1
|
Sreesada P, Vandana, Krishnan B, Amrutha R, Chavan Y, Alfia H, Jyothis A, Venugopal P, Aradhya R, Suravajhala P, Nair BG. Matrix metalloproteinases: Master regulators of tissue morphogenesis. Gene 2025; 933:148990. [PMID: 39393432 DOI: 10.1016/j.gene.2024.148990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
The matrix metalloproteinases (MMPs) are a class of zinc proteases that aid in breaking most of the extracellular matrix's (ECM) constituents. Additionally, MMPs play a part in processing elements that affect inflammation, cell development and proliferation, and many more. In vivo genetic study of the Drosophila MMPs Mmp1 and Mmp2 reveals they are essential for tissue remodeling but not embryonic development. The canonical and conserved MMP domain organization is present in both fly MMPs. Because Mmp2 appeared to be membrane-anchored and Mmp1 appeared to be released, the pericellular localization of Drosophila MMPs has been used to classify them. This suggests that the protein's localization is the critical distinction in this small MMP family. The signal sequence, the propeptide, the catalytic domain, and the hemopexin-like domain are among the numerous domains found in MMPs. Following secretion from the extracellular environment to the endoplasmic reticulum, the pre-domain, also known as the signal sequence, serves to direct MMP production. MMPs of the secretory and membrane types (MT-MMPs) are two groups of MMPs that have been widely recognized. Subgroups of MMPs are categorized based on their structure and function. While analysis of the intracellular activity of human MMPs is challenging because the human genome contains around 23 distinct MMPs with overlapping functions, only two MMPs, dMMP1 and dMMP2, are encoded by the Drosophila melanogaster genome. On the other hand, the balance between MMPs and the family members are implicated in various pathophysiology/progression of diseases, but whether or not the mechanisms of MMP inhibition are not clearly understood as master regulators. In this review, we outline the role of MMPs as master regulators of tissue morphogenesis.
Collapse
Affiliation(s)
- P Sreesada
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India
| | - Vandana
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India
| | - Bhagath Krishnan
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India
| | - R Amrutha
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India
| | - Yash Chavan
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India
| | - Hasanath Alfia
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India
| | - Anjali Jyothis
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India
| | - Parvathy Venugopal
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India
| | - Rajaguru Aradhya
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India.
| | - Prashanth Suravajhala
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India.
| | - Bipin G Nair
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India
| |
Collapse
|
2
|
Cui G, Wang M, Liu Z, Chang C, Wu Y, Li X, Sun Z. Investigating the therapeutic effects and potential mechanisms of Zuojin Pill in the treatment of gastroesophageal reflux disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 340:119230. [PMID: 39662861 DOI: 10.1016/j.jep.2024.119230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/25/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zuojin Pill (ZJP), a traditional Chinese medicinal formula, is widely recognized for its diverse pharmacological properties in the management of gastrointestinal disorders. However, the precise mechanisms underlying its therapeutic effects in gastroesophageal reflux disease (GERD) remain inadequately understood. AIM OF THE STUDY This study aims to investigate the therapeutic effects of ZJP in GERD and to elucidate the molecular mechanisms involved. MATERIALS AND METHODS The chemical composition of ZJP was characterized using HPLC-Q-Exactive-MS. A rat model of GERD was established through esophagogastric anastomosis, and three different doses of ZJP were administered. Histological changes were assessed via hematoxylin-eosin (H&E) staining, while pro-inflammatory cytokines were quantified to evaluate the anti-inflammatory effects of ZJP. Network pharmacology combined with bioinformatics analysis was employed to predict potential therapeutic targets and signaling pathways of ZJP in GERD. Validation of the mechanisms was conducted through Western blotting, immunofluorescence (IF), transmission electron microscopy (TEM), and immunohistochemistry (IHC). RESULTS The results demonstrated that ZJP effectively alleviated pathological alterations and reduced pro-inflammatory cytokine levels in esophageal tissues of GERD rats. Western blotting and IF analysis of E-cadherin and claudin-1 confirmed that ZJP enhanced the integrity of the esophageal mucosal barrier. TEM imaging revealed that ZJP restored intercellular space (DIS), increased desmosome density, thereby protecting esophageal tissues from the detrimental effects of GERD. Furthermore, ZJP modulated macrophage polarization in the GERD rat model. Mechanistic investigations indicated that ZJP exerted its therapeutic effects by inhibiting MAPK/NF-κB signaling pathway activation and downregulating the expression of prostaglandin-endoperoxide synthase 2 (PTGS2) and matrix metalloproteinase 2 (MMP2), consistent with predictions from network pharmacology analysis. CONCLUSIONS This study provides comprehensive evidence for the therapeutic efficacy of ZJP in GERD, acting through modulation of inflammation, mucosal barrier integrity, and macrophage polarization. Additionally, ZJP downregulated PTGS2 and MMP2 expression and suppressed the activation of MAPK/NF-κB signaling pathways, underscoring its potential as a therapeutic intervention for GERD.
Collapse
Affiliation(s)
- Guoliang Cui
- School of Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Manli Wang
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhiting Liu
- Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Cheng Chang
- Jiangsu Provincial Hospital of Chinese medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 225200, China.
| | - Yuanyuan Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhiguang Sun
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
3
|
Xu J, Tang Z. Progress on angiogenic and antiangiogenic agents in the tumor microenvironment. Front Oncol 2024; 14:1491099. [PMID: 39629004 PMCID: PMC11611712 DOI: 10.3389/fonc.2024.1491099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/31/2024] [Indexed: 12/06/2024] Open
Abstract
The development of tumors and their metastasis relies heavily on the process of angiogenesis. When the volume of a tumor expands, the resulting internal hypoxic conditions trigger the body to enhance the production of various angiogenic factors. These include vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), and transforming growth factor-α (TGF-α), all of which work together to stimulate the activation of endothelial cells and catalyze angiogenesis. Antiangiogenic therapy (AAT) aims to normalize tumor blood vessels by inhibiting these angiogenic signals. In this review, we will explore the molecular mechanisms of angiogenesis within the tumor microenvironment, discuss traditional antiangiogenic drugs along with their limitations, examine new antiangiogenic drugs and the advantages of combination therapy, and consider future research directions in the field of antiangiogenic drugs. This comprehensive overview aims to provide insights that may aid in the development of more effective anti-tumor treatments.
Collapse
Affiliation(s)
| | - Zhihua Tang
- Department of Pharmacy, Shaoxing People’s Hospital, Shaoxing, China
| |
Collapse
|
4
|
Bernaerts E, Ahmadzadeh K, De Visscher A, Malengier-Devlies B, Häuβler D, Mitera T, Martens E, Krüger A, De Somer L, Matthys P, Vandooren J. Human monocyte-derived macrophages shift subcellular metalloprotease activity depending on their activation state. iScience 2024; 27:111171. [PMID: 39569367 PMCID: PMC11576389 DOI: 10.1016/j.isci.2024.111171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/21/2024] [Accepted: 10/10/2024] [Indexed: 11/22/2024] Open
Abstract
Proteases are key effectors in macrophage function during the initiation and resolution of inflammation. Recent studies have shown that some proteases, traditionally considered extracellular, also exhibit enzymatic and non-enzymatic functions within the cell. This study explores the differential protease landscapes of macrophages based on their phenotype. Human monocytes were isolated from healthy volunteers and stimulated with M-CSF (resting macrophages), LPS/IFN-γ (inflammatory macrophages), or IL-4 (immunosuppressive macrophages). IL-4-stimulated macrophages secreted higher levels of MMPs and natural protease inhibitors compared to LPS/IFN-γ-stimulated macrophages. Increased extracellular proteolytic activity was detected in LPS/IFN-γ-stimulated macrophages while IL-4 stimulation increased cell-associated proteolytic activity, particularly for MMPs. Subcellular fractionation and confocal microscopy revealed the uptake of extracellular MMP-9 and its relocation to the nucleus in IL-4-stimulated, though not in LPS/IFN-γ-stimulated macrophages. Collectively, macrophages alter the subcellular location and activity of their MMPs based on the stimuli received, suggesting another mechanism for protease regulation in macrophage biology.
Collapse
Affiliation(s)
- Eline Bernaerts
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Kourosh Ahmadzadeh
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Amber De Visscher
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Bert Malengier-Devlies
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
- Centre for Reproductive Health and Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Daniel Häuβler
- TUM School of Medicine and Health, Institute of Experimental Oncology and Therapy Research, Technical University of Munich, D-81676 Munich, Germany
| | - Tania Mitera
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Erik Martens
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Achim Krüger
- TUM School of Medicine and Health, Institute of Experimental Oncology and Therapy Research, Technical University of Munich, D-81676 Munich, Germany
| | - Lien De Somer
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
- University Hospital Leuven, Laboratory of Pediatric Immunology, 3000 Leuven, Belgium
| | - Patrick Matthys
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Jennifer Vandooren
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven Campus Kulak, 8500 Kortrijk, Belgium
| |
Collapse
|
5
|
Sun Z, Wang T, Hou X, Bai W, Li J, Li Y, Zhang J, Zheng Y, Wu Z, Wu P, Yan L, Qian H. Mesenchymal stromal cells-derived small extracellular vesicles protect against UV-induced photoaging via regulating pregnancy zone protein. Stem Cells Transl Med 2024; 13:1129-1143. [PMID: 39425900 PMCID: PMC11555477 DOI: 10.1093/stcltm/szae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/09/2024] [Indexed: 10/21/2024] Open
Abstract
Ultraviolet (UV) radiation is the primary extrinsic factor in skin aging, contributing to skin photoaging, actinic keratosis (AK), and even squamous cell carcinoma (SCC). Currently, the beneficial role of mesenchymal stromal cell-derived small extracellular vesicles (MSC-sEVs) in cutaneous wound healing has been widely reported, but the field of photoaging remains to be explored. Our results suggested that human umbilical cord MSC-derived sEVs (hucMSC-sEVs) intervention could effectively alleviate skin photoaging phenotypes in vivo and in vitro, including ameliorating UV-induced histopathological changes in the skin and inhibiting oxidative stress and collagen degradation in dermal fibroblasts (DFs). Mechanistically, pretreatment with hucMSC-sEVs reversed UVA-induced down-regulation of pregnancy zone protein (PZP) in DFs, and achieved photoprotection by inhibiting matrix metalloproteinase-1 (MMP-1) expression and reducing DNA damage. Clinically, a significant decrease in PZP in AK and SCC in situ samples was observed, while a rebound appeared in the invasive SCC samples. Collectively, our findings reveal the effective role of hucMSC-sEVs in regulating PZP to combat photoaging and provide new pre-clinical evidence for the potential development of hucMSC-sEVs as an effective skin photoprotective agent.
Collapse
Affiliation(s)
- Zixuan Sun
- Department of Gerontology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, People’s Republic of China
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Tangrong Wang
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Xiaomei Hou
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, People’s Republic of China
- The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People’s Hospital), Zhengzhou 450000, People’s Republic of China
| | - Wenhuan Bai
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Jiali Li
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Yu Li
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Jiaxin Zhang
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Yuzhou Zheng
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Zhijing Wu
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Peipei Wu
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, People’s Republic of China
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, People’s Republic of China
| | - Lirong Yan
- Department of Gerontology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, People’s Republic of China
| | - Hui Qian
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| |
Collapse
|
6
|
Lin B, Fan Y, Yang X, Pathak JL, Zhong M. MMP-12 and Periodontitis: Unraveling the Molecular Pathways of Periodontal Tissue Destruction. J Inflamm Res 2024; 17:7793-7806. [PMID: 39494211 PMCID: PMC11529342 DOI: 10.2147/jir.s480466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024] Open
Abstract
Periodontal disease is a common disorder affecting a wide range of people and has a high prevalence globally. Periodontitis comprises a series of inflammatory conditions affecting periodontal support tissue, which could ultimately lead to tooth loss and reduce life quality and add to the financial burden of society. Matrix metalloproteinase-12 (MMP-12) is an elastase that is produced mostly by macrophages and could degrade a wide spectrum of extracellular matrix (ECM) and also contribute to several systematic pathological conditions. Recently, researchers have reported higher expression of MMP-12 in chronic periodontitis patients. However, there are few reports on the role of MMP-12 in periodontitis pathogenicity, and the interaction between MMP-12, periodontal pathogens, and periodontal tissues remains unclear. In this review, we introduce the potentially unique role of MMP-12 in the context of periodontal inflammation earlier, summarize the possible effects of MMP-12 on the pathological process of periodontitis and the interaction of host response under the challenge of various inflammatory factors, and provide possible diagnostic and therapeutic strategies targeting MMP-12 for the management of periodontitis. Future research and policies should focus on and implement effective chairside testing methods to reduce the prevalence of periodontal diseases.
Collapse
Affiliation(s)
- Bingpeng Lin
- Department of Orthodontics, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, 510180, People’s Republic of China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, People’s Republic of China
| | - Yufei Fan
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, People’s Republic of China
| | - Xuechao Yang
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, People’s Republic of China
| | - Janak L Pathak
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, People’s Republic of China
| | - Mei Zhong
- Department of Prosthodontics, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, 510180, People’s Republic of China
| |
Collapse
|
7
|
Zhou H, Kee HJ, Wan L, Asfaha Y, Fischer F, Kassack MU, Kurz T, Kim SH, Kee SJ, Hong YJ, Jeong MH. YAK577 Attenuates Cardiac Remodeling and Fibrosis in Isoproterenol-Infused Heart Failure Mice by Downregulating MMP12. Korean Circ J 2024; 55:55.e6. [PMID: 39601396 DOI: 10.4070/kcj.2024.0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/01/2024] [Accepted: 09/09/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Heart failure is a potentially fatal event caused by diverse cardiovascular diseases, leading to high morbidity and mortality. Histone deacetylase (HDAC) inhibitors positively influence cardiac hypertrophy, fibrosis, hypertension, myocardial infarction, and heart failure, causing some side effects. We aimed to investigate the effect of the novel HDAC inhibitor YAK577 on the heart failure mouse model and its underlying mechanism. METHODS New hydroxamic acid YAK577 was prepared via methyl-2,3-diphenylpropanoate synthesis using carboxylic acids. We used a micro-osmotic pump, including isoproterenol (ISO; 80 mg/kg/day), to induce a heart failure with reduced ejection fraction. Cardiac hypertrophy was assessed by heart weight to body weight ratio and cross-sectional area. The left ventricular (LV) function was assessed by echocardiography. Fibrosis was evaluated using picrosirius red staining. Overexpression and knockdown experiments were performed to investigate the association between HDAC8 and matrix metalloproteinase 12 (MMP12). RESULTS YAK577 treatment restored ISO-induced reduction in LV fractional shortening and ejection fraction (n=9-11). YAK577 significantly downregulated cardiac hypertrophy marker genes (natriuretic peptide B, NPPB, and myosin heavy chain 7, MYH7) and cardiomyocyte size in vitro but not in vivo. YAK577 ameliorated cardiac fibrosis and fibrosis-related genes in vivo and in vitro. Additionally, YAK577 reduced elevated HDAC8 and MMP12 mRNA and protein expressions in ISO-infused mice, H9c2 cells, and rat neonatal cardiomyocytes. HDAC8 overexpression stimulated MMP12 and NPPB mRNA levels, while HDAC8 knockdown downregulated these genes. CONCLUSIONS YAK577 acts as a novel heart failure drug through the HDAC8/MMP12 pathway.
Collapse
Affiliation(s)
- Hongyan Zhou
- Heart Research Center of Chonnam National University Hospital, Gwangju, Korea
- Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Hae Jin Kee
- Heart Research Center of Chonnam National University Hospital, Gwangju, Korea
- Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Korea.
| | - Le Wan
- Deparment of Orthopedics, Chonnam National University Hospital, Gwangju, Korea
| | - Yodita Asfaha
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstrβe 1, Düsseldorf, Germany
| | - Fabian Fischer
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstrβe 1, Düsseldorf, Germany
| | - Matthias U Kassack
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstrβe 1, Düsseldorf, Germany
| | - Thomas Kurz
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstrβe 1, Düsseldorf, Germany
| | - Seong Hoon Kim
- Department of Cardiology, Chonnam National University Medical School, Gwangju, Korea
| | - Seung-Jung Kee
- Department of Laboratory Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Young Joon Hong
- Department of Cardiology, Chonnam National University Medical School, Gwangju, Korea
| | - Myung Ho Jeong
- Heart Research Center of Chonnam National University Hospital, Gwangju, Korea
- Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Korea
- Gwangju Veterans Hospital, Gwangju, Korea.
| |
Collapse
|
8
|
Zhao H, Zhao H, Tang Y, Li M, Cai Y, Xiao X, He F, Huang H, Zhang Y, Li J. Skin-permeable gold nanoparticles with modifications azelamide monoethanolamine ameliorate inflammatory skin diseases. Biomark Res 2024; 12:118. [PMID: 39385245 PMCID: PMC11465885 DOI: 10.1186/s40364-024-00663-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Traditional topical drug delivery for treating inflammatory skin diseases suffers from poor skin penetration and long-term side effects. Metal nanoparticles show promising application in topical drug delivery for inflammatory skin diseases. METHODS Here, we synthesized a new type of nanoparticles, azelamide monoethanolamine-functionalized gold nanoparticles (Au-MEA NPs), based on citrate-capped gold nanoparticles (Au-CA NPs) via the ligand exchange method. The physical and chemical properties of Au-CA NPs and Au-MEA NPs were characterized. In vivo studies were performed using imiquimod-induced psoriasis and LL37-induced rosacea animal models, respectively. For in vitro studies, a model of cellular inflammation was established using HaCaT cells stimulated with TNF-α. In addition, proteomics, gelatin zymography, and other techniques were used to investigate the possible therapeutic mechanisms of the Au-MEA NPs. RESULTS We found that Au-MEA NPs exhibited better stability and permeation properties compared to conventional Au-CA NPs. Transcutaneously administered Au-MEA NPs exerted potent therapeutic efficacy against both rosacea-like and psoriasiform skin dermatitis in vivo without overt signs of toxicity. Mechanistically, Au-MEA NPs reduced the production of pro-inflammatory mediators in keratinocytes by promoting SOD activity and inhibiting the activity of MMP9. CONCLUSION Au-MEA NPs have the potential to be a topical nanomedicine for the effective and safe treatment of inflammatory skin diseases.
Collapse
Affiliation(s)
- He Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Han Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yan Tang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Mengfan Li
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Yisheng Cai
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xin Xiao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Fanping He
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hongwen Huang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China.
| | - Yiya Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
9
|
Hartley B, Bassiouni W, Roczkowsky A, Fahlman R, Schulz R, Julien O. N-Terminomic Identification of Intracellular MMP-2 Substrates in Cardiac Tissue. J Proteome Res 2024; 23:4188-4202. [PMID: 38647137 PMCID: PMC11460328 DOI: 10.1021/acs.jproteome.3c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024]
Abstract
Proteases are enzymes that induce irreversible post-translational modifications by hydrolyzing amide bonds in proteins. One of these proteases is matrix metalloproteinase-2 (MMP-2), which has been shown to modulate extracellular matrix remodeling and intracellular proteolysis during myocardial injury. However, the substrates of MMP-2 in heart tissue are limited, and lesser known are the cleavage sites. Here, we used degradomics to investigate the substrates of intracellular MMP-2 in rat ventricular extracts. First, we designed a novel, constitutively active MMP-2 fusion protein (MMP-2-Fc) that we expressed and purified from mammalian cells. Using this protease, we proteolyzed ventricular extracts and used subtiligase-mediated N-terminomic labeling which identified 95 putative MMP-2-Fc proteolytic cleavage sites using mass spectrometry. The intracellular MMP-2 cleavage sites identified in heart tissue extracts were enriched for proteins primarily involved in metabolism, as well as the breakdown of fatty acids and amino acids. We further characterized the cleavage of three of these MMP-2-Fc substrates based on the gene ontology analysis. We first characterized the cleavage of sarco/endoplasmic reticulum calcium ATPase (SERCA2a), a known MMP-2 substrate in myocardial injury. We then characterized the cleavage of malate dehydrogenase (MDHM) and phosphoglycerate kinase 1 (PGK1), representing new cardiac tissue substrates. Our findings provide insights into the intracellular substrates of MMP-2 in cardiac cells, suggesting that MMP-2 activation plays a role in cardiac metabolism.
Collapse
Affiliation(s)
- Bridgette Hartley
- Department
of Biochemistry, University of Alberta, Edmonton T6G 2H7, Canada
| | - Wesam Bassiouni
- Department
of Pharmacology, University of Alberta, Edmonton T6G 2S2, Canada
| | - Andrej Roczkowsky
- Department
of Pharmacology, University of Alberta, Edmonton T6G 2S2, Canada
| | - Richard Fahlman
- Department
of Biochemistry, University of Alberta, Edmonton T6G 2H7, Canada
| | - Richard Schulz
- Department
of Pharmacology, University of Alberta, Edmonton T6G 2S2, Canada
- Department
of Pediatrics, University of Alberta, Edmonton T6G 2S2, Canada
| | - Olivier Julien
- Department
of Biochemistry, University of Alberta, Edmonton T6G 2H7, Canada
| |
Collapse
|
10
|
Sindelka R, Naraine R, Abaffy P, Zucha D, Kraus D, Netusil J, Smetana K, Lacina L, Endaya BB, Neuzil J, Psenicka M, Kubista M. Characterization of regeneration initiating cells during Xenopus laevis tail regeneration. Genome Biol 2024; 25:251. [PMID: 39350302 PMCID: PMC11443866 DOI: 10.1186/s13059-024-03396-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Embryos are regeneration and wound healing masters. They rapidly close wounds and scarlessly remodel and regenerate injured tissue. Regeneration has been extensively studied in many animal models using new tools such as single-cell analysis. However, until now, they have been based primarily on experiments assessing from 1 day post injury. RESULTS In this paper, we reveal that critical steps initiating regeneration occur within hours after injury. We discovered the regeneration initiating cells (RICs) using single-cell and spatial transcriptomics of the regenerating Xenopus laevis tail. RICs are formed transiently from the basal epidermal cells, and their expression signature suggests they are important for modifying the surrounding extracellular matrix thus regulating development. The absence or deregulation of RICs leads to excessive extracellular matrix deposition and defective regeneration. CONCLUSION RICs represent a newly discovered transient cell state involved in the initiation of the regeneration process.
Collapse
Affiliation(s)
- Radek Sindelka
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, 252 50, Czech Republic.
| | - Ravindra Naraine
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, 252 50, Czech Republic
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, 252 50, Czech Republic
| | - Daniel Zucha
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, 252 50, Czech Republic
| | - Daniel Kraus
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, 252 50, Czech Republic
| | - Jiri Netusil
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, 252 50, Czech Republic
| | - Karel Smetana
- First Faculty of Medicine, Institute of Anatomy, Charles University, Prague 2, 128 00, Czech Republic
| | - Lukas Lacina
- First Faculty of Medicine, Institute of Anatomy, Charles University, Prague 2, 128 00, Czech Republic
- Department Dermatovenereology, First Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic
| | - Berwini Beduya Endaya
- Laboratory of Molecular Therapy, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, 252 50, Czech Republic
| | - Jiri Neuzil
- Laboratory of Molecular Therapy, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, 252 50, Czech Republic
- School of Pharmacy and Medical Science, Griffith University, Southport, QLD, Australia
- Faculty of Science, Charles University, Prague 2, Czech Republic
- First Faculty of Medicine, Charles University, Prague 2, Czech Republic
| | - Martin Psenicka
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Vodnany, 389 25, Czech Republic
| | - Mikael Kubista
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, 252 50, Czech Republic
| |
Collapse
|
11
|
Wu S, Zhou Z, Li Y, Jiang J. Advancements in diabetic foot ulcer research: Focus on mesenchymal stem cells and their exosomes. Heliyon 2024; 10:e37031. [PMID: 39286219 PMCID: PMC11403009 DOI: 10.1016/j.heliyon.2024.e37031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/11/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Diabetes represents a widely acknowledged global public health concern. Diabetic foot ulcer (DFU) stands as one of the most severe complications of diabetes, its occurrence imposing a substantial economic burden on patients, profoundly impacting their quality of life. Despite the deepening comprehension regarding the pathophysiology and cellular as well as molecular responses of DFU, the current therapeutic arsenal falls short of efficacy, failing to offer a comprehensive remedy for deep-seated chronic wounds and microvascular occlusions. Conventional treatments merely afford symptomatic alleviation or retard the disease's advancement, devoid of the capacity to effectuate further restitution of compromised vasculature and nerves. An escalating body of research underscores the prominence of mesenchymal stem cells (MSCs) owing to their paracrine attributes and anti-inflammatory prowess, rendering them a focal point in the realm of chronic wound healing. Presently, MSCs have been validated as a highly promising cellular therapeutic approach for DFU, capable of effectuating cellular repair, epithelialization, granulation tissue formation, and neovascularization by means of targeted differentiation, angiogenesis promotion, immunomodulation, and paracrine activities, thereby fostering wound healing. The secretome of MSCs comprises cytokines, growth factors, chemokines, alongside exosomes harboring mRNA, proteins, and microRNAs, possessing immunomodulatory and regenerative properties. The present study provides a systematic exposition on the etiology of DFU and elucidates the intricate molecular mechanisms and diverse functionalities of MSCs in the context of DFU treatment, thereby furnishing pioneering perspectives aimed at harnessing the therapeutic potential of MSCs for DFU management and advancing wound healing processes.
Collapse
Affiliation(s)
- ShuHui Wu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - ZhongSheng Zhou
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Li QY, Zhu RR, Yu HY, Liu CL, Diao FY, Jiang YQ, Lin YQ, Li XT, Wang WJ. Multifunctional targeting of docetaxel plus bakuchiol micelles in the treatment of invasion and metastasis of ovarian cancer. Biomed Mater 2024; 19:065002. [PMID: 39208838 DOI: 10.1088/1748-605x/ad7556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
The invasion and metastasis of tumors pose significant challenges in the treatment of ovarian cancer (OC), making it difficult to cure. One potential treatment approach that has gained attention is the use of matrix metalloproteinase reactive controlled release micelle preparations. In this study, we developed a novel PEG5000-PVGLIG-hyaluronic acid docetaxel/bakuchiol (PP-HA-DTX/BAK) micelles formulation with desirable characteristics such as particle size, narrow polydispersity index, and a ZETA potential of approximately -5 mV. The surface modification with HA facilitates tumor penetration into the tumor interior, while the incorporation of DSPE-PEG2000-PVGLIG-PEG5000helps conceal DSPE-PEG2000-HA, reducing off-target effects and prolonging drug circulation timein vivo. Bothin vitroandin vivoexperiments demonstrated that these micelles effectively inhibit proliferation, invasion, and metastasis of OC cells while promoting apoptosis. Therefore, our findings suggest that PP-HA-DTX/BAK micelles represent a safe and effective therapeutic strategy for treating OC.
Collapse
Affiliation(s)
- Qi-Yan Li
- Shandong Institute for Food and Drug Control, Shandong 250101, People's Republic of China
| | - Ri-Ran Zhu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong 250011, People's Republic of China
| | - Hai-Ying Yu
- Shandong Institute for Food and Drug Control, Shandong 250101, People's Republic of China
| | - Chun-Lin Liu
- Shandong Institute for Food and Drug Control, Shandong 250101, People's Republic of China
| | - Fei-Yan Diao
- Shandong Institute for Food and Drug Control, Shandong 250101, People's Republic of China
| | - Ya-Qi Jiang
- Shandong Institute for Food and Drug Control, Shandong 250101, People's Republic of China
| | - Yong-Qiang Lin
- Shandong Institute for Food and Drug Control, Shandong 250101, People's Republic of China
| | - Xue-Tao Li
- Liaoning University of Traditional Chinese Medicine, School of Pharmacy, Dalian 116600, People's Republic of China
| | - Wei-Jian Wang
- Shandong Institute for Food and Drug Control, Shandong 250101, People's Republic of China
| |
Collapse
|
13
|
Chen F, Zhao J, Meng F, He F, Ni J, Fu Y. The vascular contribution of apolipoprotein E to Alzheimer's disease. Brain 2024; 147:2946-2965. [PMID: 38748848 DOI: 10.1093/brain/awae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/23/2024] [Accepted: 04/21/2024] [Indexed: 09/04/2024] Open
Abstract
Alzheimer's disease, the most prevalent form of dementia, imposes a substantial societal burden. The persistent inadequacy of disease-modifying drugs targeting amyloid plaques and neurofibrillary tangles suggests the contribution of alternative pathogenic mechanisms. A frequently overlooked aspect is cerebrovascular dysfunction, which may manifest early in the progression of Alzheimer's disease pathology. Mounting evidence underscores the pivotal role of the apolipoprotein E gene, particularly the apolipoprotein ε4 allele as the strongest genetic risk factor for late-onset Alzheimer's disease, in the cerebrovascular pathology associated with Alzheimer's disease. In this review, we examine the evidence elucidating the cerebrovascular impact of both central and peripheral apolipoprotein E on the pathogenesis of Alzheimer's disease. We present a novel three-hit hypothesis, outlining potential mechanisms that shed light on the intricate relationship among different pathogenic events. Finally, we discuss prospective therapeutics targeting the cerebrovascular pathology associated with apolipoprotein E and explore their implications for future research endeavours.
Collapse
Affiliation(s)
- Feng Chen
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jing Zhao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Fanxia Meng
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Fangping He
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jie Ni
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yuan Fu
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
14
|
Bin EP, Zaobornyj T, Garces M, D'Annunzio V, Buchholz B, Marchini T, Evelson P, Gelpi RJ, Donato M. Remote ischemic preconditioning prevents sarcolemmal-associated proteolysis by MMP-2 inhibition. Mol Cell Biochem 2024; 479:2351-2363. [PMID: 37728809 DOI: 10.1007/s11010-023-04849-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 09/02/2023] [Indexed: 09/21/2023]
Abstract
The death of myocytes occurs through different pathways, but the rupture of the plasma membrane is the key point in the transition from reversible to irreversible injury. In the myocytes, three major groups of structural proteins that link the extracellular and intracellular milieus and confer structural stability to the cell membrane: the dystrophin-associated protein complex, the vinculin-integrin link, and the spectrin-based submembranous cytoskeleton. The objective was to determine if remote ischemic preconditioning (rIPC) preserves membrane-associated cytoskeletal proteins (dystrophin and β-dystroglycan) through the inhibition of metalloproteinase type 2 (MMP-2) activity. A second objective was to describe some of the intracellular signals of the rIPC, that modify mitochondrial function at the early reperfusion. Isolated rat hearts were subjected to 30 min of global ischemia and 120 min of reperfusion (I/R). rIPC was performed by 3 cycles of ischemia/reperfusion in the lower limb (rIPC). rIPC significantly decreased the infarct size, induced Akt/GSK-3 β phosphorylation and inhibition of the MPTP opening. rIPC improved mitochondrial function, increasing membrane potential, ATP production and respiratory control. I/R increased ONOO- production, which activates MMP-2. This enzyme degrades β-dystroglycan and dystrophin and collaborates to sarcolemmal disruption. rIPC attenuates the breakdown of β-dystroglycan and dystrophin through the inhibition of MMP-2 activity. Furthermore, we confirm that rIPC activates different intracellular pathway that involves the an Akt/Gsk3β and MPTP pore with preservation of mitochondrial function.
Collapse
Affiliation(s)
- Eliana P Bin
- Universidad de Buenos Aires, Facultad de Ciencias Médicas, Instituto de Fisiopatología Cardiovascular, 950 J. E. Uriburu, 2nd floor, C1114AAD, Buenos Aires, Argentina
- Universidad de Buenos Aires - CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Tamara Zaobornyj
- Universidad de Buenos Aires - CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Físico-Química, Buenos Aires, Argentina
| | - Mariana Garces
- Universidad de Buenos Aires - CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Verónica D'Annunzio
- Universidad de Buenos Aires, Facultad de Ciencias Médicas, Instituto de Fisiopatología Cardiovascular, 950 J. E. Uriburu, 2nd floor, C1114AAD, Buenos Aires, Argentina
- Universidad de Buenos Aires - CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Bruno Buchholz
- Universidad de Buenos Aires, Facultad de Ciencias Médicas, Instituto de Fisiopatología Cardiovascular, 950 J. E. Uriburu, 2nd floor, C1114AAD, Buenos Aires, Argentina
- Universidad de Buenos Aires - CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Timoteo Marchini
- Universidad de Buenos Aires - CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Pablo Evelson
- Universidad de Buenos Aires - CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Ricardo J Gelpi
- Universidad de Buenos Aires, Facultad de Ciencias Médicas, Instituto de Fisiopatología Cardiovascular, 950 J. E. Uriburu, 2nd floor, C1114AAD, Buenos Aires, Argentina
- Universidad de Buenos Aires - CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Martín Donato
- Universidad de Buenos Aires, Facultad de Ciencias Médicas, Instituto de Fisiopatología Cardiovascular, 950 J. E. Uriburu, 2nd floor, C1114AAD, Buenos Aires, Argentina.
- Universidad de Buenos Aires - CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina.
| |
Collapse
|
15
|
Shi X, Wang Y, Yin Y, Yang F, Zhang Y, He X, Wen D, Ma K, Li BX. Analysis of the Relationship Between Parkinson's Disease and Diabetic Retinopathy Based on Bioinformatics Methods. Mol Neurobiol 2024; 61:6395-6406. [PMID: 38308666 DOI: 10.1007/s12035-024-03982-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/21/2024] [Indexed: 02/05/2024]
Abstract
The objective of the study was to explore the relationship and potential mechanism between Parkinson's disease (PD) and diabetic retinopathy (DR) using bioinformatics methods. We first examined the causal relationship between PD and DR by Mendelian randomization (MR) analysis. The datasets of PD and DR patients from the Gene Expression Omnibus database were used to identify differentially expressed genes (DEGs). Then, we performed the Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and immune infiltration analysis. We also constructed a protein-protein interaction network and receiver operating characteristic (ROC) curve. Finally, an online website was used for drug prediction. The MR analysis demonstrated a causal relationship between DR and PD (odds ratio [OR] = 0.86; 95% confidence interval [CI] 0.79-0.93; p = 3.24E - 04), in which DR acted as a protective factor against PD. There were 81 DEGs identified from the PD and DR datasets, of which 29 genes had protein interaction relationships, and enrichment analysis showed that these genes were mainly related to immune pathways. As indicated by immune cell infiltration analysis, the expression of immune cells between PD and the control group was significantly different. ROC curve results showed five genes had diagnostic value, and several potential chemical compounds were predicted to target the genes. Our findings demonstrate a reduced risk of PD in patients with DR. We also found that PD and DR are closely related in terms of inflammation, which provides clues for further exploring the common mechanisms and interaction of these two diseases.
Collapse
Affiliation(s)
- XinYu Shi
- Department of Hygienic Toxicology, School of Public Health, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, Heilongjiang Province, People's Republic of China, 150081
| | - YiNi Wang
- Department of Hygienic Toxicology, School of Public Health, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, Heilongjiang Province, People's Republic of China, 150081
| | - YaPing Yin
- Department of Hygienic Toxicology, School of Public Health, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, Heilongjiang Province, People's Republic of China, 150081
| | - Fei Yang
- Department of Hygienic Toxicology, School of Public Health, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, Heilongjiang Province, People's Republic of China, 150081
| | - YiNan Zhang
- Department of Hygienic Toxicology, School of Public Health, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, Heilongjiang Province, People's Republic of China, 150081
| | - Xin He
- Department of Hygienic Toxicology, School of Public Health, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, Heilongjiang Province, People's Republic of China, 150081
- Department of Anesthesiology, The 962nd Hospital of The PLA Joint Logistic Support Force, 45 Xuefu Road, NanGang District, Harbin, Heilongjiang Province, People's Republic of China, 150006
| | - Da Wen
- Academic Affairs Office, Main Building, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, Heilongjiang Province, People's Republic of China, 150081
| | - Kun Ma
- Department of Hygienic Toxicology, School of Public Health, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, Heilongjiang Province, People's Republic of China, 150081.
| | - Bai-Xiang Li
- Department of Hygienic Toxicology, School of Public Health, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, Heilongjiang Province, People's Republic of China, 150081.
| |
Collapse
|
16
|
Zhou S, Ma B, Luo M. Matrix metalloproteinases in aortic dissection. Vascul Pharmacol 2024; 156:107420. [PMID: 39182633 DOI: 10.1016/j.vph.2024.107420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Aortic dissection, characterized by a high immediate mortality, is primarily caused by excessive bleeding within the walls of the aorta or a severe tear within the intimal layer of the aorta. Inflammation, as well as oxidative stress and the degradation of extracellular matrix (ECM), are significant factors in the development and occurrence of aortic dissection. Matrix metalloproteinases (MMPs) are pivotal enzymes responsible for degrading the ECM. Inflammatory factors and oxidants can interact with MMPs, indicating the potential significance of MMPs in aortic dissection. A substantial body of evidence indicates that numerous MMPs are significantly upregulated in aortic dissection, playing a critical role in ECM degradation and the pathogenesis of aortic dissection. Furthermore, targeting these enzymes has demonstrated potential in facilitating ECM restoration and reducing the incidence of aortic dissection. This review initially provides a brief overview of MMP biology before delving into their expression patterns, regulatory mechanisms, and therapeutic applications in aortic dissection. A profound comprehension of the catabolic pathways associated with aortic dissection is imperative for the future development of potential preventive or therapeutic bio-interventions for aortic dissection.
Collapse
Affiliation(s)
- Shufen Zhou
- State Key Laboratory of Cardiovascular Disease, Center of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Baihui Ma
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Mingyao Luo
- State Key Laboratory of Cardiovascular Disease, Center of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Department of Vascular Surgery, Central-China Branch of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou 450046, China; Department of Vascular Surgery, Fuwai Yunnan Cardiovascular Hospital, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming 650102, China.
| |
Collapse
|
17
|
Almatrafi TA, Lakshmaiya N, Almohaimeed HM, Chakravarthi S, Amin AH, Jafer A, Almars AI, Basabrain AA, Alghamdi YS, Saadh MJ, Akhavan-Sigari R. Reducing metastasis ability of gastric cancer cell line by targeting MMP16 using miR-193a-5p and 5-FU. Adv Med Sci 2024; 69:463-473. [PMID: 39341599 DOI: 10.1016/j.advms.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/21/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
PURPOSE Co-administration of microRNAs and chemotherapy drugs effectively treats several cancers. The current study sought to investigate the function of matrix metalloproteinase 16 (MMP16) and miR-193a-5p in the pathogenesis of gastric cancer (GC). MATERIALS/METHODS Sixty-five surgical patients, 15 receiving 5-fluorouracil (5-FU), provided GC and adjacent non-cancerous tissue. Following that, qPCR was used to assess the expression levels of MMP16 and miR-193a-5p in GC cells. The impact of miR-193a-5p and 5-FU administration on MMP16 mRNA expression was evaluated using qRT-PCR and Western blotting. MTT and Scratch tests were also conducted to assess their effects on cell viability and migration. Moreover, a rescue experiment using an MTT assay was performed. Using flow cytometry, the apoptotic rate was calculated. Finally, it was evaluated how MMP16 and miR-193a-5p related to the clinicopathological characteristics of the patients. RESULTS The current study found that while MMP16 expression increased in GC patients (P < 0.0001), miR-193a-5p expression significantly decreased (P < 0.001). MMP16 down-regulation was another effect of miR-193a-5p replacement, particularly when 5-FU was added (P < 0.01). In addition, this study found that miR-193a-5p, by concentrating on MMP16, decreased the migration of GC cells brought on by MMP16. In GC cell lines, miR-193 and 5-FU induce apoptosis, with the 5-FU being more pronounced when combined with mir-193, according to flow cytometry results. A strong correlation was also found between clinicopathological traits associated with MMP16 and miR-193a-5p. CONCLUSIONS These findings suggest that miR-193a-5p, in conjunction with 5-FU, down-regulates MMP16 in GC, where it suppresses tumor growth.
Collapse
Affiliation(s)
| | - Natrayan Lakshmaiya
- Department of Research and Innovation, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - Hailah M Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Srikumar Chakravarthi
- SEGi University, No.9, Jalan Teknologi, Taman Sains Selangor, Petaling Jaya, Selangor, Malaysia
| | - Ali H Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Ayman Jafer
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amany I Almars
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ammar A Basabrain
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Youssef S Alghamdi
- Department of Biology, Turabah University College, Taif University, Saudi Arabia
| | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, Jordan; Applied Science Research Center. Applied Science Private University, Amman, Jordan.
| | - Reza Akhavan-Sigari
- Dreifaltigkeits-Hospital Lippstadt, Teaching Hospital of the University of Münster, Münster, Germany; Department of Health Care Management and Clinical Research, Collegium Humanum, Warsaw Management University, Warsaw, Poland
| |
Collapse
|
18
|
Ribeiro F, Zhang X, Wen Y, Cacciani N, Hedström Y, Xia Z, Schulz R, Larsson L. The role of zinc and matrix metalloproteinases in myofibrillar protein degradation in critical illness myopathy. Free Radic Biol Med 2024; 222:493-504. [PMID: 38944212 DOI: 10.1016/j.freeradbiomed.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Due to an unexpected activation of different zinc (Zn) transporters in a recent prospective clinical study, we have revisited the role of Zn homeostasis and the activation of matrix metalloproteinases (MMPs) in skeletal muscle exposed to the intensive care unit (ICU) condition (immobilization and mechanical ventilation). ICU patients exposed to 12 days ICU condition were followed longitudinally with six repeated muscle biopsies while they showed a progressive preferential myosin loss, i.e., the hallmark of Critical Illness Myopathy (CIM), in parallel with the activation of Zn-transporters. In this study, we have revisited the expression of Zn-transporters and the activation of MMPs in clinical as well as in experimental studies using an established ICU model. MMPs are a group Zn-dependent endopeptidases which do not only target and cleave extracellular proteins but also intracellular proteins including multiple sarcomeric proteins. MMP-9 is of specific interest since the hallmark of CIM, the preferential myosin loss, has also been reported in dilated cardiomyopathy and coupled to MMP-9 activation. Transcriptional activation of Zn-transporters was observed in both clinical and experimental studies as well as the activation of MMPs, in particular MMP-9, in various limb and respiratory muscles in response to long-term exposure to the ICU condition. The activation of Zn-transporters was paralleled by increased Zn levels in skeletal muscle which in turn showed a negative linear correlation with the preferential myosin loss associated with CIM, offering a potential intervention strategy. Thus, activation of Zn-transporters, increased intramuscular Zn levels, and activation of the Zn-dependent MMPs are forwarded as a probable mechanism involved in CIM pathophysiology. These effects were confirmed in different rat strains subjected to a model of CIM and exacerbated by old age. This is of specific interest since old age and muscle wasting are the two factors most strongly associated with ICU mortality.
Collapse
Affiliation(s)
- Fernando Ribeiro
- Department of Physiology and Pharmacology, Karolinska Institutet Bioclinicum, Stockholm, 171 64, Sweden; Center for Molecular Medicine (CMM), Karolinska Institutet, Stockholm, 171 76, Sweden; Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Xiang Zhang
- Department of Physiology and Pharmacology, Karolinska Institutet Bioclinicum, Stockholm, 171 64, Sweden; Center for Molecular Medicine (CMM), Karolinska Institutet, Stockholm, 171 76, Sweden; MediData Research Hub, San Biomedical Technology Co., Ltd, Jinhua, 321300, China
| | - Ya Wen
- Department of Physiology and Pharmacology, Karolinska Institutet Bioclinicum, Stockholm, 171 64, Sweden; Center for Molecular Medicine (CMM), Karolinska Institutet, Stockholm, 171 76, Sweden; Laboratory of MediModel Translational Research, San Biomedical Technology Co., Ltd, Jinhua, 321300, China
| | - Nicola Cacciani
- Department of Physiology and Pharmacology, Karolinska Institutet Bioclinicum, Stockholm, 171 64, Sweden
| | - Yvette Hedström
- Department of Physiology and Pharmacology, Karolinska Institutet Bioclinicum, Stockholm, 171 64, Sweden
| | - Zhidan Xia
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Richard Schulz
- Departments of Pediatrics and Pharmacology, University of Alberta, Edmonton, T6G 2S2, Canada
| | - Lars Larsson
- Department of Physiology and Pharmacology, Karolinska Institutet Bioclinicum, Stockholm, 171 64, Sweden; Center for Molecular Medicine (CMM), Karolinska Institutet, Stockholm, 171 76, Sweden; Viron Molecular Medicine Institute, Boston, MA, 02108, United States.
| |
Collapse
|
19
|
Zhu S, He J, Yin L, Zhou J, Lian J, Ren Y, Zhang X, Yuan J, Wang G, Li X. Matrix metalloproteinases targeting in prostate cancer. Urol Oncol 2024; 42:275-287. [PMID: 38806387 DOI: 10.1016/j.urolonc.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/07/2024] [Accepted: 05/06/2024] [Indexed: 05/30/2024]
Abstract
Prostate cancer (PCa) is one of the most common tumors affecting men all over the world. PCa has brought a huge health burden to men around the world, especially for elderly men, but its pathogenesis is unclear. In prostate cancer, epigenetic inheritance plays an important role in the development, progression, and metastasis of the disease. An important role in cancer invasion and metastasis is played by matrix metalloproteinases (MMPs), zinc-dependent proteases that break down extracellular matrix. We review two important forms of epigenetic modification and the role of matrix metalloproteinases in tumor regulation, both of which may be of significant value as novel biomarkers for early diagnosis and prognosis monitoring. The author considers that both mechanisms have promising therapeutic applications for therapeutic agent research in prostate cancer, but that efforts should be made to mitigate or eliminate the side effects of drug therapy in order to maximize quality of life of patients. The understanding of epigenetic modification, MMPs, and their inhibitors in the functional regulation of prostate cancer is gradually advancing, it will provide a new technical means for the prevention of prostate cancer, early diagnosis, androgen-independent prostate cancer treatment, and drug research.
Collapse
Affiliation(s)
- Shuying Zhu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Jing He
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Liliang Yin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Jiawei Zhou
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Jiayi Lian
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Yanli Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Xinling Zhang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Jinghua Yuan
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Gang Wang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Xiaoping Li
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China.
| |
Collapse
|
20
|
Yıldırım AB, Göl M, Yiğin A, Çimen L, Dinç H, Yıldız H, Kayar B. Therapeutic use of fisetin and pirfenidone combination in bleomycin-induced pulmonary fibrosis in adult male albino rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03363-6. [PMID: 39162796 DOI: 10.1007/s00210-024-03363-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024]
Abstract
Pulmonary fibrosis is an important health problem; one of the drugs used in its treatment is pirfenidone (PFD). Fisetin (FST) is a flavonoid with antioxidative, anti-inflammatory, and antifibrotic effects. The aim of this study was to induce PF in rats with bleomycin (BLM) and to investigate the combined effect of PFD and FST in the treatment of fibrosis. In the study, 40 male Wistar rats were divided into five groups (n = 8). Sham group was administered saline on day 0 and BLM (5 mg/kg, i.t.) was administered to the other groups; BLM + PFD group: PFD (50 mg/kg) was administered every day between the first and 15th days; BLM + FST group: FST (25 mg/kg) was administered between the first and 15th days; BLM + PFD + FST group: PFD (50 mg/kg) and FST (25 mg/kg) were administered by gavage every day between the first and 15th days. At the end of the 15th day, BAL was performed under anaesthesia and lung tissues were removed. Histopathological, biochemical, and RT-PCR analyses were performed in the lung tissue. In our study, the concomitant use of FST and PFD caused downregulation of NF-κB p65, TGF-β1, and α-SMA expressions; downregulation of TIMP-1, MMP-2, and MMP-9 genes; downregulation of HYP, MPO, and MDA activity; decrease in the number of differential cells in BAL; and upregulation of GSH. This shows that FST and PFD have antifibrotic, antioxidative, and anti-inflammatory effects. Our results show that the combined use of PFD and FST in BLM-induced pulmonary fibrosis reduces extracellular matrix accumulation, downregulates the level of gelatinases and their inhibitors, and provides significant improvements in antioxidative defence parameters.
Collapse
Affiliation(s)
- Ayşegül Burçin Yıldırım
- Department of Histology and Embryology, Faculty of Medicine, Gaziantep Islam Science and Technology University, Gaziantep, Turkey.
| | - Mehmet Göl
- Department of Physiology, Faculty of Medicine, Gaziantep Islam Science and Technology University, Gaziantep, Turkey
| | - Akın Yiğin
- Department of Veterinary Genetics, Faculty of Veterinary, Harran University, Şanlıurfa, Turkey
| | - Leyla Çimen
- Department of Biochemistry, Faculty of Medicine, Gaziantep Islam Science and Technology University, Gaziantep, Turkey
| | - Hikmet Dinç
- Department of Pharmacology, Faculty of Medicine, Gaziantep Islam Science and Technology University, Gaziantep, Turkey
| | - Hamit Yıldız
- Department of Internal Diseases, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Begüm Kayar
- Department of Microbiology, Faculty of Medicine, Gaziantep Islam Science and Technology University, Gaziantep, Turkey
| |
Collapse
|
21
|
Tatsuno R, Komohara Y, Pan C, Kawasaki T, Enomoto A, Jubashi T, Kono H, Wako M, Ashizawa T, Haro H, Ichikawa J. Surface Markers and Chemokines/Cytokines of Tumor-Associated Macrophages in Osteosarcoma and Other Carcinoma Microenviornments-Contradictions and Comparisons. Cancers (Basel) 2024; 16:2801. [PMID: 39199574 PMCID: PMC11353089 DOI: 10.3390/cancers16162801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Osteosarcoma (OS) is the most common primary bone tumor in children and adolescents. Prognosis is improving with advances in multidisciplinary treatment strategies, but the development of new anticancer agents has not, and improvement in prognosis for patients with pulmonary metastases has stalled. In recent years, the tumor microenvironment (TME) has gained attention as a therapeutic target for cancer. The immune component of OS TME consists mainly of tumor-associated macrophages (TAMs). They exhibit remarkable plasticity, and their phenotype is influenced by the TME. In general, surface markers such as CD68 and CD80 show anti-tumor effects, while CD163 and CD204 show tumor-promoting effects. Surface markers have potential value as diagnostic and prognostic biomarkers. The cytokines and chemokines produced by TAMs promote tumor growth and metastasis. However, the role of TAMs in OS remains unclear to date. In this review, we describe the role of TAMs in OS by focusing on TAM surface markers and the TAM-produced cytokines and chemokines in the TME, and by comparing their behaviors in other carcinomas. We found contrary results from different studies. These findings highlight the urgency for further research in this field to improve the stalled OS prognosis percentages.
Collapse
Affiliation(s)
- Rikito Tatsuno
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8555, Japan; (Y.K.); (C.P.)
| | - Cheng Pan
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8555, Japan; (Y.K.); (C.P.)
| | - Tomonori Kawasaki
- Department of Pathology, Saitama Medical University International Medical Center, Saitama 350-1298, Japan;
| | - Atsushi Enomoto
- Department of Pathology, Graduate School of Medicine, Nagoya University, Nagoya 464-8601, Japan;
| | - Takahiro Jubashi
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Hiroyuki Kono
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Masanori Wako
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Tomoyuki Ashizawa
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Hirotaka Haro
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Jiro Ichikawa
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| |
Collapse
|
22
|
Ma Y, Liu Y, Guo J, Chen Z, Zhao Z, Zheng J. Topical application of daphnetin hydrogel for traumatic brain injury. Front Neurosci 2024; 18:1450072. [PMID: 39170676 PMCID: PMC11335657 DOI: 10.3389/fnins.2024.1450072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Background Traumatic brain injury (TBI) causes neuronal cell damage and dysfunction. According to previous studies, daphnetin (Dap) has a protective effect in neurological injury. However, the in vivo bioavailability of daphnetin is not high. The purpose of this study was to determine whether administering daphnetin directly into the site of injury via a hydrogel drug carrier could improve its therapeutic impact. Methods Tripolycerol monostearates / daphnetin (TM/Dap) hydrogels were prepared and characterised using water bath heating, scanning electron microscopy (SEM) and small animal in vivo imaging techniques. The TBI model was established using the Feeney free fall impact method. Using the Morris water maze test, the mNSS neurological deficit rating scale, haematoxylin-eosin staining, and liver and kidney function tests, the therapeutic benefit of TM/Dap and its toxic side effects were assessed. The therapeutic effects of TM/Dap were further investigated using wet and dry gravimetric methods, Evans blue staining, protein immunoblotting, immunofluorescence staining techniques and ELISA. Results The efficacy of the TM/Dap hydrogel in gradually releasing daphnetin in the context of traumatic brain damage was shown by both in vitro and in vivo tests. Behavioral experiments showed that the learning and spatial memory abilities of TM/Dap hydrogel treated mice were significantly improved in the water maze experiment. And TM/Dap hydrogel has high biosafety for organisms. The results of the therapeutic mechanism of action showed that TM/Dap hydrogel showed more significant efficacy in reducing the neuroinflammatory response caused by TNF-α, IL-6 and other factors, as well as promoting the recovery of post-traumatic neurological function. Conclusion The use of hydrogel as a drug carrier for daphnetin showed more significant efficacy in reducing neuroinflammatory response, protecting nerve tissue and promoting post-traumatic neurological recovery compared with traditional drug delivery methods.
Collapse
Affiliation(s)
- Yuanhao Ma
- Department of Neurosurgery, Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, China
- Department of Neurosurgery, Huzhou Central Hospital, Huzhou, China
- Xuzhou Medical University, Xuzhou, China
| | - Yu Liu
- Department of Neurosurgery, Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, China
- Xuzhou Medical University, Xuzhou, China
| | - Jianqiang Guo
- Department of Neurosurgery, Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, China
- Xuzhou Medical University, Xuzhou, China
| | - Zhongjun Chen
- Department of Neurosurgery, Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, China
| | - Zongren Zhao
- Department of Neurosurgery, Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, China
| | - Jinyu Zheng
- Department of Neurosurgery, Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, China
| |
Collapse
|
23
|
Zhou W, Deng X, Liu L, Yuan Y, Meng X, Ma J. PELI1 overexpression contributes to pancreatic cancer progression through upregulating ubiquitination-mediated INPP5J degradation. Cell Signal 2024; 120:111194. [PMID: 38685520 DOI: 10.1016/j.cellsig.2024.111194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/12/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Inositol Polyphosphate-5-Phosphatase J (INPP5J), a 5-phosphatase, has been identified as a tumor suppressor in several types of cancer. However, its role in pancreatic cancer (PC) is unknown. We found that the INPP5J expression was markedly lower in PC tissues (n = 50) compared to paired adjacent non-tumor tissues, and the lower INPP5J expression was relevant to a worse prognosis of PC patients. We thus proposed that INPP5J might inhibit PC progression and conducted gain-of- and loss-of-function experiments to test our hypothesis. Our results showed that overexpression of INPP5J inhibited cell proliferation, invasion, migration, and xenografted tumor of PC cells. INPP5J silencing showed the opposite effect. Pellino E3 Ubiquitin Protein Ligase 1 (PELI1) is one of the ubiquitin ligases known to promote ubiquitination of its downstream targets. We found that PELI1 could interact with INPP5J and promote the ubiquitination and degradation of INPP5J. PELI1 overexpression enhanced malignant behaviors of PC cells. However, INPP5J overexpression restored the alterations caused by PELI1 overexpression. In conclusion, the results suggest that the decreased INPP5J expression, caused by PELI1 through ubiquitination, may promote PC progression. The PELI1-INPP5J axis represents a potential therapeutic targetable node for PC.
Collapse
Affiliation(s)
- Wenyang Zhou
- Department of Pathology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xin Deng
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Liling Liu
- Department of Pathology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yifeng Yuan
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiangpeng Meng
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Jia Ma
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
24
|
Lu MJ, Zhang JQ, Nie ZY, Yan TH, Cao YB, Zhang LC, Li L. Monocyte/macrophage-mediated venous thrombus resolution. Front Immunol 2024; 15:1429523. [PMID: 39100675 PMCID: PMC11297357 DOI: 10.3389/fimmu.2024.1429523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/03/2024] [Indexed: 08/06/2024] Open
Abstract
Venous thromboembolism (VTE) poses a notable risk of morbidity and mortality. The natural resolution of the venous thrombus might be a potential alternative treatment strategy for VTE. Monocytes/macrophages merge as pivotal cell types in the gradual resolution of the thrombus. In this review, the vital role of macrophages in inducing inflammatory response, augmenting neovascularization, and facilitating the degradation of fibrin and collagen during thrombus resolution was described. The two phenotypes of macrophages involved in thrombus resolution and their dual functions were discussed. Macrophages expressing various factors, including cytokines and their receptors, adhesion molecules, chemokine receptors, vascular endothelial growth factor receptors, profibrinolytic- or antifibrinolytic-related enzymes, and other elements, are explored for their potential to promote or attenuate thrombus resolution. Furthermore, this review provides a comprehensive summary of new and promising therapeutic candidate drugs associated with monocytes/macrophages that have been demonstrated to promote or impair thrombus resolution. However, further clinical trials are essential to validate their efficacy in VTE therapy.
Collapse
Affiliation(s)
- Meng-Jiao Lu
- Institute of Vascular Disease, Shanghai TCM- Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Physiology and Pharmacology, China Pharmaceutic University, Nanjing, China
| | - Jia-Qi Zhang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhou-Yu Nie
- Institute of Vascular Disease, Shanghai TCM- Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tian-Hua Yan
- Department of Physiology and Pharmacology, China Pharmaceutic University, Nanjing, China
| | - Yong-Bing Cao
- Institute of Vascular Disease, Shanghai TCM- Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li-Chao Zhang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling Li
- Institute of Vascular Disease, Shanghai TCM- Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
25
|
Humeres C, Shinde AV, Tuleta I, Hernandez SC, Hanna A, Huang S, Venugopal H, Aguilan JT, Conway SJ, Sidoli S, Frangogiannis NG. Fibroblast Smad7 Induction Protects the Remodeling Pressure-Overloaded Heart. Circ Res 2024; 135:453-469. [PMID: 38899461 PMCID: PMC11257802 DOI: 10.1161/circresaha.123.323360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Cardiac fibroblast activation contributes to adverse remodeling, fibrosis, and dysfunction in the pressure-overloaded heart. Although early fibroblast TGF-β (transforming growth factor-β)/Smad (small mother against decapentaplegic)-3 activation protects the pressure-overloaded heart by preserving the matrix, sustained TGF-β activation is deleterious, accentuating fibrosis and dysfunction. Thus, endogenous mechanisms that negatively regulate the TGF-β response in fibroblasts may be required to protect from progressive fibrosis and adverse remodeling. We hypothesized that Smad7, an inhibitory Smad that restrains TGF-β signaling, may be induced in the pressure-overloaded myocardium and may regulate fibrosis, remodeling, and dysfunction. METHODS The effects of myofibroblast-specific Smad7 loss were studied in a mouse model of transverse aortic constriction, using echocardiography, histological analysis, and molecular analysis. Proteomic studies in S7KO (Smad7 knockout) and overexpressing cells were used to identify fibroblast-derived mediators modulated by Smad7. In vitro experiments using cultured cardiac fibroblasts, fibroblasts populating collagen lattices, and isolated macrophages were used to dissect the molecular signals responsible for the effects of Smad7. RESULTS Following pressure overload, Smad7 was upregulated in cardiac myofibroblasts. TGF-β and angiotensin II stimulated fibroblast Smad7 upregulation via Smad3, whereas GDF15 (growth differentiation factor 15) induced Smad7 through GFRAL (glial cell line-derived neurotrophic factor family receptor α-like). MFS7KO (myofibroblast-specific S7KO) mice had increased mortality, accentuated systolic dysfunction and dilative remodeling, and accelerated diastolic dysfunction in response to transverse aortic constriction. Increased dysfunction in MFS7KO hearts was associated with accentuated fibrosis and increased MMP (matrix metalloproteinase)-2 activity and collagen denaturation. Secretomic analysis showed that Smad7 loss accentuates secretion of structural collagens and matricellular proteins and markedly increases MMP2 secretion. In contrast, Smad7 overexpression reduced MMP2 levels. In fibroblasts populating collagen lattices, the effects of Smad7 on fibroblast-induced collagen denaturation and pad contraction were partly mediated via MMP2 downregulation. Surprisingly, MFS7KO mice also exhibited significant macrophage expansion caused by paracrine actions of Smad7 null fibroblasts that stimulate macrophage proliferation and fibrogenic activation. Macrophage activation involved the combined effects of the fibroblast-derived matricellular proteins CD5L (CD5 antigen-like), SPARC (secreted protein acidic and rich in cysteine), CTGF (connective tissue growth factor), ECM1 (extracellular matrix protein 1), and TGFBI (TGFB induced). CONCLUSIONS The antifibrotic effects of Smad7 in the pressure-overloaded heart protect from dysfunction and involve not only reduction in collagen deposition but also suppression of MMP2-mediated matrix denaturation and paracrine effects that suppress macrophage activation through inhibition of matricellular proteins.
Collapse
Affiliation(s)
- Claudio Humeres
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Indiana University School of Medicine, Indianapolis IN
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis IN
| | - Arti V Shinde
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Indiana University School of Medicine, Indianapolis IN
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis IN
| | - Izabela Tuleta
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Indiana University School of Medicine, Indianapolis IN
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis IN
| | - Silvia C Hernandez
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Indiana University School of Medicine, Indianapolis IN
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis IN
| | - Anis Hanna
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Indiana University School of Medicine, Indianapolis IN
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis IN
| | - Shuaibo Huang
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Indiana University School of Medicine, Indianapolis IN
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis IN
| | - Harikrishnan Venugopal
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Indiana University School of Medicine, Indianapolis IN
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis IN
| | - Jennifer T Aguilan
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx NY
| | - Simon J Conway
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis IN
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx NY
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Indiana University School of Medicine, Indianapolis IN
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis IN
| |
Collapse
|
26
|
Lazar AM, Costea DO, Popp CG, Mastalier B. Skin Malignant Melanoma and Matrix Metalloproteinases: Promising Links to Efficient Therapies. Int J Mol Sci 2024; 25:7804. [PMID: 39063046 PMCID: PMC11277423 DOI: 10.3390/ijms25147804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Skin malignant melanoma (MM) is one of the most frequent and aggressive neoplasia worldwide. Its associated high mortality rates are mostly due to its metastases, while diagnosis and treatment of MM in its early stages is of favorable prognostic. Even skin superficial MMs at incipient local stages can already present with lymph node invasion and distant metastases. Therefore, knowledge of the controllable risk factors and pathogenic mechanisms of MM development, spreading, and metastatic pattern, as well as early diagnosis, are essential to decrease the high mortality rates associated with cutaneous malignant melanoma. Genetic factors are incriminated, although lifetime-acquired genetic mutations appear to be even more frequently involved in the development of MM. Skin melanocytes divide only twice per year and have time to accumulate genetic mutations as a consequence of environmental aggressive factors, such as UV exposure. In the search for more promising therapies, matrix metalloproteinases have become of significant interest, such as MMP-1, MMP-2, MMP-9, and MMP-13, which have been linked to more aggressive forms of cancer and earlier metastases. Therefore, the development of specific synthetic inhibitors of MMP secretion or activity could represent a more promising and effective approach to the personalized treatment of MM patients.
Collapse
Affiliation(s)
- Angela Madalina Lazar
- Faculty of General Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania;
- General Surgery Clinic, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Daniel Ovidiu Costea
- Second Surgery Clinic, Constanta District Clinical Emergency Hospital, 900591 Constanța, Romania
- Department of Surgery, University of Medicine and Pharmacy “Ovidius”, 900470 Constanta, Romania
| | | | - Bogdan Mastalier
- Faculty of General Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania;
- General Surgery Clinic, Colentina Clinical Hospital, 020125 Bucharest, Romania
| |
Collapse
|
27
|
Liu J, Zhang B, Cui Y, Song H, Shang D. In vitro co-culture models for studying organoids-macrophages interaction: the golden technology of cancer immunotherapy. Am J Cancer Res 2024; 14:3222-3240. [PMID: 39113861 PMCID: PMC11301299 DOI: 10.62347/bqfh7352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/12/2024] [Indexed: 08/10/2024] Open
Abstract
Macrophages, as the largest immune cell group in tumour tissues, play a crucial role in influencing various malignant behaviours of tumour cells and tumour immune evasion. As the research on macrophages and cancer immunotherapy develops, the importance of appropriate research models becomes increasingly evident. The development of organoids has bridged the gap between traditional two-dimensional (2D) cultures and animal experiments. Recent studies have demonstrated that organoids exhibit similar physiological characteristics to the source tissue and closely resemble the in vivo genome and molecular markers of the source tissue or organ. However, organoids still lack an immune component. Developing a co-culture model of organoids and macrophages is crucial for studying the interaction and mechanisms between tumour cells and macrophages. This paper presents an overview of the establishment of co-culture models, the current research status of organoid macrophage interactions, and the current status of immunotherapy. In addition, the application prospects and shortcomings of the model are explained. Ultimately, it is hoped that the co-culture model will offer a preclinical testing platform for maximising a precise cancer immunotherapy strategy.
Collapse
Affiliation(s)
- Jinming Liu
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical UniversityDalian, Liaoning, PR China
| | - Biao Zhang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical UniversityDalian, Liaoning, PR China
| | - Yuying Cui
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical UniversityDalian, Liaoning, PR China
| | - Huiyi Song
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical UniversityDalian, Liaoning, PR China
| | - Dong Shang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical UniversityDalian, Liaoning, PR China
- Institute (College) of Integrative Medicine, Dalian Medical UniversityDalian, Liaoning, PR China
| |
Collapse
|
28
|
Tong D, Gobert S, Reuzeau A, Farges JC, Leveque M, Bolon M, Costantini A, Pasdeloup M, Lafont J, Ducret M, Bekhouche M. Dental pulp mesenchymal stem cells-response to fibrin hydrogel reveals ITGA2 and MMPs expression. Heliyon 2024; 10:e32891. [PMID: 39027533 PMCID: PMC11255596 DOI: 10.1016/j.heliyon.2024.e32891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
Regenerative endodontic procedures (REP) aim at reestablishing tooth vitality by replacing the irreversibly damaged dental pulp removed by the dental practitioner with a new functional one. The current treatment of advanced caries relies on the replacement of the inflamed or necrosed dental pulp with an inert filling material. This leads to a functional but non-vital tooth, which lacks the ability to sense dental tissue damage, and to protect from further bacterial attack. Therapeutic strategies inspired by tissue engineering called REP propose to regenerate a fully functional dental pulp directly in the canal space. Promising results were obtained using dental pulp mesenchymal stem cells (DP-MSCs) in combination with bio-inspired artificial and temporary 3D hydrogels made of extracellular matrix molecules such as collagen and fibrin biomacromolecules. However, the uncontrolled mechanisms of DP regeneration from DP-MSCs in 3D biomacromolecules fail to regenerate a fully functional DP and can induce fibrotic scarring or mineralized tissue formation to a non-negligible extent. The lack of knowledge regarding the early molecular mechanisms initiated by DP-MSCs seeded in ECM-made hydrogels is a scientific lock for REP. In this study, we investigated the early DP-MSC-response in a 3D fibrin hydrogel. DP-MSCs isolated from human third molars were cultured for 24 h in the fibrin hydrogel. The differential transcript levels of extracellular and cell surface genes were screened with 84-gene PCR array. Out of the 84 genes screened, 9 were found to be overexpressed, including those coding for the integrin alpha 2 subunit, the collagenase MMP1 and stromelysins MMP3, MMP10 and MMP12. Over-expression of ITGA2 was confirmed by RT-qPCR. The expression of alpha 2 integrin subunit protein was assessed over time by immunoblot and immunofluorescence staining. The increase in the transcript level of MMP1, MMP3, MM10 and MMP12 was confirmed by RT-qPCR. The overexpression of MMP1 and 3 at the protein level was assessed by immunoblot. MMP3 expression by DP-MSCs was observed by immunofluorescence staining. This work demonstrates overexpression of ITGA2 and of MMP1, 3, 10 and 12 by DP-MSCs cultured in a fibrin hydrogel. The main preliminary extracellular and cell surface response of the DP-MSCs to fibrin hydrogel seems to rely on a ITGA2/MMP3 axis. Further investigations are needed to precisely decipher the role of this axis in dental pulp tissue building. Nevertheless, this work identifies extracellular and cell surface molecules that could be potential checkpoints to be targeted to guide proper dental pulp tissue regeneration.
Collapse
Affiliation(s)
- David Tong
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Stéphanie Gobert
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Alicia Reuzeau
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Jean-Christophe Farges
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
- Odontology Faculty of Lyon, University Lyon 1, France
- Hospices Civils de Lyon, France
| | - Marianne Leveque
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Marie Bolon
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Arthur Costantini
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
- Hospices Civils de Lyon, France
| | - Marielle Pasdeloup
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Jérôme Lafont
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Maxime Ducret
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
- Odontology Faculty of Lyon, University Lyon 1, France
| | - Mourad Bekhouche
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| |
Collapse
|
29
|
Hernández-Hernández I, De La Rosa JV, Martín-Rodríguez P, Díaz-Sarmiento M, Recio C, Guerra B, Fernández-Pérez L, León TE, Torres R, Font-Díaz J, Roig A, de Mora F, Boscá L, Díaz M, Valledor AF, Castrillo A, Tabraue C. Endogenous LXR signaling controls pulmonary surfactant homeostasis and prevents lung inflammation. Cell Mol Life Sci 2024; 81:287. [PMID: 38970705 PMCID: PMC11335212 DOI: 10.1007/s00018-024-05310-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/04/2024] [Accepted: 06/04/2024] [Indexed: 07/08/2024]
Abstract
Lung type 2 pneumocytes (T2Ps) and alveolar macrophages (AMs) play crucial roles in the synthesis, recycling and catabolism of surfactant material, a lipid/protein fluid essential for respiratory function. The liver X receptors (LXR), LXRα and LXRβ, are transcription factors important for lipid metabolism and inflammation. While LXR activation exerts anti-inflammatory actions in lung injury caused by lipopolysaccharide (LPS) and other inflammatory stimuli, the full extent of the endogenous LXR transcriptional activity in pulmonary homeostasis is incompletely understood. Here, using mice lacking LXRα and LXRβ as experimental models, we describe how the loss of LXRs causes pulmonary lipidosis, pulmonary congestion, fibrosis and chronic inflammation due to defective de novo synthesis and recycling of surfactant material by T2Ps and defective phagocytosis and degradation of excess surfactant by AMs. LXR-deficient T2Ps display aberrant lamellar bodies and decreased expression of genes encoding for surfactant proteins and enzymes involved in cholesterol, fatty acids, and phospholipid metabolism. Moreover, LXR-deficient lungs accumulate foamy AMs with aberrant expression of cholesterol and phospholipid metabolism genes. Using a house dust mite aeroallergen-induced mouse model of asthma, we show that LXR-deficient mice exhibit a more pronounced airway reactivity to a methacholine challenge and greater pulmonary infiltration, indicating an altered physiology of LXR-deficient lungs. Moreover, pretreatment with LXR agonists ameliorated the airway reactivity in WT mice sensitized to house dust mite extracts, confirming that LXR plays an important role in lung physiology and suggesting that agonist pharmacology could be used to treat inflammatory lung diseases.
Collapse
Affiliation(s)
- Irene Hernández-Hernández
- Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Juan V De La Rosa
- Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Departamento de Bioquímica y Biología Molecular, Fisiología, Genética e Inmunología, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Patricia Martín-Rodríguez
- Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Departamento de Morfología, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Mercedes Díaz-Sarmiento
- Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Carlota Recio
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Borja Guerra
- Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Leandro Fernández-Pérez
- Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Theresa E León
- Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona, Barcelona, Spain
| | - Rosa Torres
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Joan Font-Díaz
- Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Angela Roig
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Fernando de Mora
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Lisardo Boscá
- Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Av. Monforte de Lemos 3-5, P-11, Madrid, 28029, Spain
| | - Mario Díaz
- Laboratory of Membrane Physiology and Biophysics, School of Physics, Faculty of Sciences, University of La Laguna, San Cristóbal de La Laguna, Tenerife, Spain
| | - Annabel F Valledor
- Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Antonio Castrillo
- Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAM, Madrid, Spain.
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
| | - Carlos Tabraue
- Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
- Departamento de Morfología, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
30
|
Konenkov VI, Nimaev VV, Shevchenko AV, Prokofiev VF. Polymorphism of angiogenesis regulation factor genes (VEGF/VEGFR), and extracellular matrix remodeling genes (MMP/TIMP), and the levels of their products in extracellular tissues of patients with primary and secondary lymphedema. Vavilovskii Zhurnal Genet Selektsii 2024; 28:433-442. [PMID: 39027126 PMCID: PMC11253019 DOI: 10.18699/vjgb-24-49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 07/20/2024] Open
Abstract
Cells of various organs and systems perform their functions and intercellular interactions not in an inert environment, but in the microenvironment of tissue fluids. Violations of the normal drainage of tissue fluids accompany lymphedema. An important mechanism of angiogenesis and vasculogenesis regulation in tissue fluids is the production and reception of vascular endothelial growth factors in combination with the regulation of matrix metalloproteinases. The aim of the work was to perform: a comparative analysis of some polymorphisms of vascular endothelial growth factor and their receptors and the genes encoding matrix metalloproteinases in two forms of lymphedema; an analysis of the relationship of these genes' polymorphisms with the levels of vascular endothelial growth factor and matrix metalloproteinases and their inhibitors in serum and affected tissues. Polymorphism of VEGF (rs699947, rs3025039), KDR (rs10020464, rs11133360), NRP2 (rs849530, rs849563, rs16837641), matrix metalloproteinases MMP2 (rs2438650), MMP3 (rs3025058), MMP9 (rs3918242), Timp1 (rs6609533) and their combinations were analyzed by the Restriction Fragment Length Polymorphism method and TaqMan RT-PCR. The serum and tissue fluid levels were determined using the ELISA test system. Changes in the frequency distribution of MMP2 genotypes in primary and MMP3 in secondary lymphedema are shown. Significant frequency differences in NRP2 genotypes were revealed by comparing primary and secondary lymphedema. Features of the distribution of complex genotypes in primary and secondary lymphedema were revealed. The correlation analysis revealed the interdependence of the concentrations of the MMP, TIMP and VEGF products and differences in the structure of the correlation matrices of patients with both forms of lymphedema. It was shown that, in primary lymphedema, genotypes associated with low MMP2 and TIMP2 in serum and tissue fluid are detected, while in secondary lymphedema, other associations of the production levels with combined genetic traits are observed.
Collapse
Affiliation(s)
- V I Konenkov
- Research Institute of Clinical and Experimental Lymрhology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V V Nimaev
- Research Institute of Clinical and Experimental Lymрhology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A V Shevchenko
- Research Institute of Clinical and Experimental Lymрhology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V F Prokofiev
- Research Institute of Clinical and Experimental Lymрhology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
31
|
Mastronikolis NS, Kyrodimos E, Piperigkou Z, Spyropoulou D, Delides A, Giotakis E, Alexopoulou M, Bakalis NA, Karamanos NK. Matrix-based molecular mechanisms, targeting and diagnostics in oral squamous cell carcinoma. IUBMB Life 2024; 76:368-382. [PMID: 38168122 DOI: 10.1002/iub.2803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is a head and neck cancer (HNC) with a high mortality rate. OSCC is developed in the oral cavity and it is triggered by many etiologic factors and can metastasize both regionally and distantly. Recent research advances in OSCC improved our understanding on the molecular mechanisms involved in and the initiation of OSCC metastasis. The key roles of the extracellular matrix (ECM) in OSCC are an emerging area of intensive research as the ECM macromolecular network is actively involved in events that regulate cellular morphological and functional properties, transcription and cell signaling mechanisms in invasion and metastasis. The provisional matrix that is formed by cancer cells is profoundly different in composition and functions as compared with the matrix of normal tissue. Fibroblasts are mainly responsible for matrix production and remodeling, but in cancer, the tumor matrix in the tumor microenvironment (TME) also originates from cancer cells. Even though extensive research has been conducted on the role of ECM in regulating cancer pathogenesis, its role in modulating OSCC is less elucidated since there are several issues yet to be fully understood. This critical review is focused on recent research as to present and discuss on the involvement of ECM macromolecular effectors (i.e., proteoglycans, integrins, matrix metalloproteinases) in OSCC development and progression.
Collapse
Affiliation(s)
- Nicholas S Mastronikolis
- Department of Otorhinolaryngology - Head and Neck Surgery, School of Medicine, University of Patras, Patras, Greece
| | - Efthymios Kyrodimos
- 1st Otolaryngology Department, School of Medicine, National & Kapodistrian University of Athens, 'Ippokrateion' General Hospital, Athens, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
- Foundation for Research and Technology - Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Despoina Spyropoulou
- Department of Radiation Oncology, School of Medicine, University of Patras, Patras, Greece
| | - Alexander Delides
- 2nd Otolaryngology Department, School of Medicine, National & Kapodistrian University of Athens, 'Attikon' University Hospital, Athens, Greece
| | - Evangelos Giotakis
- 1st Otolaryngology Department, School of Medicine, National & Kapodistrian University of Athens, 'Ippokrateion' General Hospital, Athens, Greece
- Department of Radiation Oncology, School of Medicine, University of Patras, Patras, Greece
- 2nd Otolaryngology Department, School of Medicine, National & Kapodistrian University of Athens, 'Attikon' University Hospital, Athens, Greece
| | - Miranda Alexopoulou
- Department of Maxillofacial Surgery, University Hospital of Patras, Patras, Greece
| | - Nick A Bakalis
- Department of Nursing, University of Patras, Patras, Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
- Foundation for Research and Technology - Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| |
Collapse
|
32
|
Cordeiro HG, Azevedo-Martins JM, Faria AVDS, Rocha-Brito KJP, Milani R, Peppelenbosch M, Fuhler G, de Fátima Â, Ferreira-Halder CV. Calix[6]arene dismantles extracellular vesicle biogenesis and metalloproteinases that support pancreatic cancer hallmarks. Cell Signal 2024; 119:111174. [PMID: 38604340 DOI: 10.1016/j.cellsig.2024.111174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/13/2024]
Abstract
Many challenges are faced in pancreatic cancer treatment due to late diagnosis and poor prognosis because of high recurrence and metastasis. Extracellular vesicles (EVs) and matrix metalloproteinases (MMPs), besides acting in intercellular communication, are key players in the cancer cell plasticity responsible for initiating metastasis. Therefore, these entities provide valuable targets for the development of better treatments. In this context, this study aimed to evaluate the potential of calix[6]arene to disturb the release of EVs and the activity of MMPs in pancreatic cancer cells. We found a correlation between the endocytic-associated mediators and the prognosis of pancreatic cancer patients. We observed a more active EV machinery in the pancreatic cancer cell line PANC-1, which was reduced three-fold by treatment with calix[6]arene at subtoxic concentration (5 μM; p 〈0,001). We observed the modulation of 186 microRNAs (164 miRNAs upregulated and 22 miRNAs downregulated) upon calix[6]arene treatment. Interestingly, some of them as miR-4443 and miR-3909, regulates genes HIF1A e KIF13A that are well known to play a role in transport of vesicles. Furthermore, Calix[6]arene downmodulated matrix metalloproteinases (MMPs) -2 and - 9 and disturbed the viability of pancreatic organoids which recapitulate the cellular heterogeneity, structure, and functions of primary tissues. Our findings shed new insights on calix[6]arene's antitumor mechanism, including its intracellular effects on vesicle production and trafficking, as well as MMP activity, which may harm the tumor microenvironment and contribute to a reduction in cancer cell dissemination, which is one of the challenges associated with high mortality in pancreatic cancer.
Collapse
Affiliation(s)
- Helon Guimarães Cordeiro
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Jordana Maria Azevedo-Martins
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Alessandra Valéria de Sousa Faria
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil; Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | | | - Renato Milani
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Maikel Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Gwenny Fuhler
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Ângelo de Fátima
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carmen Veríssima Ferreira-Halder
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
33
|
Wen Y, Zhang X, Cacciani N, Hedström Y, Ikeno Y, Bergquist J, Larsson L. Proteomics Panel of BAL Fluid Associated with Ventilator-induced Lung Injury. Am J Respir Cell Mol Biol 2024; 71:12-15. [PMID: 38949323 DOI: 10.1165/rcmb.2023-0431le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Affiliation(s)
- Ya Wen
- Karolinska Institutet Stockholm, Sweden
| | | | | | | | - Yuji Ikeno
- University of Texas Health Science Center at San Antonio San Antonio, Texas
- Audie L. Murphy Veterans Hospital San Antonio, Texas
| | | | - Lars Larsson
- Karolinska Institutet Stockholm, Sweden
- Vrion Molecular Medicine Institute Boston, Massachusetts
| |
Collapse
|
34
|
Medina Rangel PX, Ishibe S. Preventing MMP23-mediated cleavage of podocyte RARRES1: a novel strategy to halt chronic kidney disease progression? Kidney Int 2024; 106:16-18. [PMID: 38906649 DOI: 10.1016/j.kint.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 06/23/2024]
Abstract
Glomerular issues and affected podocytes are at the origin of 80% of chronic kidney disease cases. Thus, acquiring a deeper understanding in this domain is necessary to halt progressive kidney damage. In this study, the authors investigated the harmful impact of podocyte-cleaved soluble retinoic acid receptor responder protein-1 on podocytes and proximal tubular cells and identified matrix metalloprotease 23 as the enzyme responsible for cleaving retinoic acid receptor responder protein-1. These findings provide new insights into chronic kidney disease progression, suggesting innovative treatment avenues.
Collapse
Affiliation(s)
- Paulina X Medina Rangel
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Shuta Ishibe
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
35
|
Radosinska D, Radosinska J. The Link Between Matrix Metalloproteinases and Alzheimer's Disease Pathophysiology. Mol Neurobiol 2024:10.1007/s12035-024-04315-0. [PMID: 38935232 DOI: 10.1007/s12035-024-04315-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024]
Abstract
Alzheimer's disease (AD) is a major contributor to dementia and the most common neurodegenerative disorder. In AD pathophysiology, matrix metalloproteinases (MMPs)-proteolytic enzymes, best known to be responsible for remodeling and degradation of the extracellular matrix-were suggested to play an important role. Due to the diverse nature of the published data and frequent inconsistent results presented in available papers, it was considered essential to analyze all aspects of MMP literature with respect to AD pathophysiology and attempt to outline a unifying concept for understanding their role in AD. Thus, the main contribution of this review article is to summarize the most recent research on the participation of MMP in AD pathophysiology obtained using the cell cultures to understand the molecular principles of their action. Furthermore, an updated comprehensive view regarding this topic based exclusively on papers from human studies is provided as well. It can be concluded that determining the exact role of any particular MMPs in the AD pathophysiology holds promise for establishing their role as potential biomarkers reflecting the severity or progression of this disease or for developing new therapeutic agents targeting the processes that lead to AD.
Collapse
Affiliation(s)
- Dominika Radosinska
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Jana Radosinska
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 2, 81372, Bratislava, Slovak Republic.
| |
Collapse
|
36
|
Cioates Negut C, Ilie-Mihai RM, Stefan-van Staden RI. Determination of Matrix Metalloproteinase 2 in Biological Samples Using a 3D Stochastic Microsensor Based on Graphene Oxide/AuNanoparticles/(Z)-N-(pyridin-4-yl-methyl) Octadec-9-enamide. Int J Mol Sci 2024; 25:6720. [PMID: 38928425 PMCID: PMC11203526 DOI: 10.3390/ijms25126720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
The levels of the MMPs in the biological samples of confirmed patients with gastric cancer are significantly elevated compared to those found in healthy people. Therefore, a novel 3D stochastic microsensor based on graphene oxide, modified with gold nanoparticles and (Z)-N-(pyridin-4-yl-methyl) octadec-9-enamide (namely N2-AuNP/GO), was designed for the determination of MMP-2 in biological samples, and validated for the screening tests of biological samples in order to be used for the early diagnosis of gastric cancer. The proposed sensor presents a low limit of quantification (1.00 × 10-22 g mL-1), high sensitivity (1.84 × 107 s-1 g-1 mL), and a wide working concentration range (1.00 × 10-22-1.00 × 10-7 g mL-1). Recovery values higher than 99.15% were recorded for the assay of MMP-2 in whole blood, gastric tissue tumors, saliva, and urine samples.
Collapse
Affiliation(s)
| | - Ruxandra-Maria Ilie-Mihai
- Laboratory of Electrochemistry and PATLAB, National Institute for Research and Development in Electrochemistry and Condensed Matter, 202 Splaiul Independentei Str., 060021 Bucharest, Romania;
| | - Raluca-Ioana Stefan-van Staden
- Laboratory of Electrochemistry and PATLAB, National Institute for Research and Development in Electrochemistry and Condensed Matter, 202 Splaiul Independentei Str., 060021 Bucharest, Romania;
| |
Collapse
|
37
|
Xie Y, Sang Q, Da Q, Niu G, Deng S, Feng H, Chen Y, Li YY, Liu B, Yang Y, Dai W. Improving diagnosis and outcome prediction of gastric cancer via multimodal learning using whole slide pathological images and gene expression. Artif Intell Med 2024; 152:102871. [PMID: 38685169 DOI: 10.1016/j.artmed.2024.102871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 03/08/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
For the diagnosis and outcome prediction of gastric cancer (GC), machine learning methods based on whole slide pathological images (WSIs) have shown promising performance and reduced the cost of manual analysis. Nevertheless, accurate prediction of GC outcome may rely on multiple modalities with complementary information, particularly gene expression data. Thus, there is a need to develop multimodal learning methods to enhance prediction performance. In this paper, we collect a dataset from Ruijin Hospital and propose a multimodal learning method for GC diagnosis and outcome prediction, called GaCaMML, which is featured by a cross-modal attention mechanism and Per-Slide training scheme. Additionally, we perform feature attribution analysis via integrated gradient (IG) to identify important input features. The proposed method improves prediction accuracy over the single-modal learning method on three tasks, i.e., survival prediction (by 4.9% on C-index), pathological stage classification (by 11.6% on accuracy), and lymph node classification (by 12.0% on accuracy). Especially, the Per-Slide strategy addresses the issue of a high WSI-to-patient ratio and leads to much better results compared with the Per-Person training scheme. For the interpretable analysis, we find that although WSIs dominate the prediction for most samples, there is still a substantial portion of samples whose prediction highly relies on gene expression information. This study demonstrates the great potential of multimodal learning in GC-related prediction tasks and investigates the contribution of WSIs and gene expression, respectively, which not only shows how the model makes a decision but also provides insights into the association between macroscopic pathological phenotypes and microscopic molecular features.
Collapse
Affiliation(s)
- Yuzhang Xie
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qingqing Sang
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasm, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qian Da
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Guoshuai Niu
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shijie Deng
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Haoran Feng
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasm, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yunqin Chen
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China; Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai, 201203, China
| | - Yuan-Yuan Li
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China; Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai, 201203, China
| | - Bingya Liu
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasm, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yang Yang
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Wentao Dai
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasm, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China; Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai, 201203, China.
| |
Collapse
|
38
|
Yu H, Ou G. Genetic analyses unravel the causal association of cytokine levels on lichen simplex chronicus risk: insights from a mendelian randomization study. Arch Dermatol Res 2024; 316:241. [PMID: 38795165 DOI: 10.1007/s00403-024-02964-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/27/2024]
Abstract
Lichen simplex chronicus (LSC) presents a challenge in dermatology due to its elusive pathogenic mechanisms. While associations between circulating inflammatory cytokines and LSC were observed, the definitive causal dynamics remain to be elucidated. Our study used a two-sample Mendelian randomization (MR) approach to investigate causal relationships. We applied a suite of MR methodologies, including IVW, Weighted Median, MR-Egger, Weighted Mode, Simple Mode, MR-PRESSO, and the Steiger test, to ensure robust causal inference. Our analysis confirmed the causal impact of genetically determined cytokine levels on LSC risk, particularly MMP-10 (OR = 0.493, P = 0.004) and DNER (OR = 0.651, P = 0.043) in risk attenuation. We also found a positive causal correlation between GDNF levels (OR = 1.871, P = 0.007) and LSC prevalence. Notably, bidirectional causality was observed between DNER and LSC. Consistency across various MR analyses and sensitivity analyses confirmed the absence of horizontal pleiotropy, validating the causal estimates. This pioneering MR investigation unveils a novel genetically anchored causal relationship between the circulating levels of MMP-10, DNER, and GDNF and LSC risk. Although further validation is requisite, our findings augment the understanding of cytokine mediation in LSC and underscore prospective avenues for research.
Collapse
Affiliation(s)
- Haoyang Yu
- Department of Dermatology, Taizhou First People's Hospital, Taizhou, Zhejiang, 318020, P. R. China.
| | - Guanyong Ou
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
39
|
Han J, Lee C, Jeong H, Jeon S, Lee M, Lee H, Choi YH, Jung Y. Tumor necrosis factor-inducible gene 6 protein and its derived peptide ameliorate liver fibrosis by repressing CD44 activation in mice with alcohol-related liver disease. J Biomed Sci 2024; 31:54. [PMID: 38790021 PMCID: PMC11127441 DOI: 10.1186/s12929-024-01042-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Alcohol-related liver disease (ALD) is a major health concern worldwide, but effective therapeutics for ALD are still lacking. Tumor necrosis factor-inducible gene 6 protein (TSG-6), a cytokine released from mesenchymal stem cells, was shown to reduce liver fibrosis and promote successful liver repair in mice with chronically damaged livers. However, the effect of TSG-6 and the mechanism underlying its activity in ALD remain poorly understood. METHODS To investigate its function in ALD mice with fibrosis, male mice chronically fed an ethanol (EtOH)-containing diet for 9 weeks were treated with TSG-6 (EtOH + TSG-6) or PBS (EtOH + Veh) for an additional 3 weeks. RESULTS Severe hepatic injury in EtOH-treated mice was markedly decreased in TSG-6-treated mice fed EtOH. The EtOH + TSG-6 group had less fibrosis than the EtOH + Veh group. Activation of cluster of differentiation 44 (CD44) was reported to promote HSC activation. CD44 and nuclear CD44 intracellular domain (ICD), a CD44 activator which were upregulated in activated HSCs and ALD mice were significantly downregulated in TSG-6-exposed mice fed EtOH. TSG-6 interacted directly with the catalytic site of MMP14, a proteolytic enzyme that cleaves CD44, inhibited CD44 cleavage to CD44ICD, and reduced HSC activation and liver fibrosis in ALD mice. In addition, a novel peptide designed to include a region that binds to the catalytic site of MMP14 suppressed CD44 activation and attenuated alcohol-induced liver injury, including fibrosis, in mice. CONCLUSIONS These results demonstrate that TSG-6 attenuates alcohol-induced liver damage and fibrosis by blocking CD44 cleavage to CD44ICD and suggest that TSG-6 and TSG-6-mimicking peptide could be used as therapeutics for ALD with fibrosis.
Collapse
Affiliation(s)
- Jinsol Han
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Chanbin Lee
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
- Institute of Systems Biology, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Hayeong Jeong
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Seunghee Jeon
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Myunggyo Lee
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Pusan, 46241, Republic of Korea
| | - Haeseung Lee
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Pusan, 46241, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, Dong-Eui University College of Korean Medicine, Pusan, 47227, Republic of Korea
| | - Youngmi Jung
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea.
- Department of Biological Sciences, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea.
| |
Collapse
|
40
|
Liu H, Zhang L, Hao L, Fan D. Resveratrol Inhibits Colorectal Cancer Cell Tumor Property by Activating the miR-769-5p/MSI1 Pathway. Mol Biotechnol 2024:10.1007/s12033-024-01167-w. [PMID: 38771419 DOI: 10.1007/s12033-024-01167-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/02/2024] [Indexed: 05/22/2024]
Abstract
Resveratrol exhibits inhibitory effects on the progression of various cancers including colorectal cancer (CRC), however, the underlying mechanism in regulating CRC development remains elusive. The present study aims to uncover the role and molecular mechanism of resveratrol in modulating CRC cell tumor properties. NCM460 cells, LoVo cells, SW480 cells, and BALB/c nude mice were utilized in this study. RNA levels of miR-769-5p and musashi RNA-binding protein 1 (MSI1) were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Protein expression was assessed by western blotting or immunohistochemistry assay. Cell viability was analyzed by CCK-8 assay, while cell proliferation and apoptosis were evaluated by 5-Ethynyl-2'-deoxyuridine assay and flow cytometry analysis. Cell migration was investigated by transwell and wound-healing assays. The association between miR-769-5p and MSI1 was identified by a dual-luciferase reporter assay. Tumor formation was analyzed using a xenograft mouse model assay. Compared to control groups, miR-769-5p expression was downregulated, while MSI1 expression was upregulated in CRC tissues and cells. Resveratrol treatment led to increased miR-769-5p expression and decreased MSI1 expression in CRC cells. Resveratrol treatment or miR-769-5p upregulation inhibited CRC cell proliferation and migration, and induced apoptosis. These effects were enhanced after combined treatment with resveratrol and miR-769-5p mimics. MSI1 was identified as a target of miR-769-5p, and its overexpression attenuated the effects of miR-769-5p mimics on cell proliferation, migration, and apoptosis. Moreover, miR-769-5p overexpression enhanced the inhibitory effects of resveratrol on tumor growth in vivo. Resveratrol inhibited colorectal cancer cell tumor properties by activating the miR-769-5p/MSI1 pathway.
Collapse
Affiliation(s)
- Hongchang Liu
- Department of Colorectal Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No.41 Twelve Bridges Road, Jinniu, Chengdu, 610000, Sichuan, China
| | - Liangliang Zhang
- Department of Colorectal Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No.41 Twelve Bridges Road, Jinniu, Chengdu, 610000, Sichuan, China
| | - Liangliang Hao
- Department of Colorectal Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No.41 Twelve Bridges Road, Jinniu, Chengdu, 610000, Sichuan, China
| | - Dingwen Fan
- Department of Colorectal Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No.41 Twelve Bridges Road, Jinniu, Chengdu, 610000, Sichuan, China.
| |
Collapse
|
41
|
Peng L, Xu S, Xu JL. Integration of Single-Cell RNA Sequencing and Bulk RNA Sequencing to Identify an Immunogenic Cell Death-Related 5-Gene Prognostic Signature in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:879-900. [PMID: 38770169 PMCID: PMC11104445 DOI: 10.2147/jhc.s449419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 05/03/2024] [Indexed: 05/22/2024] Open
Abstract
Introduction Immunogenic cell death (ICD) can enhance the potency of immunotherapy in cancer treatment. Nevertheless, it is ambiguous how ICD-related genes (ICDRGs) contribute to hepatocellular carcinoma (HCC). Methods Single-cell RNA sequencing (scRNA-seq) data were used to distinguish malignant cells from normal cells in the HCC tumor microenvironment(TME). Bulk RNA sequencing data was employed to acquire the landscape of the 33 ICDRGs. Unsupervised clustering identified two ICD molecular subtypes. The cellular infiltration characteristics and biological behavior in different subtypes were analyzed by ssGSEA. Subsequently, differentially expressed genes (DEGs) between the two subtypes were determined, based on which patients were classified into three gene clusters. Then, the prognostic model was constructed by Lasso-Cox analysis. Finally, we investigated the expression of risk genes in cancer cell line encyclopedia (CCLE) and validated the function of NKX3-2 in vitro experiments. Results ICD scores and ICDRGs expression in malignant cells were significantly lower than in normal cells by scRNA-seq analysis. ICD-high subtype was characterized by ICD-related gene overexpression and high levels of immune infiltration abundance and immune checkpoints; Three DEGs-related gene clusters were likewise strongly linked to stromal and immunological activation. In the ICD-related prognostic model consisting of NKX3-2, CHODL, MMP1, NR0B1, and CTSV, the low-risk group patients had a better endpoint and displayed increased susceptibility to immunotherapy and chemotherapeutic drugs like 5-Fluorouracil, afatinib, bortezomib, cediratinib, lapatinib, dasatinib, gefitinib and crizotinib. Moreover, NKX3-2 amplification in HCC samples has been verified by experiments, and its disruption suppressed the proliferation and invasion of tumor cells. Conclusion Our study highlighted the potential of the ICDRGs risk score as a prognostic indicator to aid in the accurate diagnosis and immunotherapy sensitivity of HCC.
Collapse
Affiliation(s)
- Liqun Peng
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, People’s Republic of China
| | - Shaohua Xu
- Department of Clinical Laboratory, Center for Gene Diagnosis & Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Jian-Liang Xu
- Department of Hepatobiliary Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
42
|
Ishihara A. Hydroxylated polychlorinated biphenyls may affect the thyroid hormone-induced brain development during metamorphosis of Xenopus laevis by disturbing the expression of matrix metalloproteinases. Mol Biol Rep 2024; 51:624. [PMID: 38710963 DOI: 10.1007/s11033-024-09555-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Thyroid hormones are primarily responsible for the brain development in perinatal mammals. However, this process can be inhibited by external factors such as environmental chemicals. Perinatal mammals are viviparous, which makes direct fetal examination difficult. METHODS We used metamorphic amphibians, which exhibit many similarities to perinatal mammals, as an experimental system. Therefore, using metamorphic amphibians, we characterized the gene expression of matrix metalloproteinases, which play an important role in brain development. RESULTS The expression of many matrix metalloproteinases (mmps) was characteristically induced during metamorphosis. We also found that the expression of many mmps was induced by T3 and markedly inhibited by hydroxylated polychlorinated biphenyls (PCBs). CONCLUSION Overall, our findings suggest that hydroxylated PCBs disrupt normal brain development by disturbing the gene expression of mmps.
Collapse
Affiliation(s)
- Akinori Ishihara
- Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka, 422-8529, Japan.
| |
Collapse
|
43
|
Huang Y, Yan B, Meng C, Zhang L, Wang C. Matrix metalloproteinases in chronic rhinosinusitis. Expert Rev Clin Immunol 2024; 20:547-558. [PMID: 38251631 DOI: 10.1080/1744666x.2024.2302362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
INTRODUCTION Matrix metalloproteinases (MMPs) are a group of enzymes that are essential in maintaining extracellular matrix (ECM) homeostasis, regulating inflammation and tissue remodeling. In chronic rhinosinusitis (CRS), the overexpression of certain MMPs can contribute to chronic nasal tissue inflammation, ECM remodeling, and tissue repair. AREAS COVERED This review provides a comprehensive overview of the biological characteristics and functions of the MMP family, particularly focusing on the expression and activity of MMPs in patients with CRS, and delves into their role in the pathogenesis of CRS and their potential as therapeutic targets. EXPERT OPINION MMPs are important in tissue remodeling and have been implicated in the pathophysiology of CRS. Previous studies have shown that the expression of MMPs is upregulated in the nasal mucosa of patients with CRS and positively correlates with the severity of CRS. However, there is still a large gap in the research content of MMP in CRS, and the specific expression and pathogenic mechanism of MMP still need to be clarified. The significance and value of the ratio of MMP to tissue inhibitors of metalloproteinase (TIMP) in diseases still need to be demonstrated. Moreover, further studies are needed to assess the efficacy and safety of biologics that target MMPs in patients with CRS.
Collapse
Affiliation(s)
- Yuqing Huang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Bing Yan
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Chen Meng
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Luo Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Chengshuo Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
44
|
Zyubanova IV, Falkovckaya AY, Manukyan MA, Solonskaya EI, Vtorushina AA, Khunkhinova SA, Gusakova AM, Pekarskiy SE, Mordovin VF. Features of The Dynamics of Profibrotic Markers and Regression of Left Ventricular Hypertrophy After Renal Denervation in Patients With Resistant Hypertension and Stenosing Atherosclerosis of the Coronary Arteries. KARDIOLOGIIA 2024; 64:45-53. [PMID: 38742515 DOI: 10.18087/cardio.2024.4.n2411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/15/2023] [Accepted: 03/17/2023] [Indexed: 05/16/2024]
Abstract
AIM To compare the changes in serum concentrations of matrix metalloproteinases (MMPs) and their tissue inhibitor (TIMP) to the dynamics of blood pressure (BP) and parameters of left ventricular hypertrophy (LVH) 6 months after renal denervation (RD) in patients with resistant arterial hypertension (RAH) and complicated coronary atherosclerosis. MATERIAL AND METHODS In 22 RAH patients with complicated coronary atherosclerosis (revascularization and/or history of myocardial infarction (MI)), 24-hour BP monitoring, echocardiography, and measurement of blood MMPs and TIMP were performed at baseline and six months after RD. The comparison group consisted of 48 RAH patients without a history of coronary revascularization or MI. RESULTS In 6 months after RD, BP was decreased comparably in both groups. In the group of complicated atherosclerosis, there were no significant changes in profibrotic markers or LVH parameters. Thus, at baseline and after 6 months, the values of the studied indicators were the following: left ventricular myocardial mass (LVMM) 233.1±48.1 and 243.0±52.0 g, LVMM index 60.6±14.5 and 62.8±10 .9 g/m2.7, proMMP-1 4.9 [2.1; 7.7] and 3.6 [2.0; 9.4] ng/ml, MMP-2 290.4 [233.1; 352.5] and 352.2 [277.4; 402.9] ng/ml, MMP-9 220.6 [126.9; 476.7] and 263.5 [82.9; 726.2] ng/ml, TIMP-1 395.7 [124.7; 591.4] and 424.2 [118.2; 572.0] ng/ml, respectively. In the comparison group, on the contrary, there was a significant decrease in LVMM from 273.6±83.3 g to 254.1±70.4 g, LVMM index from 67.1±12.3 to 64.0±14.4 g/m2.7, proMMP-1 from 7.2 [3.6; 11.7] to 5.9 [3.5; 10.9] ng/ml, MMP-2 from 328.9 [257.1; 378.1] to 272.8 [230.2; 343.2] ng/ml, MMP-9 from 277.9 [137.0; 524.0] to 85.5 [34.2; 225.9] ng/ml, and the MMP-9/TIMP-1 ratio from 0.80 [0.31; 1.30] to 0.24 [0.07; 0.76]. The BP dynamics in this group was inversely correlated with MMP-2 at 6 months (r=-0.38), and the MMP-9/TIMP-1 ratio was correlated with LVMM and the LVMM index at baseline (r=0.39 and r=0.39) and at 6 months (r=0.37 and r=0.32). The change in TIMP-1 from 543.9 [277.5; 674.1] to 469.8 [289.7; 643.6] ng/ml was not significant (p=0.060). CONCLUSION In RAH patients with complicated coronary atherosclerosis, the dynamics of profibrotic biomarkers and LVH parameters after RD was absent despite the pronounced antihypertensive effect, probably due to the low reversibility of cardiovascular remodeling processes or more complex regulatory mechanisms of the MMP system.
Collapse
Affiliation(s)
- I V Zyubanova
- Research Institute of Cardiology, Tomsk National Research Medical Center
| | - A Yu Falkovckaya
- Research Institute of Cardiology, Tomsk National Research Medical Center
| | - M A Manukyan
- Research Institute of Cardiology, Tomsk National Research Medical Center
| | - E I Solonskaya
- Research Institute of Cardiology, Tomsk National Research Medical Center
| | - A A Vtorushina
- Research Institute of Cardiology, Tomsk National Research Medical Center
| | - S A Khunkhinova
- Research Institute of Cardiology, Tomsk National Research Medical Center
| | - A M Gusakova
- Research Institute of Cardiology, Tomsk National Research Medical Center
| | - S E Pekarskiy
- Research Institute of Cardiology, Tomsk National Research Medical Center
| | - V F Mordovin
- Research Institute of Cardiology, Tomsk National Research Medical Center
| |
Collapse
|
45
|
Wei H, Li Y, Zhang J, Xu C, Wei D, Quan C, Zhu S. MMPs-related risk model identification and SAA1 promotes clear cell renal cell carcinoma migration via ERK-AP1-MMPs axis. Sci Rep 2024; 14:9411. [PMID: 38658579 PMCID: PMC11043417 DOI: 10.1038/s41598-024-59112-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
Matrix Metalloproteinases (MMPs) have been demonstrated to be essential in facilitating the migration and metastasis of clear cell renal cell carcinoma (ccRCC). However, the ability of the MMP family to predict clinical outcomes and guide optimal therapeutic strategies for ccRCC patients remains incompletely understood. In this investigation, we initially conducted a thorough examination of the MMP family in pan-cancer. Notably, MMPs exhibited distinctive significance in ccRCC. Following this, we undertook an extensive analysis to evaluate the clinical value of MMPs and potential mechanisms by which MMPs contribute to the progression of ccRCC. A novel stratification method and prognostic model were developed based on MMPs in order to enhance the accuracy of prognosis prediction for ccRCC patients and facilitate personalized treatment. By conducting multi-omics analysis and transcriptional regulation analysis, it was hypothesized that SAA1 plays a crucial role in promoting ccRCC migration through MMPs. Subsequently, in vitro experiments confirmed that SAA1 regulates ccRCC cell migration via the ERK-AP1-MMPs axis. In conclusion, our study has explored the potential value of the MMP family as prognostic markers for ccRCC and as guides for medication regimens. Additionally, we have identified SAA1 as a crucial factor in the migration of ccRCC.
Collapse
Affiliation(s)
- Haotian Wei
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yajun Li
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jian Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chenglong Xu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Dadong Wei
- Department of Urology, Affiliated Hospital of Chifeng University, Chifeng, China.
| | - Changyi Quan
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| | - Shimiao Zhu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| |
Collapse
|
46
|
Liu C, Zha J, Sun T, Kong L, Zhang X, Wang D, Ni G. Cold atmospheric plasma attenuates skin cancer via ROS induced apoptosis. Mol Biol Rep 2024; 51:518. [PMID: 38622261 DOI: 10.1007/s11033-024-09486-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/26/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Cold atmospheric plasma (CAP) has been widely used in biomedical research, especially in vitro cancer therapy. Cutaneous squamous cell carcinoma (CSCC) is a malignant tumor originating from epidermal keratinocytes. However, the mechanism of CAP therapy on CSCC remains unclear. METHODS AND RESULTS The animal models of CSCC induced by 7,12-dimethylbenz(a) anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA) were constructed. For the CAP treatment group, after each TPA application, CAP was administered for 3 min twice weekly after drying. HE staining were used to detect the pathological status of tumor tissue in each group. The levels of PCNA, Bcl-2, Bax, MMP2 and MMP9 were evaluated by western blot and qPCR. TUNEL staining were used to detect apoptosis in tumor tissues. In vivo, serum samples were used for ELISA of total ROS. MTT assay was used to detect the viability of A431 cells. Western blot and qPCR were used to detect the levels of PCNA, Bcl-2, Bax, MMP2 and MMP9 in A431 cells. A431 cell proliferation was examined by colony formation assay. The proportions of apoptosis of A431 cells were detected by flow cytometry. Transwell assessed the ability of A431 cells migration and proliferation. We found that CAP could induce skin cancer cells apoptosis and inhibit the progress of skin cancer. Through experiments in vitro, reactive oxygen species (ROS) generated by N-acetylcysteine (NAC) and CAP inhibited the proliferation and migration of A431 skin cancer cells while promoting apoptosis. CONCLUSIONS These evidences suggest the protective effect of CAP in CSCC, and CAP has the potential clinical application of CSCC.
Collapse
Affiliation(s)
- Changqing Liu
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Jingjing Zha
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Tao Sun
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Ling Kong
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Xinru Zhang
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- Anhui Province Key Laboratory of Medical Physics and Technology, Hefei, 230031, China.
| | - Dong Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Guohua Ni
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- Anhui Province Key Laboratory of Medical Physics and Technology, Hefei, 230031, China.
| |
Collapse
|
47
|
Sohrabi M, Bahrami S, Mosalli M, Khaleghian M, Obaidinia M. Perianal Fistula; from Etiology to Treatment - A Review. Middle East J Dig Dis 2024; 16:76-85. [PMID: 39131109 PMCID: PMC11316198 DOI: 10.34172/mejdd.2024.373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/18/2024] [Indexed: 08/13/2024] Open
Abstract
Anal fistula has been a challenging clinical issue for years due to its complex pathogenesis. The risk of frequent recurrence and incontinence complicates long-term treatment. Recent scientific literature has reviewed new techniques used for anal fistula treatment in recent years, assessing the advantages and disadvantages of each based on clinical outcomes. Although surgery is the main method used to treat anal fistula, there is no simple technique that can completely heal complex anal fistula. The surgical treatment should consider the healing outcome and the protection of anal function comprehensively. Several innovative techniques have emerged in recent years, such as combined techniques based on drainage seton and LIFT-plug, which appear to be relatively effective therapies. However, more multi-center prospective trials with long-term follow-up are needed to validate their effectiveness. In some situations, medical treatment may also be considered.
Collapse
Affiliation(s)
- Masoudreza Sohrabi
- Gastrointestinal and liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Somayeh Bahrami
- Gastrointestinal and liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mozhdeh Mosalli
- Gastrointestinal and liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Khaleghian
- Gastrointestinal and liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of General Surgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mobin Obaidinia
- Gastrointestinal and liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Noro J, Vilaça-Faria H, Reis RL, Pirraco RP. Extracellular matrix-derived materials for tissue engineering and regenerative medicine: A journey from isolation to characterization and application. Bioact Mater 2024; 34:494-519. [PMID: 38298755 PMCID: PMC10827697 DOI: 10.1016/j.bioactmat.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 02/02/2024] Open
Abstract
Biomaterial choice is an essential step during the development tissue engineering and regenerative medicine (TERM) applications. The selected biomaterial must present properties allowing the physiological-like recapitulation of several processes that lead to the reestablishment of homeostatic tissue or organ function. Biomaterials derived from the extracellular matrix (ECM) present many such properties and their use in the field has been steadily increasing. Considering this growing importance, it becomes imperative to provide a comprehensive overview of ECM biomaterials, encompassing their sourcing, processing, and integration into TERM applications. This review compiles the main strategies used to isolate and process ECM-derived biomaterials as well as different techniques used for its characterization, namely biochemical and chemical, physical, morphological, and biological. Lastly, some of their applications in the TERM field are explored and discussed.
Collapse
Affiliation(s)
- Jennifer Noro
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Helena Vilaça-Faria
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rogério P. Pirraco
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
49
|
Tripathy DK, Panda LP, Biswal S, Barhwal K. Insights into the glioblastoma tumor microenvironment: current and emerging therapeutic approaches. Front Pharmacol 2024; 15:1355242. [PMID: 38523646 PMCID: PMC10957596 DOI: 10.3389/fphar.2024.1355242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/07/2024] [Indexed: 03/26/2024] Open
Abstract
Glioblastoma (GB) is an intrusive and recurrent primary brain tumor with low survivability. The heterogeneity of the tumor microenvironment plays a crucial role in the stemness and proliferation of GB. The tumor microenvironment induces tumor heterogeneity of cancer cells by facilitating clonal evolution and promoting multidrug resistance, leading to cancer cell progression and metastasis. It also plays an important role in angiogenesis to nourish the hypoxic tumor environment. There is a strong interaction of neoplastic cells with their surrounding microenvironment that comprise several immune and non-immune cellular components. The tumor microenvironment is a complex network of immune components like microglia, macrophages, T cells, B cells, natural killer (NK) cells, dendritic cells and myeloid-derived suppressor cells, and non-immune components such as extracellular matrix, endothelial cells, astrocytes and neurons. The prognosis of GB is thus challenging, making it a difficult target for therapeutic interventions. The current therapeutic approaches target these regulators of tumor micro-environment through both generalized and personalized approaches. The review provides a summary of important milestones in GB research, factors regulating tumor microenvironment and promoting angiogenesis and potential therapeutic agents widely used for the treatment of GB patients.
Collapse
Affiliation(s)
- Dev Kumar Tripathy
- Department of Physiology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India
| | - Lakshmi Priya Panda
- Department of Physiology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India
| | - Suryanarayan Biswal
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Kalpana Barhwal
- Department of Physiology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India
| |
Collapse
|
50
|
Shi X, Yu J, Lu C, Luo Q, Xu C, Li J, Wang W. Screening of the shared pathogenic genes of ulcerative colitis and colorectal cancer by integrated bioinformatics analysis. J Cell Mol Med 2024; 28:e17878. [PMID: 37494129 PMCID: PMC10902564 DOI: 10.1111/jcmm.17878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/08/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
Ulcerative colitis (UC) is one of the high-risk pathogenic factors for colorectal cancer (CRC). However, the shared gene and signalling mechanisms between UC and CRC remain unclear. The goal of this study was to delve more into the probable causal relationship between UC and CRC. CRC and UC datasets were downloaded from the Gene Expression Omnibus database. Using R software and Perl, differentially expressed genes (DEGs) in both UC and CRC tissues were re-annotated and screened. The biological activities and signalling pathways involved in DEGs were investigated using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. The STRING database and Cytoscape software were used to construct the gene interaction network. A total of 384 DEGs were selected for further investigation, and functional analysis revealed that inflammatory and immunological responses were crucial in the development of the two diseases. Moreover, the top 15 key genes involved in the UC and CRC were screened using cytoHubba, including IL1B, CXCL10, CCL20, MMP9, ICAM1, CCL4, CXCR1, MMP3, TLR2, PTGS2, IL1RN, IL6, COL1A2, TIMP1 and CXCL1. The identification of these genes in the present study may provide a novel perspective for the prediction, prevention and personalized medicine of UC and CRC patients.
Collapse
Affiliation(s)
- Xu Shi
- Department of OrthopaedicsThe Affiliated People's Hospital of Jiangsu UniversityZhenjiangChina
| | - Jun Yu
- Department of PaediatricsAffiliated Hospital of Nanjing University of Chinese Medicine, Taicang Hospital of Traditional Chinese MedicineTaicangChina
| | - Chen Lu
- Department of General SurgerySiyang HospitalSuqianChina
| | - Qian Luo
- Department of General SurgerySiyang HospitalSuqianChina
| | - Caihong Xu
- Department of Obstetrics and GynaecologyNanjing Tongren Hospital, School of Medicine, Southeast UniversityNanjingChina
| | - Jie Li
- Department of General SurgerySiyang HospitalSuqianChina
| | - Wei Wang
- Department of Clinical LaboratoryLianshui County People's HospitalHuai'anChina
| |
Collapse
|