1
|
Schöneberg T. Modulating vertebrate physiology by genomic fine-tuning of GPCR functions. Physiol Rev 2025; 105:383-439. [PMID: 39052017 DOI: 10.1152/physrev.00017.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/08/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024] Open
Abstract
G protein-coupled receptors (GPCRs) play a crucial role as membrane receptors, facilitating the communication of eukaryotic species with their environment and regulating cellular and organ interactions. Consequently, GPCRs hold immense potential in contributing to adaptation to ecological niches and responding to environmental shifts. Comparative analyses of vertebrate genomes reveal patterns of GPCR gene loss, expansion, and signatures of selection. Integrating these genomic data with insights from functional analyses of gene variants enables the interpretation of genotype-phenotype correlations. This review underscores the involvement of GPCRs in adaptive processes, presenting numerous examples of how alterations in GPCR functionality influence vertebrate physiology or, conversely, how environmental changes impact GPCR functions. The findings demonstrate that modifications in GPCR function contribute to adapting to aquatic, arid, and nocturnal habitats, influencing camouflage strategies, and specializing in particular dietary preferences. Furthermore, the adaptability of GPCR functions provides an effective mechanism in facilitating past, recent, or ongoing adaptations in animal domestication and human evolution and should be considered in therapeutic strategies and drug development.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
- School of Medicine, University of Global Health Equity, Kigali, Rwanda
| |
Collapse
|
2
|
Kim EJ, Doh H, Yang J, Eyun SI. The occurrence of positive selection on BicA transporter of Microcystis aeruginosa. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116795. [PMID: 39083868 DOI: 10.1016/j.ecoenv.2024.116795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
The rapid growth of cyanobacteria, particularly Microcystis aeruginosa, poses a significant threat to global water security. The proliferation of toxic Microcystis aeruginosa raises concerns due to its potential harm to human health and socioeconomic impacts. Dense blooms contribute to spatiotemporal inorganic carbon depletion, promoting interest in the roles of carbon-concentrating mechanisms (CCMs) for competitive carbon uptake. Despite the importance of HCO3- transporters, genetic evaluations and functional predictions in M. aeruginosa remain insufficient. In this study, we explored the diversity of HCO3- transporters in the genomes of 46 strains of M. aeruginosa, assessing positive selection for each. Intriguingly, although the Microcystis BicA transporter became a partial gene in 23 out of 46 genomic strains, we observed significant positive sites. Structural analyses, including predicted 2D and 3D models, confirmed the structural conservation of the Microcystis BicA transporter. Our findings suggest that the Microcystis BicA transport likely plays a crucial role in competitive carbon uptake, emphasizing its ecological significance. The ecological function of the Microcystis BicA transport in competitive growth during cyanobacterial blooms raises important questions. Future studies require experimental confirmation to better understand the role of the Microcysits BicA transporter in cyanobacterial blooms dynamics.
Collapse
Affiliation(s)
- Eun-Jeong Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Huijeong Doh
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Jihye Yang
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Seong-Il Eyun
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea.
| |
Collapse
|
3
|
Jauhal AA, Constantine R, Newcomb R. Conservation and selective pressures shaping baleen whale olfactory receptor genes supports their use of olfaction in the marine environment. Mol Ecol 2024; 33:e17497. [PMID: 39161105 DOI: 10.1111/mec.17497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/28/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
The relative importance of various sensory modalities can shift in response to evolutionary transitions, resulting in changes to underlying gene families encoding their reception systems. The rapid birth-and-death process underlying the evolution of the large olfactory receptor (OR) gene family has accelerated genomic-level change for the sense of smell in particular. The transition from the land to sea in marine mammals is an attractive model for understanding the influence of habitat shifts on sensory systems, with the retained OR repertoire of baleen whales contrasting with its loss in toothed whales. In this study, we examine to what extent the transition from a terrestrial to a marine environment has influenced the evolution of baleen whale OR repertoires. We developed Gene Mining Pipeline (GMPipe) (https://github.com/AprilJauhal/GMPipe), which can accurately identify large numbers of candidate OR genes. GMPipe identified 707 OR sequences from eight baleen whale species. These repertoires exhibited distinct family count distributions compared to terrestrial mammals, including signs of relative expansion in families OR10, OR11 and OR13. While many receptors have been lost or show signs of random drift in baleen whales, others exhibit signs of evolving under purifying or positive selection. Over 85% of OR genes could be sorted into orthologous groups of sequences containing at least four homologous sequences. Many of these groups, particularly from family OR10, presented signs of relative expansion and purifying selective pressure. Overall, our results suggest that the relatively small size of baleen whale OR repertoires result from specialisation to novel olfactory landscapes, as opposed to random drift.
Collapse
Affiliation(s)
- April A Jauhal
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- The New Zealand Institute for Plant & Food Research, Auckland, New Zealand
| | | | - Richard Newcomb
- The New Zealand Institute for Plant & Food Research, Auckland, New Zealand
| |
Collapse
|
4
|
Guo L, Dai W, Xu Z, Liang Q, Miller ET, Li S, Gao X, Baldwin MW, Chai R, Li Q. Evolution of brain-expressed biogenic amine receptors into olfactory trace amine-associated receptors. Mol Biol Evol 2022; 39:6503506. [PMID: 35021231 PMCID: PMC8890504 DOI: 10.1093/molbev/msac006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The family of trace amine-associated receptors (TAARs) is distantly related to G protein-coupled biogenic aminergic receptors. TAARs are found in the brain as well as in the olfactory epithelium where they detect biogenic amines. However, the functional relationship of receptors from distinct TAAR subfamilies and in different species is still uncertain. Here, we perform a thorough phylogenetic analysis of 702 TAAR-like (TARL) and TAAR sequences from 48 species. We show that a clade of Tarl genes has greatly expanded in lampreys, whereas the other Tarl clade consists of only one or two orthologs in jawed vertebrates and is lost in amniotes. We also identify two small clades of Taar genes in sharks related to the remaining Taar genes in bony vertebrates, which are divided into four major clades. We further identify ligands for 61 orphan TARLs and TAARs from sea lamprey, shark, ray-finned fishes, and mammals, as well as novel ligands for two 5-hydroxytryptamine receptor 4 orthologs, a serotonin receptor subtype closely related to TAARs. Our results reveal a pattern of functional convergence and segregation: TARLs from sea lamprey and bony vertebrate olfactory TAARs underwent independent expansions to function as chemosensory receptors, whereas TARLs from jawed vertebrates retain ancestral response profiles and may have similar functions to TAAR1 in the brain. Overall, our data provide a comprehensive understanding of the evolution and ligand recognition profiles of TAARs and TARLs.
Collapse
Affiliation(s)
- Lingna Guo
- Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Department of Anatomy and Physiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Wenxuan Dai
- Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Department of Anatomy and Physiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhengrong Xu
- Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Department of Anatomy and Physiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China.,Research Institute of Otolaryngology, Nanjing, 210008, China
| | - Qiaoyi Liang
- Max Planck Institute for Ornithology, Evolution of Sensory Systems Research Group, Seewiesen, Germany
| | - Eliot T Miller
- Macaulay Library, Cornell Lab of Ornithology, Ithaca, NY, USA
| | - Shengju Li
- Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Department of Anatomy and Physiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China.,Research Institute of Otolaryngology, Nanjing, 210008, China
| | - Maude W Baldwin
- Max Planck Institute for Ornithology, Evolution of Sensory Systems Research Group, Seewiesen, Germany
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.,Research Institute of Otolaryngology, Nanjing, 210008, China
| | - Qian Li
- Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Department of Anatomy and Physiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, 201210, China
| |
Collapse
|
5
|
Yohe LR, Leiser-Miller LB, Kaliszewska ZA, Donat P, Santana SE, Dávalos LM. Diversity in olfactory receptor repertoires is associated with dietary specialization in a genus of frugivorous bat. G3 (BETHESDA, MD.) 2021; 11:jkab260. [PMID: 34568918 PMCID: PMC8473985 DOI: 10.1093/g3journal/jkab260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/19/2021] [Indexed: 11/30/2022]
Abstract
Mammalian olfactory receptor genes (ORs) are a diverse family of genes encoding proteins that directly interact with environmental chemical cues. ORs evolve via gene duplication in a birth-death fashion, neofunctionalizing and pseudogenizing over time. Olfaction is a primary sense used for food detection in plant-visiting bats, but the relationship between dietary specialization and OR repertoire diversity is unclear. Within neotropical Leaf-nosed bats (Phyllostomidae), many lineages are plant specialists, and some have a distinct OR repertoire compared to insectivorous species. Yet, whether specialization on particular plant genera is associated with the evolution of specialized, less diverse OR repertoires has never been tested. Using targeted sequence capture, we sequenced the OR repertoires of three sympatric species of short-tailed fruit bats (Carollia), which vary in their degree of specialization on the fruits of Piper plants. We characterized orthologous vs duplicated receptors among Carollia species, and explored the diversity and redundancy of the receptor gene repertoire. At the species level, the most dedicated Piper specialist, Carollia castanea, had lower OR diversity compared to the two generalists (C. sowelli and C. perspicillata), but we discovered a few unique sets of ORs within C. castanea with high redundancy of similar gene duplicates. These unique receptors potentially enable C. castanea to detect Piper fruit odorants better than its two congeners. Carollia perspicillata, the species with the most generalist diet, had a higher diversity of intact receptors, suggesting the ability to detect a wider range of odorant molecules. Variation among ORs may be a factor in the coexistence of these sympatric species, facilitating the exploitation of different plant resources. Our study sheds light on how gene duplication and changes in OR diversity may play a role in dietary adaptations and underlie ecological interactions between bats and plants.
Collapse
Affiliation(s)
- Laurel R Yohe
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06511, USA
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | - Paul Donat
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| | - Sharlene E Santana
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Burke Museum of Natural History and Culture, University of Washington, Seattle, WA 98105, USA
| | - Liliana M Dávalos
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
- Consortium for Inter-Disciplinary Environmental Research, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
6
|
Vaganova AN, Murtazina RZ, Shemyakova TS, Prjibelski AD, Katolikova NV, Gainetdinov RR. Pattern of TAAR5 Expression in the Human Brain Based on Transcriptome Datasets Analysis. Int J Mol Sci 2021; 22:ijms22168802. [PMID: 34445502 PMCID: PMC8395715 DOI: 10.3390/ijms22168802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/13/2022] Open
Abstract
Trace amine-associated receptors (TAAR) recognize organic compounds, including primary, secondary, and tertiary amines. The TAAR5 receptor is known to be involved in the olfactory sensing of innate socially relevant odors encoded by volatile amines. However, emerging data point to the involvement of TAAR5 in brain functions, particularly in the emotional behaviors mediated by the limbic system which suggests its potential contribution to the pathogenesis of neuropsychiatric diseases. TAAR5 expression was explored in datasets available in the Gene Expression Omnibus, Allen Brain Atlas, and Human Protein Atlas databases. Transcriptomic data demonstrate ubiquitous low TAAR5 expression in the cortical and limbic brain areas, the amygdala and the hippocampus, the nucleus accumbens, the thalamus, the hypothalamus, the basal ganglia, the cerebellum, the substantia nigra, and the white matter. Altered TAAR5 expression is identified in Down syndrome, major depressive disorder, or HIV-associated encephalitis. Taken together, these data indicate that TAAR5 in humans is expressed not only in the olfactory system but also in certain brain structures, including the limbic regions receiving olfactory input and involved in critical brain functions. Thus, TAAR5 can potentially be involved in the pathogenesis of brain disorders and represents a valuable novel target for neuropsychopharmacology.
Collapse
Affiliation(s)
- Anastasia N. Vaganova
- Institute of Translational Biomedicine, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia; (A.N.V.); (R.Z.M.); (T.S.S.); (A.D.P.); (N.V.K.)
| | - Ramilya Z. Murtazina
- Institute of Translational Biomedicine, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia; (A.N.V.); (R.Z.M.); (T.S.S.); (A.D.P.); (N.V.K.)
| | - Taisiia S. Shemyakova
- Institute of Translational Biomedicine, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia; (A.N.V.); (R.Z.M.); (T.S.S.); (A.D.P.); (N.V.K.)
| | - Andrey D. Prjibelski
- Institute of Translational Biomedicine, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia; (A.N.V.); (R.Z.M.); (T.S.S.); (A.D.P.); (N.V.K.)
| | - Nataliia V. Katolikova
- Institute of Translational Biomedicine, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia; (A.N.V.); (R.Z.M.); (T.S.S.); (A.D.P.); (N.V.K.)
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia; (A.N.V.); (R.Z.M.); (T.S.S.); (A.D.P.); (N.V.K.)
- St. Petersburg University Hospital, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
7
|
Dewan A. Olfactory signaling via trace amine-associated receptors. Cell Tissue Res 2020; 383:395-407. [PMID: 33237477 DOI: 10.1007/s00441-020-03331-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/28/2020] [Indexed: 01/30/2023]
Abstract
Trace amine-associated receptors (TAARs) are a family of G protein-coupled receptors that function as odorant receptors in the main olfactory system of vertebrates. TAARs are monoallelically expressed in primary sensory neurons where they couple to the same transduction cascade as canonical olfactory receptors and are mapped onto glomeruli within a specific region of the olfactory bulb. TAARs have a high affinity for volatile amines, a class of chemicals that are generated during the decomposition of proteins and are ubiquitous physiological metabolites that are found in body fluids. Thus, amines are proposed to play an important role in intra- and interspecific communication such as signaling the sex of the conspecific, the quality of the food source, or even the proximity of a predator. TAARs have a crucial role in the perception of these behaviorally relevant compounds as the genetic deletion of all or even individual olfactory TAARs can alter the behavioral response and reduce the sensitivity to amines. The small size of this receptor family combined with the ethological relevance of their ligands makes the TAARs an attractive model system for probing olfactory perception. This review will summarize the current knowledge on the olfactory TAARs and discuss whether they represent a unique subsystem within the main olfactory system.
Collapse
Affiliation(s)
- Adam Dewan
- Department of Psychology, Florida State University, 1107 W. Call St, Tallahassee, FL, 32306, USA.
| |
Collapse
|
8
|
Abstract
Trace amine-associated receptors (TAARs) are a family of G protein-coupled receptors (GPCRs) that are evolutionarily conserved in vertebrates. The first discovered TAAR1 is mainly expressed in the brain, and is able to detect low abundant trace amines. TAAR1 is also activated by several synthetic compounds and psychostimulant drugs like amphetamine. Activation of TAAR1 by specific agonists can regulate the classical monoaminergic systems in the brain. Further studies have revealed that other TAAR family members are highly expressed in the olfactory system which are termed olfactory TAARs. In vertebrates, olfactory TAARs can specifically recognize volatile or water-soluble amines. Some of these TAAR agonists are produced by decarboxylation of amino acids. In addition, some TAAR agonists are ethological odors that mediate animal innate behaviors. In this study, we provide a comprehensive review of TAAR agonists, including their structures, biosynthesis pathways, and functions.
Collapse
Affiliation(s)
- Zhengrong Xu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Research Institute of Otolaryngology, Nanjing, 210008, China
| | - Qian Li
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, 201210, China.
| |
Collapse
|
9
|
Molecular Variants in Human Trace Amine-Associated Receptors and Their Implications in Mental and Metabolic Disorders. Cell Mol Neurobiol 2019; 40:239-255. [PMID: 31643000 PMCID: PMC7028809 DOI: 10.1007/s10571-019-00743-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/02/2019] [Indexed: 02/07/2023]
Abstract
We provide a comprehensive review of the available evidence on the pathophysiological implications of genetic variants in the human trace amine-associated receptor (TAAR) superfamily. Genes coding for trace amine-associated receptors (taars) represent a multigene family of G-protein-coupled receptors, clustered to a small genomic region of 108 kb located in chromosome 6q23, which has been consistently identified by linkage analyses as a susceptibility locus for schizophrenia and affective disorders. Most TAARs are expressed in brain areas involved in emotions, reward and cognition. TAARs are activated by endogenous trace amines and thyronamines, and evidence for a modulatory action on other monaminergic systems has been reported. Therefore, linkage analyses were followed by fine mapping association studies in schizophrenia and affective disorders. However, none of these reports has received sufficient universal replication, so their status remains uncertain. Single nucleotide polymorphisms in taars have emerged as susceptibility loci from genome-wide association studies investigating migraine and brain development, but none of the detected variants reached the threshold for genome-wide significance. In the last decade, technological advances enabled single-gene or whole-exome sequencing, thus allowing the detection of rare genetic variants, which may have a greater impact on the risk of complex disorders. Using these approaches, several taars (especially taar1) variants have been detected in patients with mental and metabolic disorders, and in some cases, defective receptor function has been demonstrated in vitro. Finally, with the use of transcriptomic and peptidomic techniques, dysregulations of TAARs (especially TAAR6) have been identified in brain disorders characterized by cognitive impairment.
Collapse
|
10
|
Eyun S. Accelerated pseudogenization of trace amine-associated receptor genes in primates. GENES, BRAIN, AND BEHAVIOR 2019; 18:e12543. [PMID: 30536583 PMCID: PMC6849804 DOI: 10.1111/gbb.12543] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 01/03/2023]
Abstract
Trace amines (TAs) in the mammalian brain have been investigated for four decades. Trace amine-associated receptors (TAARs) were discovered during the search for receptors activated by TAs. TAARs are considered a second class of vertebrate olfactory receptors and successfully proliferated in conjunction with adaptation to living on the ground to detect carnivore odors. Thus, therian mammals have a high number of TAAR genes due to rapid species-specific gene duplications. In primate lineages, however, their genomes have significantly smaller numbers of TAAR genes than do other mammals. To elucidate the evolutionary force driving these patterns, exhaustive data mining of TAAR genes was performed for 13 primate genomes (covering all four infraorders) and two nonprimate euarchontan genomes. This study identified a large number of pseudogenes in many of these primate genomes and thus investigated the pseudogenization event process for the TAAR repertoires. The degeneration of TAARs is likely associated with arboreal inhabitants reducing their exposure to carnivores, and this was accelerated by the change in the nose shape of haplorhines after their divergence from strepsirrhines. Arboreal life may have decreased the reliance on the chemosensing of predators, suggestive of leading to the depauperation of TAAR subfamilies. The evolutionary deterioration of TAARs in primates has been reestablished in recently derived primates due to high selection pressure and probably functional diversity.
Collapse
Affiliation(s)
- Seong‐il Eyun
- Department of Life ScienceChung‐Ang UniversitySeoulKorea
| |
Collapse
|