | - Heather R Burkin
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia St., Reno, NV, 89557, USA.
| |
Collapse
|
14
|
Yıldırım AB, Göl M, Yiğin A, Çimen L, Dinç H, Yıldız H, Kayar B. Therapeutic use of fisetin and pirfenidone combination in bleomycin-induced pulmonary fibrosis in adult male albino rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1665-1679. [PMID: 39162796 DOI: 10.1007/s00210-024-03363-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024]
Abstract
Pulmonary fibrosis is an important health problem; one of the drugs used in its treatment is pirfenidone (PFD). Fisetin (FST) is a flavonoid with antioxidative, anti-inflammatory, and antifibrotic effects. The aim of this study was to induce PF in rats with bleomycin (BLM) and to investigate the combined effect of PFD and FST in the treatment of fibrosis. In the study, 40 male Wistar rats were divided into five groups (n = 8). Sham group was administered saline on day 0 and BLM (5 mg/kg, i.t.) was administered to the other groups; BLM + PFD group: PFD (50 mg/kg) was administered every day between the first and 15th days; BLM + FST group: FST (25 mg/kg) was administered between the first and 15th days; BLM + PFD + FST group: PFD (50 mg/kg) and FST (25 mg/kg) were administered by gavage every day between the first and 15th days. At the end of the 15th day, BAL was performed under anaesthesia and lung tissues were removed. Histopathological, biochemical, and RT-PCR analyses were performed in the lung tissue. In our study, the concomitant use of FST and PFD caused downregulation of NF-κB p65, TGF-β1, and α-SMA expressions; downregulation of TIMP-1, MMP-2, and MMP-9 genes; downregulation of HYP, MPO, and MDA activity; decrease in the number of differential cells in BAL; and upregulation of GSH. This shows that FST and PFD have antifibrotic, antioxidative, and anti-inflammatory effects. Our results show that the combined use of PFD and FST in BLM-induced pulmonary fibrosis reduces extracellular matrix accumulation, downregulates the level of gelatinases and their inhibitors, and provides significant improvements in antioxidative defence parameters.
Collapse
Affiliation(s)
- Ayşegül Burçin Yıldırım
- Department of Histology and Embryology, Faculty of Medicine, Gaziantep Islam Science and Technology University, Gaziantep, Turkey.
| | - Mehmet Göl
- Department of Physiology, Faculty of Medicine, Gaziantep Islam Science and Technology University, Gaziantep, Turkey
| | - Akın Yiğin
- Department of Veterinary Genetics, Faculty of Veterinary, Harran University, Şanlıurfa, Turkey
| | - Leyla Çimen
- Department of Biochemistry, Faculty of Medicine, Gaziantep Islam Science and Technology University, Gaziantep, Turkey
| | - Hikmet Dinç
- Department of Pharmacology, Faculty of Medicine, Gaziantep Islam Science and Technology University, Gaziantep, Turkey
| | - Hamit Yıldız
- Department of Internal Diseases, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Begüm Kayar
- Department of Microbiology, Faculty of Medicine, Gaziantep Islam Science and Technology University, Gaziantep, Turkey
| |
Collapse
|
15
|
Cui G, Wang M, Liu Z, Chang C, Wu Y, Li X, Sun Z. Investigating the therapeutic effects and potential mechanisms of Zuojin Pill in the treatment of gastroesophageal reflux disease. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119230. [PMID: 39662861 DOI: 10.1016/j.jep.2024.119230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/25/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zuojin Pill (ZJP), a traditional Chinese medicinal formula, is widely recognized for its diverse pharmacological properties in the management of gastrointestinal disorders. However, the precise mechanisms underlying its therapeutic effects in gastroesophageal reflux disease (GERD) remain inadequately understood. AIM OF THE STUDY This study aims to investigate the therapeutic effects of ZJP in GERD and to elucidate the molecular mechanisms involved. MATERIALS AND METHODS The chemical composition of ZJP was characterized using HPLC-Q-Exactive-MS. A rat model of GERD was established through esophagogastric anastomosis, and three different doses of ZJP were administered. Histological changes were assessed via hematoxylin-eosin (H&E) staining, while pro-inflammatory cytokines were quantified to evaluate the anti-inflammatory effects of ZJP. Network pharmacology combined with bioinformatics analysis was employed to predict potential therapeutic targets and signaling pathways of ZJP in GERD. Validation of the mechanisms was conducted through Western blotting, immunofluorescence (IF), transmission electron microscopy (TEM), and immunohistochemistry (IHC). RESULTS The results demonstrated that ZJP effectively alleviated pathological alterations and reduced pro-inflammatory cytokine levels in esophageal tissues of GERD rats. Western blotting and IF analysis of E-cadherin and claudin-1 confirmed that ZJP enhanced the integrity of the esophageal mucosal barrier. TEM imaging revealed that ZJP restored intercellular space (DIS), increased desmosome density, thereby protecting esophageal tissues from the detrimental effects of GERD. Furthermore, ZJP modulated macrophage polarization in the GERD rat model. Mechanistic investigations indicated that ZJP exerted its therapeutic effects by inhibiting MAPK/NF-κB signaling pathway activation and downregulating the expression of prostaglandin-endoperoxide synthase 2 (PTGS2) and matrix metalloproteinase 2 (MMP2), consistent with predictions from network pharmacology analysis. CONCLUSIONS This study provides comprehensive evidence for the therapeutic efficacy of ZJP in GERD, acting through modulation of inflammation, mucosal barrier integrity, and macrophage polarization. Additionally, ZJP downregulated PTGS2 and MMP2 expression and suppressed the activation of MAPK/NF-κB signaling pathways, underscoring its potential as a therapeutic intervention for GERD.
Collapse
Affiliation(s)
- Guoliang Cui
- School of Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Manli Wang
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhiting Liu
- Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Cheng Chang
- Jiangsu Provincial Hospital of Chinese medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 225200, China.
| | - Yuanyuan Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhiguang Sun
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
16
|
Sreesada P, Vandana, Krishnan B, Amrutha R, Chavan Y, Alfia H, Jyothis A, Venugopal P, Aradhya R, Suravajhala P, Nair BG. Matrix metalloproteinases: Master regulators of tissue morphogenesis. Gene 2025; 933:148990. [PMID: 39393432 DOI: 10.1016/j.gene.2024.148990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
The matrix metalloproteinases (MMPs) are a class of zinc proteases that aid in breaking most of the extracellular matrix's (ECM) constituents. Additionally, MMPs play a part in processing elements that affect inflammation, cell development and proliferation, and many more. In vivo genetic study of the Drosophila MMPs Mmp1 and Mmp2 reveals they are essential for tissue remodeling but not embryonic development. The canonical and conserved MMP domain organization is present in both fly MMPs. Because Mmp2 appeared to be membrane-anchored and Mmp1 appeared to be released, the pericellular localization of Drosophila MMPs has been used to classify them. This suggests that the protein's localization is the critical distinction in this small MMP family. The signal sequence, the propeptide, the catalytic domain, and the hemopexin-like domain are among the numerous domains found in MMPs. Following secretion from the extracellular environment to the endoplasmic reticulum, the pre-domain, also known as the signal sequence, serves to direct MMP production. MMPs of the secretory and membrane types (MT-MMPs) are two groups of MMPs that have been widely recognized. Subgroups of MMPs are categorized based on their structure and function. While analysis of the intracellular activity of human MMPs is challenging because the human genome contains around 23 distinct MMPs with overlapping functions, only two MMPs, dMMP1 and dMMP2, are encoded by the Drosophila melanogaster genome. On the other hand, the balance between MMPs and the family members are implicated in various pathophysiology/progression of diseases, but whether or not the mechanisms of MMP inhibition are not clearly understood as master regulators. In this review, we outline the role of MMPs as master regulators of tissue morphogenesis.
Collapse
Affiliation(s)
- P Sreesada
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India
| | - Vandana
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India
| | - Bhagath Krishnan
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India
| | - R Amrutha
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India
| | - Yash Chavan
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India
| | - Hasanath Alfia
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India
| | - Anjali Jyothis
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India
| | - Parvathy Venugopal
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India
| | - Rajaguru Aradhya
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India.
| | - Prashanth Suravajhala
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India.
| | - Bipin G Nair
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India
| |
Collapse
|
17
|
Wang J, Guo S, Yang L. Methylmercury-induced visual deficits involve loss of GABAergic cells in the zebrafish embryo retina. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178329. [PMID: 39756296 DOI: 10.1016/j.scitotenv.2024.178329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/03/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
Methylmercury (MeHg) is a neurotoxicant with adverse effects on visual systems from fish to man. Clinical signs of visual deficits including color-vision alterations, visual field constriction and blindness have been frequently identified in patients and affected animals following acute and chronic exposure to MeHg. However, it is still unclear whether MeHg causes developmental defects in the eye. We performed here an experimental study to analyze retinal cells expressing gamma-aminobutyric acid (GABA) of MeHg-exposed zebrafish embryos and combined this with a deep RNA-seq analysis. Exposure of zebrafish embryos to MeHg (10-30 μg/L) from 4 to 96 h post fertilization (hpf) resulted in significantly decreased number of GABAergic neurons located in the ganglion cells layer (GCL) and inner nuclear layer (INL). Twenty μg MeHg/L abolished the color preference characterized in larval zebrafish aged 5 days post fertilization (dpf), and impaired optomotor response (OMR) in larval zebrafish at 6 dpf. The genes playing a role in retinal cell redox homeostasis, steroid hormone and folate biosynthesis, lysosome activity and necroptosis were enriched in MeHg-treated eyes. The expression patterns of genes encoding opsin and genes involved in phototransduction were altered in the eye by MeHg. Our experimental findings show that MeHg disturbs the retinal cells development by interfering with the cell differentiation and cellular homeostasis, which in turn may lead to visual deficits in the larval zebrafish.
Collapse
Affiliation(s)
- Jinghan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China
| | - Shaojuan Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China
| | - Lixin Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China.
| |
Collapse
|
18
|
Mai X, Chen X, Wang Z, Xian H, Wen Q, Sun G, Wang T. Screening Differentially Expressed Proteins in Areca Nut-Related Oral Squamous Cell Carcinoma Using Tandem Mass Tag Proteomics. Int Dent J 2025:S0020-6539(24)01635-6. [PMID: 39757032 DOI: 10.1016/j.identj.2024.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025] Open
Abstract
OBJECTIVE Areca nut chewing has been associated with a poor prognosis in oral squamous cell carcinoma (OSCC). This study seeks to identify differentially expressed proteins among areca nut-related OSCC,non-areca nut-related OSCC and adjacent normal epithelial tissues, with the aim of providing novel insights for the investigation of areca nut-related OSCC. METHODS Using Tandem mass tag (TMT)-based proteomic analysis, a comparative proteomic profiling was conducted among areca nut-related OSCC, non-areca nut-related OSCC, and adjacent normal epithelial tissues (n=15). GO and KEGG enrichment analyses were then employed to identify significant proteins pertinent to the pathogenesis of OSCC for further study. Western Blot (WB) and Immunohistochemistry (IHC) techniques were used to preliminary validate the expression patterns of LZTS1, MMP10, MYH6, MB, and TNNC1 among various groups (n=30). RESULTS 27 differentially expressed proteins were identified when comparing the areca nut-related OSCC group with both the non-areca nut-related OSCC and normal epithelial tissue groups. Among these, 15 proteins were upregulated, while 12 were downregulated. LZTS1 and MMP10 were included in the upregulated proteins, whereas MYH6, MB, and TNNC1 were downregulated. WB and IHC analyses corroborated the proteomic findings, revealing consistent expression trends for these 5 proteins across the studied groups. CONCLUSION LZTS1, MMP10, MYH6, MB and TNNC1 emerge as promising biomarkers for assessing disease progression, prognosis, and potential targeted therapies in areca nut-related OSCC.
Collapse
Affiliation(s)
- Xiaoqun Mai
- Department of stomatology, Hainan General Hospital, Haikou, China; The Affiliated Hainan Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Xinyu Chen
- College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China.
| | - Zihan Wang
- School of Stomatology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Haiyu Xian
- Department of stomatology, Hainan General Hospital, Haikou, China; The Affiliated Hainan Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Qitao Wen
- Department of stomatology, Hainan General Hospital, Haikou, China; The Affiliated Hainan Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Guanyu Sun
- Department of stomatology, Hainan General Hospital, Haikou, China; The Affiliated Hainan Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Tao Wang
- Department of stomatology, Hainan General Hospital, Haikou, China; The Affiliated Hainan Hospital of Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
19
|
Radosinska D, Radosinska J. The Link Between Matrix Metalloproteinases and Alzheimer's Disease Pathophysiology. Mol Neurobiol 2025; 62:885-899. [PMID: 38935232 PMCID: PMC11711632 DOI: 10.1007/s12035-024-04315-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024]
Abstract
Alzheimer's disease (AD) is a major contributor to dementia and the most common neurodegenerative disorder. In AD pathophysiology, matrix metalloproteinases (MMPs)-proteolytic enzymes, best known to be responsible for remodeling and degradation of the extracellular matrix-were suggested to play an important role. Due to the diverse nature of the published data and frequent inconsistent results presented in available papers, it was considered essential to analyze all aspects of MMP literature with respect to AD pathophysiology and attempt to outline a unifying concept for understanding their role in AD. Thus, the main contribution of this review article is to summarize the most recent research on the participation of MMP in AD pathophysiology obtained using the cell cultures to understand the molecular principles of their action. Furthermore, an updated comprehensive view regarding this topic based exclusively on papers from human studies is provided as well. It can be concluded that determining the exact role of any particular MMPs in the AD pathophysiology holds promise for establishing their role as potential biomarkers reflecting the severity or progression of this disease or for developing new therapeutic agents targeting the processes that lead to AD.
Collapse
Affiliation(s)
- Dominika Radosinska
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Jana Radosinska
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 2, 81372, Bratislava, Slovak Republic.
| |
Collapse
|
20
|
Bâldea I, Soran ML, Stegarescu A, Opriș O, Kacso I, Tripon S, Adascalitei A, Fericel IG, Decea R, Lung I. Lilium candidum Extract Loaded in Alginate Hydrogel Beads for Chronic Wound Healing. Gels 2025; 11:22. [PMID: 39851993 PMCID: PMC11765094 DOI: 10.3390/gels11010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/17/2024] [Accepted: 12/25/2024] [Indexed: 01/26/2025] Open
Abstract
Chronic wounds are a major health problem, affecting millions of people worldwide. Resistance to treatment is frequently observed, requiring an extension of the wound healing time, and improper care can lead to more problems in patients. Smart wound dressings that provide a controlled drug release can significantly improve the healing process. In this paper, alginate beads with white lily leaf extract were prepared and tested for chronic wound healing. The obtained beads were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Also, the efficiency of extract encapsulation in alginate was determined as being of. The obtained hydrogel was tested on two normal human cell lines, respectively, dermal fibroblasts (BJ-CRL-2522-ATCC) and endothelial cells (human umbilical vein endothelial cells-HUVEC 2). The longer release of bioactive compounds from plant extract loaded in the alginate hydrogel resulted in more effective wound closure, compared to the extract alone, and scar formation, compared to the alginate hydrogel. Therefore, the effect of the white lily extract in combination with that of sodium alginate hydrogel improves the biological activity of the alginate hydrogel and increases the wound healing properties of the alginate.
Collapse
Affiliation(s)
- Ioana Bâldea
- Department of Physiology, Iuliu Haţieganu University of Medicine and Pharmacy, Clinicilor 1, 400006 Cluj-Napoca, Romania; (I.B.); (A.A.); (I.G.F.); (R.D.)
| | - Maria-Loredana Soran
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath, 400293 Cluj-Napoca, Romania; (M.-L.S.); (A.S.); (O.O.); (I.K.); (S.T.)
| | - Adina Stegarescu
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath, 400293 Cluj-Napoca, Romania; (M.-L.S.); (A.S.); (O.O.); (I.K.); (S.T.)
| | - Ocsana Opriș
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath, 400293 Cluj-Napoca, Romania; (M.-L.S.); (A.S.); (O.O.); (I.K.); (S.T.)
| | - Irina Kacso
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath, 400293 Cluj-Napoca, Romania; (M.-L.S.); (A.S.); (O.O.); (I.K.); (S.T.)
| | - Septimiu Tripon
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath, 400293 Cluj-Napoca, Romania; (M.-L.S.); (A.S.); (O.O.); (I.K.); (S.T.)
- Electron Microscopy Center, Babes-Bolyai University, 400006 Cluj-Napoca, Romania
| | - Alexandra Adascalitei
- Department of Physiology, Iuliu Haţieganu University of Medicine and Pharmacy, Clinicilor 1, 400006 Cluj-Napoca, Romania; (I.B.); (A.A.); (I.G.F.); (R.D.)
| | - Iulian George Fericel
- Department of Physiology, Iuliu Haţieganu University of Medicine and Pharmacy, Clinicilor 1, 400006 Cluj-Napoca, Romania; (I.B.); (A.A.); (I.G.F.); (R.D.)
| | - Roxana Decea
- Department of Physiology, Iuliu Haţieganu University of Medicine and Pharmacy, Clinicilor 1, 400006 Cluj-Napoca, Romania; (I.B.); (A.A.); (I.G.F.); (R.D.)
| | - Ildiko Lung
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath, 400293 Cluj-Napoca, Romania; (M.-L.S.); (A.S.); (O.O.); (I.K.); (S.T.)
| |
Collapse
|
21
|
de Faria FCC, Khurshid S, Sarchet P, Tahara S, Casadei L, Grignol V, Karna R, Rentsch S, Sp N, Beane JD, Mazzoccoli L, Montes M, Nigita G, Sharick JT, Leight JL, Calore F, Chandler DS, Pollock RE. Oncogenic Functions of Alternatively Spliced MDM2-ALT2 Isoform in Retroperitoneal Liposarcoma. Int J Mol Sci 2024; 25:13516. [PMID: 39769278 PMCID: PMC11676768 DOI: 10.3390/ijms252413516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Retroperitoneal liposarcoma (RPLPS) is one of the most common histologic subtypes of soft tissue sarcoma (STS). Complete surgical resection remains the mainstay treatment, while the high rate of locoregional recurrence constitutes the predominant cause of mortality. Well-differentiated (WDLPS) and dedifferentiated (DDLPS) liposarcoma are the most frequent subtypes of RPLPS and present amplified MDM2 gene as a hallmark. However, there are few reports evaluating the role of alternatively spliced MDM2 transcripts in RPLPS. In this study, we assessed MDM2-ALT2 expression levels in a cohort of RPLPS patients and evaluated the biological functions of the MDM2-ALT2 isoform in vitro in DDLPS cell lines. Using BaseScope™ and qPCR, we demonstrated that MDM2-Full Length (MDM2-FL) and MDM2-ALT2 expression levels were upregulated in RPLPS patient-derived tissue samples compared to normal adjacent to tumor tissue (NAT). DDLPS cells overexpressing MDM2-FL or MDM2-ALT2 had higher proliferation rates and increased migration and invasion capacities, as well as increased protein levels of p-AKT, mTOR, p70S6K, MMP2, and cJun. Simultaneous overexpression of MDM2-ALT2 and AKT silencing showed that AKT inhibition impaired p-p70S6K and MMP2 protein increased levels and led to significantly decreased proliferation and migration rates compared to cells overexpressing MDM2-ALT2 only. Taken together, our data suggest that MDM2-ALT2 may promote RPLPS progression.
Collapse
Affiliation(s)
- Fernanda Costas C. de Faria
- The James Comprehensive Cancer Center, Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Safiya Khurshid
- Center for Childhood Cancer Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Patricia Sarchet
- The James Comprehensive Cancer Center, Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Sayumi Tahara
- The James Comprehensive Cancer Center, Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Lucia Casadei
- The James Comprehensive Cancer Center, Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Valerie Grignol
- The James Comprehensive Cancer Center, Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Roma Karna
- The James Comprehensive Cancer Center, Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Sydney Rentsch
- The James Comprehensive Cancer Center, Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Nipin Sp
- The James Comprehensive Cancer Center, Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Joal D. Beane
- The James Comprehensive Cancer Center, Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Luciano Mazzoccoli
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Research, Columbus, OH 43210, USA
| | - Matias Montes
- Center for Childhood Cancer Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Joe T. Sharick
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Jennifer L. Leight
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Federica Calore
- The James Comprehensive Cancer Center, Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Dawn S. Chandler
- Center for Childhood Cancer Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Raphael E. Pollock
- The James Comprehensive Cancer Center, Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
22
|
Butucescu M, Imre M, Rus-Hrincu F, Voicu-Balasea B, Popa A, Moisa M, Ripszky A, Neculau C, Pituru SM, Pârvu S. Cell-Type-Specific ROS-AKT/mTOR-Autophagy Interplay-Should It Be Addressed in Periimplantitis? Diagnostics (Basel) 2024; 14:2784. [PMID: 39767145 PMCID: PMC11727345 DOI: 10.3390/diagnostics14242784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/09/2024] [Indexed: 01/03/2025] Open
Abstract
Periimplantitis represents an inflammatory disease of the soft and hard tissues surrounding the osseointegrated dental implant, triggering progressive damage to the alveolar bone. Cumulative data have revealed that periimplantitis plays a crucial part in implant failure. Due to the strategic roles of autophagy and its upstream coordinator, the AKT/mTOR pathway, in inflammatory responses, the crosstalk between them in the context of periimplantitis should become a key research target, as it opens up an area of interesting data with clinical significance. Therefore, in this article, we aimed to briefly review the existing data concerning the complex roles played by ROS in the interplay between the AKT/mTOR signaling pathway and autophagy in periimplantitis, in each of the main cell types involved in periimplantitis pathogenesis and evolution. Knowing how to modulate specifically the autophagic machinery in each of the cellular types involved in the healing and osseointegration steps post implant surgery can help the clinician to make the most appropriate post-surgery decisions. These decisions might be crucial in order to prevent the occurrence of periimplantitis and ensure the proper conditions for effective osseointegration, depending on patients' clinical particularities.
Collapse
Affiliation(s)
- Mihai Butucescu
- Department of Organization, Professional Legislation and Management of the Dental Office, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania;
| | - Marina Imre
- Department of Prosthodontics, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Calea Plevnei, 010221 Bucharest, Romania;
| | - Florentina Rus-Hrincu
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania; (F.R.-H.); (A.P.); (M.M.); (A.R.)
| | - Bianca Voicu-Balasea
- The Interdisciplinary Center for Dental Research and Development, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania;
| | - Alexandra Popa
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania; (F.R.-H.); (A.P.); (M.M.); (A.R.)
| | - Mihai Moisa
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania; (F.R.-H.); (A.P.); (M.M.); (A.R.)
| | - Alexandra Ripszky
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania; (F.R.-H.); (A.P.); (M.M.); (A.R.)
- The Interdisciplinary Center for Dental Research and Development, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania;
| | - Cristina Neculau
- The Interdisciplinary Center for Dental Research and Development, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania;
| | - Silviu Mirel Pituru
- Department of Organization, Professional Legislation and Management of the Dental Office, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania;
| | - Simona Pârvu
- National Institute of Public Health, General Medicine Faculty, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
23
|
Tyagi SC. Epigenetics of Homocystinuria, Hydrogen Sulfide, and Circadian Clock Ablation in Cardiovascular-Renal Disease. Curr Issues Mol Biol 2024; 46:13783-13797. [PMID: 39727952 PMCID: PMC11726923 DOI: 10.3390/cimb46120824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 12/28/2024] Open
Abstract
Morning-time heart attacks are associated with an ablation in the sleep-time dip in blood pressure, the mechanism of which is unknown. The epigenetic changes are the hallmark of sleep and circadian clock disruption and homocystinuria (HHcy). The homocystinuria causes ablation in the dip in blood pressure during sleep. Interestingly, HHcy is generated during the epigenetic gene turning off and turning on (i.e., imprinting) by methylation of the DNA promoter. The mitochondrial sulfur metabolism by 3-mercaptopyruvate sulfur transferase (3MST), ATP citrate lyase (ACYL), and epigenetic rhythmic methylation are regulated by folate 1-carbon metabolism (FOCM), i.e., the methionine (M)-SAM-SAH-Hcy, adenosine, and uric acid cycle. Epigenetic gene writer (DNMT), gene eraser (TET/FTO), and editor de-aminase (ADAR) regulate the rhythmic, i.e., reversible methylation/demethylation of H3K4, H3K9, H4K20, m6A, and m5C. The mitochondrial ATP citrate cycle and creatine kinase (CK) regulate chromatin transcription, maturation, and accessibility as well as muscle function. The transcription is regulated by methylation. The maturation and accessibility are controlled by acetylation. However, it is unclear whether a high fat dysbiotic diet (HFD) causes dysrhythmic expression of the gene writer, eraser, and editor, creating hyperuricemia and cardiac and renal dysfunction. We hypothesized that an HFD increases the gene writer (DNMT1) and editor (ADAR), decreases the eraser (TET/FTO), and increases uric acid to cause chronic diseases. This increases the levels of H3K4, H3K9, H4K20, m6A, and m5C. Interestingly, the DNMT1KO mitigates. Further, the DNMT1KO and ADAR inhibition attenuate HFD-induced NGAL/FGF23/TMPRSS2/MMP2, 9, 13, and uric acid levels and improve cardiac and renal remodeling. Although the novel role of nerve endings by the Piezo channels (i.e., the combination of ENaC, VDAC, TRPV, K+, and Mg2+ channels) in the interoception is suggested, interestingly, we and others have shown mechanisms independent of the nerve, by interoception, such as the cargo of the exosome in denervation models of heart failure. If proper and appropriate levels of these enzymes are available to covert homocysteine to hydrogen sulfide (H2S) during homocystinuria, then the H2S can potentially serve as a newer form of treatment for morning heart attacks and renal sulfur transsulfuration transport diseases.
Collapse
Affiliation(s)
- Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
24
|
Xu J, Tang Z. Progress on angiogenic and antiangiogenic agents in the tumor microenvironment. Front Oncol 2024; 14:1491099. [PMID: 39629004 PMCID: PMC11611712 DOI: 10.3389/fonc.2024.1491099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/31/2024] [Indexed: 12/06/2024] Open
Abstract
The development of tumors and their metastasis relies heavily on the process of angiogenesis. When the volume of a tumor expands, the resulting internal hypoxic conditions trigger the body to enhance the production of various angiogenic factors. These include vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), and transforming growth factor-α (TGF-α), all of which work together to stimulate the activation of endothelial cells and catalyze angiogenesis. Antiangiogenic therapy (AAT) aims to normalize tumor blood vessels by inhibiting these angiogenic signals. In this review, we will explore the molecular mechanisms of angiogenesis within the tumor microenvironment, discuss traditional antiangiogenic drugs along with their limitations, examine new antiangiogenic drugs and the advantages of combination therapy, and consider future research directions in the field of antiangiogenic drugs. This comprehensive overview aims to provide insights that may aid in the development of more effective anti-tumor treatments.
Collapse
Affiliation(s)
| | - Zhihua Tang
- Department of Pharmacy, Shaoxing People’s Hospital, Shaoxing, China
| |
Collapse
|
25
|
Bernaerts E, Ahmadzadeh K, De Visscher A, Malengier-Devlies B, Häuβler D, Mitera T, Martens E, Krüger A, De Somer L, Matthys P, Vandooren J. Human monocyte-derived macrophages shift subcellular metalloprotease activity depending on their activation state. iScience 2024; 27:111171. [PMID: 39569367 PMCID: PMC11576389 DOI: 10.1016/j.isci.2024.111171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/21/2024] [Accepted: 10/10/2024] [Indexed: 11/22/2024] Open
Abstract
Proteases are key effectors in macrophage function during the initiation and resolution of inflammation. Recent studies have shown that some proteases, traditionally considered extracellular, also exhibit enzymatic and non-enzymatic functions within the cell. This study explores the differential protease landscapes of macrophages based on their phenotype. Human monocytes were isolated from healthy volunteers and stimulated with M-CSF (resting macrophages), LPS/IFN-γ (inflammatory macrophages), or IL-4 (immunosuppressive macrophages). IL-4-stimulated macrophages secreted higher levels of MMPs and natural protease inhibitors compared to LPS/IFN-γ-stimulated macrophages. Increased extracellular proteolytic activity was detected in LPS/IFN-γ-stimulated macrophages while IL-4 stimulation increased cell-associated proteolytic activity, particularly for MMPs. Subcellular fractionation and confocal microscopy revealed the uptake of extracellular MMP-9 and its relocation to the nucleus in IL-4-stimulated, though not in LPS/IFN-γ-stimulated macrophages. Collectively, macrophages alter the subcellular location and activity of their MMPs based on the stimuli received, suggesting another mechanism for protease regulation in macrophage biology.
Collapse
Affiliation(s)
- Eline Bernaerts
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Kourosh Ahmadzadeh
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Amber De Visscher
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Bert Malengier-Devlies
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
- Centre for Reproductive Health and Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Daniel Häuβler
- TUM School of Medicine and Health, Institute of Experimental Oncology and Therapy Research, Technical University of Munich, D-81676 Munich, Germany
| | - Tania Mitera
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Erik Martens
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Achim Krüger
- TUM School of Medicine and Health, Institute of Experimental Oncology and Therapy Research, Technical University of Munich, D-81676 Munich, Germany
| | - Lien De Somer
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
- University Hospital Leuven, Laboratory of Pediatric Immunology, 3000 Leuven, Belgium
| | - Patrick Matthys
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Jennifer Vandooren
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven Campus Kulak, 8500 Kortrijk, Belgium
| |
Collapse
|
26
|
Sun Z, Wang T, Hou X, Bai W, Li J, Li Y, Zhang J, Zheng Y, Wu Z, Wu P, Yan L, Qian H. Mesenchymal stromal cells-derived small extracellular vesicles protect against UV-induced photoaging via regulating pregnancy zone protein. Stem Cells Transl Med 2024; 13:1129-1143. [PMID: 39425900 PMCID: PMC11555477 DOI: 10.1093/stcltm/szae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/09/2024] [Indexed: 10/21/2024] Open
Abstract
Ultraviolet (UV) radiation is the primary extrinsic factor in skin aging, contributing to skin photoaging, actinic keratosis (AK), and even squamous cell carcinoma (SCC). Currently, the beneficial role of mesenchymal stromal cell-derived small extracellular vesicles (MSC-sEVs) in cutaneous wound healing has been widely reported, but the field of photoaging remains to be explored. Our results suggested that human umbilical cord MSC-derived sEVs (hucMSC-sEVs) intervention could effectively alleviate skin photoaging phenotypes in vivo and in vitro, including ameliorating UV-induced histopathological changes in the skin and inhibiting oxidative stress and collagen degradation in dermal fibroblasts (DFs). Mechanistically, pretreatment with hucMSC-sEVs reversed UVA-induced down-regulation of pregnancy zone protein (PZP) in DFs, and achieved photoprotection by inhibiting matrix metalloproteinase-1 (MMP-1) expression and reducing DNA damage. Clinically, a significant decrease in PZP in AK and SCC in situ samples was observed, while a rebound appeared in the invasive SCC samples. Collectively, our findings reveal the effective role of hucMSC-sEVs in regulating PZP to combat photoaging and provide new pre-clinical evidence for the potential development of hucMSC-sEVs as an effective skin photoprotective agent.
Collapse
Affiliation(s)
- Zixuan Sun
- Department of Gerontology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, People’s Republic of China
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Tangrong Wang
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Xiaomei Hou
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, People’s Republic of China
- The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People’s Hospital), Zhengzhou 450000, People’s Republic of China
| | - Wenhuan Bai
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Jiali Li
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Yu Li
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Jiaxin Zhang
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Yuzhou Zheng
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Zhijing Wu
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Peipei Wu
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, People’s Republic of China
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, People’s Republic of China
| | - Lirong Yan
- Department of Gerontology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, People’s Republic of China
| | - Hui Qian
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| |
Collapse
|
27
|
Lin B, Fan Y, Yang X, Pathak JL, Zhong M. MMP-12 and Periodontitis: Unraveling the Molecular Pathways of Periodontal Tissue Destruction. J Inflamm Res 2024; 17:7793-7806. [PMID: 39494211 PMCID: PMC11529342 DOI: 10.2147/jir.s480466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024] Open
Abstract
Periodontal disease is a common disorder affecting a wide range of people and has a high prevalence globally. Periodontitis comprises a series of inflammatory conditions affecting periodontal support tissue, which could ultimately lead to tooth loss and reduce life quality and add to the financial burden of society. Matrix metalloproteinase-12 (MMP-12) is an elastase that is produced mostly by macrophages and could degrade a wide spectrum of extracellular matrix (ECM) and also contribute to several systematic pathological conditions. Recently, researchers have reported higher expression of MMP-12 in chronic periodontitis patients. However, there are few reports on the role of MMP-12 in periodontitis pathogenicity, and the interaction between MMP-12, periodontal pathogens, and periodontal tissues remains unclear. In this review, we introduce the potentially unique role of MMP-12 in the context of periodontal inflammation earlier, summarize the possible effects of MMP-12 on the pathological process of periodontitis and the interaction of host response under the challenge of various inflammatory factors, and provide possible diagnostic and therapeutic strategies targeting MMP-12 for the management of periodontitis. Future research and policies should focus on and implement effective chairside testing methods to reduce the prevalence of periodontal diseases.
Collapse
Affiliation(s)
- Bingpeng Lin
- Department of Orthodontics, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, 510180, People’s Republic of China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, People’s Republic of China
| | - Yufei Fan
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, People’s Republic of China
| | - Xuechao Yang
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, People’s Republic of China
| | - Janak L Pathak
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, People’s Republic of China
| | - Mei Zhong
- Department of Prosthodontics, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, 510180, People’s Republic of China
| |
Collapse
|
28
|
Zhao H, Zhao H, Tang Y, Li M, Cai Y, Xiao X, He F, Huang H, Zhang Y, Li J. Skin-permeable gold nanoparticles with modifications azelamide monoethanolamine ameliorate inflammatory skin diseases. Biomark Res 2024; 12:118. [PMID: 39385245 PMCID: PMC11465885 DOI: 10.1186/s40364-024-00663-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Traditional topical drug delivery for treating inflammatory skin diseases suffers from poor skin penetration and long-term side effects. Metal nanoparticles show promising application in topical drug delivery for inflammatory skin diseases. METHODS Here, we synthesized a new type of nanoparticles, azelamide monoethanolamine-functionalized gold nanoparticles (Au-MEA NPs), based on citrate-capped gold nanoparticles (Au-CA NPs) via the ligand exchange method. The physical and chemical properties of Au-CA NPs and Au-MEA NPs were characterized. In vivo studies were performed using imiquimod-induced psoriasis and LL37-induced rosacea animal models, respectively. For in vitro studies, a model of cellular inflammation was established using HaCaT cells stimulated with TNF-α. In addition, proteomics, gelatin zymography, and other techniques were used to investigate the possible therapeutic mechanisms of the Au-MEA NPs. RESULTS We found that Au-MEA NPs exhibited better stability and permeation properties compared to conventional Au-CA NPs. Transcutaneously administered Au-MEA NPs exerted potent therapeutic efficacy against both rosacea-like and psoriasiform skin dermatitis in vivo without overt signs of toxicity. Mechanistically, Au-MEA NPs reduced the production of pro-inflammatory mediators in keratinocytes by promoting SOD activity and inhibiting the activity of MMP9. CONCLUSION Au-MEA NPs have the potential to be a topical nanomedicine for the effective and safe treatment of inflammatory skin diseases.
Collapse
Affiliation(s)
- He Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Han Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yan Tang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Mengfan Li
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Yisheng Cai
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xin Xiao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Fanping He
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hongwen Huang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China.
| | - Yiya Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
29
|
Hartley B, Bassiouni W, Roczkowsky A, Fahlman R, Schulz R, Julien O. N-Terminomic Identification of Intracellular MMP-2 Substrates in Cardiac Tissue. J Proteome Res 2024; 23:4188-4202. [PMID: 38647137 PMCID: PMC11460328 DOI: 10.1021/acs.jproteome.3c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024]
Abstract
Proteases are enzymes that induce irreversible post-translational modifications by hydrolyzing amide bonds in proteins. One of these proteases is matrix metalloproteinase-2 (MMP-2), which has been shown to modulate extracellular matrix remodeling and intracellular proteolysis during myocardial injury. However, the substrates of MMP-2 in heart tissue are limited, and lesser known are the cleavage sites. Here, we used degradomics to investigate the substrates of intracellular MMP-2 in rat ventricular extracts. First, we designed a novel, constitutively active MMP-2 fusion protein (MMP-2-Fc) that we expressed and purified from mammalian cells. Using this protease, we proteolyzed ventricular extracts and used subtiligase-mediated N-terminomic labeling which identified 95 putative MMP-2-Fc proteolytic cleavage sites using mass spectrometry. The intracellular MMP-2 cleavage sites identified in heart tissue extracts were enriched for proteins primarily involved in metabolism, as well as the breakdown of fatty acids and amino acids. We further characterized the cleavage of three of these MMP-2-Fc substrates based on the gene ontology analysis. We first characterized the cleavage of sarco/endoplasmic reticulum calcium ATPase (SERCA2a), a known MMP-2 substrate in myocardial injury. We then characterized the cleavage of malate dehydrogenase (MDHM) and phosphoglycerate kinase 1 (PGK1), representing new cardiac tissue substrates. Our findings provide insights into the intracellular substrates of MMP-2 in cardiac cells, suggesting that MMP-2 activation plays a role in cardiac metabolism.
Collapse
Affiliation(s)
- Bridgette Hartley
- Department
of Biochemistry, University of Alberta, Edmonton T6G 2H7, Canada
| | - Wesam Bassiouni
- Department
of Pharmacology, University of Alberta, Edmonton T6G 2S2, Canada
| | - Andrej Roczkowsky
- Department
of Pharmacology, University of Alberta, Edmonton T6G 2S2, Canada
| | - Richard Fahlman
- Department
of Biochemistry, University of Alberta, Edmonton T6G 2H7, Canada
| | - Richard Schulz
- Department
of Pharmacology, University of Alberta, Edmonton T6G 2S2, Canada
- Department
of Pediatrics, University of Alberta, Edmonton T6G 2S2, Canada
| | - Olivier Julien
- Department
of Biochemistry, University of Alberta, Edmonton T6G 2H7, Canada
| |
Collapse
|
30
|
Sindelka R, Naraine R, Abaffy P, Zucha D, Kraus D, Netusil J, Smetana K, Lacina L, Endaya BB, Neuzil J, Psenicka M, Kubista M. Characterization of regeneration initiating cells during Xenopus laevis tail regeneration. Genome Biol 2024; 25:251. [PMID: 39350302 PMCID: PMC11443866 DOI: 10.1186/s13059-024-03396-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Embryos are regeneration and wound healing masters. They rapidly close wounds and scarlessly remodel and regenerate injured tissue. Regeneration has been extensively studied in many animal models using new tools such as single-cell analysis. However, until now, they have been based primarily on experiments assessing from 1 day post injury. RESULTS In this paper, we reveal that critical steps initiating regeneration occur within hours after injury. We discovered the regeneration initiating cells (RICs) using single-cell and spatial transcriptomics of the regenerating Xenopus laevis tail. RICs are formed transiently from the basal epidermal cells, and their expression signature suggests they are important for modifying the surrounding extracellular matrix thus regulating development. The absence or deregulation of RICs leads to excessive extracellular matrix deposition and defective regeneration. CONCLUSION RICs represent a newly discovered transient cell state involved in the initiation of the regeneration process.
Collapse
Affiliation(s)
- Radek Sindelka
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, 252 50, Czech Republic.
| | - Ravindra Naraine
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, 252 50, Czech Republic
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, 252 50, Czech Republic
| | - Daniel Zucha
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, 252 50, Czech Republic
| | - Daniel Kraus
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, 252 50, Czech Republic
| | - Jiri Netusil
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, 252 50, Czech Republic
| | - Karel Smetana
- First Faculty of Medicine, Institute of Anatomy, Charles University, Prague 2, 128 00, Czech Republic
| | - Lukas Lacina
- First Faculty of Medicine, Institute of Anatomy, Charles University, Prague 2, 128 00, Czech Republic
- Department Dermatovenereology, First Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic
| | - Berwini Beduya Endaya
- Laboratory of Molecular Therapy, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, 252 50, Czech Republic
| | - Jiri Neuzil
- Laboratory of Molecular Therapy, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, 252 50, Czech Republic
- School of Pharmacy and Medical Science, Griffith University, Southport, QLD, Australia
- Faculty of Science, Charles University, Prague 2, Czech Republic
- First Faculty of Medicine, Charles University, Prague 2, Czech Republic
| | - Martin Psenicka
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Vodnany, 389 25, Czech Republic
| | - Mikael Kubista
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, 252 50, Czech Republic
| |
Collapse
|
31
|
Wu S, Zhou Z, Li Y, Jiang J. Advancements in diabetic foot ulcer research: Focus on mesenchymal stem cells and their exosomes. Heliyon 2024; 10:e37031. [PMID: 39286219 PMCID: PMC11403009 DOI: 10.1016/j.heliyon.2024.e37031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/11/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Diabetes represents a widely acknowledged global public health concern. Diabetic foot ulcer (DFU) stands as one of the most severe complications of diabetes, its occurrence imposing a substantial economic burden on patients, profoundly impacting their quality of life. Despite the deepening comprehension regarding the pathophysiology and cellular as well as molecular responses of DFU, the current therapeutic arsenal falls short of efficacy, failing to offer a comprehensive remedy for deep-seated chronic wounds and microvascular occlusions. Conventional treatments merely afford symptomatic alleviation or retard the disease's advancement, devoid of the capacity to effectuate further restitution of compromised vasculature and nerves. An escalating body of research underscores the prominence of mesenchymal stem cells (MSCs) owing to their paracrine attributes and anti-inflammatory prowess, rendering them a focal point in the realm of chronic wound healing. Presently, MSCs have been validated as a highly promising cellular therapeutic approach for DFU, capable of effectuating cellular repair, epithelialization, granulation tissue formation, and neovascularization by means of targeted differentiation, angiogenesis promotion, immunomodulation, and paracrine activities, thereby fostering wound healing. The secretome of MSCs comprises cytokines, growth factors, chemokines, alongside exosomes harboring mRNA, proteins, and microRNAs, possessing immunomodulatory and regenerative properties. The present study provides a systematic exposition on the etiology of DFU and elucidates the intricate molecular mechanisms and diverse functionalities of MSCs in the context of DFU treatment, thereby furnishing pioneering perspectives aimed at harnessing the therapeutic potential of MSCs for DFU management and advancing wound healing processes.
Collapse
Affiliation(s)
- ShuHui Wu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - ZhongSheng Zhou
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
32
|
Li QY, Zhu RR, Yu HY, Liu CL, Diao FY, Jiang YQ, Lin YQ, Li XT, Wang WJ. Multifunctional targeting of docetaxel plus bakuchiol micelles in the treatment of invasion and metastasis of ovarian cancer. Biomed Mater 2024; 19:065002. [PMID: 39208838 DOI: 10.1088/1748-605x/ad7556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
The invasion and metastasis of tumors pose significant challenges in the treatment of ovarian cancer (OC), making it difficult to cure. One potential treatment approach that has gained attention is the use of matrix metalloproteinase reactive controlled release micelle preparations. In this study, we developed a novel PEG5000-PVGLIG-hyaluronic acid docetaxel/bakuchiol (PP-HA-DTX/BAK) micelles formulation with desirable characteristics such as particle size, narrow polydispersity index, and a ZETA potential of approximately -5 mV. The surface modification with HA facilitates tumor penetration into the tumor interior, while the incorporation of DSPE-PEG2000-PVGLIG-PEG5000helps conceal DSPE-PEG2000-HA, reducing off-target effects and prolonging drug circulation timein vivo. Bothin vitroandin vivoexperiments demonstrated that these micelles effectively inhibit proliferation, invasion, and metastasis of OC cells while promoting apoptosis. Therefore, our findings suggest that PP-HA-DTX/BAK micelles represent a safe and effective therapeutic strategy for treating OC.
Collapse
Affiliation(s)
- Qi-Yan Li
- Shandong Institute for Food and Drug Control, Shandong 250101, People's Republic of China
| | - Ri-Ran Zhu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong 250011, People's Republic of China
| | - Hai-Ying Yu
- Shandong Institute for Food and Drug Control, Shandong 250101, People's Republic of China
| | - Chun-Lin Liu
- Shandong Institute for Food and Drug Control, Shandong 250101, People's Republic of China
| | - Fei-Yan Diao
- Shandong Institute for Food and Drug Control, Shandong 250101, People's Republic of China
| | - Ya-Qi Jiang
- Shandong Institute for Food and Drug Control, Shandong 250101, People's Republic of China
| | - Yong-Qiang Lin
- Shandong Institute for Food and Drug Control, Shandong 250101, People's Republic of China
| | - Xue-Tao Li
- Liaoning University of Traditional Chinese Medicine, School of Pharmacy, Dalian 116600, People's Republic of China
| | - Wei-Jian Wang
- Shandong Institute for Food and Drug Control, Shandong 250101, People's Republic of China
| |
Collapse
|
33
|
Chen F, Zhao J, Meng F, He F, Ni J, Fu Y. The vascular contribution of apolipoprotein E to Alzheimer's disease. Brain 2024; 147:2946-2965. [PMID: 38748848 DOI: 10.1093/brain/awae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/23/2024] [Accepted: 04/21/2024] [Indexed: 09/04/2024] Open
Abstract
Alzheimer's disease, the most prevalent form of dementia, imposes a substantial societal burden. The persistent inadequacy of disease-modifying drugs targeting amyloid plaques and neurofibrillary tangles suggests the contribution of alternative pathogenic mechanisms. A frequently overlooked aspect is cerebrovascular dysfunction, which may manifest early in the progression of Alzheimer's disease pathology. Mounting evidence underscores the pivotal role of the apolipoprotein E gene, particularly the apolipoprotein ε4 allele as the strongest genetic risk factor for late-onset Alzheimer's disease, in the cerebrovascular pathology associated with Alzheimer's disease. In this review, we examine the evidence elucidating the cerebrovascular impact of both central and peripheral apolipoprotein E on the pathogenesis of Alzheimer's disease. We present a novel three-hit hypothesis, outlining potential mechanisms that shed light on the intricate relationship among different pathogenic events. Finally, we discuss prospective therapeutics targeting the cerebrovascular pathology associated with apolipoprotein E and explore their implications for future research endeavours.
Collapse
Affiliation(s)
- Feng Chen
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jing Zhao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Fanxia Meng
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Fangping He
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jie Ni
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yuan Fu
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
34
|
Shi X, Wang Y, Yin Y, Yang F, Zhang Y, He X, Wen D, Ma K, Li BX. Analysis of the Relationship Between Parkinson's Disease and Diabetic Retinopathy Based on Bioinformatics Methods. Mol Neurobiol 2024; 61:6395-6406. [PMID: 38308666 DOI: 10.1007/s12035-024-03982-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/21/2024] [Indexed: 02/05/2024]
Abstract
The objective of the study was to explore the relationship and potential mechanism between Parkinson's disease (PD) and diabetic retinopathy (DR) using bioinformatics methods. We first examined the causal relationship between PD and DR by Mendelian randomization (MR) analysis. The datasets of PD and DR patients from the Gene Expression Omnibus database were used to identify differentially expressed genes (DEGs). Then, we performed the Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and immune infiltration analysis. We also constructed a protein-protein interaction network and receiver operating characteristic (ROC) curve. Finally, an online website was used for drug prediction. The MR analysis demonstrated a causal relationship between DR and PD (odds ratio [OR] = 0.86; 95% confidence interval [CI] 0.79-0.93; p = 3.24E - 04), in which DR acted as a protective factor against PD. There were 81 DEGs identified from the PD and DR datasets, of which 29 genes had protein interaction relationships, and enrichment analysis showed that these genes were mainly related to immune pathways. As indicated by immune cell infiltration analysis, the expression of immune cells between PD and the control group was significantly different. ROC curve results showed five genes had diagnostic value, and several potential chemical compounds were predicted to target the genes. Our findings demonstrate a reduced risk of PD in patients with DR. We also found that PD and DR are closely related in terms of inflammation, which provides clues for further exploring the common mechanisms and interaction of these two diseases.
Collapse
Affiliation(s)
- XinYu Shi
- Department of Hygienic Toxicology, School of Public Health, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, Heilongjiang Province, People's Republic of China, 150081
| | - YiNi Wang
- Department of Hygienic Toxicology, School of Public Health, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, Heilongjiang Province, People's Republic of China, 150081
| | - YaPing Yin
- Department of Hygienic Toxicology, School of Public Health, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, Heilongjiang Province, People's Republic of China, 150081
| | - Fei Yang
- Department of Hygienic Toxicology, School of Public Health, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, Heilongjiang Province, People's Republic of China, 150081
| | - YiNan Zhang
- Department of Hygienic Toxicology, School of Public Health, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, Heilongjiang Province, People's Republic of China, 150081
| | - Xin He
- Department of Hygienic Toxicology, School of Public Health, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, Heilongjiang Province, People's Republic of China, 150081
- Department of Anesthesiology, The 962nd Hospital of The PLA Joint Logistic Support Force, 45 Xuefu Road, NanGang District, Harbin, Heilongjiang Province, People's Republic of China, 150006
| | - Da Wen
- Academic Affairs Office, Main Building, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, Heilongjiang Province, People's Republic of China, 150081
| | - Kun Ma
- Department of Hygienic Toxicology, School of Public Health, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, Heilongjiang Province, People's Republic of China, 150081.
| | - Bai-Xiang Li
- Department of Hygienic Toxicology, School of Public Health, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, Heilongjiang Province, People's Republic of China, 150081.
| |
Collapse
|
35
|
Bin EP, Zaobornyj T, Garces M, D'Annunzio V, Buchholz B, Marchini T, Evelson P, Gelpi RJ, Donato M. Remote ischemic preconditioning prevents sarcolemmal-associated proteolysis by MMP-2 inhibition. Mol Cell Biochem 2024; 479:2351-2363. [PMID: 37728809 DOI: 10.1007/s11010-023-04849-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 09/02/2023] [Indexed: 09/21/2023]
Abstract
The death of myocytes occurs through different pathways, but the rupture of the plasma membrane is the key point in the transition from reversible to irreversible injury. In the myocytes, three major groups of structural proteins that link the extracellular and intracellular milieus and confer structural stability to the cell membrane: the dystrophin-associated protein complex, the vinculin-integrin link, and the spectrin-based submembranous cytoskeleton. The objective was to determine if remote ischemic preconditioning (rIPC) preserves membrane-associated cytoskeletal proteins (dystrophin and β-dystroglycan) through the inhibition of metalloproteinase type 2 (MMP-2) activity. A second objective was to describe some of the intracellular signals of the rIPC, that modify mitochondrial function at the early reperfusion. Isolated rat hearts were subjected to 30 min of global ischemia and 120 min of reperfusion (I/R). rIPC was performed by 3 cycles of ischemia/reperfusion in the lower limb (rIPC). rIPC significantly decreased the infarct size, induced Akt/GSK-3 β phosphorylation and inhibition of the MPTP opening. rIPC improved mitochondrial function, increasing membrane potential, ATP production and respiratory control. I/R increased ONOO- production, which activates MMP-2. This enzyme degrades β-dystroglycan and dystrophin and collaborates to sarcolemmal disruption. rIPC attenuates the breakdown of β-dystroglycan and dystrophin through the inhibition of MMP-2 activity. Furthermore, we confirm that rIPC activates different intracellular pathway that involves the an Akt/Gsk3β and MPTP pore with preservation of mitochondrial function.
Collapse
Affiliation(s)
- Eliana P Bin
- Universidad de Buenos Aires, Facultad de Ciencias Médicas, Instituto de Fisiopatología Cardiovascular, 950 J. E. Uriburu, 2nd floor, C1114AAD, Buenos Aires, Argentina
- Universidad de Buenos Aires - CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Tamara Zaobornyj
- Universidad de Buenos Aires - CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Físico-Química, Buenos Aires, Argentina
| | - Mariana Garces
- Universidad de Buenos Aires - CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Verónica D'Annunzio
- Universidad de Buenos Aires, Facultad de Ciencias Médicas, Instituto de Fisiopatología Cardiovascular, 950 J. E. Uriburu, 2nd floor, C1114AAD, Buenos Aires, Argentina
- Universidad de Buenos Aires - CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Bruno Buchholz
- Universidad de Buenos Aires, Facultad de Ciencias Médicas, Instituto de Fisiopatología Cardiovascular, 950 J. E. Uriburu, 2nd floor, C1114AAD, Buenos Aires, Argentina
- Universidad de Buenos Aires - CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Timoteo Marchini
- Universidad de Buenos Aires - CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Pablo Evelson
- Universidad de Buenos Aires - CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Ricardo J Gelpi
- Universidad de Buenos Aires, Facultad de Ciencias Médicas, Instituto de Fisiopatología Cardiovascular, 950 J. E. Uriburu, 2nd floor, C1114AAD, Buenos Aires, Argentina
- Universidad de Buenos Aires - CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Martín Donato
- Universidad de Buenos Aires, Facultad de Ciencias Médicas, Instituto de Fisiopatología Cardiovascular, 950 J. E. Uriburu, 2nd floor, C1114AAD, Buenos Aires, Argentina.
- Universidad de Buenos Aires - CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina.
| |
Collapse
|
36
|
Zhou S, Ma B, Luo M. Matrix metalloproteinases in aortic dissection. Vascul Pharmacol 2024; 156:107420. [PMID: 39182633 DOI: 10.1016/j.vph.2024.107420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Aortic dissection, characterized by a high immediate mortality, is primarily caused by excessive bleeding within the walls of the aorta or a severe tear within the intimal layer of the aorta. Inflammation, as well as oxidative stress and the degradation of extracellular matrix (ECM), are significant factors in the development and occurrence of aortic dissection. Matrix metalloproteinases (MMPs) are pivotal enzymes responsible for degrading the ECM. Inflammatory factors and oxidants can interact with MMPs, indicating the potential significance of MMPs in aortic dissection. A substantial body of evidence indicates that numerous MMPs are significantly upregulated in aortic dissection, playing a critical role in ECM degradation and the pathogenesis of aortic dissection. Furthermore, targeting these enzymes has demonstrated potential in facilitating ECM restoration and reducing the incidence of aortic dissection. This review initially provides a brief overview of MMP biology before delving into their expression patterns, regulatory mechanisms, and therapeutic applications in aortic dissection. A profound comprehension of the catabolic pathways associated with aortic dissection is imperative for the future development of potential preventive or therapeutic bio-interventions for aortic dissection.
Collapse
Affiliation(s)
- Shufen Zhou
- State Key Laboratory of Cardiovascular Disease, Center of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Baihui Ma
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Mingyao Luo
- State Key Laboratory of Cardiovascular Disease, Center of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Department of Vascular Surgery, Central-China Branch of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou 450046, China; Department of Vascular Surgery, Fuwai Yunnan Cardiovascular Hospital, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming 650102, China.
| |
Collapse
|
37
|
Almatrafi TA, Lakshmaiya N, Almohaimeed HM, Chakravarthi S, Amin AH, Jafer A, Almars AI, Basabrain AA, Alghamdi YS, Saadh MJ, Akhavan-Sigari R. Reducing metastasis ability of gastric cancer cell line by targeting MMP16 using miR-193a-5p and 5-FU. Adv Med Sci 2024; 69:463-473. [PMID: 39341599 DOI: 10.1016/j.advms.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/21/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
PURPOSE Co-administration of microRNAs and chemotherapy drugs effectively treats several cancers. The current study sought to investigate the function of matrix metalloproteinase 16 (MMP16) and miR-193a-5p in the pathogenesis of gastric cancer (GC). MATERIALS/METHODS Sixty-five surgical patients, 15 receiving 5-fluorouracil (5-FU), provided GC and adjacent non-cancerous tissue. Following that, qPCR was used to assess the expression levels of MMP16 and miR-193a-5p in GC cells. The impact of miR-193a-5p and 5-FU administration on MMP16 mRNA expression was evaluated using qRT-PCR and Western blotting. MTT and Scratch tests were also conducted to assess their effects on cell viability and migration. Moreover, a rescue experiment using an MTT assay was performed. Using flow cytometry, the apoptotic rate was calculated. Finally, it was evaluated how MMP16 and miR-193a-5p related to the clinicopathological characteristics of the patients. RESULTS The current study found that while MMP16 expression increased in GC patients (P < 0.0001), miR-193a-5p expression significantly decreased (P < 0.001). MMP16 down-regulation was another effect of miR-193a-5p replacement, particularly when 5-FU was added (P < 0.01). In addition, this study found that miR-193a-5p, by concentrating on MMP16, decreased the migration of GC cells brought on by MMP16. In GC cell lines, miR-193 and 5-FU induce apoptosis, with the 5-FU being more pronounced when combined with mir-193, according to flow cytometry results. A strong correlation was also found between clinicopathological traits associated with MMP16 and miR-193a-5p. CONCLUSIONS These findings suggest that miR-193a-5p, in conjunction with 5-FU, down-regulates MMP16 in GC, where it suppresses tumor growth.
Collapse
Affiliation(s)
| | - Natrayan Lakshmaiya
- Department of Research and Innovation, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - Hailah M Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Srikumar Chakravarthi
- SEGi University, No.9, Jalan Teknologi, Taman Sains Selangor, Petaling Jaya, Selangor, Malaysia
| | - Ali H Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Ayman Jafer
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amany I Almars
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ammar A Basabrain
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Youssef S Alghamdi
- Department of Biology, Turabah University College, Taif University, Saudi Arabia
| | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, Jordan; Applied Science Research Center. Applied Science Private University, Amman, Jordan.
| | - Reza Akhavan-Sigari
- Dreifaltigkeits-Hospital Lippstadt, Teaching Hospital of the University of Münster, Münster, Germany; Department of Health Care Management and Clinical Research, Collegium Humanum, Warsaw Management University, Warsaw, Poland
| |
Collapse
|
38
|
Ribeiro F, Zhang X, Wen Y, Cacciani N, Hedström Y, Xia Z, Schulz R, Larsson L. The role of zinc and matrix metalloproteinases in myofibrillar protein degradation in critical illness myopathy. Free Radic Biol Med 2024; 222:493-504. [PMID: 38944212 DOI: 10.1016/j.freeradbiomed.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Due to an unexpected activation of different zinc (Zn) transporters in a recent prospective clinical study, we have revisited the role of Zn homeostasis and the activation of matrix metalloproteinases (MMPs) in skeletal muscle exposed to the intensive care unit (ICU) condition (immobilization and mechanical ventilation). ICU patients exposed to 12 days ICU condition were followed longitudinally with six repeated muscle biopsies while they showed a progressive preferential myosin loss, i.e., the hallmark of Critical Illness Myopathy (CIM), in parallel with the activation of Zn-transporters. In this study, we have revisited the expression of Zn-transporters and the activation of MMPs in clinical as well as in experimental studies using an established ICU model. MMPs are a group Zn-dependent endopeptidases which do not only target and cleave extracellular proteins but also intracellular proteins including multiple sarcomeric proteins. MMP-9 is of specific interest since the hallmark of CIM, the preferential myosin loss, has also been reported in dilated cardiomyopathy and coupled to MMP-9 activation. Transcriptional activation of Zn-transporters was observed in both clinical and experimental studies as well as the activation of MMPs, in particular MMP-9, in various limb and respiratory muscles in response to long-term exposure to the ICU condition. The activation of Zn-transporters was paralleled by increased Zn levels in skeletal muscle which in turn showed a negative linear correlation with the preferential myosin loss associated with CIM, offering a potential intervention strategy. Thus, activation of Zn-transporters, increased intramuscular Zn levels, and activation of the Zn-dependent MMPs are forwarded as a probable mechanism involved in CIM pathophysiology. These effects were confirmed in different rat strains subjected to a model of CIM and exacerbated by old age. This is of specific interest since old age and muscle wasting are the two factors most strongly associated with ICU mortality.
Collapse
Affiliation(s)
- Fernando Ribeiro
- Department of Physiology and Pharmacology, Karolinska Institutet Bioclinicum, Stockholm, 171 64, Sweden; Center for Molecular Medicine (CMM), Karolinska Institutet, Stockholm, 171 76, Sweden; Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Xiang Zhang
- Department of Physiology and Pharmacology, Karolinska Institutet Bioclinicum, Stockholm, 171 64, Sweden; Center for Molecular Medicine (CMM), Karolinska Institutet, Stockholm, 171 76, Sweden; MediData Research Hub, San Biomedical Technology Co., Ltd, Jinhua, 321300, China
| | - Ya Wen
- Department of Physiology and Pharmacology, Karolinska Institutet Bioclinicum, Stockholm, 171 64, Sweden; Center for Molecular Medicine (CMM), Karolinska Institutet, Stockholm, 171 76, Sweden; Laboratory of MediModel Translational Research, San Biomedical Technology Co., Ltd, Jinhua, 321300, China
| | - Nicola Cacciani
- Department of Physiology and Pharmacology, Karolinska Institutet Bioclinicum, Stockholm, 171 64, Sweden
| | - Yvette Hedström
- Department of Physiology and Pharmacology, Karolinska Institutet Bioclinicum, Stockholm, 171 64, Sweden
| | - Zhidan Xia
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Richard Schulz
- Departments of Pediatrics and Pharmacology, University of Alberta, Edmonton, T6G 2S2, Canada
| | - Lars Larsson
- Department of Physiology and Pharmacology, Karolinska Institutet Bioclinicum, Stockholm, 171 64, Sweden; Center for Molecular Medicine (CMM), Karolinska Institutet, Stockholm, 171 76, Sweden; Viron Molecular Medicine Institute, Boston, MA, 02108, United States.
| |
Collapse
|
39
|
Zhu S, He J, Yin L, Zhou J, Lian J, Ren Y, Zhang X, Yuan J, Wang G, Li X. Matrix metalloproteinases targeting in prostate cancer. Urol Oncol 2024; 42:275-287. [PMID: 38806387 DOI: 10.1016/j.urolonc.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/07/2024] [Accepted: 05/06/2024] [Indexed: 05/30/2024]
Abstract
Prostate cancer (PCa) is one of the most common tumors affecting men all over the world. PCa has brought a huge health burden to men around the world, especially for elderly men, but its pathogenesis is unclear. In prostate cancer, epigenetic inheritance plays an important role in the development, progression, and metastasis of the disease. An important role in cancer invasion and metastasis is played by matrix metalloproteinases (MMPs), zinc-dependent proteases that break down extracellular matrix. We review two important forms of epigenetic modification and the role of matrix metalloproteinases in tumor regulation, both of which may be of significant value as novel biomarkers for early diagnosis and prognosis monitoring. The author considers that both mechanisms have promising therapeutic applications for therapeutic agent research in prostate cancer, but that efforts should be made to mitigate or eliminate the side effects of drug therapy in order to maximize quality of life of patients. The understanding of epigenetic modification, MMPs, and their inhibitors in the functional regulation of prostate cancer is gradually advancing, it will provide a new technical means for the prevention of prostate cancer, early diagnosis, androgen-independent prostate cancer treatment, and drug research.
Collapse
Affiliation(s)
- Shuying Zhu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Jing He
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Liliang Yin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Jiawei Zhou
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Jiayi Lian
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Yanli Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Xinling Zhang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Jinghua Yuan
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Gang Wang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Xiaoping Li
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China.
| |
Collapse
|
40
|
Tatsuno R, Komohara Y, Pan C, Kawasaki T, Enomoto A, Jubashi T, Kono H, Wako M, Ashizawa T, Haro H, Ichikawa J. Surface Markers and Chemokines/Cytokines of Tumor-Associated Macrophages in Osteosarcoma and Other Carcinoma Microenviornments-Contradictions and Comparisons. Cancers (Basel) 2024; 16:2801. [PMID: 39199574 PMCID: PMC11353089 DOI: 10.3390/cancers16162801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Osteosarcoma (OS) is the most common primary bone tumor in children and adolescents. Prognosis is improving with advances in multidisciplinary treatment strategies, but the development of new anticancer agents has not, and improvement in prognosis for patients with pulmonary metastases has stalled. In recent years, the tumor microenvironment (TME) has gained attention as a therapeutic target for cancer. The immune component of OS TME consists mainly of tumor-associated macrophages (TAMs). They exhibit remarkable plasticity, and their phenotype is influenced by the TME. In general, surface markers such as CD68 and CD80 show anti-tumor effects, while CD163 and CD204 show tumor-promoting effects. Surface markers have potential value as diagnostic and prognostic biomarkers. The cytokines and chemokines produced by TAMs promote tumor growth and metastasis. However, the role of TAMs in OS remains unclear to date. In this review, we describe the role of TAMs in OS by focusing on TAM surface markers and the TAM-produced cytokines and chemokines in the TME, and by comparing their behaviors in other carcinomas. We found contrary results from different studies. These findings highlight the urgency for further research in this field to improve the stalled OS prognosis percentages.
Collapse
Affiliation(s)
- Rikito Tatsuno
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8555, Japan; (Y.K.); (C.P.)
| | - Cheng Pan
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8555, Japan; (Y.K.); (C.P.)
| | - Tomonori Kawasaki
- Department of Pathology, Saitama Medical University International Medical Center, Saitama 350-1298, Japan;
| | - Atsushi Enomoto
- Department of Pathology, Graduate School of Medicine, Nagoya University, Nagoya 464-8601, Japan;
| | - Takahiro Jubashi
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Hiroyuki Kono
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Masanori Wako
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Tomoyuki Ashizawa
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Hirotaka Haro
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Jiro Ichikawa
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| |
Collapse
|
41
|
Ma Y, Liu Y, Guo J, Chen Z, Zhao Z, Zheng J. Topical application of daphnetin hydrogel for traumatic brain injury. Front Neurosci 2024; 18:1450072. [PMID: 39170676 PMCID: PMC11335657 DOI: 10.3389/fnins.2024.1450072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Background Traumatic brain injury (TBI) causes neuronal cell damage and dysfunction. According to previous studies, daphnetin (Dap) has a protective effect in neurological injury. However, the in vivo bioavailability of daphnetin is not high. The purpose of this study was to determine whether administering daphnetin directly into the site of injury via a hydrogel drug carrier could improve its therapeutic impact. Methods Tripolycerol monostearates / daphnetin (TM/Dap) hydrogels were prepared and characterised using water bath heating, scanning electron microscopy (SEM) and small animal in vivo imaging techniques. The TBI model was established using the Feeney free fall impact method. Using the Morris water maze test, the mNSS neurological deficit rating scale, haematoxylin-eosin staining, and liver and kidney function tests, the therapeutic benefit of TM/Dap and its toxic side effects were assessed. The therapeutic effects of TM/Dap were further investigated using wet and dry gravimetric methods, Evans blue staining, protein immunoblotting, immunofluorescence staining techniques and ELISA. Results The efficacy of the TM/Dap hydrogel in gradually releasing daphnetin in the context of traumatic brain damage was shown by both in vitro and in vivo tests. Behavioral experiments showed that the learning and spatial memory abilities of TM/Dap hydrogel treated mice were significantly improved in the water maze experiment. And TM/Dap hydrogel has high biosafety for organisms. The results of the therapeutic mechanism of action showed that TM/Dap hydrogel showed more significant efficacy in reducing the neuroinflammatory response caused by TNF-α, IL-6 and other factors, as well as promoting the recovery of post-traumatic neurological function. Conclusion The use of hydrogel as a drug carrier for daphnetin showed more significant efficacy in reducing neuroinflammatory response, protecting nerve tissue and promoting post-traumatic neurological recovery compared with traditional drug delivery methods.
Collapse
Affiliation(s)
- Yuanhao Ma
- Department of Neurosurgery, Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, China
- Department of Neurosurgery, Huzhou Central Hospital, Huzhou, China
- Xuzhou Medical University, Xuzhou, China
| | - Yu Liu
- Department of Neurosurgery, Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, China
- Xuzhou Medical University, Xuzhou, China
| | - Jianqiang Guo
- Department of Neurosurgery, Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, China
- Xuzhou Medical University, Xuzhou, China
| | - Zhongjun Chen
- Department of Neurosurgery, Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, China
| | - Zongren Zhao
- Department of Neurosurgery, Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, China
| | - Jinyu Zheng
- Department of Neurosurgery, Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, China
| |
Collapse
|
42
|
Zhou W, Deng X, Liu L, Yuan Y, Meng X, Ma J. PELI1 overexpression contributes to pancreatic cancer progression through upregulating ubiquitination-mediated INPP5J degradation. Cell Signal 2024; 120:111194. [PMID: 38685520 DOI: 10.1016/j.cellsig.2024.111194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/12/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Inositol Polyphosphate-5-Phosphatase J (INPP5J), a 5-phosphatase, has been identified as a tumor suppressor in several types of cancer. However, its role in pancreatic cancer (PC) is unknown. We found that the INPP5J expression was markedly lower in PC tissues (n = 50) compared to paired adjacent non-tumor tissues, and the lower INPP5J expression was relevant to a worse prognosis of PC patients. We thus proposed that INPP5J might inhibit PC progression and conducted gain-of- and loss-of-function experiments to test our hypothesis. Our results showed that overexpression of INPP5J inhibited cell proliferation, invasion, migration, and xenografted tumor of PC cells. INPP5J silencing showed the opposite effect. Pellino E3 Ubiquitin Protein Ligase 1 (PELI1) is one of the ubiquitin ligases known to promote ubiquitination of its downstream targets. We found that PELI1 could interact with INPP5J and promote the ubiquitination and degradation of INPP5J. PELI1 overexpression enhanced malignant behaviors of PC cells. However, INPP5J overexpression restored the alterations caused by PELI1 overexpression. In conclusion, the results suggest that the decreased INPP5J expression, caused by PELI1 through ubiquitination, may promote PC progression. The PELI1-INPP5J axis represents a potential therapeutic targetable node for PC.
Collapse
Affiliation(s)
- Wenyang Zhou
- Department of Pathology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xin Deng
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Liling Liu
- Department of Pathology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yifeng Yuan
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiangpeng Meng
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Jia Ma
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
43
|
Lu MJ, Zhang JQ, Nie ZY, Yan TH, Cao YB, Zhang LC, Li L. Monocyte/macrophage-mediated venous thrombus resolution. Front Immunol 2024; 15:1429523. [PMID: 39100675 PMCID: PMC11297357 DOI: 10.3389/fimmu.2024.1429523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/03/2024] [Indexed: 08/06/2024] Open
Abstract
Venous thromboembolism (VTE) poses a notable risk of morbidity and mortality. The natural resolution of the venous thrombus might be a potential alternative treatment strategy for VTE. Monocytes/macrophages merge as pivotal cell types in the gradual resolution of the thrombus. In this review, the vital role of macrophages in inducing inflammatory response, augmenting neovascularization, and facilitating the degradation of fibrin and collagen during thrombus resolution was described. The two phenotypes of macrophages involved in thrombus resolution and their dual functions were discussed. Macrophages expressing various factors, including cytokines and their receptors, adhesion molecules, chemokine receptors, vascular endothelial growth factor receptors, profibrinolytic- or antifibrinolytic-related enzymes, and other elements, are explored for their potential to promote or attenuate thrombus resolution. Furthermore, this review provides a comprehensive summary of new and promising therapeutic candidate drugs associated with monocytes/macrophages that have been demonstrated to promote or impair thrombus resolution. However, further clinical trials are essential to validate their efficacy in VTE therapy.
Collapse
Affiliation(s)
- Meng-Jiao Lu
- Institute of Vascular Disease, Shanghai TCM- Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Physiology and Pharmacology, China Pharmaceutic University, Nanjing, China
| | - Jia-Qi Zhang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhou-Yu Nie
- Institute of Vascular Disease, Shanghai TCM- Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tian-Hua Yan
- Department of Physiology and Pharmacology, China Pharmaceutic University, Nanjing, China
| | - Yong-Bing Cao
- Institute of Vascular Disease, Shanghai TCM- Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li-Chao Zhang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling Li
- Institute of Vascular Disease, Shanghai TCM- Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
44
|
Humeres C, Shinde AV, Tuleta I, Hernandez SC, Hanna A, Huang S, Venugopal H, Aguilan JT, Conway SJ, Sidoli S, Frangogiannis NG. Fibroblast Smad7 Induction Protects the Remodeling Pressure-Overloaded Heart. Circ Res 2024; 135:453-469. [PMID: 38899461 PMCID: PMC11257802 DOI: 10.1161/circresaha.123.323360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Cardiac fibroblast activation contributes to adverse remodeling, fibrosis, and dysfunction in the pressure-overloaded heart. Although early fibroblast TGF-β (transforming growth factor-β)/Smad (small mother against decapentaplegic)-3 activation protects the pressure-overloaded heart by preserving the matrix, sustained TGF-β activation is deleterious, accentuating fibrosis and dysfunction. Thus, endogenous mechanisms that negatively regulate the TGF-β response in fibroblasts may be required to protect from progressive fibrosis and adverse remodeling. We hypothesized that Smad7, an inhibitory Smad that restrains TGF-β signaling, may be induced in the pressure-overloaded myocardium and may regulate fibrosis, remodeling, and dysfunction. METHODS The effects of myofibroblast-specific Smad7 loss were studied in a mouse model of transverse aortic constriction, using echocardiography, histological analysis, and molecular analysis. Proteomic studies in S7KO (Smad7 knockout) and overexpressing cells were used to identify fibroblast-derived mediators modulated by Smad7. In vitro experiments using cultured cardiac fibroblasts, fibroblasts populating collagen lattices, and isolated macrophages were used to dissect the molecular signals responsible for the effects of Smad7. RESULTS Following pressure overload, Smad7 was upregulated in cardiac myofibroblasts. TGF-β and angiotensin II stimulated fibroblast Smad7 upregulation via Smad3, whereas GDF15 (growth differentiation factor 15) induced Smad7 through GFRAL (glial cell line-derived neurotrophic factor family receptor α-like). MFS7KO (myofibroblast-specific S7KO) mice had increased mortality, accentuated systolic dysfunction and dilative remodeling, and accelerated diastolic dysfunction in response to transverse aortic constriction. Increased dysfunction in MFS7KO hearts was associated with accentuated fibrosis and increased MMP (matrix metalloproteinase)-2 activity and collagen denaturation. Secretomic analysis showed that Smad7 loss accentuates secretion of structural collagens and matricellular proteins and markedly increases MMP2 secretion. In contrast, Smad7 overexpression reduced MMP2 levels. In fibroblasts populating collagen lattices, the effects of Smad7 on fibroblast-induced collagen denaturation and pad contraction were partly mediated via MMP2 downregulation. Surprisingly, MFS7KO mice also exhibited significant macrophage expansion caused by paracrine actions of Smad7 null fibroblasts that stimulate macrophage proliferation and fibrogenic activation. Macrophage activation involved the combined effects of the fibroblast-derived matricellular proteins CD5L (CD5 antigen-like), SPARC (secreted protein acidic and rich in cysteine), CTGF (connective tissue growth factor), ECM1 (extracellular matrix protein 1), and TGFBI (TGFB induced). CONCLUSIONS The antifibrotic effects of Smad7 in the pressure-overloaded heart protect from dysfunction and involve not only reduction in collagen deposition but also suppression of MMP2-mediated matrix denaturation and paracrine effects that suppress macrophage activation through inhibition of matricellular proteins.
Collapse
Affiliation(s)
- Claudio Humeres
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Indiana University School of Medicine, Indianapolis IN
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis IN
| | - Arti V Shinde
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Indiana University School of Medicine, Indianapolis IN
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis IN
| | - Izabela Tuleta
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Indiana University School of Medicine, Indianapolis IN
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis IN
| | - Silvia C Hernandez
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Indiana University School of Medicine, Indianapolis IN
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis IN
| | - Anis Hanna
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Indiana University School of Medicine, Indianapolis IN
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis IN
| | - Shuaibo Huang
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Indiana University School of Medicine, Indianapolis IN
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis IN
| | - Harikrishnan Venugopal
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Indiana University School of Medicine, Indianapolis IN
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis IN
| | - Jennifer T Aguilan
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx NY
| | - Simon J Conway
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis IN
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx NY
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Indiana University School of Medicine, Indianapolis IN
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis IN
| |
Collapse
|
45
|
Lazar AM, Costea DO, Popp CG, Mastalier B. Skin Malignant Melanoma and Matrix Metalloproteinases: Promising Links to Efficient Therapies. Int J Mol Sci 2024; 25:7804. [PMID: 39063046 PMCID: PMC11277423 DOI: 10.3390/ijms25147804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Skin malignant melanoma (MM) is one of the most frequent and aggressive neoplasia worldwide. Its associated high mortality rates are mostly due to its metastases, while diagnosis and treatment of MM in its early stages is of favorable prognostic. Even skin superficial MMs at incipient local stages can already present with lymph node invasion and distant metastases. Therefore, knowledge of the controllable risk factors and pathogenic mechanisms of MM development, spreading, and metastatic pattern, as well as early diagnosis, are essential to decrease the high mortality rates associated with cutaneous malignant melanoma. Genetic factors are incriminated, although lifetime-acquired genetic mutations appear to be even more frequently involved in the development of MM. Skin melanocytes divide only twice per year and have time to accumulate genetic mutations as a consequence of environmental aggressive factors, such as UV exposure. In the search for more promising therapies, matrix metalloproteinases have become of significant interest, such as MMP-1, MMP-2, MMP-9, and MMP-13, which have been linked to more aggressive forms of cancer and earlier metastases. Therefore, the development of specific synthetic inhibitors of MMP secretion or activity could represent a more promising and effective approach to the personalized treatment of MM patients.
Collapse
Affiliation(s)
- Angela Madalina Lazar
- Faculty of General Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania;
- General Surgery Clinic, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Daniel Ovidiu Costea
- Second Surgery Clinic, Constanta District Clinical Emergency Hospital, 900591 Constanța, Romania
- Department of Surgery, University of Medicine and Pharmacy “Ovidius”, 900470 Constanta, Romania
| | | | - Bogdan Mastalier
- Faculty of General Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania;
- General Surgery Clinic, Colentina Clinical Hospital, 020125 Bucharest, Romania
| |
Collapse
|
46
|
Liu J, Zhang B, Cui Y, Song H, Shang D. In vitro co-culture models for studying organoids-macrophages interaction: the golden technology of cancer immunotherapy. Am J Cancer Res 2024; 14:3222-3240. [PMID: 39113861 PMCID: PMC11301299 DOI: 10.62347/bqfh7352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/12/2024] [Indexed: 08/10/2024] Open
Abstract
Macrophages, as the largest immune cell group in tumour tissues, play a crucial role in influencing various malignant behaviours of tumour cells and tumour immune evasion. As the research on macrophages and cancer immunotherapy develops, the importance of appropriate research models becomes increasingly evident. The development of organoids has bridged the gap between traditional two-dimensional (2D) cultures and animal experiments. Recent studies have demonstrated that organoids exhibit similar physiological characteristics to the source tissue and closely resemble the in vivo genome and molecular markers of the source tissue or organ. However, organoids still lack an immune component. Developing a co-culture model of organoids and macrophages is crucial for studying the interaction and mechanisms between tumour cells and macrophages. This paper presents an overview of the establishment of co-culture models, the current research status of organoid macrophage interactions, and the current status of immunotherapy. In addition, the application prospects and shortcomings of the model are explained. Ultimately, it is hoped that the co-culture model will offer a preclinical testing platform for maximising a precise cancer immunotherapy strategy.
Collapse
Affiliation(s)
- Jinming Liu
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical UniversityDalian, Liaoning, PR China
| | - Biao Zhang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical UniversityDalian, Liaoning, PR China
| | - Yuying Cui
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical UniversityDalian, Liaoning, PR China
| | - Huiyi Song
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical UniversityDalian, Liaoning, PR China
| | - Dong Shang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical UniversityDalian, Liaoning, PR China
- Institute (College) of Integrative Medicine, Dalian Medical UniversityDalian, Liaoning, PR China
| |
Collapse
|
47
|
Tong D, Gobert S, Reuzeau A, Farges JC, Leveque M, Bolon M, Costantini A, Pasdeloup M, Lafont J, Ducret M, Bekhouche M. Dental pulp mesenchymal stem cells-response to fibrin hydrogel reveals ITGA2 and MMPs expression. Heliyon 2024; 10:e32891. [PMID: 39027533 PMCID: PMC11255596 DOI: 10.1016/j.heliyon.2024.e32891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
Regenerative endodontic procedures (REP) aim at reestablishing tooth vitality by replacing the irreversibly damaged dental pulp removed by the dental practitioner with a new functional one. The current treatment of advanced caries relies on the replacement of the inflamed or necrosed dental pulp with an inert filling material. This leads to a functional but non-vital tooth, which lacks the ability to sense dental tissue damage, and to protect from further bacterial attack. Therapeutic strategies inspired by tissue engineering called REP propose to regenerate a fully functional dental pulp directly in the canal space. Promising results were obtained using dental pulp mesenchymal stem cells (DP-MSCs) in combination with bio-inspired artificial and temporary 3D hydrogels made of extracellular matrix molecules such as collagen and fibrin biomacromolecules. However, the uncontrolled mechanisms of DP regeneration from DP-MSCs in 3D biomacromolecules fail to regenerate a fully functional DP and can induce fibrotic scarring or mineralized tissue formation to a non-negligible extent. The lack of knowledge regarding the early molecular mechanisms initiated by DP-MSCs seeded in ECM-made hydrogels is a scientific lock for REP. In this study, we investigated the early DP-MSC-response in a 3D fibrin hydrogel. DP-MSCs isolated from human third molars were cultured for 24 h in the fibrin hydrogel. The differential transcript levels of extracellular and cell surface genes were screened with 84-gene PCR array. Out of the 84 genes screened, 9 were found to be overexpressed, including those coding for the integrin alpha 2 subunit, the collagenase MMP1 and stromelysins MMP3, MMP10 and MMP12. Over-expression of ITGA2 was confirmed by RT-qPCR. The expression of alpha 2 integrin subunit protein was assessed over time by immunoblot and immunofluorescence staining. The increase in the transcript level of MMP1, MMP3, MM10 and MMP12 was confirmed by RT-qPCR. The overexpression of MMP1 and 3 at the protein level was assessed by immunoblot. MMP3 expression by DP-MSCs was observed by immunofluorescence staining. This work demonstrates overexpression of ITGA2 and of MMP1, 3, 10 and 12 by DP-MSCs cultured in a fibrin hydrogel. The main preliminary extracellular and cell surface response of the DP-MSCs to fibrin hydrogel seems to rely on a ITGA2/MMP3 axis. Further investigations are needed to precisely decipher the role of this axis in dental pulp tissue building. Nevertheless, this work identifies extracellular and cell surface molecules that could be potential checkpoints to be targeted to guide proper dental pulp tissue regeneration.
Collapse
Affiliation(s)
- David Tong
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Stéphanie Gobert
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Alicia Reuzeau
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Jean-Christophe Farges
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
- Odontology Faculty of Lyon, University Lyon 1, France
- Hospices Civils de Lyon, France
| | - Marianne Leveque
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Marie Bolon
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Arthur Costantini
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
- Hospices Civils de Lyon, France
| | - Marielle Pasdeloup
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Jérôme Lafont
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Maxime Ducret
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
- Odontology Faculty of Lyon, University Lyon 1, France
| | - Mourad Bekhouche
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| |
Collapse
|
48
|
Hernández-Hernández I, De La Rosa JV, Martín-Rodríguez P, Díaz-Sarmiento M, Recio C, Guerra B, Fernández-Pérez L, León TE, Torres R, Font-Díaz J, Roig A, de Mora F, Boscá L, Díaz M, Valledor AF, Castrillo A, Tabraue C. Endogenous LXR signaling controls pulmonary surfactant homeostasis and prevents lung inflammation. Cell Mol Life Sci 2024; 81:287. [PMID: 38970705 PMCID: PMC11335212 DOI: 10.1007/s00018-024-05310-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/04/2024] [Accepted: 06/04/2024] [Indexed: 07/08/2024]
Abstract
Lung type 2 pneumocytes (T2Ps) and alveolar macrophages (AMs) play crucial roles in the synthesis, recycling and catabolism of surfactant material, a lipid/protein fluid essential for respiratory function. The liver X receptors (LXR), LXRα and LXRβ, are transcription factors important for lipid metabolism and inflammation. While LXR activation exerts anti-inflammatory actions in lung injury caused by lipopolysaccharide (LPS) and other inflammatory stimuli, the full extent of the endogenous LXR transcriptional activity in pulmonary homeostasis is incompletely understood. Here, using mice lacking LXRα and LXRβ as experimental models, we describe how the loss of LXRs causes pulmonary lipidosis, pulmonary congestion, fibrosis and chronic inflammation due to defective de novo synthesis and recycling of surfactant material by T2Ps and defective phagocytosis and degradation of excess surfactant by AMs. LXR-deficient T2Ps display aberrant lamellar bodies and decreased expression of genes encoding for surfactant proteins and enzymes involved in cholesterol, fatty acids, and phospholipid metabolism. Moreover, LXR-deficient lungs accumulate foamy AMs with aberrant expression of cholesterol and phospholipid metabolism genes. Using a house dust mite aeroallergen-induced mouse model of asthma, we show that LXR-deficient mice exhibit a more pronounced airway reactivity to a methacholine challenge and greater pulmonary infiltration, indicating an altered physiology of LXR-deficient lungs. Moreover, pretreatment with LXR agonists ameliorated the airway reactivity in WT mice sensitized to house dust mite extracts, confirming that LXR plays an important role in lung physiology and suggesting that agonist pharmacology could be used to treat inflammatory lung diseases.
Collapse
Affiliation(s)
- Irene Hernández-Hernández
- Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Juan V De La Rosa
- Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Departamento de Bioquímica y Biología Molecular, Fisiología, Genética e Inmunología, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Patricia Martín-Rodríguez
- Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Departamento de Morfología, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Mercedes Díaz-Sarmiento
- Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Carlota Recio
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Borja Guerra
- Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Leandro Fernández-Pérez
- Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Theresa E León
- Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona, Barcelona, Spain
| | - Rosa Torres
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Joan Font-Díaz
- Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Angela Roig
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Fernando de Mora
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Lisardo Boscá
- Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Av. Monforte de Lemos 3-5, P-11, Madrid, 28029, Spain
| | - Mario Díaz
- Laboratory of Membrane Physiology and Biophysics, School of Physics, Faculty of Sciences, University of La Laguna, San Cristóbal de La Laguna, Tenerife, Spain
| | - Annabel F Valledor
- Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Antonio Castrillo
- Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAM, Madrid, Spain.
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
| | - Carlos Tabraue
- Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
- Departamento de Morfología, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
49
|
Konenkov VI, Nimaev VV, Shevchenko AV, Prokofiev VF. Polymorphism of angiogenesis regulation factor genes (VEGF/VEGFR), and extracellular matrix remodeling genes (MMP/TIMP), and the levels of their products in extracellular tissues of patients with primary and secondary lymphedema. Vavilovskii Zhurnal Genet Selektsii 2024; 28:433-442. [PMID: 39027126 PMCID: PMC11253019 DOI: 10.18699/vjgb-24-49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 07/20/2024] Open
Abstract
Cells of various organs and systems perform their functions and intercellular interactions not in an inert environment, but in the microenvironment of tissue fluids. Violations of the normal drainage of tissue fluids accompany lymphedema. An important mechanism of angiogenesis and vasculogenesis regulation in tissue fluids is the production and reception of vascular endothelial growth factors in combination with the regulation of matrix metalloproteinases. The aim of the work was to perform: a comparative analysis of some polymorphisms of vascular endothelial growth factor and their receptors and the genes encoding matrix metalloproteinases in two forms of lymphedema; an analysis of the relationship of these genes' polymorphisms with the levels of vascular endothelial growth factor and matrix metalloproteinases and their inhibitors in serum and affected tissues. Polymorphism of VEGF (rs699947, rs3025039), KDR (rs10020464, rs11133360), NRP2 (rs849530, rs849563, rs16837641), matrix metalloproteinases MMP2 (rs2438650), MMP3 (rs3025058), MMP9 (rs3918242), Timp1 (rs6609533) and their combinations were analyzed by the Restriction Fragment Length Polymorphism method and TaqMan RT-PCR. The serum and tissue fluid levels were determined using the ELISA test system. Changes in the frequency distribution of MMP2 genotypes in primary and MMP3 in secondary lymphedema are shown. Significant frequency differences in NRP2 genotypes were revealed by comparing primary and secondary lymphedema. Features of the distribution of complex genotypes in primary and secondary lymphedema were revealed. The correlation analysis revealed the interdependence of the concentrations of the MMP, TIMP and VEGF products and differences in the structure of the correlation matrices of patients with both forms of lymphedema. It was shown that, in primary lymphedema, genotypes associated with low MMP2 and TIMP2 in serum and tissue fluid are detected, while in secondary lymphedema, other associations of the production levels with combined genetic traits are observed.
Collapse
Affiliation(s)
- V I Konenkov
- Research Institute of Clinical and Experimental Lymрhology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V V Nimaev
- Research Institute of Clinical and Experimental Lymрhology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A V Shevchenko
- Research Institute of Clinical and Experimental Lymрhology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V F Prokofiev
- Research Institute of Clinical and Experimental Lymрhology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
50
|
Cordeiro HG, Azevedo-Martins JM, Faria AVDS, Rocha-Brito KJP, Milani R, Peppelenbosch M, Fuhler G, de Fátima Â, Ferreira-Halder CV. Calix[6]arene dismantles extracellular vesicle biogenesis and metalloproteinases that support pancreatic cancer hallmarks. Cell Signal 2024; 119:111174. [PMID: 38604340 DOI: 10.1016/j.cellsig.2024.111174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/13/2024]
Abstract
Many challenges are faced in pancreatic cancer treatment due to late diagnosis and poor prognosis because of high recurrence and metastasis. Extracellular vesicles (EVs) and matrix metalloproteinases (MMPs), besides acting in intercellular communication, are key players in the cancer cell plasticity responsible for initiating metastasis. Therefore, these entities provide valuable targets for the development of better treatments. In this context, this study aimed to evaluate the potential of calix[6]arene to disturb the release of EVs and the activity of MMPs in pancreatic cancer cells. We found a correlation between the endocytic-associated mediators and the prognosis of pancreatic cancer patients. We observed a more active EV machinery in the pancreatic cancer cell line PANC-1, which was reduced three-fold by treatment with calix[6]arene at subtoxic concentration (5 μM; p 〈0,001). We observed the modulation of 186 microRNAs (164 miRNAs upregulated and 22 miRNAs downregulated) upon calix[6]arene treatment. Interestingly, some of them as miR-4443 and miR-3909, regulates genes HIF1A e KIF13A that are well known to play a role in transport of vesicles. Furthermore, Calix[6]arene downmodulated matrix metalloproteinases (MMPs) -2 and - 9 and disturbed the viability of pancreatic organoids which recapitulate the cellular heterogeneity, structure, and functions of primary tissues. Our findings shed new insights on calix[6]arene's antitumor mechanism, including its intracellular effects on vesicle production and trafficking, as well as MMP activity, which may harm the tumor microenvironment and contribute to a reduction in cancer cell dissemination, which is one of the challenges associated with high mortality in pancreatic cancer.
Collapse
Affiliation(s)
- Helon Guimarães Cordeiro
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Jordana Maria Azevedo-Martins
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Alessandra Valéria de Sousa Faria
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil; Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | | | - Renato Milani
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Maikel Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Gwenny Fuhler
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Ângelo de Fátima
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carmen Veríssima Ferreira-Halder
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|